
22 February 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Casadei, R., Fortino, G., Pianini, D., Russo, W., Savaglio, C., Viroli, M. (2019). Modelling and simulation of
Opportunistic IoT Services with Aggregate Computing. FUTURE GENERATION COMPUTER SYSTEMS, 91,
252-262 [10.1016/j.future.2018.09.005].

Published Version:

Modelling and simulation of Opportunistic IoT Services with Aggregate Computing

Published:
DOI: http://doi.org/10.1016/j.future.2018.09.005

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/667139 since: 2019-02-18

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.future.2018.09.005
https://hdl.handle.net/11585/667139


Modelling and Simulation of Opportunistic IoT
Services with Aggregate Computing

Roberto Casadeia, Giancarlo Fortinob, Danilo Pianinia, Wilma Russob,
Claudio Savagliob, Mirko Virolia

aAlma Mater Studiorum—Università di Bologna, Italy
{roby.casadei,danilo.pianini,mirko.viroli}@unibo.it

bUniversità della Calabria, Italy
{g.fortino,w.russo}@unical.it, csavaglio@dimes.unical.it

Abstract

The Internet of Things (IoT) is emerging as a ubiquitous and dense ecosys-
tem in which novel devices and smart objects interoperate to establish smart
cities, smart buildings, etc. In such application contexts, a plethora of inno-
vative services are expected to stand out, deeply impacting our daily routine.
In particular, real IoT drivers will be cyberphysical, collective, highly dynamic
and contextualised services, called in the following Opportunistic IoT Services.
This work proposes a full-fledged approach for their development, based on (i)
a technology-agnostic yet detailed modelling phase, which allows opportunistic
properties to emerge since the preliminary service analysis; and (ii) the imple-
mentation and further simulation of IoT services through Aggregate Comput-
ing, a distributed computing paradigm and engineering stack able to harness,
in practice, the dynamic, collective and context-driven nature of Opportunistic
IoT Services. A mass event case study, related to the real-world scenario of a
large scale urban crowds detection and steering, provides evidence of the huge
potential of the approach: indeed, simulation results highlight the effectiveness,
flexibility, scalability and resilience of the Aggregate Computing-based approach
to the design of Opportunistic IoT Services.

Keywords: Internet of Things, Opportunistic Services, Aggregate Computing.

1. Introduction

The Internet of Things (IoT) can be defined as an ensemble of different sys-
tems (e.g., Smart Roads, Smart Buildings, Smart Grids) composed of heteroge-
neous but interacting components (e.g., humans, cars, smartphones, gateways,
smart meters) both individually and collectively providing innovative cyber-5

physical services. Namely, it can be described as a dense, large-scale, open and
dynamic ecosystem of socio-technical entities and applications [1]. Despite a
decade of research, however, the IoT is still into an emergent phase: indeed, it

Preprint submitted to Journal of LATEX Templates May 24, 2018



is shaped by few isolated IoT systems/devices that provide conventional comput-
ing services mainly designed for static environments with a-priori interactions10

[2]. Nevertheless, there is a clear and prominent trend towards a fully realised
IoT, in which arguably the key drivers will be cyberphysical, highly dynamic
and contextualised services, called in the following Opportunistic IoT Services
[3, 4]. For such services, provisioning may be meaningful only in certain space/-
time configurations and may be subject to multiple heterogeneous constraints15

and conditions, e.g., current user status, location, policies, etc.
In this direction, our work presents a full-fledged approach to the devel-

opment of Opportunistic IoT Services—from high-level metamodelling up to
concrete implementation and simulation. While the state-of-the-art is mostly
focused on the current IoT and its limited service provisioning, we propose: (i)20

a service model that elicits and actually considers, from the beginning in the
preliminary analysis phase, the main properties of incoming Opportunistic IoT
Services (i.e., dynamicity, context-awareness, co-location, and transience); (ii)
a formal and practical framework, namely Aggregate Computing (AC) [5], in
order to harness the dynamic and context-driven nature of Opportunistic IoT25

Services. Aggregate Computing is a paradigm and engineering approach for
compositionally developing self-adaptive IoT services by a global perspective.
According to the macro, aggregate viewpoint, a given IoT environment, dense
of opportunistic sensing, acting and computing devices, can be seen as a whole
programmable entity whose parts collaboratively produce and consume services30

across space and time. Moreover, crucially, the AC stack, which formally builds
on computational fields [6], supports the specification, analysis, simulation and
runtime execution of collective or aggregate services, i.e., services that are pro-
vided by or involve a collective of Smart Objects (SOs) [7, 8], which are by
definition dynamic and adaptive to the context. As an important side note,35

the abstraction of the programming and operational model of Aggregate Com-
puting makes the execution of aggregate services largely independent from the
specific IoT architecture adopted, paving the way to a full and opportunistic
exploitation of IoT resources, from the edge up to the cloud [9].

The comprehensive analysis of Opportunistic IoT Services and the actual40

exploitation of Aggregate Computing for their concrete implementation and
simulation are exactly the main contributions of this work, which extends over
previous [2, 3, 4] in which the development approach was presented only theo-
retically and without a running case study.

This paper is organised as follows. In Section 2, a brief overview about IoT45

services available at the state-of-the-art is reported: it underlines feature and
modelling limitations affecting current opportunistic IoT services, motivating
the present work. The main contribution is provided in Section 3, Section 4, and
Section 5. Specifically, Section 3 describes high-level and technology-agnostic
metamodels supporting a full-fledged analysis of IoT domains and Opportunis-50

tic IoT Services therein: our development approach can not prescind from this
preliminary phase, in which all the opportunistic elements required to the fur-
ther service implementation are elicited. Then, Aggregate Computing is intro-
duced in Section 4 as the enabling approach for designing and implementing

2



such Opportunistic IoT Services. Also, at this point, AC-based service models55

are conceptually aligned to the high-level models of Section 3, and guidelines
for semi-automatic mapping between them are suggested. Then, building on
the scenario of a mass public event, Section 5 proposes a case study, consisting
of an Opportunistic IoT Service for crowd management, which exemplifies the
proposed approach. The aim of the experiment is two-fold: demonstrating the60

direct mapping between the concepts in analysis and their concise implemen-
tation in a concrete aggregate programming language, and providing evidence
for the huge potential of the approach when applied to real-world cases. It is
rather complex, time-consuming and error prone to explore and validate the
wide range of possible design choices (e.g., configuration settings, communica-65

tion protocols, mobility models) prior to deployment; and the task is made even
more challenging because of the interdependence among sensing, actuation, net-
working, control, and computational tasks in a situated SO with unpredictable
resources and context. Indeed, simulation is a key step when developing an
Opportunistic IoT service: even though the simulated model will necessarily70

abstract away some of the real-world complexities, performing simulations pro-
vides valuable insights about the level of quality of service that can be expected
from the actual system. Final remarks and planned future work conclude the
paper.

