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Distributed Non-Asymptotic Confidence Region
Computation over Sensor Networks

V. Zambianchi, Student Member, IEEE, F. Bassi, Member, IEEE, A. Calisti, Student Member, IEEE,
D. Dardari, Senior Member, IEEE, M. Kieffer, Senior Member, IEEE, and G. Pasolini, Member, IEEE,

Abstract—This paper addresses the distributed computation
of exact, non-asymptotic confidence regions for the parameter
estimation of a linear model from observations at different nodes
of a network of sensors. If a central unit gathers all the data, the
sign perturbed sums (SPS) method proposed by Csáji et al. can be
used to define guaranteed confidence regions with prescribed con-
fidence levels from a finite number of measurements. SPS requires
only mild assumptions on the measurement noise. This work
proposes distributed solutions, based on SPS and suited to a wide
variety of sensor networks, for distributed in-node evaluation
of non-asymptotic confidence regions as defined by SPS. More
specifically, a Tagged and Aggregated Sum information diffusion
algorithm is introduced, which exploits the specificities of SPS
to avoid flooding the network with all measurements provided
by the sensors. The performance of the proposed solutions is
evaluated in terms of required traffic load, both analytically
and experimentally on different network topologies. The best
information diffusion strategy among nodes depends on how
structured the network is.

Index Terms—Confidence region, guaranteed precision, distri-
buted algorithms, sign-perturbed sums

I. INTRODUCTION

A Sensor Network (SN) consists of energy-limited sensing
devices deployed to collaborate in performing a common

task. Examples may be the monitoring of an environmental
parameter (e.g., temperature or pressure [2]–[4]), the detection
of a binary event [5], the estimation of a spatial field [6],
the estimation of the coordinates of a signal source [7], etc.
Depending on the specific task requirements (fault tolerance,
privacy issues, energy constraints), either a centralized or a
distributed approach can be adopted. In the centralized setup
a central unit collects all the information and completes the
task, whereas in the distributed setup the nodes exchange
information and accomplish the task locally, possibly detecting
any malfunctions [8].
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http://ieeexplore.ieee.org., provided by the authors. The material includes the
MATLAB implementation of the TAS algorithm introduced in the paper.
Contact michel.kieffer@lss.supelec.fr for further questions about this work.

As far as the centralized estimation of physical parameters
is concerned, maximum likelihood (ML) or least squares
(LS) estimators [9] can be adopted, both working under the
hypothesis of having all the required observations available at
one central unit.
However, the scarce robustness to central unit failures and

poor network scalability have brought to consideration distri-
buted approaches. For instance, recursive weighted LS esti-
mation has been considered [10], [11], alongside a consensus-
based algorithm that allows to incorporate information from
neighbor nodes in the local estimate. A similar approach
is taken within the Bayesian framework [12]–[14], where
consensus-based distributed Kalman filtering is proposed.
Whatever the adopted processing strategy, either centralized

or distributed, in many applications a simple point estimate
of the parameter vector of interest is not sufficient if not
associated with a confidence region to assess the estimation
uncertainty. Classically, the estimation accuracy is investigated
using Cramér-Rao-like bounds [15]–[18]. Confidence regions
can also be derived as a by-product of distributed Kalman
filtering [13], [14]. Nevertheless, strong assumptions on the
measurement noise (typically Gaussian) are necessary and
most of the techniques provide only approximate, possibly
asymptotically tight, confidence regions.
In centralized setups, provided that the regression model

is linear, the derivation of confidence regions in the non-
asymptotic regime is possible using the results in [19]–[25].
The Leave-out Sign-dominant Correlation Regions (LSCR)
method [19], [20] and the sign perturbed sums (SPS) method
[21], [23] allow the central unit to derive, from a finite set of
measurements, guaranteed, non-asymptotic confidence regions
with prescribed confidence levels around the LS estimate of the
parameter vector. Differently from Cramér-Rao-like bounds,
SPS does not require precise statistical knowledge of the
noise, and works under mild assumptions on its distribution
[23], [24]. Efficient centralized characterization of confidence
regions can be obtained using interval analysis [25].

A. Main Contributions

In [1] we showed that confidence regions, as defined by
SPS, may be evaluated in a distributed way, for example
in wireless sensor networks (WSNs). For that purpose, the
nodes share their local information with each other and the
confidence region computation is performed locally. Three in-
formation diffusion approaches (data flooding and parallel in-
node processing, distributed processing via average consensus,
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and mixed flooding+consensus) have been considered in [1] to
provide each node with the information allowing a distributed
computation of the confidence region.
In all cases, the information diffusion strategy, in addition

to the network topology, determines the amount of data
exchanged, which needs to be restrained.
In this regard, a novel information diffusion strategy, named

Tagged and Aggregated Sums (TAS), is presented in this paper.
It exploits the peculiarities of the SPS method, leading to
a reduction of the amount of information to be exchanged
among nodes and, at the same time, it is sufficiently general
to be applied to any network topology. It is compared with
classical general purpose information diffusion strategies, such
as flooding [2], [26] and consensus algorithms [12], in terms
of generated traffic load as well as of confidence region
volume/traffic trade-off. Performance predictions, simulation
and experimental results are provided for various topologies,
extending preliminary results presented in [1].

B. Organization of the paper
The remainder of this work is organized as follows.

Section II formulates the confidence region computation pro-
blem and recalls the SPS method. Section III presents several
information diffusion strategies. Information diffusion techni-
ques are compared on various network topologies in Secti-
ons IV and V. Experimental results presented in Section VI
allow to account for MAC layer aspects and confirm that the
best information diffusion strategy depends on the way the SN
is structured. Conclusions are drawn in Section VII.

II. NON-ASYMPTOTIC CONFIDENCE REGIONS
In this paper vectors are denoted by bold lowercase letters

while matrices are indicated with bold capital letters. For the
reader’s convenience, the most significant symbols introduced
in the following and their meaning are reported in Table I.

A. Problem Formulation
Consider some spatial field described by the following

parametric model [27]

y (x, θ) = ϕT (x)θ, (1)

where x ∈ Rnx is some vector of experimental conditions
(time, location. . . ) under which the field is observed, ϕ (x)
is the regressor function, and θ is the vector of unknown
parameters. Measurements are taken by a network of n sensor
nodes, spread at random locations xi ∈ Rnx , i = 1, . . . , n.
Node i collects the scalar measurement yi according to the
local measurement model

yi = y (xi, θ
∗) + wi = ϕT

i θ
∗ + wi, (2)

where ϕi = ϕ (xi) is the np × 1 regressor vector at xi; θ∗

is the true value of the deterministic np × 1 parameter vector,
which is only known to belong to the subset Θ ⊂ Rnp ; wi

represents the measurement noise at Node i.
As in [23], the random variables with realizations wi,

i = 1 . . . , n are assumed to be statistically independent and

TABLE I
TABLE OF SYMBOLS AND RELATED MEANINGS

Linear regression system
np dimension of the parameter vector
Θ parameter space (Θ ⊂ Rnp )
θ vector belonging to the parameter space Θ
θ∗ true value of the np × 1 parameter vector
θ̂ least squares estimate of θ∗

xi location of Node i
ϕi regressor vector at xi;
yi measurement collected by Node i

SPS variables
m amount of sums considered by the SPS method
aj,k realizations of independent random signs
Qn SPS normalization matrix
s0(θ)unperturbed sum
sj(θ)m− 1 sign perturbed sums (j = 1, ...,m− 1)
Σq non-asymptotic confidence region

TAS information diffusion algorithm
t
(k)
r tag vector to be transmitted by Node k in round r

d
(k)
r dataset to be transmitted by Node k in round r

dTAS size of the dataset transmitted by TAS
δi,j,...dataset with sums involving data from Nodes i, j, ...
δkF dataset at Node k after final wrap-up
nGTTAS amount of data transmitted by TAS in a generic tree
nBTTAS amount of data transmitted by TAS in a binary tree
nCNTAS amount of data transmitted by TAS in a clustered network

Flooding information diffusion algorithm
dF size of the dataset transmitted by flooding (FL)
nGTFL amount of data transmitted by FL in a generic tree
nBTFL amount of data transmitted by FL in a binary tree
nCNFL amount of data transmitted by FL in a clustered network

