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Order reduction approaches for the algebraic
Riccati equation and the LQR problem∗

Alessandro Alla and Valeria Simoncini

Abstract We explore order reduction techniques for solving the algebraic Riccati
equation (ARE), and investigating the numerical solution of the linear-quadratic
regulator problem (LQR). A classical approach is to build a surrogate low dimen-
sional model of the dynamical system, for instance by means of balanced trunca-
tion, and then solve the corresponding ARE. Alternatively, iterative methods can be
used to directly solve the ARE and use its approximate solution to estimate quan-
tities associated with the LQR. We propose a class of Petrov-Galerkin strategies
that simultaneously reduce the dynamical system while approximately solving the
ARE by projection. This methodology significantly generalizes a recently devel-
oped Galerkin method by using a pair of projection spaces, as it is often done in
model order reduction of dynamical systems. Numerical experiments illustrate the
advantages of the new class of methods over classical approaches when dealing with
large matrices.

1 Introduction

Optimal control problems for partial differential equations (PDEs) are an extremely
important topic for many industrial applications in different fields, from aerospace
engineering to economics. The problem has been investigated with different strate-
gies as open-loop (see e.g. [21]) or closed-loop (see e.g. [1, 16, 17]).
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In this work we are interested in feedback control for linear dynamical systems
and quadratic cost functional which is known as the Linear Quadratic Regulator
(LQR) problem. Although most models are nonlinear, LQR is still a very interest-
ing and powerful tool, for instance in the stabilization of nonlinear models under
perturbations, where a control in feedback form can be employed.

The computation of the optimal policy in LQR problems requires the solution of
an algebraic Riccati equation (ARE), a quadratic matrix equation with the dimension
of the dynamical system. This is a major bottleneck in the numerical treatment of
the optimal control problem, especially for high dimensional systems such as those
stemming from the discretization of a three-dimensional PDE.

Several powerful solution methods for the ARE have been developed through-
out the years for small dynamical systems, based on spectral decompositions. The
large scale case is far more challenging, as the whole spectral space of the relevant
matrices cannot be determined because of memory and computational resource lim-
itations. For these reasons, this algebraic problem is a very active research topic, and
major contributions have been given in the past decade. Different approaches have
been explored: variants of the Newton method have been largely employed in the
past [25],[12], while only more recently reduction type methods have emerged as a
feasible effective alternative; see, e.g., [13],[35] and references therein. The recent
work [33] shows that a Galerkin class of reduction methods for solving the ARE
can be naturally set into the framework of model order reduction for the original
dynamical system.

As already mentioned, the LQR problem is more complicated when dealing with
PDEs because its discretization leads to a very large system of ODEs and, as a con-
sequence, the numerical solution of the ARE is computationally more demanding.
To significantly lower these computational costs and memory requirements, model
order reduction techniques can be employed. Here, we distinguish between two dif-
ferent concepts of reduction approaches.

A first methodology projects the dynamical system into a low dimensional sys-
tem whose dimensions are much smaller than the original one; see, e.g., [10]. There-
fore, the corresponding reduced ARE is practical and feasible to compute on a stan-
dard computer. The overall methodology thus performs a first-reduce-then-solve
strategy. This approach has been investigated with different model reduction tech-
niques like Balanced Truncation (BT) in e.g.[5], Proper Orthogonal Decomposition
(POD, [36, 37]) in e.g. [6, 26] and via the interpolation of the rational functions,
see [18],[8], [14]. A different approach has been proposed in [32] where the basis
functions are computed from the solution of the high dimensional Riccati equation
in a many query context. We note that basis generation in the context of model
order reduction for optimal control problems is an active research topic (see e.g.
[2, 4, 26, 27]). Furthermore, the computation of the basis functions is made by a
Singular Value Decomposition (SVD) of the high dimensional data which can be
very expensive. One way to overcome this issue was proposed in [3] by means of
randomized SVD which is a fast and accurate alternative to the SVD, and it is based
on random samplings.
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A second methodology follows a reduce-while-solve strategy. In this context,
recent developments aim at reducing the original problem by subspace projection,
and determining an approximate solution in a low dimensional approximation space.
Proposed strategies either explicitly reduce the quadratic equation (see, e.g., [35]
and references therein), or approximately solve the associated invariant subspace
problem (see, e.g., [9] and its references). As already mentioned, these recently
developed methods have shown to be effective alternatives to classical variants of
the Newton method, which require the solution of a linear matrix equation at each
nonlinear iteration; see, e.g., [11] for a general description.