2. Related Work75

IoT services developed with state-of-the-art approaches only partially expose
opportunistic properties and, especially those designed in a bottom-up way, are
unable to fully exploit the potential of the future IoT, which will be charac-
terised by significant pervasiveness and heterogeneity. IoT services proposed
in [10, 11, 12] are specifically focused on opportunistic networking and provide80

advanced communication solutions for ever-changing environments. Indeed, by
opportunistically using the nodes’ communication resources and (possibly par-
tial) knowledge of the network condition, these services (i) enable the dynamic
creation of end-to-end routes, since any possible node can be opportunistically
used as a relay between a source and a not a-priori connected destination [10];85

(ii) support interoperability, by handling different communication protocols in a
unified fashion through gateway-based solutions [11]; (iii) achieve a better Qual-
ity of Service (QoS), by dynamically selecting the most appropriate communi-
cation setting (e.g., range frequency, data rate) according to specific context in-
formation [12]. IoT services in [13, 14, 15] extend the networking scope through90

opportunistic usage of heterogeneous resources, from hardware ones (like sen-
sors and cameras) to software ones (like databases and multimedia contents).
In this way, users can enjoy much richer services, in terms of functionality, than
the ones available on their own devices. To such end, information about users’
social relationships and current locations are the principal contextual informa-95

tion and enablers [13], allowing the creation of opportunistic IoT communities
[14, 16] and participatory applications [15, 17].

3



The surveyed IoT services, although dynamic and advanced, present notable
limitations that also affect other contributions available in the literature. First,
they do not consider the context as a first-class, multifaceted abstraction: ser-100

vice provision is impacted only by information about devices/users location or
hardware equipment, while other useful contextual data (e.g., perceptible or in-
ferable from the surrounding environment) is not considered. Hence, the issue
of entity and stakeholder heterogeneity is poorly addressed: humans, things,
and places are indeed roughly modelled, thus preventing their distinctive fea-105

tures to impact service execution. For instance, though a smartphone and an
outdoor surveillance system are both equipped with cameras and video registra-
tion capabilities, these should be managed in a different fashion, but doing this
involves modelling additional concepts such as device owner and service goal.
Finally, IoT services are mostly implemented through “conventional” comput-110

ing paradigms (e.g., service-oriented paradigm), which do not directly support
space-time- and context-aware execution of distributed and collective processes.
Such limitations, mostly derived from an insufficient modelling phase (cf., ex-
tending Web-Service models through simple textual tags [18]), prevent these
services from fully unfolding the potentials of a dense, large-scale and hetero-115

geneous IoT. By bridging the gaps, we propose a novel approach, detailed in
the following, for a disciplined and practical development of Opportunistic IoT
Services.

3. Opportunistic IoT Service metamodelling and formal definition

The proposed approach for developing IoT Services [3, 4] explicitly considers120

the following opportunistic properties, crucial to capture the real potential of IoT
service ecosystems but largely overlooked in the past:

• dynamicity : IoT services can be dynamically, and not a priori, created or
activated;

• context-awareness: any implicit or explicit information about the cur-125

rent location, identity, activity, and physical condition of the involved IoT
stakeholders can be relevant for the service provision;

• co-location: IoT services can be simultaneously exploited by different
stakeholders sharing local cyberphysical resources;

• transience: IoT services can last for a temporary time or exist until certain130

conditions are met.

Such opportunistic properties derive from both the state-of-the-art analysis on
IoT services and authors’ experience and, at the moment, they are suitable to
describe even the more advanced IoT service we can imagine. To actually exploit
such properties, a detailed metamodelling activity has been performed from135

both a global and local perspective. Indeed, by focusing mostly on properties
and concepts, the metamodel-based approach elevates the level of abstraction,

4



Figure 1: Proposed metamodels according to (a) global perspective and (b) local perspective.

reduces the complexity of the artifacts and the efforts required to produce them:
thanks to such features, metamodels represent ideal solutions for performing the
analysis of complex and heterogeneous systems. Specifically, in the following,140

the main concepts of the IoT domain model (global perspective) are introduced,
followed by a formal definition of Opportunistic IoT Service. Then, we focus on
Smart Objects (SO, local perspective), since this kind of devices will be primary
IoT Service prosumers (i.e., entities acting as both producers and consumers):
hence, a detailed metamodel of SO and IoT Service is provided. As reported in145

[2], the proposed modelling approach is flexible and effective enough be used in
different contexts featured by different scales, purposes, and requirements, such
as a Smart Factory (homogeneous scenario with a limited number of IoT devices,
specific functionalities but strict requirements) and a Smart City (large-scale
scenario, highly dynamic and with a variety of potentially different IoT devices150

and services). Similarly, the proposed modelling approach can be exploited
for re-engineering the service level of existing IoT architectures [19, 20, 21].
Models of Figure 1 and Figure 2 follow the Unified Modeling Language (UML
2.0) notation [22], thus dashed lines indicate dependency, while solid lines with
verbs model association.155

3.1. IoT domain model – Global perspective

The proposed IoT domain model shown in Figure 1(a) provides a global
overview, eliciting the main classes involved in the service provision and their
relationships. In particular, the IoT domain model comprises the following
categories:160

• IoT Entity : any subject that, according to its own attributes (indicated as
“features”) and cyberphysical capabilities (indicated as “functionalities”),

5



provides and/or consumes an IoT Service. For a more detailed modelling,
IoT Entities can be classified into three subcategories: Humans, Things
and Pets1;165

• IoT Environment : the physical and non-augmented environment (a lake,
a wood, an agricultural field, etc.) in which IoT Entities and physical
elements (e.g., trees, obstacles, and weather phenomena) are co-located
during the service execution;

• IoT Service: a cyberphysical service provided by an IoT Entity. Each170

IoT Service is featured by a Service Model and a Service Profile, both de-
tailed later in Section 3.2, which enable its accurate description, automatic
discovery, composition, and fruition;

• Context : dependencies among IoT services and both IoT Entities and IoT
Environment. Indeed, service provision is expected to exploit any implicit175

or explicit information regarding IoT Entity, IoT Environment, or other
IoT Services.

Given these preliminary concepts, an IoT Service can be defined as an interface
that allows an IoT Entity to be engaged, under specific constraints and pre/post-
conditions, in a temporary, contextualised and localised usage relationship. The180

service provision impacts the involved IoT Entities – the service provider(s),
service consumer(s), and, in some case, third parties indirectly related to the
service provisioning – and the IoT Environment, by modifying their properties
and/or their status.