Network setup
n number of nodes in the network
N (k) set of neighbors of node k
λ(ℓ) number of nodes at Level ℓ (tree network)
λ(ℓ) number of nodes with no children at level ℓ (tree netw.)
L number of levels of the tree network (excluding the root)
nc number of clusters in the clustered network
nci number of nodes (clusterhead included) in the i-th cluster

to follow a symmetrical distribution.1 Deterministic regressors
ϕi are considered here, but this work may be extended to the
case of random exogenous regressors, i.e., regressors ϕis that
are independent of the noise terms. We consider the worst case
in which the value of ϕi is assumed known only by Node i.
Moreover, we assume that there exists n′ < n such that for
all subsets of indexes I ⊂ {1, . . . , n} with |I| ! n′, the
regressors are such that detQI ≠ 0, where

QI =
1

|I|
∑

i∈I

ϕiϕ
T
i . (3)

In what follows, Q{1,...,n} is denoted Qn. The purpose of the
network is to make each node capable of computing locally
the confidence region of the estimate of θ∗ with the lowest
impact on network traffic.2

1In [24], no symmetry condition is considered, the random measurement
sequence is only assumed to form an exchangeable sequence of random
variables. This work readily extends to this alternative assumption.
2The proposed approach readily extends to vector fields in which the

measurement is a vector, as well as to vectors of measurements, provided
that the noise components of each vector are independent and symmetrically
distributed. This extension is not considered here to lighten notations.
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B. Centralized SPS
The centralized SPS method [21], [23] assumes all measu-

rements and regressors to be known at the central processing
unit. It defines an exact confidence region around the least
squares estimate θ̂ of θ∗, obtained as the solution of the nor-
mal equations

∑n
k=1 ϕk

(
yk −ϕT

k θ
)
= 0. For that purpose,

as in [23], consider the unperturbed sum as the following
function over Θ

s0(θ) = Q−1/2
n

n∑

k=1

ϕk

(
yk −ϕT

k θ
)

(4)

and the m−1 sign-perturbed sums, defined ∀j = 1, . . . ,m−1
as the following functions over Θ

sj(θ) = Q−1/2
n

n∑

k=1

aj,kϕk

(
yk −ϕT

k θ
)
, (5)

where aj,k ∈ {±1} are realizations of independent random
signs.3 For each θ ∈ Θ, one considers the elements of the set

Z(θ) =
{
zj(θ) = ||sj(θ)||22

}

j=0,1,...,m−1
, (6)

and lists them in increasing order, giving rise to a permutation
πθ(·) : {0, . . . ,m− 1}→ {0, . . . ,m− 1}. One defines the set

Σq =
{
θ ∈ Θ | πθ(0) ≤ m− 1− q

}
(7)

which contains all θ ∈ Θ for which the rank of z0(θ) in the
ordering is among the m− q smallest, with q = 1, ...,m− 1.
In [21], [23], it was proven that

Prob(θ∗ ∈ Σq) = 1− q

m
. (8)

As a consequence Σq is a non-asymptotic confidence region
with exact confidence level 1− q/m. The values of q and m
may be chosen to get the requested confidence level of the
confidence region Σq for the estimate θ̂ of θ∗.
An extension of the SPS method is presented in [24], which

considers that πθ is one of the m! possible permutations on
Z(θ). Letting Πk be a set of k permutations, the set

Σk =
{
θ ∈ Θ | πθ ∈ Πk

}
(9)

is defined, which allows one getting confidence regions such
that

Prob(θ∗ ∈ Σk) =
k

m!
. (10)

Notice that (8) and (10) are equivalent for k = m!−q(m−1)!.
The main advantage of the extension of SPS in [24]

over that in [23] is that in the former the resolution of
the confidence level is 1/m!, while in the latter it is 1/m.
For example, with the approach in [24], confidence regions
for levels {100%, 96%, . . . , 62.5%, . . . , 8.3%, 4.2%} may be
theoretically defined for m = 4, whereas confidence regions
only for levels {100%, 75%, 50%, 25%} are defined in [23].
This difference may appear to be interesting when SPS is
used in a distributed version, where small values of m are

3A random sign is a symmetric ±1 value random variable taking both
values with the same probability.

of interest, to restrain communication costs. Nevertheless,
our experiments show that with the approach in [24], when
choosing k ! m! − (m − 1)!, the confidence regions are not
necessarily compact.
Non-asymptotic confidence regions as defined in [23] may

be outer-approximated using ellipsoids, as in [23], boxes, or
union of non-overlapping boxes as in [25].
In the following, the distributed computation of Σk is ad-

dressed considering different information diffusion strategies.

III. INFORMATION DIFFUSION ALGORITHMS
This section describes the distributed computation of con-

fidence regions as defined by the SPS algorithm [23]. Con-
current procedures for information diffusion applicable to any
network topology are considered. The purpose is that each
node collects the largest amount of information with the lowest
amount of data exchanged in the network so that it is able to
compute locally the confidence region of the LS estimate for
any θ∗.
Before entering into the details of our investigation, a de-

tailed description of the different roles played by the physical,
logical, and processing elements that affect the performance
of the investigated strategies is needed.
The physical element of a SN is given by the deployment of

nodes in the given scenario, that defines the network layout.
On this regards, the only condition we assume is that all nodes
can communicate with each other, either with single or multi-
hop links.
Given the network layout, a routing protocol is typically

applied, which defines the logical topology of the network, that
is, the set of paths and directions which data can flow through.
On top of the same network layout, in fact, different kinds
of logical topologies can be created, either hierarchical (tree
topology, cluster topology. . . ) or flat, depending on the routing
protocol that defines, in other words, the possible information
paths for the given deployment of nodes.
Finally, the information diffusion strategies investigated in

this paper concern the processing elements. In fact, they
deal with the way the information is managed (aggregated
and/or fused) by a node before being transmitted to the next
one(s) according to the logical topology. A node can transmit,
for instance, either elementary data (as done by FL) or a
processed version of data (as done by consensus schemes and
the proposed TAS algorithm).
Obviously, given a fixed logical network topology, it is

always possible to design an ad-hoc information diffusion
algorithm that provides the best performance. However, we
are interested in designing procedures that are not tailored to
any specific network configuration.
The TAS algorithm proposed in this paper is meant as a

topology-agnostic information diffusion strategy, thus being a
general-purpose solution. For this reason, the FL algorithm,
which is topology-agnostic as well, is its natural term of
comparison. Both information diffusion strategies are here
meant to provide each node with the information needed to
locally compute the confidence region as defined by SPS.
The behavior of the algorithms will be illustrated on the

toy network represented in Figure 1, where circles represent
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Fig. 1. Toy network example

network nodes and edges between two nodes indicate that they
are able to communicate. For each algorithm the evolution of
the amount of information available at a node k is described
by a table R(k).

A. Flooding algorithm
FL will be used as a benchmark [2], [26]. When implemen-

ted to support the SPS algorithm, pure FL works as follows:
during the first round, Node k broadcasts its own privy pair
(ϕk, yk), and receives data from its neighbors, as dictated by
the logical topology. On successive rounds, Node k will also
broadcast any previously received pair (ϕi, yi), i ≠ k along
with its own. In particular, at round r Node k transmits a
packet (t(k)r ,d(k)

r ), in which the tag vector t
(k)
r indicates the

indexes of the nodes whose measurements are present in the
packet, whereas the data d

(k)
r contain the measurements and

the corresponding regressors {(ϕj , yj)}, ∀j ∈ t
(k)
r .

Usually, in order to reduce the amount of transmitted infor-
mation, actual implementations of flooding (e.g., AODV [28])
do not retransmit already transmitted data. In the following
we will always refer to such enhanced algorithm, that will be
simply denoted as flooding.
In this case, Node i is referenced in the tag vector t(k)r iff
1) the pair (ϕi, yi) is available at Node k at round r − 1,
2) the pair (ϕi, yi) has never been broadcast by Node k.
At round r = 1, Node k transmits data d(k)

1 consisting of

dF = np + 1 (11)

real values, corresponding to its measurement and np regres-
sors. The dimension of data d

(k)
r broadcast by Node k at

successive rounds (that is, for r > 1) is an integer multiple
of dF, possibly zero. The transmission cost dTAG for the tag
vector depends on the way it is represented, e.g., as a list of
integers, in which case it is of variable length with r, or a
constant-size vector of binary flags. The latter is considered
in this work. As a consequence, the communication cost of
the tag vector is of n binary values per communication round.
Ideally, transmission rounds are repeated until all nodes col-

lect all the information, e.g., by checking the tag vector is full
of ones. Upon completion, each node is able to compute (4)
and (5), for any θ, and to locally derive the confidence region
using the full set of data. In practice, transmission rounds may
stop due to information diffusion delay constraints, or when
all nodes do not detect any transmitted information from their
neighbors over a given time interval.