The aim of this paper is to discuss and compare the aforementioned model or-
der reduction methodologies for LQR problems. In particular, we compare the two
approaches of reducing the dynamical system first versus building surrogate approx-
imation of the ARE directly, using either Galerkin or Petrov-Galerkin projections.
The idea of using a Petrov-Galerkin method for the ARE appears to be new, and
naturally expands the use of two-bases type order reduction methods typically em-
ployed for transfer function approximation.

To set the paper into perspective we start recalling LQR problem and its order
reduction in Section 2. In Section 3 we describe reduction strategies of dynamical
systems used in the small size case, such as proper orthogonal decomposition and
balanced truncation. Section 4 discusses the new class of projection strategies that
attack the Riccati equation, while delivering a reduced order model for the dynami-
cal system. Finally, numerical experiments are shown in Section 5 and conclusions
are derived in Section 6.

2 The linear-quadratic regulator problem and model order
reduction

In this section we recall the mathematical formulation of the LQR problem. We
refer the reader for instance to classical books such as e.g. [28] for a comprehensive
description of what follows. We consider a linear time invariant system of ordinary
differential equations of dimension n:

ẋ(t) = Ax(t)+Bu(t), x(0) = x0, t > 0, (1)
y(t) =Cx(t)+Du(t),

with A ∈ Rn×n,B ∈ Rn×m,C ∈ Rp×n and D ∈ Rp×m. Usually, x(t) : [0,∞]→ Rn

is called the state, u(t) : [0,∞]→ Rm the input or control and y(t) : [0,∞]→ Rp

the output. Furthermore, we assume that A is passive. This may be viewed as a
restrictive hypothesis, since the problems we consider only require that (A,B) are
stabilizable and (C,AT ) controllable, however this is convenient to ensure that the
methods we analyze are well defined. In what follows, without loss of generality,
we will consider D≡ 0. We also define the transfer function for later use:
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G(s) =C(sI−A)−1B. (2)

Next, we define the quadratic cost functional for an infinite horizon problem:

J(u) :=
∫

∞

0
y(t)T y(t)+u(t)T Ru(t)dt, (3)

where R ∈ Rm×m is a symmetric positive definite matrix. The optimal control prob-
lem reads:

min
u∈Rm

J(u) such that x(t) solves (1). (4)

The goal is to find a control policy in feedback form as:

u(t) =−Kx(t) =−R−1BT Px(t) (5)

with the feedback gain matrix K ∈Rm×n and P ∈Rn×n is the unique symmetric and
positive (semi-)definite matrix that solves the following ARE:

AT P+PA−PBR−1BT P+CTC = 0, (6)

which is a quadratic matrix equation for the unknown P.
We note that the numerical approximation of equation (6) can be very expen-

sive for large n. Therefore, we aim at the reduction of the numerical complexity by
projection methods.

Let us consider a general class of tall matrices V,W ∈ Rn×r, whose columns
span some approximation spaces. We chose these two matrices such that they are
biorthogonal, that is W TV = Ir. Let us now assume that the matrix P, solution of
(6), can be approximated as

P≈WPrW T .

Then the residual matrix can be defined as

R(Pr) = ATWPrW T +WPrW T A−WPrW T BR−1BTWPrW T +CTC.

The small dimensional matrix Pr can be determined by imposing the so-called
Petrov-Galerkin condition, that is orthogonality of the residual with respect to
range(V ), which in matrix terms can be stated as V T R(Pr)V = 0. Substituting the
residual matrix and exploiting the bi-orthogonality of V and W we obtain:

AT
r Pr +PrAr−PrBrR−1BT

r Pr +CT
r Cr = 0 (7)

where
Ar =W T AV, Br =W T B, Cr =CV.