3.2. Smart-Object and IoT Service metamodel – Local perspective185

We classified Things in Computing Systems (conventional devices such as
notebooks and servers, exposing their computation functionalities locally or
remotely on the Web), and SOs, namely everyday objects augmented with sens-
ing/actuation, processing, storing, and networking functionalities [1]. Because
of their capabilities, cyberphysical nature and pervasiveness, SOs are primary190

service prosumers in an IoT scenario [7] and require a dedicated modelling. The
metamodel portrayed in Figure 1(b) may characterise an SO in any application
domain (domotics, smart transportation, etc.) [24]. In fact, it models the main
aspects of a generic SO in a very straightforward way, exposing its static and
dynamic features which can be relevant for the IoT Service provision. Such195

features are categorised in five main groups:

• Status: a list of variables, given as pairs 〈name, value〉, that capture the
current SO state (e.g., 〈working, on〉, or 〈residual energy, 95%〉);

1Term Internet of Pets is gaining popularity [23] and indicates a novel, relevant segment of
IoT devices and services purposely targeted at pets—e.g., smart collars for monitoring their
location and well-being.

6



• Location: current SO geophysical position (e.g., “Via Pietro Bucci, 41,
87036 Quattromiglia, Cosenza, Italy” or, in terms of latitude and longi-200

tude, “45.465454, 9.186516”);

• PhysicalProperty : physical property of the original object without any
hardware augmentation and embedded smartness (e.g., weight or dimen-
sion);

• FingerPrint : distinctive (and generally immutable) SO information like205

the SO identifier (or Id, for its uniquely identification within an IoT sys-
tem), SO Creator (who created the SO), SO Type (e.g., a smart pen,
smart building, and smart city), QoSParameters (defining one or more
QoS Parameters associated to the SO, e.g., efficiency and response time),
SO Constraints (SO static constraints that, if violated, prevent it from210

working, e.g., SO electric voltage or maximum work temperature), and SO
Preferences (helping choose between alternatives options, e.g., a SmartCar
with a preferred fuel brand);

• Device: hardware and software characteristics that allow augmenting the
physical object and making it smart. An SO is typically equipped with a215

processing unit or Computer, a Sensor and/or an Actuator node.

Each IoT Service is featured by a Service Profile (presenting a high-level
description of the service) and a Service Model (describing in detail how the
service works), both extending the ones reported in [18] and [25]. The Service
Profile contains main attributes describing the IoT Service itself and eliciting220

its relationships with the IoT Entities and the IoT Environment involved in the
service provision. In detail:

• Service Name: name of the IoT Service that is being offered (also usable
as service identifier);

• Service Description: a brief human-readable description of the IoT Ser-225

vice;

• Service Category : an entry in some IoT Service ontology or taxonomy
(e.g., alerting service, payment service);

• Service Parameters: one or more quality parameters featuring the IoT
Service provision (e.g., response time, and accuracy);230

• Service Input : information required for the IoT Service execution (e.g.,
the Location of the user consuming the service);

• Service Output : information generated as output of the IoT Service exe-
cution (e.g., the computed risk-level in a monitoring service);

• Service Preconditions and Service Context Preconditions: functional and235

IoT Entity-related conditions required for a valid IoT Service execution
(e.g., the Status of the SO providing the service must not reveal working
anomalies);

7



• Service Effects and Service Context Effects: events involving IoT Entities
which result from the IoT Service execution (e.g., the service generates a240

notification to be displayed on user’s smartphone and street billboards);

• Service Provision Constraints: one or more IoT Entity’s constraints that
are relevant to the IoT Service execution (e.g., the SO providing the service
has a Constraint preventing it to work at certain temperatures).

The Service Model provides information about processes, namely the operations245

that concretely contribute to realising the IoT Service. Indeed, a Process can
produce some new information or perform actuation, and multiple Processes
can be combined as building blocks for implementing complex IoT Services. In
detail, for each Process, the Service Model reports its:

• Process Id : a string to identify the Process;250

• Process Input : information required by the Process for its execution (e.g.,
SO weight);

• Process Output : information generated from the Process execution (e.g.,
an entry in a database of available resources);

• Process Preconditions: condition(s) under which the Process takes place255

(e.g., user identity has to be provided correctly within 30 seconds);

• Process Effects: events or changes of the state of IoT Entities that result
from the Process execution (e.g., a buzzer starts ringing).

4. Aggregate Computing-based modelling and implementation

4.1. Background: Aggregate Computing260

Aggregate Computing (AC) [5] is a macro-approach targeted at the devel-
opment of complex, distributed, situated systems – such as those arising in
fields like pervasive computing, collective adaptive systems, cyberphysical sys-
tems and the IoT – intended to exhibit features like self-adaptive/self-organising
behaviour, complex decentralised computation, and space-, time-, and resource-265

aware coordination. Three key traits characterise this paradigm: (i) global
stance with global-to-local mapping, where the target of system design is the
whole, distributed IoT ecosystem and the problem of deriving micro-level com-
putation and interaction from aggregate-level (or collective) IoT services is del-
egated to the AC middleware assumed to be running on aggregate-enabled de-270

vices; (ii) behaviour compositionality, whereby a rich collective service can be
described in terms of the functional composition of simpler collective services,
as it will be shown in the case study of Section 5; and (iii) abstraction, by which
aggregate services enable adaptivity at different levels by abstracting from low-
level issues and details such as the particular network topology, communication275

technology, and concrete system execution strategy. These characteristics play

8



an essential role from the design perspective, where complex solutions can of-
ten be expressed succinctly and declaratively, as well as from the operational
perspective, where large flexibility is left to the devops people and the platform
regarding execution details and deployment strategies [9].280

Aggregate Computing is a full-stack engineering approach and toolchain sup-
porting all the stages of the development of collective IoT services. The pro-
gramming model is formally founded on the notion of a computational field, i.e.,
a dynamic map from devices (or even their corresponding space-time regions,
when situated) to computational values of any kind, and the corresponding field285

calculus [6], which describes aggregate programs as functional compositions of
fields, defines their operational semantics (global-to-local mapping), and en-
ables formal analysis of programs and properties of interest. Currently, two
implementations exist: Protelis [26], a JVM-based, external Domain-Specific
Language (DSL), and ScaFi [27], a Scala-internal DSL and actor-based plat-290

form [28]; both support simulations through the Alchemist framework [29, 30]
and can be used for actual JVM-based deployments. Notably, thanks to the
programming model and toolchain, the aggregate code exercised in simulations
(which represent a fundamental development phase to validate and verify the
behaviour of the system across different situations before actual deployment) is295

exactly the same code which will be run by the final system.