Round From Node Data Tag vector
0 1 (ϕ1, y1) 1 0 0 0 0 0 0

1 2 (ϕ2, y2) 0 1 0 0 0 0 0
3 (ϕ3, y3) 0 0 1 0 0 0 0

2
2, 3 (ϕ4, y4) 0 0 0 1 0 0 0
3 (ϕ6, y6) 0 0 0 0 0 1 0
2 (ϕ7, y7) 0 0 0 0 0 0 1

3 2, 3 (ϕ5, y5) 0 0 0 0 1 0 0

TABLE II
TABLER(1) OF AVAILABLE INFORMATION AT NODE k = 1 WHEN FL IS

USED IN THE NETWORK OF FIGURE 1

In the latter cases, the local confidence region characteriza-
tion may be performed on a reduced, possibly different across
nodes, set of data.
Example 1: Table II describes the evolution of the infor-

mation collected by Node k = 1 in the network depicted in
Figure 1, when FL is implemented. Before any transmission
has taken place, i.e., for r = 0, Node 1 only knows its own
measurement and regressor, (ϕ1, y1).
During the transmission round r = 1, Node 1 broadcasts

data d
(1)
1 = (ϕ1, y1). It receives data d

(2)
1 = (ϕ2, y2) and

d
(3)
1 = (ϕ3, y3) from Nodes 2 and 3 respectively, thus learning
measurements and regressors of Nodes 2 and 3.
In round r = 2, Node 1 broadcasts d(1)

2 = {(ϕi, yi)}i∈{2,3}.
Moreover it receives data generated at Nodes 1, 4, and 7, for-
warded by Node 2, (i.e., it receives d(2)

2 = {(ϕi, yi)}i∈{1,4,7})
and the data generated at Nodes 1, 4, and 6, forwarded by
Node 3 (i.e., d(3)

2 = {(ϕi, yi)}i∈{1,4,6}). Therefore, at the
end of round r = 2, Node 1 discovers the measurements of
Nodes 4, 6 and 7.
In round r = 3, Node 1 broadcasts d

(1)
3 =

{(ϕi, yi)}i∈{4,6,7}, and receives data generated at Nodes 3, 5,
and 6, forwarded by Node 2, i.e., d(2)

3 = {(ϕi, yi)}i∈{3,5,6},
as well as data from Nodes 2 and 5, forwarded by Node 3,
i.e., d(3)

3 = {(ϕi, yi)}i∈{2,5}. Therefore, at the end of round
r = 3, Node 1 discovers the measurement of Node 5.
If the network is connected, and provided that sufficient

transmission rounds are allowed, the FL algorithm diffuses
the whole set of data to each node. The computation of the
confidence region is accomplished locally using the centralized
SPS algorithm. The locally computed confidence regions will
be equal only in case there is agreement on the random signs
realizations {aj,k} used to compute the sign perturbed sums
(5), as well as on the random quantities (permutations or
random perturbations, [23], [24]) used to resolve ties.
This agreement can be easily accomplished without additio-

nal transmission costs by the sharing of the seed of the random
generators of the nodes.

B. Tagged and aggregated sums (TAS) algorithm
The TAS algorithm is based on the following consideration.

Expanding (4) and (5) one gets,

s0(θ)=Q−1/2
n

(
n∑

k=1

ϕkyk −
(

n∑

k=1

ϕkϕ
T
k

)

θ

)

(12)

sj(θ)=Q−1/2
n

(
n∑

k=1

aj,kϕkyk−
(

n∑

k=1

aj,kϕkϕ
T
k

)

θ

)

. (13)



2373-776X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2017.2695403, IEEE
Transactions on Signal and Information Processing over Networks

IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 5

The evaluation of (12) and (13) for any value of θ ∈ Θ does
not necessarily require the knowledge of each term in the sums
but rather of

δ1...n=

{
n∑

k=1

ϕkyk ,
n∑

k=1

ϕkϕ
T
k ,

np real values n2
p real values

{ n∑

k=1

aj,kϕkyk

}m−1

j=1

,

{ n∑

k=1

aj,kϕkϕ
T
k

}m−1

j=1

}

np(m − 1) real values n2
p (m − 1) real values

(14)
The main idea of the TAS algorithm is to propagate data

structures similar to (14), composed of partial sums not
necessarily ranging from k = 1 to n, but covering a subset
of {1, . . . , n}. At each transmission round, Node k generates
and transmits partial sums built from data previously received
from neighbors and stored in R(k). The main challenge of
the TAS algorithm is to determine a way to organize the
content of the transmitted partial sums so that each node is
able, after the termination of the transmission phase, to build
the complete sums (14), or to compute partial sums with the
maximum number of elements using the received partial sums.
The main advantage of TAS is that the transmitted data sets
are of constant size, and do not increase in size with the
transmission round as it happens in FL. The size dTAS of
the dataset is obtained recalling the amount of data of its
components, reported in (14):

dTAS = m

(
np + np

np + 1

2

)
(15)

The evaluation of dTAS takes into account the fact that ϕkϕ
T
k

is symmetric4. Note that the size of the dataset is fixed,
independently of the number of elements in the partial sums.
As in FL, the tag vector has to be transmitted along with
the data set at each transmission round. Notice that, with the
representation chosen in this work, the transmission cost of
the tag vector in the FL and TAS algorithms is the same.
The TAS algorithm, whose structure is reported in Algo-

rithm 1, consists of six phases, namely, i) initialization, ii)
reception, iii) distillation, iv) aggregation, v) transmission,
and vi) wrap-up. The detailed description of each phase is
reported hereafter, while the corresponding pseudo codes are
in Appendix A.
i) Initialization phase, see Algorithm 2. As in the FL

protocol, the transmitted packet is formed by a data set and
by a tag vector. During the initialization phase, Node k,
∀k ∈ {1, . . . , n} creates the packet

(
t
(k)
1 ,d(k)

1

)
to be sent

in round r = 1. The tag vector t(k)1 flags only Node k.

t
(k)
1 = [0, . . . , 0, 1, 0, . . . , 0]

↑ ↑ ↑
. . . k-1 k k+1 . . .

(16)

4Since
∑n

k=1ϕkϕ
T
k is symmetric, instead of transmitting all its np2

elements, it is sufficient to transmit np values for the diagonal plus
∑np−1

d=1 d =
np(np−1)

2 values for the upper (or lower) part, that gives
np

np+1
2 . The same holds for the (m− 1) terms

{∑n
k=1aj,kϕkϕ

T
k

}m−1
j=1

.

Algorithm 1 TAS algorithm
1: Initialization
2: for r = 1 to MaxRound do
3: Reception
4: Distillation
5: Aggregation
6: Transmission
7: end for
8: Wrap-up

Round From Node Data Tag vector
0 1 δ1 1 0 0 0 0 0 0

1 2 δ2 0 1 0 0 0 0 0
3 δ3 0 0 1 0 0 0 0

2 2 δ4,7 C 0 0 1 0 0 1
3 δ4,6 C 0 0 1 0 1 0

3 2 δ5,6 0 0 C 0 1 1 0
3 δ5 0 C 0 0 1 0 0

TABLE III
TABLER(1) FOR NODE k = 1 USING TAS IN THE NETWORK OF

FIGURE 1; C INDICATES ELEMENTS THAT HAVE BEEN REMOVED FROM
THE TAG VECTOR AND PARTIAL SUMS DURING THE DISTILLATION PHASE

The data set d
(k)
1 contains the local quantities related to

Node k

d
(k)
1 =

{
ϕkyk,

{
ϕkϕ

T
k

}
,{aj,kϕkyk}∀j ,

{
aj,kϕkϕ

T
k

}
∀j

}
.
(17)

After initialization, the reception, distillation, aggregation, and
transmission phases are sequentially repeated until a termina-
tion condition is met (e.g., until a given number of rounds
have been completed, as in Algorithm 1).
ii) Reception phase, see Algorithm 3. At each round r,

Node k collects the messages containing the partial sums
transmitted by its neighbors (according to the given logical
topology), whose set is denoted N (k).
iii) Distillation phase, see Algorithm 4. At the end of the

reception phase of round r, Node k compares the incoming tag
vectors t(j)r , j ∈ N (k) to the previously received tag vectors,
to detect whether the packets received at round r contain new
information. If it appears that a part of the data referenced
in t

(j)
r have been previously received, these redundant data

are removed from the corresponding partial sum and t
(j)
r is

updated accordingly, see Lines 3 to 6. The resulting partial
sums are then stored in R(k). The same procedure is applied
to already stored partial sums, see Lines 7 to 9. This phase
reduces the number of contributors to each partial sum, so
that the different partial sums can be more easily recombined,
in the following aggregation phase, with each contributor
counted no more than once.
Example 2 (Distillation phase): Consider again the network

of Figure 1 and the evolution of R(1) given in Table III. As
in FL, for r = 0, Node 1 only holds its own data and forms
partial sums from these data stored in

δ1=
{
ϕ1y1,

{
ϕ1ϕ

T
1

}
, {aj,1ϕ1y1}∀j ,

{
aj,1ϕ1ϕ

T
1

}
∀j

}
.