It can be readily seen that equation (7) is again a matrix Riccati equation, in the
unknown matrix Pr ∈Rr×r, of much smaller dimension than P, provided that V and
W generate small spaces. We refer to this equation as the reduced Riccati equa-
tion. The computation of Pr allows us to formally obtain the approximate solution
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WPrW T to the original Riccati equation (6), although the actual product is never
computed explicitly, as the approximation is kept in factorized form.

The optimal control for the reduced problem reads

ur(t) =−Krxr(t) =−R−1BT
r Prxr(t)

with the reduced feedback gain matrix given by Kr = KV ∈ Rm×r. Note that this
ur(t) is different from the one obtained by first approximately solving the Riccati
equation and with the obtained matrix defining an approximation to u(t); see [33]
for a detailed discussion.

The Galerkin approach is obtained by choosing V =W with orthonormal columns
when imposing the condition on the residual.

To reduce the dimension of the dynamical system (1), we assume to approximate
the full state vector as x(t) ≈ V xr(t) with a basis matrix V ∈ Rn×r, where xr(t) :
[0,∞)→ Rr are the reduced coordinates. Plugging this ansatz into the dynamical
system (1), and requiring a so called Petrov-Galerkin condition yields

ẋr(t) = Arxr(t)+Bru(t), xr(0) =W T x0, t > 0, (8)
yr(t) = Crxr.

The reduced transfer function is then given by:

Gr(s) =Cr(sIr−Ar)
−1Br. (9)

The presented procedure is a generic framework for model reduction. It is clear
that the quality of the approximation depends on the approximation properties of
the reduced spaces. In the following sections, we will distinguish between the meth-
ods that directly compute V,W upon the dynamical systems (see Section 3) and
those that readily reduce the ARE (see Section 4). In particular, for each method we
will discuss both Galerkin and Petrov-Galerkin projections, to provide a complete
overview of the methodology. The considered general Petrov-Galerkin approach for
the ARE appears to be new.

3 Reduction of the dynamical system

In this section we recall two well-known techniques as POD and BT to compute the
projectors W,V starting from the dynamical systems.
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3.1 Proper Orthogonal Decomposition

A common approach is based on the snapshot form of POD proposed in [36], which
works as follows. We compute a set of snapshots x(t1), . . . ,x(tk) of the dynamical
system (1) corresponding to a prescribed input ū(t) and different time instances
t1, . . . , tk and define the POD ansatz of order r for the state x(t) by

x(t)≈
r

∑
i=1

(xr)i(t)ψi, (10)

where the basis vectors {ψi}r
i=1 are obtained from the SVD of the snapshot matrix

X = [x(t1), . . . ,x(tk)], i.e. X =ΨΣΓ T , and the first r columns of Ψ = (Ψ1, . . . ,Ψn)
form the POD basis functions of rank r. Hence we choose the basis vectors V =W =
(Ψ1, . . . ,Ψr) for the reduction in (8). This technique strongly relies on the choice
of a given input u, whose optimal selection is usually unknown. In this work, we
decide to collect snapshots following the approach suggested in [26] as considers a
linearization of the ARE (which corresponds to a Lyapunov equation). Therefore,
the snapshots are computed by the following equation:

ẋ(t) = AT x(t), x(0) = ci, for i = 1, . . . p (11)

where ci is the i−th column of the matrix C. The advantage of this approach is
that equation (11) is able to capture the dynamics of the adjoint equation which
is directly related to the optimality conditions, and we do not have to chose a ref-
erence input ū(t). In order to obtain the POD basis, one has to simulate the high
dimensional system and subsequently perform a SVD. As a consequence, the com-
putational cost may become prohibitive for large scale problems. Algorithm 1 sum-
marizes the method.