4.2. Aggregate Computing for Opportunistic IoT Services

Aggregate Computing, with its peculiar mix of features, is well-suited to the
development of Opportunistic IoT Services. Indeed, the approach seamlessly
supports all the four opportunistic properties.300

• Dynamicity : opportunistic service activation and evolution is directly sup-
ported through code mobility [31] and constructs for defining dynamic,
space- and time-dependent domains of computations;

• Context-awareness: aggregate programs leverage sensors, neighbourhood-
driven communication, and iterative execution to continuously evolve the305

set of local contexts upon which the computation and coordination logic
unfolds;

• Co-location: as a natural way to define the notion of neighbourhood is on
a physical space basis, Aggregate Computing inherently uses locality (of
space/time and purpose) to structure interaction and activities;310

• Transience: Aggregate Computing provides constructs that directly sup-
port time- and context-aware conditional execution of distributed services.

In addition, the abstraction of the AC model enables opportunistic exploitation
of available networking infrastructure and IoT resources, resulting in operational
flexibility and opportunities for QoS-driven adaptation [9]. Indeed, a logical ag-315

gregate of devices can be represented as a reconfigurable system of actors (i.e.,
autonomous entities interacting via asynchronous message-passing) [9, 28]: the

9



(a) Global perspective (b) Local perspective

Figure 2: The logical model of Aggregate Computing.

different responsibilities of devices (e.g., sensing, storage, computation, neigh-
bouring communication) are partitioned into micro-actors which can be mi-
grated to different virtual or physical machines (back and forth across IoT320

device, edge, fog, and cloud layers), and whose bindings can be dynamically
adapted. Moreover, the decisions about when and how the application has to
be re-configured can be made opportunistically—i.e., according to available and
“future” infrastructure (as predicted, e.g., by analysing monitoring and histor-
ical data), to desired QoS, and to optimisation opportunities in general.325

In the IoT, another prominent issue – not to be overlooked – is security,
and, especially in open and opportunistic IoT scenarios, the problem becomes
even more paramount, since proper collaboration of several unknown devices
is often required. In the setting of Aggregate Computing, in addition to the
security challenges typical of IoT scenarios, there are peculiar issues related to330

the potential global effects of local behaviours and the self-organising nature of
many AC applications. The study of security in this context is an open problem
and a crucial future work, but results from preliminary studies are encouraging:
for instance, the adoption of computational trust [32, 33] has been proposed
and used in Aggregate Computing [34] to develop attack-resistant aggregate335

computations where malevolent nodes can be recognised and excluded from the
system.

4.3. Aggregate Computing Model

Seen at a high-level of abstraction, Aggregate Computing (see Figure 2)
includes the following concepts and relationships:340

• Aggregate program. An executable representation of some aggregate logic
which describes a particular collective behaviour;

• Aggregate system. A set of networked nodes or devices supporting the
collective execution of aggregate programs;

10



• Aggregate application. A particular aggregate logic running on a certain345

aggregate system, aimed at solving a certain problem in some context;

• Node. Also known as device (not to be confused with the Device entity in
Figure 1), it is an individual AC-enabled entity, possibly equipped with
sensors and actuators;

• Neighbourhood. The (logical or physical) set of nodes that can be directly350

contacted by a given node;

• Global/local sensor. A source for global/local information;

• Global/local actuator. A global/local actionable device for environment-
directed actions;

• Global/local computational environment. Anything that can be sensed355

and acted upon via global/local sensors and actuators, as well as common
features exposed by the platform.

Note that these terms refer to logical entities – which may be mapped in different
ways to actual, physical devices [9] – but may occasionally be used also to
refer to the corresponding concrete embodiments. Notably, such abstractions360

provide a great deal of flexibility for what concerns the implementation and
operation on the platform side. In addition, Aggregate Computing promotes
two point of views, global or local, according to what aspects are to be stressed:
whether declarativity or operationality, design or implementation, the collective
or the parts. These two viewpoints are dual and are typically used in concert365

during development, for reasoning or when crafting new building blocks; in
general, however, application developers may be able to primarily use the global
viewpoint and accordingly define services by composing high-level patterns.

The conceptualisation of Aggregate Computing presented above can be bet-
ter grasped by considering the execution model of aggregate systems. An aggre-370

gate system consists of a collection of logically networked devices that compute
and communicate at asynchronous rounds of execution. In a given round, a
device executes the global, aggregate program according to the corresponding
local semantics, updating internal state and producing data to be communicated
outside. Such a round is performed considering a computational context formed375

by previous state, sensor data, and messages from neighbour devices. Then, as
a round is performed, result data is made available to neighbours (e.g., by a
broadcast), and possibly instructed actuations are locally executed. The re-
peated execution of rounds is what allows the system to continuously react to
changes, namely, to self-adapt to context changes. This cycle can be optimised380

in different ways; for instance, the sampling frequency of sensors may be tuned
according to variability levels of environmental conditions, and unchanged data
may not be broadcast again.

11



4.4. Models alignment

Both the IoT system metamodel (Figure 1) and the AC metamodel (Fig-385

ure 2) are high-level and platform-independent; this provides high flexibility for
what concerns implementation and deployment of concrete systems. However,
such metamodels have different goals and hence are located at somewhat dif-
ferent abstraction levels, one being IoT-focused and rich in terms of captured
concepts and properties, and the other being a computational model, largely390

abstracting from specific, modellable properties and concerns (such as, for in-
stance, those related to the physical world). Table 1 provides a mapping between
the two metamodels.

AC concept IoT metamodel concept

Aggregate application IoT Services + IoT Environment
Aggregate system A set of communicating IoT Entities

hosting an AC platform
Aggregate program The summa of local counterparts of

collective IoT Services provided by
the nodes of an aggregate system

Local aggregate program IoT Service
Device / node SmartObject
Local sensor / actuator Sensor / Actuator
Global sensor / actuator The summa of local Sensors and Ac-

tuators
Global computational environment The dynamic summa of SmartOb-

ject’s Statuses
Local computational environment SmartObject’s Status

Table 1: Mapping between the models.

Moreover, for demarcation and clarification, it is worth noticing the following
aspects, which are somewhat different in the two metamodels:395

• a device for Aggregate Computing is logical and is not the same as a
Device component of a Smart Object;

• ensembles of Smart Objects are not explicitly modelled as first-class con-
cepts in the IoT system metamodel, whereas they conceptually are so in
Aggregate Computing;400

• the neighbourhood notion in Aggregate Computing, which regulates lo-
cal, contextual communication among AC devices, could not be explicitly
mapped to IoT system metamodel concepts since device-to-device rela-
tionships are abstracted away from the metamodel.