During round r = 1, Node 1 broadcasts these partial sums
and receives partial sums formed with the privy data from
Node 2 and partial sums formed with the privy data from
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Round From Node Data Tag vector
0 2 δ2 0 1 0 0 0 0 0

1
1 δ1 1 0 0 0 0 0 0
4 δ4 0 0 0 1 0 0 0
7 δ7 0 0 0 0 0 0 1

2
1 δ3 0 C 1 0 0 0 0
4 δ6 0 C C 0 0 1 0
7 δ5 0 C 0 0 1 0 0

TABLE IV
TABLER(2) FOR NODE k = 2 USING TAS IN THE NETWORK OF

FIGURE 1; C INDICATES ELEMENTS THAT HAVE BEEN REMOVED FROM
THE TAG VECTOR AND PARTIAL SUMS DURING THE DISTILLATION PHASE

Node 3. During round r = 2, Node 1 receives a packet
containing partial sums combining data from Nodes 1, 4, and
7, forwarded by Node 2, as well as a packet containing partial
sums combining data from Nodes 1, 4, and 6, forwarded by
Node 3. The content of these two packets is stored in R(1),
after having removed the contribution related to Node 1 from
each previously received partial sum (this is indicated by a C
in the tag vector in Table III). Node 1 thus gets

δ4,6 =

⎧
⎨

⎩
∑

k∈{4,6}

ϕkyk,
∑

k∈{4,6}

ϕkϕ
T
k ,

⎧
⎨

⎩
∑

k∈{4,6}

aj,kϕkyk

⎫
⎬

⎭
∀j

,

⎧
⎨

⎩
∑

k∈{4,6}

aj,kϕkϕ
T
k

⎫
⎬

⎭
∀j

⎫
⎬

⎭ (18)

and δ4,7. At the end of round r = 3, Node 1 receives a packet
with partial sums combining data from Nodes 3, 5, and 6,
forwarded by Node 2, as well as a packet with partial sums
combining data from Nodes 2 and 5, forwarded by Node 3.
iv) Aggregation phase, see Algorithm 5. To create the packet

to be broadcast at round r, Node k aggregates the partial sums
available in R(k) at round r−1 and which were not previously
aggregated. This is done by summing the available partial sums
to produce d(k)

r and merging the related tag vectors to produce
t
(k)
r . In order to avoid duplication of terms in the sums, rows i
and j ofR(k) can be merged in

(
t
(k)
r ,d(k)

r

)
iff the intersection

of i-th and j-th row tag vectors is empty. If this condition is
not met, only the row with smallest index is aggregated in a
transmitted packet.
Example 3 (Aggregation phase): Consider the evolution of

R(2) for Node 2 given in Table IV. At the end of round r = 1,
Node 2 holds partial sums related to the data from Nodes 1,
2, 4, and 7, stored in δ1, δ2, δ4, and δ7. A packet containing
δ2 has already been transmitted in round r = 1. The other
tag vectors do not intersect, as a consequence, the aggregated
sums will involve δ1, δ4, and δ7.
The distillation phase facilitates the aggregation and wrap-

up phases. Moreover, it allows to get sparser tag vectors, which
may then be more efficiently combined.
v) Transmission phase, see Algorithm 6. The message

obtained at the end of the aggregation phase is broadcast
to all neighbor nodes. After the last transmission phase, the
objective for Node k is the computation of the local confidence
region, using the data collected so far and aggregated in
the final partial sum δ

(k)
F , evaluated in the wrap-up phase.

The information diffusion process stops for Node k when it

has collected all the information from other nodes or, more
realistically, when a certain time has expired.
vi) Wrap-up phase, see Algorithm 7. The wrap-up phase

can be performed by a node whenever it needs to compute
the confidence region during or at the end of the information
diffusion process. For that purpose, Node k evaluates a linearly
weighted sum δ

(k)
F =

∑
l b̂

(k)
l δ

(k)
l , where δ

(k)
l contains the

partial sums at the l-th row of R(k) and b̂(k) is a vector of
weights. The non-zero entries of b̂(k) select the rows of R(k)

to be combined in the partial sums.
To obtain b̂(k), consider the tag matrix T(k) of R(k), with

elements t(k)l,i , with l and i denoting the row and column
indexes, respectively. If T(k) is of full rank n, then R(k)

contains a contribution from all nodes of the network and as in
network coding, one may isolate each individual contribution
via Gaussian elimination performed on T(k) and proceed at
the considered node in the same way as for the centralized
SPS.
A second case is when n(k) columns of T(k) contain 1s and

the rank of T(k) is also equal to n(k). In this case, only n(k)

nodes have contributed to the partial sums stored in the rows
of R(k). Since T(k) is of rank n(k), it is again possible to
recover via Gaussian elimination the individual contributions
of a subset I of n(k) out of the n nodes. Provided that5.
n(k) ! n′, QI will be invertible and one will be able to obtain
a LS estimate and its corresponding confidence region from a
subset of n(k) data. When n(k) < n′, more rounds have to be
performed.
The last case to be considered is when n(k) columns of T(k)

contain 1s and the rank of T(k) is strictly less than n(k). In
that case, one may try to search the solution of the following
constrained optimization problem

b̂(k) = argmax
b

bTT(k)1, (19)

with the constraints

c(k)i =
∑

l

bl t
(k)
l,i ∈ {0, 1}, i = 1, 2, . . . , n. (20)

det
∑

l

bl

(
∑

k∈t
(k)
l

ϕkϕ
T
k

)

≠ 0. (21)

The constraints (20) are related to the presence indicator
of the quantities associated to Nodes i = 1, . . . , n. Imposing
c(k)i ∈ {0, 1} in (20) ensures that all measurements contri-
bute similarly to the final sign perturbed sums, with some
measurements possibly not contributing at all. In the latter
case, one obtains a confidence region associated to the LS
estimate of θ∗ involving only the corresponding subset of
sensor measurements. The constraint (21) is introduced to
allow the computation of an approximation of Q−1/2

n relying
on possibly less than n terms.
The constrained integer programming problem (19)-(21) is

NP-hard in general. If the constraint (21) is verified only
a posteriori, one gets a linear cost function and (20) can

5Remember that n′ < n is such that for all subsets of indexes I ⊂
{1, . . . , n} with |I| ! n′, the regressors are such that detQI ≠ 0
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be formulated as quadratic equality constraints. A further
relaxation of (20) can be considered imposing only that
c(k)i ∈ [0, 1]. One gets then a linear programming problem,
easier to solve, but that may provide a solution quite far
from that of the original integer programming problem. More
precisely, if for the solution, c(k)i ∈ ]0, 1[, the i-th measurement
will not contribute with a unit weight. One obtains at the best
a weighted LS estimate of θ∗ and its associated confidence
region, and not the original LS estimate from equally-weighted
data.
An alternative sub-optimal wrap-up algorithm is provided

in Appendix A, which is less energy demanding owing to the
lower computational effort required. The idea is closely related
to that of the aggregation algorithm. The main difference is
that in the wrap-up algorithm, the rows of R(k) are first sorted
by decreasing order of the weight of the rows of the tag matrix
T(k). The idea is to perform the aggregation starting with
the partial sums to which a maximum number of nodes have
contributed. The gap between the solution provided by this
heuristic algorithm and the one obtained by solving (19)-(21)
can be upper-bounded by considering the number of column
n(k) of T(k) containing 1s. Since n(k) represents the number
of different nodes that have contributed to one of the partial
sums stored in R(k), the optimal wrap up performed solving
(19)-(21) cannot aggregate data from more than n(k) nodes.
The gap is thus less than the difference between n(k) and
the number of aggregated data from different nodes, i.e., the
number of 1s in the final aggregated tag vector.
In any case, before starting the final wrap-up, a node should

have a matrix T(k) such that n(k) ! n′ to have a chance
wrapping-up data from enough nodes to get an invertible
matrix QI .
Once a satisfying solution has been found, Node k can

locally compute an exact confidence region based on δ
(k)
F ,

from which the following quantities are evaluated

s̃
(k)
0 (θ)=Q̃−1/2

n∑

i=1

c(k)i ϕi

(
yi −ϕT

i θ
)

(22)

s̃
(k)
j (θ)=Q̃−1/2

n∑

i=1

c(k)i aj,iϕi

(
yi−ϕT

i θ
)
∀j=1, . . . ,m− 1,

(23)

with

Q̃ =
1

∑n
i=1 c

(k)
i

n∑

i=1

c(k)i ϕiϕ
T
i . (24)

Various confidence regions may then be defined and evaluated
from (22) and (23).
If several satisfying solutions for (19-20) have been found,

the one maximizing (21) should be selected to get the smallest
confidence region, as in D-optimal experiment design [29].
Remark 1: The TAS algorithm is inspired from network

coding [30], [31]. The main difference is that Node k does not
need to recover the privy data of all nodes, but the decoding
of their partial sums suffices.
Remark 2: The efficiency of TAS with respect to FL comes

from the fact that the size dTAS of the data sets exchanged does

not increase as the number of rounds increases, as it happens
in FL.