Algorithm 1 POD method to compute the reduced Riccati
Require: A,C,r
1: for i = 1, . . . , p do
2: Simulate system (11) with initial condition ci.
3: Build the snapshots matrix X = [X ,xi(t1), . . . ,xi(tk)]
4: end for
5: Compute the reduced SVD of X =V ΣW T

6: Solve the reduced Riccati equation (7) for Pr .

3.2 Balanced truncation

The BT method is a well-established reduced order modeling technique for linear
time invariant systems (1). We refer to [5] for a complete description of the topic. It
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is based on the solution of the reachability Gramian R and the observability Gramian
O which solve, respectively, the following Lyapunov equations

AR+RAT +BBT = 0, AT O+OA+CTC = 0. (12)

We determine the Cholesky factorization of the Gramians

R = ΦΦ
T O =ϒϒ

T . (13)

Then, we compute the reduced SVD of the Hankel operator ϒ T Φ and set

W =ϒUΣ
1/2, V =ϒV Σ

1/2,

where U,V ∈ Rn×r are the first r columns of the left and right singular vectors of
the Hankel operator and Σ = diag(σ1, . . . ,σr) matrix of the first r singular values.

The idea of BT is to neglect states that are both, hard to reach and hard to observe.
This is done by eliminating states that correspond to low Hankel singular values
σi. This method is very popular in the small case regime, also because the whole
procedure can be verified by a-priori error bounds in several system norms, and the
Lyapunov equations can be solved very efficiently. In the large scale these equations
need to be solved approximately; see, e.g., [13].

In summary, the procedure first solves the two Lyapunov equations at a given
accuracy and then determines biorthogonal bases for the reduction spaces by using
a combined spectral decomposition of the obtained solution matrices. We note that
this method is also very expensive for large n. The algorithm is summarized below
in Algorithm 2.

Algorithm 2 BT method to compute the reduced Riccati
Require: A,B,C and the dimension of the reduced problem r
1: Compute R,O from (12) and their Cholesky factorization (13)
2: Compute the reduced SVD of the Hankel operator
3: Set W =ϒUΣ 1/2, V =ϒV Σ 1/2,
4: Solve the reduced Riccati equation (7) for Pr .

4 Adaptive reduction of the algebraic Riccati equation

In the previous section the reduced problem was obtained by a sequential procedure:
first system reduction of a fixed order r and then solution of the reduced Riccati
equation (7). A rather different strategy consists of determining the reduction bases
while solving the Riccati equation. In this way, we combine both the reduction of
the original system and of the ARE. While the reduction bases V and W are being
generated by means of some iterative strategy, it is immediately possible to obtain
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a reduced Riccati equation by projecting the problem onto the current approxima-
tion spaces. The quality of the two spaces can be monitored by checking how well
the Riccati equation is solved by means of its residual; if the approximation is not
satisfactory, the spaces can be expanded and the approximation improved.

The actual space dimensions are not chosen a-priori, but tailored with the ac-
curacy of the approximate Riccati solution. Mimicking what is currently available
in the linear equation literature, the reduced problem can be obtained by imposing
some constraints that uniquely identify an approximation. The idea is very natural
and it was indeed presented in [23], where a standard Krylov basis was used as ap-
proximation space. However, only more recently, with the use of rational Krylov
bases, a Galerkin approach has shown its real potential as a solver for the Riccati
equation; see, e.g., [20],[35]. A more general Petrov-Galerkin approach was miss-
ing. We aim to fill this gap. In the following we give more details on these proce-
dures.

Given an approximate solution P̃ of (6) written as P̃ =WYW T for some Y to be
determined, the former consists to require that the residual matrix is orthogonal to
this same space, range(W ), so that in practice V = W . The Petrov-Galerkin proce-
dure imposes orthogonality with respect to the space range(V ), where V is different
from W , but with the same number of columns.