In summary, thanks to their abstractions, the two metamodels can be pur-405

posely aligned, provided that their peculiar focus is taken into account. The

12



Figure 3: Snapshot of the case study simulation. People (black and black-encircle dots)
participate the system along with stationary devices (grey dots). People in dangerously over-
crowded areas are depicted in red. People currently in a high density area at risk of getting
overcrowded are depicted in yellow. People that are currently receiving a warning and an
alternative steering suggestion on their handheld device are depicted in blue.

given mapping may be used for a semi-automatic model-to-model transforma-
tion (see Table 1): AC devices running aggregate services may be simply mapped
to IoT Entities providing an IoT Service corresponding to the local counterpart
of the aggregate service.410

5. Case study

In this section, we exemplify our previous discussion through a case study
in the context of large scale urban crowd detection and steering.

5.1. Scenario description

Our setting leverages real-world data from a mass city event in 2013 [35].415

Precisely, it is composed of anonymised GPS traces2, whose position are
recorded by the official smartphone app of the event, for a total of nearly 1500

2A GPS trace is an ordered collection of longitude, latitude, and timestamp triples. Addi-
tional data may decorate such information (e.g., altitude, heart rate...), but it is not relevant
for the scope of this work.

13



high-quality user traces. These traces represent roughly the 0.5% of the partic-
ipants to the event, whose overall figure ranges around 300.000 people. In addi-
tion to mobile devices following such traces, we added one thousand non-mobile420

devices spread across the city used as infrastructure. These devices were located
in uniformly random positions along the streets, and represent static smart ob-
jects (such as smart traffic lights, smart street lamps, smart cctv cameras, etc.).
Their participation to the overall system is used to show how heterogeneous
devices may collaborate in order to reach a global goal, and to challenge general425

system resilience via casual displacement that varies across different simulation
runs. We suppose both mobile and non-mobile devices communicate within a
disc with a radius of 100 meters, ignoring the displacement of buildings and
other physical obstacles.

Our goal is to provide a crowd management service based on: (i) a crowd430

detection and notification system, able to detect congested areas and spread an
alarm to users in the surroundings; and (ii) a crowd steering system, computing,
for people close to the dangerous locations, the direction towards the closest
overcrowded area, in order to avoid it by suggesting an alternative direction or
point of interest. The combination of such systems enables the service (deployed,435

for example, as a mobile app) to notify users close to dangerous areas and
provide them with a different direction to be followed. In a socio-technical
system such as a smart city, though, we cannot expect every user to follow the
service advice. For this reason, we evaluate the system behaviour varying the
probability p that a user is interested in following the service advice: those who440

are, when receiving a warning and a direction, will move towards it, then get
back to their original plan; those who are not, continue along their GPS trace
ignoring the service advice (each device is associated with one of the high quality
user traces mentioned before). Users steered by the service are set to walk at
1.5m/s along real-world roads that OpenStreetMap [36] reports as available to445

pedestrian traffic. A snapshot of the simulation is provided in Figure 3.
We measure the effectiveness of our steering service by counting how many

people, among those using the application on their handheld or wearable device,
are in a dangerously dense area. We also measure the count of people being
steered by the service, the average speed of the participants, and the overall450

distance walked by all users.
The software implementation was written in the AC language Protelis [26],

and simulations have been performed using Alchemist [29]. Data generated
by the simulator is then processed using NumPy [37] and xarray [38], while
matplotlib [39] has been leveraged for charting. For the sake of reproducibility,455

the experiment code is entirely open sourced and available3.

5.2. Collective IoT services mapping and implementation

The Crowd Safety Service modelled in Figure 4 and Figure 5, whose related
Service Model is reported and in Table 2, can be easily translated into Protelis

3https://bitbucket.org/danysk/experiment-2018-fgcs

14

https://bitbucket.org/danysk/experiment-2018-fgcs


Figure 4: Metamodelling of the “Crowd Safety” opportunistic IoT Service and its Service
Profile.

Process
ID

Density
estimation

Dangerous
density
evaluation

Crowd
tracking

User alert Path
suggestion

Process
Input

Count of
devices in
proximity

Local den-
sity value,
group size,
and danger-
ous density
thresholds

Timeframe,
local
density
value

Risk level,
warning
radius

Sensed
position,
user
preferences

Process
Output

Crowd
density
value

Flag
indicating a
dangerous
area

Risk level Flag
indicating if
node should
be alerted

Suggested
destination

Process
Precondi-
tions

Target zone
is
monitored
by Smart
Objects

Local
density has
been above
a threshold
in the
current
Timeframe

n.a. Node is
within
warning
radius from
high
density area

Node is
within
warning
radius from
high
density area
but outside
the over-
crowded
area

Process
Effects

A density
value is
associated
to the
monitored
zone

A flag is as-
sociated to
dangerous
areas

Triggers
user alert
and path
suggestion
processes

Nodes are
alerted

Nodes are
suggested
an
alternative
path

Table 2: “Crowd Safety” Service Model and its processes

15



Figure 5: AC-based modelling of the “Crowd Safety” opportunistic IoT service.

function definitions. The basic brick is neighbour counting within a range (that460

must be smaller than the communication range of devices).

import protelis:coord:spreading

def countNearby(range) {

sumHood PlusSelf(mux(isHuman () && nbrRange ()<range) {1} else {0})465

}

Listing 1: A function returning a field with the count of neighbouring users, including self.
range must be less or equal the communication range for this implementation to work as
intended.

Upon the neighbour counting service, we can then define a density estimator
service:

470

def densityEstimation(attendees , range , walkable) {

countNearby(range) / (attendees * pi * range ^ 2 * walkable)

}

Listing 2: A function returning a field with the locally estimated density. attendees is an
estimate of the probability that a user is running the density detection service. walkable is
a parameter that estimates the actual walkable surface in the area considered for the density
computation.

Those functions, along with the tools included in the Protelis-lang library [40],475

make it easy to write a service returning a field of boolean values indicating,
for each point in space, if the local spot is overcrowded. In our case, we define
a spot to be so if (i) the density is above a risk threshold danger; and (ii) the
count of people occupying such area is higher than another threshold group:

480

import protelis:coord:accumulation

import protelis:coord:sparsechoice

import protelis:coord:spreading

def dangerousDensity(attendees , range , danger , group , walkable) {

let partition = S(range , nbrRange); // Leader election485

16



let localDensity = densityEstimation(attendees , range , walkable);

let avg = summarize(partition , sum , localDensity , 0)

/ summarize(partition , sum , 1, 0);

let count = summarize(partition , sum , 1 / attendees , 0);

avg > danger && count > group490

}

Listing 3: A service computing whether some spot is overcrowded. range defines the area
considered for density computation. danger is the dangerous density threshold. group is the
minimum number of people required for the density measure to be considered significant.
The algorithm elects a leader for each area with radius range, on which it aggregates and
then broadcasts (via summarize) information about density and people count coming from the
surroundings.