C. Consensus algorithm
Given that the SPS algorithm does not require the single

terms appearing in (12) and (13) but rather their sum, a
possibility to compute (12) and (13) in a distributed way, is to
launch an average consensus algorithm [32]–[35], converging
to (14), as proposed in [1]. For this information diffusion
strategy, R(k) is always composed of a single row, storing
the consensus state vector. Further details can be found in
[1], [32]–[35]. Consensus algorithms will be considered in
the numerical results section, anyway we will not put more
emphasis since they showed a poor performance in terms of
generated traffic load and convergence speed, as investigated
in [1].

IV. TRAFFIC LOAD ON VARIOUS NETWORK TOPOLOGIES

In this section, the amount of transmitted data for distributed
confidence region characterization is analyzed for both FL and
TAS. Their performances are compared on different logical
topologies, with particular reference to generic trees, that is
trees with an arbitrary number of children for each node
(Section IV-A), binary trees (Section IV-B) and clustered
networks (Section IV-C), that are the most commonly used
topologies in practical applications [4]. Section V considers
also completely unstructured networks.
Remind that dF, given by (11), denotes the numbers of

real-valued scalars (possibly quantized) that a single data
(measurement and vector of regressors) is composed of when
the FL algorithm is used. With the FL algorithm, a packet
usually contains several data, and thus an integer multiple of
dF scalars. Similarly, dTAS, given by (15), is the fixed amount
of (possibly quantized) real-valued scalars that are carried by
a packet transmitted by a given node when considering the
TAS algorithm.
The transmission cost of the tag vector, consisting of n

binary values, is the same across transmission rounds, and
whatever the information diffusion strategy.

A. Tree Topology
The tree topology is one of the most common logical

topology encountered in WSNs. It might be the consequence
of a particular physical deployment of nodes or the result of
a spanning tree routing procedure.
Usually, tree topologies resulting from routing algorithms

specifically designed for WSNs introduce some constraints
in the way data travel, according to energy saving strategies.
For instance, only nodes at a single level of the tree may be
allowed to transmit during each round and nodes belonging to
that level can communicate only with nodes belonging to the
successive level [36], as all the other nodes are in sleep state.
For this reason, the generic tree topology addressed in this
section will be investigated assuming that a message broadcast
by a node in the forward phase is only exploited by its parent.
This hypothesis will be removed in Section IV-B, addressing
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L=4

Fig. 2. Generic tree topology with L = 4, where λ(0) = 1, λ(1) =
2, λ(2) = 4, λ̄(2) = 1, λ(3) = 8, λ̄(3) = 6, λ(4) = λ̄(4) = 3.

the particular case of binary trees, that discusses also what
happens when children nodes can overhear transmissions
carried out by their parents.
Consider now a generic tree topology, i.e., a tree where

each node has an arbitrary, yet known, number of children,
possibly zero. Denote with λ(ℓ) the number of nodes at Level ℓ
and with λ(ℓ) the number of nodes at Level ℓ that have no
children, with ℓ ranging from ℓ = 0 (the root) to ℓ = L (the
leaves). Of course λ(0) = 1, since the tree is single rooted.
The total number of nodes forming the network is therefore
n =

∑L
ℓ=0 λ (ℓ). An example of these networks is depicted in

Figure 2.
1) FL algorithm: The amount of data that needs to be

transmitted in the forward phase from Level L to Level L− 1
is fL,L−1 = λ (L)dF. When 1 " ℓ < L, this amount, from
Level ℓ to Level ℓ − 1, is fℓ,ℓ−1 = (λ (L) + · · ·+ λ (ℓ)) dF.
In the backward phase, the amount of data that needs to
be transmitted from Level 0 to Level 1 is b0,1 = ndF.
When 1 " ℓ < L, from Level ℓ to Level ℓ + 1, it is
bℓ,ℓ+1 =

(
λ (ℓ)− λ (ℓ)

)
n dF.

Finally, the amount of data that has to be transmitted with
the FL algorithm to share all data between nodes in the
network is

nGTFL=

(

λ (L)+(λ (L)+λ (L− 1))+ · · ·+
L∑

ℓ=1

λ (ℓ)

)

dF

+n dF +
L−1∑

ℓ=1

(
λ (ℓ)− λ (ℓ)

)
ndF

=LndF−
(

λ(0)+(λ(0)+λ(1))+ · · ·+
L−1∑

ℓ=0

λ(ℓ)

)

dF

+n2dF − λ (L)n dF −
(

L−1∑

ℓ=0

λ (ℓ)

)

n dF. (25)

2) TAS algorithm: In the forward phase, the TAS distilla-
tion and aggregation phases take place after each transmission
round. The data reaching the root corresponds to the elements
required to evaluate the unperturbed and perturbed sums that
would be obtained in a centralized version of the algorithm.
This way of operating ensures thus an exact retrieval of the
entire sums (4) and (5). In the backward phase, this informa-
tion is spread over the tree without any further processing. As
already mentioned, all data packets have a constant size dTAS.

The amount of data to be transmitted in the forward
direction from Level ℓ to Level ℓ − 1 is λ (ℓ) dTAS. In
the backward direction, from Level ℓ to Level ℓ + 1, it
is
(
λ (ℓ)− λ (ℓ)

)
dTAS, since nodes without children do not

transmit further. Accounting for both phases, one gets

nGTTAS=

(
L∑

ℓ=1

λ (ℓ)

)

dTAS +
L−1∑

ℓ=0

(
λ (ℓ)− λ (ℓ)

)
dTAS

=(2n−1)dTAS−λ(L)dTAS−
(
L−1∑

ℓ=0

λ (ℓ)

)

dTAS. (26)

Starting from the general expressions (25) and (26), in
Section IV-B we investigate the amount of data transmitted
by FL and TAS in the significant case of binary trees.

B. Binary Tree Topology
Consider a single-rooted complete binary tree with L + 1

levels. In this case,

λ (ℓ) = 2ℓ , (27)
λ (ℓ) = 0 for ℓ = 0, 1, ..., L− 1 , (28)

n =
L∑

ℓ=0

λ (ℓ) = 2L+1 − 1 . (29)

1) FL algorithm: Using (27), (28), and (29) in (25), the
amount of data transmitted by FL in a generic tree can be
specialized for the binary tree case, to get

nBTFL=

(
(n+ 1)2

2
+

(
log2 (n+ 1)− 7

2

)
(n+ 1)+3

)

dF

≃ (n+ 1)2

2
dF. (30)

for n sufficiently large.
If we remove the hypothesis that nodes enter in a sleep state

at the end of their transmission round (thus allowing bidirecti-
onal communications), it is true that a message transmitted
by a node in the forward phase can be processed also by its
children. This property can be used in the backward phase by
FL (denoted in this case FL-B) to reduce the amount of data
to propagate. In this case (25) boils down to

nBTFL-B =

(
(n+ 1)

1

2
(n− 1) + 1

)
dF

=
(n+ 1)2

2
dF − n dF. (31)

One observes that nBTFL > nBTFL-B. As expected, accounting
for data overheard by children in the forward phase reduces
the amount of data to be transmitted. For large networks,
however, both (30) and (31) scale quadratically in n, thus
making the bidirectional tree not convenient, as it is more
power consuming.
2) TAS algorithm: The amount of data transmitted by TAS

in the binary tree case can be derived using (27), (28), and
(29) in (26), thus obtaining

nBTTAS =
3

2
(n− 1)dTAS. (32)

With the TAS algorithm nBTTAS scales thus linearly with n.
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Fig. 3. Critical value n∗
TAS>FL, as a function of np, on binary trees, for

several values of m.

3) Comparison: When comparing (30), (31), and (32),
asymptotically, the TAS algorithm is the most efficient, since
the amount of data to be exchanged on the network scales
linearly with the number of nodes n, where it scales in n2

with the other algorithms. Nevertheless, for small values of
n, the fact that dTAS > dF can make the TAS algorithm less
efficient.
On a binary tree, TAS is more efficient than FL-B when

(3n− 3)dTAS < (n2 + 1)dF.