In [23] a first implementation of a Galerkin procedure was introduced, and the
orthonormal columns of V spanning the (block) Krylov subspace Kr(AT ,CT ) =
range([CT ,ATCT , . . . ,(AT )r−1CT ]); see also [24] for a more detailed treatment
and for numerical experiments. Clearly, this definition generates a sequence of
nested approximation spaces, that is Kr(AT ,CT ) ⊆Kr+1(AT ,CT ), whose dimen-
sion can be increased iteratively until a desired accuracy is achieved. More re-
cently, in [20] and [35], rational Krylov subspaces have been used, again in the
Galerkin framework. In particular, the special case of the extended Krylov subspace
Kr(AT ,CT )+Kr((AT )−1,(AT )−1CT ) was discussed in [20], while the fully rational
space

Kr(AT ,CT ,σσσ) := range([CT ,(AT−σ2I)−1CT , . . . ,(AT−σ2I)−1 · · ·(AT−σrI)−1CT ])

was used in [35]. The rational shift parameters σσσ = {σ2, . . . ,σr} can be computed
on the fly at low cost, by adapting the selection to the current approximation quality
[15]. Note that dim(Kr(AT ,CT ,σσσ))≤ rp, where p is the number of columns of CT .
In [35] it was also shown that a fully rational space can be more beneficial than the
extended Krylov subspace for the Riccati equation. In the following section we are
going to recall the general procedure associated with the Galerkin approach, and
introduce the algorithm for the Petrov-Galerkin method, which to the best of the
authors’ knowledge is new. In both cases we use the fully rational Krylov subspace
with adaptive choice of the shifts.

It is important to realize that Kr(AT ,CT ,σσσ) does not depend on the coefficient
matrix BBT of the second-order term in the Riccati equation. Nonetheless, exper-
imental evidence shows good performance. This issue was analyzed in [30, 34]
where however the use of the matrix B during the computation of the parameters
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was found to be particularly effective; a justification of this behavior was given in
[34]. In the following we thus employ this last variant when using rational Krylov
subspaces. More details will be given in the next section.

4.1 Galerkin and Petrov-Galerkin Riccati

In the Galerkin case, we will generate a matrix W whose columns span the rational
Krylov subspace Kr(AT ,CT ,σσσ) in an iterative way, that is one block of columns
at the time. This can be obtained by an Arnoldi-type procedure; see, e.g., [5]. The
algorithm, hereafter GARK for Galerkin Adaptive Rational Krylov, works as follows:

Algorithm 3 GARK method to compute the reduced Riccati equation
Require: A,C,σσσ
1: for r = 1,2, . . . do
2: Expand the space Kr(AT ,CT ,σσσ);
3: Update the reduced matrices Ar,Br and Cr with the newly generated vectors;
4: Solve the reduced Riccati equation for Pr;
5: Check the norm of the residual matrix R(Pr)
6: If satisfied stop with Pr and the basis W of Kr(AT ,CT ,σσσ).
7: end for

The residual norm can be computed cheaply without the actual computation of
the residual matrix; see, e.g., [35]. The parameters σ j can be computed adaptively
as the space grows; we refer the reader to [15] and [34] for more details.

In the general Petrov-Galerkin case, the matrix W is generated the same way,
while we propose to compute the columns of V as the basis for the rational Krylov
subspace Kr(A,B,σσσ); note that the starting block is now B, and the coefficient ma-
trix is the transpose of the previous one. The two spaces are now constructed and
expanded at the same time, so that the two bases can be enforced to be biorthogonal
while they grow. For completeness, we report the algorithm in the Petrov-Galerkin
setting in Algorithm 4 (hereafter PGARK for Petrov-Galerkin Adaptive Rational
Krylov).

Algorithm 4 PGARK method to compute the reduced Riccati equation
Require: A,B,C,σσσ
1: for r = 1,2, . . . do
2: Expand the spaces Kr(AT ,CT ,σσσ), Kr(A,B,σσσ);
3: Update the reduced matrices Ar,Br and Cr with the newly generated vectors;
4: Solve the reduced Riccati equation for Pr;
5: Check the norm of the residual matrix R(Pr)
6: If satisfied stop with Pr and the basis W of Kr(AT ,CT ,σσσ).
7: end for
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The parameters σ j are computed for one space and used also for the other space.
In this more general case, the formula for the residual matrix norm is not as cheap as
for the Galerkin approach. We suggest the following procedure. We first recall that
for rational Krylov subspace Kr(A,B,σσσ) the following relation holds (we assume
here full dimension of the generated space after r iterations):