The states and time-drive transitions involving density estimation and danger-
ous density evaluation (enclosed in Figure 5 with a dashed box) can be translated
with the code in Listing 4:495

import Overcrowding .*

import protelis:state:time

def crowdTracking(attendees , range , walkable , dense , danger , group ,

timeFrame) {500

let density = densityEstimation(attendees , range , w);

if (isRecentEvent(density > dense , timeFrame)) {

if (dangerousDensity(attendees , range , danger , group , w)) {

overcrowded ()

} else { atRisk () }505

} else { none() }

}

Listing 4: A service computing the local risk of overcrowding. It returns a value in { NONE,

AT RISK, OVERCROWDED }, representing increasing levels of danger. It computes the local
density, and the level of danger is then evaluated only in those areas where the density was
higher than a threshold dense in the last timeFrame seconds.

The propagation of warnings and alternative direction advices can be realised,
on top of the result provided by the crowd detection services, as uncomplicated510

spreadings of information from the nearest source, see Listing 5.

import protelis:coord:spreading

import java.lang.Double.isFinite

def getAwayFrom(target) {515

let myPos = self.getCoordinates ();

let xy = 2 * mypos - broadcast(target , mypos);

let lat = xy.get(1); let long = xy.get(0);

if (isFinite(lat)&& isFinite(long)){[lat , long]} else {noAdvice ()}

}520

def direction(radius , crowding) {

mux (distanceTo(crowding == atRisk ()) < radius) {

getAwayFrom(crowding == overcrowded ())

} else { noAdvice () } // Nothing to report

}525

def warning(radius , crowding) {

distanceTo(crowding == atRisk ())<radius && crowding != overcrowded ()

}

17



Listing 5: Functions implementing the propagation services of Figure 5, relying on spreading of
information from devices in overcrowded areas to their surroundings. getAwayFrom implements
a simple strategy: go in the opposite direction of the vector connecting the local device with
the closest device in dangerous areas. direction suggests to get away from the overcrowded
area if the local device is within radius distance to danger.

In our experiment, we opted for a simple steering strategy: get away from the530

closest overcrowded device. This steering strategy was used as proof of concept,
though a more efficient solution to the problem can be used. Actual services
here can deploy much more advanced plans, for instance by checking the user
preferences and suggesting an alternative place to go where crowding is not set
to be an issue. Moreover, it would be possible, by relying on advanced mecha-535

nisms of aggregate programming, and in particular on Protelis’ alignedMap and
multiInstance[40], to let devices get a picture of the overall situation in their
surroundings, in order to define steering strategies tailored to the very specific
case. With the previously defined services at hand, the final FSM program can
be reified with the Protelis main script of Listing 6:540

let crowding = crowdTracking (0.005 , 30, 0.25, 1.08, 2.17, 300, 60);

isRecentEvent(

warning (50, crowding) && direction (50, crowding) != noAdvice (), 60

);545

Listing 6: The main Protelis script implementing the FSM depicted in Figure 5. Parameters
are described in Table 3.

5.3. Simulation results

We simulated two hours of the event, beginning at 9:00 and terminating at
11:00. Results are the average of 119 runs with different seeds, which imply
different positions of the non-mobile smart objects scattered around the city, as550

well as different timings for the computation of devices and user’s pace. Results
are summarised in Figure 6. Data show that the steering system is effective,
albeit its simplicity. In fact, the case where the system is not used by anybody
(our control case) has consistently the worst results in terms of people being
in dangerously overcrowded areas. The situation improves with the fraction555

of users actively following what the steering service is suggesting them. The
improvement is roughly linear until about 60% of users follow the service advice.
At this point the system performance is rather good, and we get to a plateau.
This indicates that this system is rather resilient to having a consistent fraction
of users ignoring the service suggestion: if about half of them does, the overall560

performance is still close to the best possible result.
We measure the cost of applying the steering technique by the increase in

space walked by attendees. Figure 6 shows that there is an increase in the
average walking speed, which directly translates into more distance walked.
Unlike the previous measure, however, there is no plateau: the crowd movement565

speed grows roughly linearly with the number of users following the service
advice.

18



Name Unit Value Description

attendees n.a. 0.5% Fraction of people actually using the
event application. For the Vienna City
Marathon 2013, we were provided about
1500 traces, and the overall attendance
was estimated in 300.000 people.

range m 30 Range used for estimating the local den-
sity, program parameter.

walkable n.a. 25% Fraction of the public space where pedes-
trians can actually walk (e.g. it excludes
areas occupied by buildings). Estimate.

dense people/m2 1.08 Dense aggregation of people, not yet dan-
gerous. Conservative estimate, from [41].

danger people/m2 2.17 Aggregation of people dense enough to be
dangerous if the group is numerous. Con-
servative estimate, from [41].

group people 300 Minimum number of people required for
classifying as dangerous a high-density
group of people. Estimate, from [41].

timeFrame s 60 Time required for an area that experi-
enced high density to be considered no
longer dangerous. Program parameter.

radius m 50 Maximum distance from an overcrowded
area for being warned and steered. Pro-
gram parameter.

Table 3: Description of the parameters used in the case study and their values.

These results suggest an improvement for the application: a selection criteria
for users to notify, depending on the number of attendees actually following the
suggestions, as there is no need for the system to steer all users to reach a good570

balance between performance and increased distance walked.

6. Conclusion and Future Work

In the on-going evolution of the IoT towards more pervasive and device-
richer environments, several business, service, and technical opportunities arise.
Building on previous work on Opportunistic IoT Services and Aggregate Com-575

puting, in this paper we have proposed a full-fledged approach, covering all
development aspects from high-level modelling to simulation, aimed at fully ex-
ploiting the distinguishing traits of the future IoT—dynamicity, heterogeneity,
contextuality, cyber-physicality, and collectiveness. While the IoT Service Meta-
model explicitly captures the key opportunistic properties – i.e., dynamicity,580

context-awareness, co-location, transience – of emergent IoT services, the AC

19



0 20 40 60 80 100 120
time (simulated minutes)

20

40

60

80

pe
op

le

Users in dangerous areas
p = 0.0
p = 0.1
p = 0.2
p = 0.3
p = 0.4
p = 0.5
p = 0.6
p = 0.7
p = 0.8
p = 0.9
p = 1.0

(a)

0 20 40 60 80 100 120
time (simulated minutes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

sp
ee

d 
(m

/s
)

Mean walking speed
p = 0.0
p = 0.1
p = 0.2
p = 0.3
p = 0.4
p = 0.5
p = 0.6
p = 0.7
p = 0.8
p = 0.9
p = 1.0

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Probability of users following the app advice

0

10

20

30

40

50

60

Pe
op

le

Cost-benefit: average mean speed and people in danger
People in danger
± standard deviation

Mean people speed

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n 
pe

op
le

 sp
ee

d 
(m

/s
)

(c)

Figure 6: Despite the steering strategy adopted, the benefit in terms of lowered danger is
rather clear from Figure (a): the higher is the fraction of people willing to follow their device
advice, the lower is the number of users in dangerously overcrowded areas. On the other hand,
the steering system has a negative impact on the average speed of the crowd, as it makes
people walk longer paths (b). Figure (c), finally, shows how benefit and cost relate (averaging
along the whole simulation time). Benefit sharply improves then stabilises, indicating that
the system has good resilience to limited participation; average walking speed grows steadily
instead with the number of participants to the system.