Using (15) and (11) one obtains the following condition
(
n2 + 1

)
K1 − 3n+ 3 > 0, (33)

where

K1 =
np + 1(

np + np
np+1

2

)
m
.

For sufficiently large n, (33) is always satisfied, for all np and
m. Moreover, when n is larger than

n∗
TAS>FL =

3 +
√
9− 4K1 (3 +K1)

2K1
, (34)

TAS is more efficient than FL. Figure 3 represents n∗
TAS>FL as

a function of np, considering m = 10, m = 20, and m = 40.
The behaviour is not exactly linear, but when np grows large,
K1 ≈ 2

npm
and n∗

TAS>FL ≈ 3
2npm.

C. Clustered Topology
Consider a clustered network, formed by n nodes, structured

on a single level of hierarchy, as depicted in Figure 4. The
network is hence assumed to be divided in nc clusters. The i-
th cluster comprises a random number of nodes nci , including
the clusterhead, that is the special node responsible for aggre-
gating the local data of its sons. The subnetwork formed by
clusterheads is considered to be fully connected: Clusterheads
can directly communicate with each other. Moreover, each
node in a cluster is assumed to directly communicate with
its clusterhead (and vice-versa).

Fig. 4. A clustered topology. Clusterheads are indicated in red.

1) FL algorithm: All nodes in a cluster can overhear
broadcast transmissions operated by the corresponding clus-
terhead. Therefore, the amount of data to be transmitted when
employing the FL algorithm is

nCNFL = ((n− nc) + n+ (nc − 1)n) dF

= (n− nc + ncn) dF. (35)

This is because all nodes, apart from clusterheads, initially
transmit their local information to clusterheads, leading to
(n−nc)dF transmitted scalar data. Then clusterheads broadcast
the received data and their own, this forming a total flow
of ndF scalar data. At this point, all nodes in each cluster
are completely informed about data related to their respective
cluster. Finally, there is a backward transmission during which
each clusterhead is transmitting towards its cluster all the
ndF scalar data except the ones that it previously transmitted,
leading to further (nc − 1)ndF transmitted scalars, composed
of nc clusterheads transmitting not n, but (n − nci)dF scalar
data, i.e., a total of

∑nc
i=1 (n− nci) dF = (nc − 1)ndF.

2) TAS algorithm: On this topology, the TAS algorithm
transmission phases can be organized as follows. At the begin-
ning, each node, with the exception of clusterheads, transmits
the partial sums calculated with its own data, corresponding to
dTAS real values per node. Then each clusterhead aggregates
the local data of all nodes in its cluster. Successively, cluster-
heads transmit to all other clusterheads their aggregated data.
Since the network of clusterheads is fully connected, a single
broadcast transmission for each of the clusterheads suffices
for all clusterheads being capable to construct the completely
aggregated data. The amount of scalar data, that has to be
transmitted, is thus

nCNTAS = ((n− nc) + nc + nc) dTAS = (n+ nc) dTAS.

This accounts for the initial n − nc transmissions and the
subsequent actions of clusterheads, that should broadcast to
each other the partially aggregated data and then broadcast,
towards nodes forming their cluster, the completely aggregated
data.
3) Comparison: TAS is better than FL when nCNTAS < nCNFL ,

i.e., when

(n− nc + ncn) dF − (n+ nc) dTAS > 0
(
1 +

nc(n− 2)

n+ nc

)
dF
dTAS

> 1. (36)
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With n sufficiently large, one has
(
1 +

nc(n− 2)

n+ nc

)
dF
dTAS

≈ (nc + 1)
dF
dTAS

.

This implies that TAS is better than FL when

nc >
dTAS
dF
− 1.

Remark 3: In Section III we indicated that the TAS algo-
rithm proposed in this paper is meant as a topology-agnostic
information diffusion strategy. Of course, given the network
topology, specialized information diffusion strategies can be
designed, likely providing better performance. For instance,
in the case of the clustered topology here considered, one
could imagine a mixed FL+TAS approach in which, during
the first transmission phase, each node of a cluster conveys
to the clusterheads dF data, composed by its privy data
with no aggregation (as done by FL). Then, the tagged and
aggregated sums are evaluated by the clusterheads, that make
data circulate as dictated by TAS. In this case, the amount of
scalar data that has to be transmitted is

nCNFL+TAS = (n− nc) dF + 2ncdTAS,

which is always lower than nCNTAS. Morevover one has
nCNFL+TAS < nCNFL as soon as n > 2 dTAS

dF
.

V. SIMULATION RESULTS
In this section, all simulations results have been obtained

considering sensor nodes randomly deployed over a square
of side of one measurement unit, which transmit information
over lossless links (i.e., no transmission errors and no packet
collisions), while confidence regions have been evaluated with
the interval analysis techniques described in [25] and the Intlab
library [37] for interval computations. Data are generated con-
sidering the model (1), with randomly generated parameters
and regressors using realizations of independent zero-mean
unit variance Gaussian variables. The noise corrupting data is
also zero-mean Gaussian, with a variance adjusted to get a
signal-to-noise ratio of 15 dB.

A. Behavior of the TAS algorithm
One considers here a random unstructured topology to see

how information propagates within the network with the TAS
algorithm. Figure 5 describes the evolution as a function of the
number of rounds of the average rank of the tag matrices, the
average number of data wrapped-up with the suboptimal wrap-
up described in Algorithm 7, and that obtained using linear
programming, see Section III-B. With the latter approach, two
plots are reported, one is showing the average number of
data contributing to the final sum with a weight within the
interval [0.95, 1], the second is the average number of data
contributing, whatever their strictly positive weight. Finally,
the average value of n(k) is provided. Averages are taken over
all nodes. For the considered simulation, a network of n = 100
nodes is investigated. The corresponding graph is connected
with an average node connectivity of 6.38 and a diameter of
13.
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Fig. 5. Behavior of the TAS algorithm with a random unstructured topology,
as a function of the round index.

One observes first that the average rank increases slower
than n(k). The sum of the contributions of all nodes may
thus be obtained before obtaining each individual contribution.
Second, the wrap-up via linear programming is able to collect
most of the data, even if their weight is not necessarily one
in the final sum. The suboptimal wrap-up algorithm performs
somewhat worse than the wrap-up via linear programming,
but is able to gather an amount of data close to that contri-
buting with a weight close to 1 in the wrap-up using linear
programming. Moreover, all these quantities increase fast in
the first rounds and slower after several rounds. This is due
to the fact that at the beginning, each packet contains new
information, whereas packets in the last rounds contain only
limited new information. Moreover, the aggregation phase
has more difficulties to aggregate tag vectors received in
the last rounds, which contains already many contributions
from different nodes and are likely to contain at least partly
similar contributions. When the network is more structured,
this phenomenon does not appear and the aggregation can be
performed more efficiently.
Considering the diameter of the network, with a FL al-

gorithm, without packet size limitation, all data would have
reached all nodes in 13 rounds. On this unstructured topology,
TAS is clearly less efficient, since with the suboptimal wrap-
up, about 65% of the data have been gathered, whereas with
wrap-up using linear programming, between 60% of the data
are contributing with a weight close to 1 and 90% with a
non-zero weight.