ATW =WAr + ŵaT
r , ar ∈ R(r+1)m,

for certain vector ŵ orthogonal to W , which changes as the iterations proceeds, that
is as the number of columns W grows; we refer the reader to [29] for a derivation
of this relation, which highlights that the distance of range(W ) from an invariant
subspace of A is measured in terms of a rank-one matrix. We write

R(Pr) = ATWPrW T +WPrW T A−WPrW T BR−1BTWPrW T +CTC

= WArPrW T + ŵaT
r PrW T +WPrAT

r W T +WPrarŵT −WPrBrR−1BT
r PrW T +WEETW T

= ŵaT
r PrW T +WPrarŵT

= [W, ŵ]
[

0 Prar
aT

r Pr 0

]
[W, ŵ]T ,

where we also used the fact that CT = WE for some matrix E. If [W, ŵ] had or-
thonormal columns, as is the case for Galerkin, then ‖R(Pr)‖2 = 2‖Prar‖2, which
can be cheaply computed.

To overcome the nonorthogonality of [W, ŵ], we suggest to perform a reduced QR
factorization of [W, ŵ] that maintains its columns orthogonal. This QR factorization
does not have to be redone from scratch at each iteration, but it can be updated as
the matrix W grows. If [W, ŵ] = QW RW with RW ∈R(r+1)m×(r+1)m upper triangular,
then

‖R(Pr)‖= ‖RW

[
0 Prar

aT
r Pr 0

]
RT

W‖.

The use of coupled (bi-orthogonal) bases has the recognized advantage of explicitly
using both matrices C and B in the construction of the reduced spaces. This coupled
basis approach has been largely exploited in the approximation of the dynamical
system transfer function by solving a multipoint interpolation problem; see, e.g., [5]
for a general treatment and [7] for a recent implementation. In addition, coupled
bases can be used to simultaneously approximate both system Gramians leading to
a large-scale BT strategy; see, e.g., [22] for early contributions using bi-orthogonal
standard Krylov subspaces2. On the other hand, a Petrov-Galerkin procedure has
several drawbacks associated with the construction of the two bases. More precisely,
the two bi-orthogonal bases are generated by means of a Lanczos-type recurrence,
which is known to have both stability and breakdown problems in other contexts
such as linear system and eigenvalue solving. At any iteration it may happen that
the new basis vectors w j and v j are actually orthogonal or quasi-orthogonal to each
other, giving rise to a possibly incurable breakdown [19]. We have occasionally

2 We are unaware of any available implementation of rational Krylov subspace based approaches
for large scale BT either with single or coupled bases, that simultaneously performs the balanced
truncation while approximating the Gramians.



Order reduction approaches for the algebraic Riccati equation and the LQR problem 11

experienced this problem in our numerical tests, and it certainly occurs whenever
CB = 0. In our specific context, an additional difficulty arises. The projected matrix
Ar =W T ATV is associated with a bilinear rather than a linear form, so that its field
of values may be unrelated to that of AT . As a consequence, it is not clear the type
of hypotheses we need to impose on the data to ensure that the reduced Riccati
equation (7) admits a unique stabilizable solution. Even in the case of A symmetric,
the two bases will be different as long as C 6= BT . All these questions are crucial for
the robustness of the procedure and deserve a more throughout analysis which will
be the topic of future research.

From an energy-saving standpoint, it is worth remarking that the Petrov-Galerkin
approach uses twice as many memory allocations than the Galerkin approach, while
performing about twice the number of floating point operations. In particular, con-
structing the two bases requires two system solves, with AT − s jI and with A− s̄ jI
respectively, at each iteration. Therefore, unless convergence is considerably faster,
the Petrov-Galerkin approach may not be superior to the Galerkin method in the
solution of the ARE.