20



framework can operationalise and expose them through concrete programming
abstractions. As shown, the two metamodels can be aligned quite straightfor-
wardly: the IoT system metamodel is sufficiently flexible and general to capture
aggregate systems as a particular case, and the AC model, being a flexible and585

abstract computational model, can be seamlessly instantiated on a more gen-
eral model. Finally, the effectiveness of the approach is evaluated with respect
to a case study of an Opportunistic IoT Service supporting large-scale crowd
detection and steering. Notably, the combination of the proposed modelling
and programming paradigms has shown to be seamless and to systematically590

support, across the problem abstraction layers, the development of complex,
context-aware, self-adaptive services in IoT scenarios.

The proposed framework provides the basis for additional future work. For
instance, the development of a testbed for Opportunistic IoT Services can be
crucial for systematically assessing the correctness of implementations. Also,595

a more detailed and critical exposition of AC abstractions for opportunity ex-
ploitation can be valuable to better investigate related paradigmatic aspects.
Last but not least, the engineering aspects of the approach outlined in this pa-
per may be systematically synthesised into a methodology for Opportunistic
IoT Service development.600

References

[1] C. Savaglio, G. Fortino, M. Zhou, Towards interoperable, cognitive and
autonomic IoT systems: an agent-based approach, in: Internet of Things
(WF-IoT), 2016 IEEE 3rd World Forum on, IEEE, 2016, pp. 58–63.

[2] G. Fortino, W. Russo, C. Savaglio, M. Viroli, M. Zhou, Opportunistic605

cyberphysical services: A novel paradigm for the future internet of things,
in: 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), 2018,
pp. 488–492. doi:10.1109/WF-IoT.2018.8355174.

[3] G. Fortino, W. Russo, C. Savaglio, M. Viroli, M. Zhou, Modeling oppor-
tunistic IoT services in open IoT ecosystems, in: P. De Meo, M. N. Pos-610

torino, D. Rosaci, G. M. Sarné (Eds.), WOA 2017 – 18th Workshop “From
Objects to Agents”, Vol. 1867 of CEUR Workshop Proceedings, Sun SITE
Central Europe, RWTH Aachen University, 2017, pp. 90–95.

[4] G. Fortino, C. Savaglio, M. Zhou, Toward opportunistic services for the
industrial internet of things, in: 2017 13th IEEE Conference on Automation615

Science and Engineering (CASE), 2017, pp. 825–830. doi:10.1109/COASE.
2017.8256205.

[5] J. Beal, D. Pianini, M. Viroli, Aggregate programming for the Internet of
Things, IEEE Computer 48 (9).

[6] F. Damiani, M. Viroli, J. Beal, A type-sound calculus of computational620

fields, Science of Computer Programming 117 (2016) 17 – 44. doi:http:

//dx.doi.org/10.1016/j.scico.2015.11.005.

21

http://dx.doi.org/10.1109/WF-IoT.2018.8355174
http://dx.doi.org/10.1109/COASE.2017.8256205
http://dx.doi.org/10.1109/COASE.2017.8256205
http://dx.doi.org/10.1109/COASE.2017.8256205
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2015.11.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2015.11.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2015.11.005


[7] G. Kortuem, F. Kawsar, V. Sundramoorthy, D. Fitton, Smart objects as
building blocks for the internet of things, IEEE Internet Computing 14 (1)
(2010) 44–51.625

[8] G. Fortino, P. Trunfio, Internet of things based on smart objects: Technol-
ogy, middleware and applications, Springer, 2014.

[9] M. Viroli, R. Casadei, D. Pianini, On execution platforms for large-scale
aggregate computing, in: Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing: Adjunct, ACM, 2016,630

pp. 1321–1326.

[10] R. Pozza, M. Nati, S. Georgoulas, K. Moessner, A. Gluhak, Neighbor dis-
covery for opportunistic networking in internet of things scenarios: A sur-
vey, IEEE Access 3 (2015) 1101–1131.

[11] G. Aloi, G. Caliciuri, G. Fortino, R. Gravina, P. Pace, W. Russo,635

C. Savaglio, Enabling IoT interoperability through opportunistic
smartphone-based mobile gateways, Journal of Network and Computer Ap-
plications 81 (2017) 74–84.

[12] A. Yachir, Y. Amirat, A. Chibani, N. Badache, Event-aware framework for
dynamic services discovery and selection in the context of ambient intel-640

ligence and internet of things, IEEE Transactions on Automation Science
and Engineering 13 (1) (2016) 85–102.

[13] M. Conti, S. Giordano, M. May, A. Passarella, From opportunistic networks
to opportunistic computing, IEEE Communications Magazine 48 (9).

[14] B. Guo, D. Zhang, Z. Wang, Z. Yu, X. Zhou, Opportunistic IoT: Explor-645

ing the harmonious interaction between human and the internet of things,
Journal of Network and Computer Applications 36 (6) (2013) 1531–1539.

[15] C. Perera, D. S. Talagala, C. H. Liu, J. C. Estrella, Energy-efficient loca-
tion and activity-aware on-demand mobile distributed sensing platform for
sensing as a service in IoT clouds, IEEE Transactions on Computational650

Social Systems 2 (4) (2015) 171–181.

[16] S. Agreste, P. De Meo, G. Fiumara, G. Piccione, S. Piccolo, D. Rosaci,
G. M. Sarné, A. V. Vasilakos, An empirical comparison of algorithms to find
communities in directed graphs and their application in web data analytics,
IEEE Transactions on Big Data 3 (3) (2017) 289–306.655

[17] P. Carreño, F. J. Gutierrez, S. F. Ochoa, G. Fortino, Supporting personal
security using participatory sensing, Concurrency and Computation: Prac-
tice and Experience 27 (10) (2015) 2531–2546.

[18] M. Thoma, S. Meyer, K. Sperner, S. Meissner, T. Braun, On ToT-services:
Survey, classification and enterprise integration, in: Green Computing and660

Communications (GreenCom), 2012 IEEE International Conference on,
IEEE, 2012, pp. 257–260.

22



[19] J. Lloret, L. Parra, M. Taha, J. Tomás, An architecture and protocol for
smart continuous ehealth monitoring using 5g, Computer Networks 129
(2017) 340–351.665

[20] C. Cambra, S. Sendra, J. Lloret, L. Garcia, An IoT service-oriented system
for agriculture monitoring, in: Communications (ICC), 2017 IEEE Inter-
national Conference on, IEEE, 2017, pp. 1–6.