B. TAS vs FL
In order to compare the TAS and the FL algorithms, we

consider random trees and random unstructured topologies,
with the same order of magnitude in terms of number of nodes.
For what concerns the analysis on random trees, we build a

spanning tree on top of a random unstructured network, setting
the inter-node communication range dcomm =

√
log2 n
2n . Accor-

ding to [38], this range guarantees almost sure connectivity of
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Fig. 6. Percentage of network realizations favorable to TAS, in terms of
required data exchanges, compared to FL, as a function of the number of
nodes forming a random tree topology for different values of np. 100 random
tree realizations are considered for each value of n.

a network of n nodes, deployed on a unit area. For each n
(see the horizontal axis in Figure 6), 100 connected network
realizations are instantiated. TAS and FL are compared in
terms of the required number of data to be transmitted in each
network realization. The success rate of TAS is the percentage
of network realizations that proved favorable to TAS, i.e., for
which less measurements need to be exchanged to get all data
reaching all nodes of the network.
Figure 6 shows this success rate as a function of n, for

several values of np. As foreseen in the theoretical analysis
in Section IV, there always exists a threshold value of n,
depending on np, above which the TAS outperforms the FL
algorithm, i.e., the percentage closes to 100%.
We now investigate the trade-off between the confidence

region volume and the amount of data transmitted by each
node. Figure 7 shows the average volume of 90% confidence
region as a function of the average amount of data that is
communicated by each node. The volume and data amount
are averaged across all nodes and across 100 random tree
realizations, while simulation parameters are set to np = 2,
q = 1, n = 100 andm = 10. Figure 7 helps in determining the
amount of data that needs to be transmitted by each node on
average to obtain a given confidence region average volume.
One can observe that the TAS algorithm outperforms the FL
to achieve meaningful small volume values, in terms of the
average amount of data transmitted by each node.
Finally, consider a random unstructured network, setting

n = 100 and np = 3. As shown in Figure 8, the FL algorithm
behaves better than TAS, providing lower volume values for
the same amount of data. For comparison, it is also shown how
both the FL and the TAS algorithm outperform the state-of-
the-art consensus algorithms, independently of the considered
consensus matrix (Metropolis [32] or Perron [12]).
This section confirms the general behavior that was high-

lighted in Section IV: On structured topologies, such as
random trees there is an advantage in employing the TAS
algorithm when the network dimension is sufficiently large.
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Fig. 7. Average volume, across nodes and 100 random tree realizations, of
the 90% confidence region. Simulation parameters are set to n = 100, np =
2, q = 1, and m = 10.
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random unstructured network of 100 nodes is considered.

On unstructured networks of comparable size, the FL produces
the best results, but, in any case, the absolute amount of data
transmitted by each node is much larger than in structured
networks. This suggests the adoption of structured networks,
together with the TAS algorithm for the distributed computa-
tion of confidence regions, when the network traffic load for
data diffusion is particularly critical.

VI. EXPERIMENTAL RESULTS
This section describes the practical implementation of both

TAS and FL on the commercial sensor nodes EMB-Z2530PA
[39] deployed in a real scenario. This implementation allows
to account for the impact of the MAC layer.

A. Experimental setup
1) Network topologies: Two network topologies have been

considered, namely (i) the flat network topology, where nodes
can directly communicate by means of broadcast transmissions
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with their neighbours (that is, the nodes within their coverage
region), and (ii) the random tree topology, in which a tree
structure is randomly established by the nodes themselves at
each run. For both topologies, the transmission power and
the positions of nodes are managed in order to vary their
connectivity level. In particular, for each network topology
different measurement campaigns were carried out, varying
the level of transmit power (the same for all nodes) in order to
control the average (over the n nodes of the network) number
nn of neighbors of each node.
2) Network setup and data management: For both topolo-

gies, a network coordinator is introduced for monitoring and
network setting purposes without compromising the distributed
nature of the algorithms. At the beginning, the coordinator
sends a start message that triggers the network setup (in the
tree topology case), and the information diffusion algorithm,
either FL or TAS.
For the tree topology, the tree construction starts from the

root (level 0), which randomly selects the number nch of its
children with uniform (discrete) distribution in [1, 2, ..., nmax].
Provided that a sufficient number of nodes is available within
the coverage range of the root, nch of them are selected as its
children. Otherwise, all (thus less than nch) available nodes
are joined to level 1. The same procedure is repeated by each
node of level 1 and then iterated at all levels, until all nodes
join the tree.
Once the network has been established, the information dif-

fusion algorithm, either FL or TAS, is started, beginning from
the leaves up to the root and then in the opposite direction. In
our experimental setup the information transmitted by a node
to its father is not overheard by its children.
In the flat network case, instead, no network-setup phase is

needed. Hence either the FL or TAS execution is triggered as
soon as the start packet is received.
For FL, each payload contains the amount of data transmit-

ted, measurements and regressors, and a unique tag vector
that identifies the contributing nodes. For TAS, payloads
contain partial aggregated sums and a tag vector indicating
the contributing nodes. In the proposed implementation, the
tag consists of a vector of dTAG bits, with 1s at the positions
corresponding to the indexes of the contributing nodes. Since
the same tag is used for TAS and FL algorithms, the difference
in the transmission cost depends only on the amount of data
transmitted.
3) Time axis management: At the beginning of each me-

asurement period of duration T , the coordinator awakens all
nodes, initiating the network activity. Whatever the network
topology, the measurement period is divided into nr rounds of
equal duration tr =

T
nr
.

In the flat network case each node performs a measu-
rement and, during each round, attempts to transmit.In the
tree network case, instead, nodes are allowed to transmit
only during the round pertaining to the level they belong to.
Data (measurements and corresponding regressors for FL or
aggregated sums for TAS) are then exchanged beginning from
the leaves up to the root and then in the opposite direction.
To emulate the time jitter in nodes operations caused by

local clocks drift in a distributed network as well as to avoid

Parameter Symbol value
Number of nodes n 52

Maximun number of children nmax 5
(tree topology only)
Measurement period T 2 s
Number of rounds nr {2, 3, . . . , 30}

Number of neighbours nn {2, 4, 8, 17, 33}
Number of parameters to be estimated np 1
Number of sign perturbed sums m 10
Size of data sets with FL dF 2 Bytes
Size of data sets with TAS dTAS 20 Bytes

Size of the tag vector (both TAS and FL) dTAG 7 Bytes

TABLE V
PARAMETERS OF THE EXPERIMENTAL SETUP

all nodes access the channel simultaneously, thus congesting
the medium access control (MAC), each node defers the
measurement phase, and therefore also the beginning of the
information diffusion algorithm, by locally choosing a random
delay ∆i ∈ [0, tr], with i = 1, 2, ..., n.
All nodes stop data dissemination once nr rounds have been

completed. The coordinator collects then the amount of data
transmitted/received by each node to allow an analysis of the
behavior of the TAS and FL algorithms.

B. Results

A network of n = 52 nodes equipped with temperature
sensors has been considered. The transmission power and the
position of each node are chosen so that each node has an
average number of neighbours nn ranging from 2 to 33.
Simple temperature measurements are performed. The tem-

perature θ∗ is assumed constant in the area where the no-
des are deployed. The corresponding measurement model is
yi = ϕiθ∗ + wi, where ϕi is known by each node,6 and
θ∗ is the parameter to estimate. Thus np = 1 and the
data to be transmitted by the FL algorithm are collections
of pairs (ϕi, yi), consisting in this case of dFL = 2 real
values (which may be quantized). For the SPS algorithm, one
chooses m = 10, and q = 1 to be able to characterize 90%
confidence regions according to (8). Therefore, the amount of
data transmitted at each round by TAS is dTAS = 20 real values
(which may also be quantized) and remains constant.
The measurement period is taken as T = 2 s. nr ranges

from 2 to 30 and therefore tr varies from 1 s down to
67 ms. The parameters adopted for our experimental campaign
are summarized in Table V. Given the network topology
(either generic tree or flat network) and for each chosen setup
(transmit power, nr), we performed the measurement campaign
over 100 network realizations and we derived the average (over
the 100 resulting networks) amount of information received by
each node and the average amount of data transmitted in the
whole network.

6Here, for simplicity, we choose ϕi = 1 ∀i. However, this choice does not
affect the outcomes of our investigations. With a larger number of sensors it
would be possible to estimate also spatial variations of the temperature, but
the simple example here considered is enough for the purpose of this paper.
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Fig. 9. Flat network: average proportion of the total information received by
nodes as a function of nr for various nn. The legend entries and the curves
in the right-hand part of the figure are in the same order.

1) Flat network: Figure 9 shows the average proportion
(expressed in percentage) of data reaching a given node in a
flat topology for various nr and nn.
The value of nr that maximizes the average amount of

received data depends on nn. For low values of nr, the
performance is limited by the constraint on the maximum
number of allowed hops (that is coincident with nr), that might
not be sufficient for a particular data to reach all nodes in the
network, especially for low degrees of connectivity nn. On the
contrary, for large values of nr the performance is limited by
the MAC, as a small tr increases the collision probability.
From the same figure one can also see that better perfor-

mances are obtained when the network is characterized by a
low degree of connectivity nn provided that a sufficiently high
number of rounds can be allocated within the measurement
period. In fact, large nn, i.e., high power levels, generate more
interference among nodes that leads the MAC to collapse. This
suggests that a proper power control strategy able to keep nn
at minimum values to keep connectivity is beneficial both for
network performance as well as to save energy.
FL and TAS perform similarly in all conditions, hence

they are equivalent considering only the amount of received
information. They differ, instead, in terms of amount of
transmitted information, as seen in Table VI, which reports the
average amount (over 100 network realizations) of transmitted
data (scalars) within the whole network in the case nr = 15.
When operated in a flat topology, FL outperforms TAS as it

requires a lower amount of transmitted information. With such
topology, in fact, the information efficiently diffuses within
the network, up to the maximum extent permitted by the
transmission power and without back and forth paths (that
occur, instead, in the tree topology), hence the aggregation
carried out by TAS is not sufficient to compensate the larger
value of dTAS with respect to dFL.
2) Generic tree topology: Figure 10 provides for the tree

topology the average proportion (expressed in percentage) of
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Fig. 10. Generic tree topology: Average percentage of information received
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Neighbors FL Experimental TAS Experimental
2 5236 14337
4 5171 12770
8 4197 8770
17 2832 4860
33 1705 2561