5 Numerical Experiments

In this section we present and discuss our numerical tests. We consider the dis-
cretization of the following linear PDE

wt − ε∆w+ γwx + γwy = 1ΩBu in Ω × (0,+∞),

w(·,0) = w0 in Ω ,

w(·, t) = 0 in ∂Ω × (0,∞),

(14)

where Ω ⊂ R2 is an open interval, w : Ω × [0,∞]→ R2 denotes the state, and the
parameters ε and γ are real positive constants. The initial value is w0 and the func-
tion 1ΩB is the indicator function over the domain ΩB ⊂ R2. Note that we deal with
zero Dirichlet boundary conditions. The problem in (14) includes the heat equation,
for ε 6= 0,γ = 0, and a class of convection-diffusion equations for ε 6= 0 and γ 6= 0.
Furthermore, we define an output of interest by:

s(t) :=
1
|ΩC|

∫
ΩC

w(x, t)dt, (15)

where ΩC ⊂ R2. Space discretization of equation (14) by standard centered finite
differences together with a rectangular quadrature rule for (15) lead to a system
of the form (1). In general, the dimension n of the dynamical system (1) is rather
large (i.e., n� 1000) and the numerical treatment of the corresponding ARE is
computationally expensive or even unfeasible. Therefore, model order reduction is
appropriate to lower the dimension of the optimal control problem (4). We will
report experiments with small size problems, where all discussed methods can be
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employed, and with large size problems, where only the Krylov subspace based
strategies are applied.

The numerical simulations reported in this paper were performed on a Mac-Book
Pro with 1 CPU Intel Core i5 2.3 Ghz and 8GB RAM and the codes are written in
MatlabR2013a. In all our experiments, small dimensional Lyapunov and Riccati
equations are solved by means of built-in functions of the Matlab Control Toolbox.

Whenever appropriate, the quality of the current approximation of the ARE is
monitored by using the relative residual norm:

RP =
‖R(Pr)‖F

‖C‖2
F

, (16)

and the dimension of the surrogate model r is chosen such that RP < 10−8. After the
ARE solution is approximated the ultimate goal is to compute the feedback control
(5). Therefore, we also report the error in the computation of feedback gain matrix
K as the iterations proceed:

EK =
‖Kr−K‖F

‖K‖F
, (17)

and we measure the quality of our surrogate model also by the H2− error

EG =
‖Gr−G‖H2

‖G‖H2

. (18)

where

‖G(s)‖H2 :=
1

2π

(∫ +∞

−∞

‖G(iω)‖2
F dω

)1/2

.

In particular, the approximation of the transfer function is one of the main targets
of reduced order modeling, where the reduced system is used for analysis purposes,
while the approximation of the feedback gain matrix is monitored to obtain a good
control function.

5.1 Test 1: 2D Linear heat equation

In the first example we consider the linear heat equation. In (14) we chose γ = 0,ε =
1,Ω = [0,1]× [0,1], and ΩB = [0.2,0.8]× [0.2,0.8]. In (1), the matrix A is obtained
by centered five points discretization. We consider a small problem stemming from a
spatial discretization step ∆x = 0.05, leading to a system of dimension n = 441. The
matrix C in (1) is given by the indicator function over the domain ΩC = [0.1,0.9]×
[0.1,0.9] and R≡ Im in (3).

The left panel of Figure 1 shows the residual norm history of the reduced ARE (7)
when the two projection matrices V,W are computed by each of the four algorithms
explained in the previous sections. We can thus appreciate how the approximation
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proceeds as the reduced space is enlarged. We note that POD requires more basis
functions to achieve the desired tolerance, whereas the BT algorithm reaches it faster.
However, the POD method is a snapshots dependent method that is really influenced
by the choice of the initial input u(t) and the results may be different for other
choices of the snapshots set. All the other proposed techniques are, on the contrary,
input/output independent.
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Fig. 1 Test 1: Convergence history of the relative residual norm RP (left), Error EK of the feedback
gain matrix (middle), Error EG for the approximation of reduced transfer function (right)

In the middle panel of Figure 1, we show how well the feedback gain matrix K
can be approximated with order reduction methods. It is interesting to see how the
basis functions computed by GARK and PGARK are able to approximate the matrix
K very well.