[21] J. Lloret, L. Parra, M. Taha, J. Tomás, An architecture and protocol for
smart continuous ehealth monitoring using 5g, Computer Networks 129670

(2017) 340–351.

[22] R. Miles, K. Hamilton, Learning UML 2.0, ” O’Reilly Media, Inc.”, 2006.

[23] J. Lindzon, https://www.theguardian.com/lifeandstyle/2015/jun/

20/internet-of-pets-technology-track-dog-fit (2015).

[24] G. Fortino, W. Russo, C. Savaglio, W. Shen, M. Zhou, Agent-oriented675

cooperative smart objects: From IoT system design to implementation,
IEEE Transactions on Systems, Man, and Cybernetics: Systems PP (99)
(2017) 1–18. doi:10.1109/TSMC.2017.2780618.

[25] D. Martin, M. Burstein, D. Mcdermott, S. Mcilraith, M. Paolucci,
K. Sycara, D. L. Mcguinness, E. Sirin, N. Srinivasan, Bringing semantics680

to web services with owl-s, World Wide Web 10 (3) (2007) 243–277.

[26] D. Pianini, M. Viroli, J. Beal, Protelis: Practical aggregate programming,
in: Proceedings of ACM SAC 2015, ACM, Salamanca, Spain, 2015, pp.
1846–1853.

[27] R. Casadei, M. Viroli, Towards aggregate programming in scala, in: 1st685

Workshop on Programming Models and Languages for Distributed Com-
puting, ACM, 2016, p. 5.

[28] R. Casadei, M. Viroli, Programming actor-based collective adaptive sys-
tems, in: Programming with Actors - State-of-the-Art and Research Per-
spectives, Vol. 10789 of Lecture Notes in Computer Science, Springer, 2018,690

to appear.

[29] D. Pianini, S. Montagna, M. Viroli, Chemical-oriented simulation of com-
putational systems with Alchemist, Journal of Simulationdoi:10.1057/
jos.2012.27.

[30] R. Casadei, D. Pianini, M. Viroli, Simulating large-scale aggregate MASs695

with Alchemist and Scala, in: Computer Science and Information Systems
(FedCSIS), 2016 Federated Conference on, IEEE, 2016, pp. 1495–1504.

[31] F. Damiani, M. Viroli, D. Pianini, J. Beal, Code mobility meets self-
organisation: A higher-order calculus of computational fields, Vol. 9039
of Lecture Notes in Computer Science, Springer International Publishing,700

2015, pp. 113–128. doi:10.1007/978-3-319-19195-9_8.

23

https://www.theguardian.com/lifeandstyle/2015/jun/20/internet-of-pets-technology-track-dog-fit 
https://www.theguardian.com/lifeandstyle/2015/jun/20/internet-of-pets-technology-track-dog-fit 
https://www.theguardian.com/lifeandstyle/2015/jun/20/internet-of-pets-technology-track-dog-fit 
http://dx.doi.org/10.1109/TSMC.2017.2780618
http://dx.doi.org/10.1057/jos.2012.27
http://dx.doi.org/10.1057/jos.2012.27
http://dx.doi.org/10.1057/jos.2012.27
http://dx.doi.org/10.1007/978-3-319-19195-9_8


[32] P. D. Meo, K. Musial-Gabrys, D. Rosaci, G. M. Sarne, L. Aroyo, Using cen-
trality measures to predict helpfulness-based reputation in trust networks,
ACM Transactions on Internet Technology (TOIT) 17 (1) (2017) 8.

[33] S. Agreste, P. De Meo, E. Ferrara, S. Piccolo, A. Provetti, Trust networks:705

Topology, dynamics, and measurements, IEEE Internet Computing 19 (6)
(2015) 26–35.

[34] R. Casadei, A. Aldini, M. Viroli, Combining trust and aggregate comput-
ing, in: A. Cerone, M. Roveri (Eds.), Software Engineering and Formal
Methods, Springer International Publishing, Cham, 2018, pp. 507–522.710

[35] B. Anzengruber, D. Pianini, J. Nieminen, A. Ferscha, Predicting social den-
sity in mass events to prevent crowd disasters, in: Social Informatics - 5th
International Conference, SocInfo 2013, Kyoto, Japan, November 25-27,
2013, Proceedings, 2013, pp. 206–215. doi:10.1007/978-3-319-03260-3_
18.715

[36] OpenStreetMap contributors, Planet dump retrieved from https://

planet.osm.org , https://www.openstreetmap.org (2017).

[37] S. van der Walt, S. C. Colbert, G. Varoquaux, The NumPy array: A struc-
ture for efficient numerical computation, Computing in Science & Engi-
neering 13 (2) (2011) 22–30. doi:10.1109/mcse.2011.37.720

[38] S. Hoyer, J. J. Hamman, xarray: N-d labeled arrays and datasets in python,
Journal of Open Research Software 5. doi:10.5334/jors.148.

[39] J. D. Hunter, Matplotlib: A 2d graphics environment, Computing in Sci-
ence & Engineering 9 (3) (2007) 90–95. doi:10.1109/mcse.2007.55.

[40] M. Francia, D. Pianini, J. Beal, M. Viroli, Towards a foundational API725

for resilient distributed systems design, in: 2017 IEEE 2nd International
Workshops on Foundations and Applications of Self* Systems (FAS*W),
IEEE, 2017. doi:10.1109/fas-w.2017.116.

[41] J. Fruin, Pedestrian and Planning Design, Metropolitan Association of Ur-
ban Designers and Environmental Planners, 1971.730

24

http://dx.doi.org/10.1007/978-3-319-03260-3_18
http://dx.doi.org/10.1007/978-3-319-03260-3_18
http://dx.doi.org/10.1007/978-3-319-03260-3_18
https://planet.osm.org
https://planet.osm.org
https://planet.osm.org
 https://www.openstreetmap.org 
http://dx.doi.org/10.1109/mcse.2011.37
http://dx.doi.org/10.5334/jors.148
http://dx.doi.org/10.1109/mcse.2007.55
http://dx.doi.org/10.1109/fas-w.2017.116

	Introduction
	Related Work
	Opportunistic IoT Service metamodelling and formal definition
	IoT domain model – Global perspective
	Smart-Object and IoT Service metamodel – Local perspective

	Aggregate Computing-based modelling and implementation
	Background: Aggregate Computing
	Aggregate Computing for Opportunistic IoT Services
	Aggregate Computing Model
	Models alignment

	Case study
	Scenario description
	Collective IoT services mapping and implementation
	Simulation results

	Conclusion and Future Work