TABLE VI
FLAT NETWORK: AVERAGE AMOUNT OF TRANSMITTED DATA (SCALARS)

WITHIN THE WHOLE NETWORK IN THE CASE nR = 15.

data reaching a given node as a function of nr for various nn.
Here it can be noticed a limited sensitivity of the optimum
value of nr to nn, as the average number of children of each
node only slightly depends on the connectivity degree. In fact,
for the tree topology in this example we upper bounded by
nmax = 5 the number of children of each node to avoid the
generation of ’fat’ trees. Therefore, for a given node only a
fraction of its neighbors are actually involved in data diffusion.
As a consequence, increasing the number of neighbors nn
does not increase the amount of information diffused, but
determines higher levels of interference and packet collisions.
This makes power control less critical in tree topologies with

respect to flat topologies. In general, better data dissemination
is observed when nr is large compared to flat topologies since
transmissions happen level by level and only a small part of
the network tries to access the channel at the same time. On
the contrary, with small values of nr, data disseminate only to
a limited part of the network due to the depth of the tree which
may be larger7 than 1 + nr/2. Similarly to the flat topology,
even in this case FL and TAS are very similar in terms of
amount of received data. Table VII reports the average amount
of transmitted data within the whole network when nr = 15.
Now, TAS outperforms FL when operated on a tree topology.
Table VII also compares the analytical outcomes, derived

feeding (25) and (26) with the parameters corresponding to

7With nr rounds the maximum number of levels of a tree that allows a
complete dissemination of data from the leaves up to the root and back is
1 + nr/2.
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Neighbors FL analytic FL exp. TAS analytic TAS exp.
2 2179 2047 1427 1330
4 2144 2022 1420 1331
8 2087 1978 1409 1322
17 1802 1400 1353 1042
33 1705 1256 1334 972

TABLE VII
GENERIC TREE TOPOLOGY: AVERAGE PROPORTION OF TRANSMITTED

DATA REACHING A GIVEN NODE AS A FUNCTION OF nR FOR VARIOUS nN .

each network realization and averaging over all realizations,
and the respective averages of experimental results. When the
number of neighbors is small (nn = 2, 4, 8) a good agreement
between analysis and measurements is observed both for TAS
and FL. The experimental values are always less than the
analytical ones because, as can be observed in Figure 10, the
amount of received information never reaches 100%, even in
the considered case of nr = 15.
This phenomenon is emphasized as nn increases (nn =

17, 33), which further reduces the amount of received data
(Figure 10) and hence the amount of data transmitted by nodes
with respect to the ideal (no collisions) situation described by
the analysis.
We can conclude, therefore, that the analytical framework

can be usefully exploited to provide performance predictions
in not congested networks and a performance bound in MAC
limited networks.
To evaluate the influence of the proportion of measurements

received by each node on the quality of the confidence region
that can be derived, a temperature measurement has been
performed by each of the n nodes of the network. For different
target proportions ρ ∈ [0, 1] of measurements reaching some
node of the network, 100 random selections of a subset of
measurements have been considered and a 90 % confidence
region evaluation with m = 10 and q = 1 has been performed.
Figure 11 describes the evolution of the average width of the
90 % confidence region as a function of the proportion of
measurements collected by a given node. Figure 11 (right)
shows that the width decreases approximately as 1/

√
ρn,

which is consistent with what is observed when maximum-
likelihood estimation is carried out assuming an additive
Gaussian noise [9], although this hypothesis on the noise
is not considered here. From Figures 9 or 10 and 11, one
may deduce the width of the confidence interval that may be
obtained with FL or TAS, when not all measurements have
reached some node. One can for example see that even if
only 80 % of the measurements have reached a node, the
width of the confidence region is only 10 % larger than
that obtained from all measurements. This means that if one
tolerates evaluating a confidence region from a reduced subset
of the data, the constraints on the data dissemination duration
may be significantly relaxed, with beneficial effects in terms
of time and energy savings.

VII. CONCLUSIONS
This paper investigates the distributed evaluation of non-

asymptotic confidence regions at each node in a sensor
network. It presents the TAS algorithm and its comparison
with other information diffusion algorithms on structured and
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Fig. 11. Average width of the 90 % confidence region as a function of the
proportion ρ (left) of measurements collected by a node with FL or TAS and
as a function 1/

√
ρn (right).

unstructured topologies. The TAS algorithm has been desig-
ned to efficiently exploit the peculiarities of the distributed
evaluation of confidence regions via SPS. Simulation results
provide a characterization of the trade-off for the achievable
average confidence region volume as a function of the required
amount of data that each node should transmit on average.
The contributions show that, on structured networks, the
proposed TAS algorithm is able to outperform the FL when the
network dimension is sufficiently high, this independently of
the specific dimension of the parameter space, as investigated
in the theoretical and numerical analyzes, as well as on an
experimental setup.

APPENDIX A
TAS PSEUDO CODE

The pseudo-codes for each phase of the TAS algorithm
are reported in Algorithms 2 to 7. The TAS algorithm is run
similarly at each node of the network. The superscript (k) is
thus omitted to lighten notations. All variables are assumed to
be global.

Algorithm 2 Initialization

◃Get local sensor measurement▹
1: yk ← PerformMeasurement

◃Format data and transmit to neighbors▹
2: create tag vector t according to (16)
3: create data vector δ according to (17)
4: TransmitToNeighbors (t, δ)

◃Initialize R with local infos▹
5: R.T = t
6: R.D = δ

Algorithm 3 Reception
◃Get node indexes from which packets are received▹
1: idx← GetNodeIdx

◃Update reception structure Rx with the tags and partial
sums received from neighbors stored in Node(i).t and
Node(i).δ▹

2: for i=1 to length(idx) do
3: Rx.T← [Rx.T;Node(idx(i)).t]
4: Rx.D← [Rx.D;Node(idx(i)).δ]
5: end for
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Algorithm 4 Distillation
◃Distillation of new and already stored infos▹
1: for lx=1 to NbRows(Rx.T) do
2: for l=1 to NbRows(R.T) do
3: if R.T(l) ⊂ Rx.T(lx) then
◃Clear received packet from already stored data▹
4: Rx.T(lx)← Rx.T(lx)−R.T(l)
5: Rx.D(lx)← Rx.D(lx)−R.D(l)
6: end if
7: if Rx.T(lx) ⊂ R.T(l) then
◃Clear already stored data from received data▹
8: R.T(l)← R.T(l)−Rx.T(lx)
9: R.D(l)← R.D(l)−Rx.D(lx)
10: end if
11: end for

◃Any distilled received data is appended to R ▹

12: if Rx.T(lx) ≠ 0 then
13: R.T← [R.T;Rx.T(lx)]
14: R.D← [R.D;Rx.D(lx)]
15: end if
16: end for

◃Clear reception structure of current node▹
17: clear Rx

Algorithm 5 Aggregation
◃ Perform aggregation of Tags and partial sums. Using
boolean flag vector Agd, already aggregated infos are no
more considered for aggregation in subsequent rounds ▹

1: t← 0 ◃Initialize aggregated tag vector▹
2: δ ← 0 ◃Initialize aggregated data vector▹
3: for l=1 to NbRows(R.T) do
4: if Agd(l) = false then
5: if R.T(l) ∩ t = 0 then
6: t← t+R.T(l)
7: δ ← δ +R.D(l)
8: Agd(l) = true ◃l-th row of R.T flagged as
aggregated▹

9: end if
10: end if
11: end for

Algorithm 6 Transmission
1: if t ≠ 0 then
2: TransmitToNeighbors (t, δ)
3: end if

Algorithm 7 Wrap-up
◃Sorts lines of R by decreasing weight of lines of R.T▹

◃ Perform aggregation of tags and partial sums.▹
1: t← 0 ◃Initialize wrapped-up tag vector▹
2: δ ← 0 ◃Initialize wrapped-up data vector▹
3: for l=1 to NbRows(R.T) do
4: if R.T(l) ∩ t = 0 then
5: t← t+R.T(l)
6: δ ← δ +R.D(l)
7: end if
8: end for
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