Finally, we would like to show the quality of the computed basis functions in the
approximation of the dynamical system in the right panel of Figure 1. In this ex-
ample, BT approximates the transfer function very well but this method requires the
full accurate solution of two Lyapunov equations to be able to generate the reduced
transfer function. In the large scale case this is clearly unfeasible.

Last remark goes to the iterative methods GARK and PGARK. We showed that,
although the basis functions are built upon information of the ARE, they are
also able to approximate the dynamical systems and the feedback gain matrix.
This is a crucial point that motivates us to further investigate these methods in
the context of the LQR problem. Furthermore, they are absolute feasible when
the dimension n of the dynamical system increases as shown in the left panel
of Figure 2. We computed the CPU time of the iterative methods varying ∆x =
{0.1,0.05,0.025,0.0125,0,00625}. We note that both methods reach the desired
accuracy in a few seconds even for n = O(104). On the contrary both POD and BT
would be way more expensive since their cost heavily depends on the original di-
mension of the problem n. The right panel of Figure 2 reports the history of the
relative residual norm as the iterations proceed.
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Fig. 2 Test 1: Comparison of GARK and PGARK. Left: CPU time as the problem dimension n
increases. Right: relative residual norm history.

5.2 Test 2: 2D Linear Convection-Diffusion Equation

We consider the linear convection-diffusion equation in (14) with γ = 50,ε = 1,Ω =
[0,2]× [0,2] and ΩB = [0.2,0.8]× [0.2,0.8]. In (1), the matrix A is given by centered
five points finite difference discretization plus an upwind approximation of the con-
vection term (see e.g. [31]). The spatial discretization step is ∆x = 0.1 and leads to a
system of dimension n = 441. The matrix C in (1) is given by the indicator function
over the domain ΩC = [0.1,0.9]× [0.1,0.9], and R≡ Im in (3).

The left panel of Figure 3 shows the residual norm history associated with the
reduced ARE (7), with different projection techniques. We note that all the meth-
ods converge with a different number of basis functions. We also note that in this
example we can observe instability of the PGARK method as discussed in Section
4.1.
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Fig. 3 Test 2: History of the relative residual norm (left), Error EK of the feedback gain matrix
(middle), Transfer function error EG as the approximation space grows (right)

Middle panel of Figure 3 reports the error in the approximation of the feedback
gain matrix K. It is very interesting to observe that even on this convection domi-
nated problem all the methods can reach an accuracy of order 10−8.
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Finally, we show the error in the approximation of the transfer function in the
right panel of Figure 3. In this example, we can see that the PGARK method per-
forms better than the others but it is rather unstable; this well known instability
problem will be analyzed in future work.The discussion upon the quality of the ba-
sis function we had in Test 1 still hold true. The iterative methods are definitely a
feasible alternative to well-known techniques as BT and POD.

In the left panel of Figure 4, we show the CPU time of GARK and PGARK for
different dimensions n of the dynamical systems. We note that, again, the Galerkin
projection reaches the desired accuracy faster. The right panel of Figure 4 reports
the history of the residual for both iterative methods, for two different values of n.
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Fig. 4 Test 2: Comparison of GARK and PGARK. Left: CPU time as the problem dimension n
increases. Right: relative residual norm history.

6 Conclusions

We have proposed a comparison of different model order reduction techniques for
the ARE. We distinguished between two different strategies: (i) First reduction of
the dynamical system complexity and then the solution of the corresponding re-
duced ARE whereas; (ii) Simultaneous solution of the ARE and determination of
the reduction spaces. The strength of the second strategy is its reliability even for
very high dimensional problem, where problems in the class (i) may have memory
and computational difficulties. Experiments on both small and large dimensional
problems confirm the promisingly good approximation properties of rational Krylov
methods as compared to more standard approaches for the approximation of more
challenging quantities in the LQR context.
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