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A Robust Group-Sparse Representation Variational Method with applications

to Face Recognition

Fritz Keinert, Damiana Lazzaro, Serena Morigi

September 6, 2021

Abstract

In this paper we propose a Group-Sparse Representation based
method with applications to Face Recognition (GSR-FR). The
novel sparse representation variational model includes a non-
convex sparsity-inducing penalty and a robust non-convex loss
function. The penalty encourages group sparsity by using ap-
proximation of the `0-quasinorm, and the loss function is cho-
sen to make the algorithm robust to noise, occlusions and dis-
guises. The solution of the non-trivial non-convex optimization
problem is efficiently obtained by a majorization-minimization
strategy combined with forward-backward splitting, which in
particular reduces the solution to a sequence of easier convex
optimization sub-problems. Extensive experiments on widely
used face databases show the potentiality of the proposed
model and demonstrate that the GSR-FR algorithm is com-
petitive with state-of-the-art methods based on sparse repre-
sentation, especially for very low dimensional feature spaces.

1 Introduction

Given a sample vector b ∈ RM , the goal of the sparse represen-
tation problem is to provide a sparse approximation of b over
a known dictionary A ∈ RM×N (M < N), by a linear combi-
nation of a few columns of A, referred to as atoms. Since real
samples contain in general noise or outliers, the sparse repre-
sentation model includes a small possible corruption modeled
by a vector e ∈ RM and reads as

b = Aα+ e. (1)

A sparse representation method demands that the solution
α ∈ RN of the underdetermined linear system (1) is a sparse
vector by imposing on α a suitable sparsity-inducing penalty
term. Therefore the coefficients α can be recovered by solving
a minimization problem of the form

α∗ = arg min
α∈RN

F (α) subject to H(Aα− b) ≤ ε, (2)

where F (·) represents a sparsity-inducing penalty function, and
H(·) is a suitable loss function, named fidelity term, which en-
sures that the given observation b can be faithfully represented
by the dictionary A.

Common choices for imposing the sparsity in the solution are
the `0-quasinorm (number of nonzero elements in the vector),
which leads to an intractable numerical problem, or the `1-
norm (F (·) = ‖·‖1). It’s well known that using a regularization
term which closely approximates the `0-quasinorm can better
recover vectors with more nonzero coefficients than using the
`1-norm, see [13] and references therein.

More recently, to improve the robustness, especially in case
of noise corruptions (e.g. outliers), the popular `2-norm fi-
delity term (H(·) = ‖ · ‖22) has been replaced by the `1-norm
fidelity term (H(·) = ‖ · ‖1), which assumes that the residual
(b−Aα) follows a Laplacian distribution instead of a Gaussian
distribution, [36].

In addition to the sparsity requirement, in our proposal we
farther assume that α is a group-sparse vector, i.e. that the
few large magnitude values tend to form clusters (groups), that
the group sizes are known, and that the groups have well-
defined boundaries. We propose a variational sparse represen-
tation model in the form (2) where the penalty is a superpo-
sition of penalties for groups of contiguous coefficients. The
individual terms in the superposition are concave functions
of the group magnitudes, which can be viewed as encourag-
ing group-sparsity. More specifically, we solve an equivalent
unconstrained form of the sparse representation problem (2)
which reads as

α∗ = arg min
α∈RN

{
J(α;µ, λ) = Fµ(α) +

1

λ
H(Aα− b)

}
, (3)

where λ > 0 is a parameter that controls the trade-off between
the two terms, Fµ is a sparsity-inducing penalty which is a
non-separable, non-convex parametric function depending on
a parameter µ to control the degree of concavity; as µ → 0,
Fµ approaches the `0-quasinorm for groups. That is, Fµ(α)
approximately counts the number of groups in which α has
non-negligible coefficients. The data fidelity H is a non-convex
function which improves the robustness in case of noisy data.

The objective function J(α;µ, λ) in (3) is thus, in general,
non-convex. To avoid the numerical intricacies arising from
non-convex optimization, we approximate α∗, defined as a min-
imizer of the cost function J(α;µ, λ), by exploiting a graduated
optimization strategy which enables us to avoid settling into
local minima and reduces the non-trivial optimization problem
to a sequence of successively more ”non-convex” optimization
problems. The solution is efficiently obtained by an iterative
majorization-minimization method combined with a forward-
backward splitting strategy.

Sparse representation theory has attracted much attention
in recent years, and techniques for finding sparse solutions have
found wide use in pattern recognition, computer vision, and im-
age analysis. In particular, in the Face Recognition (FR) con-
text, where the basic goal is to identify a person from his/her
face image, given a collection of sample faces.

Challenging FR contexts present test images containing vari-
ations that are not present in the training images. These vari-
ations, including illumination, pose, facial expressions, occlu-
sions and disguises, are mathematically considered as outliers,
and the development of methods which are robust to outliers
is still a challenging problem.
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The theory of sparse representation and compressed sensing
has shown promise in handling this variability in the FR con-
text. In [36], Wright proposed a Sparse-Representation-based
Classification (SRC) method which works equally well for any
reasonable choice of facial features and it is more robust to
occlusions. The basic idea in SRC is that each atom of the
dictionary A in (1) represents a training face, and the test face
b is approximately represented as a sparse linear combination
of all the given sample faces. In [36], an approximate solution
is obtained by solving (2), where F is the `1-norm and H the
`2-norm.

The pioneering SRC idea has been modified by a number of
authors (see Section 2.2), mainly by proposing different choices
for the penalty and the fidelity terms in (2) as discussed in
Section 2.

In this paper we propose to solve the FR problem by the vari-
ational model (3) which perfectly fits the usual group-sparsity
a priori knowledge that the training samples in the dictionary
A are sorted such that samples from the same class are con-
tiguous. The robustness to facial occlusions is enforced by the
data fidelity term which allows us to differently weight the
outlier/non-outlier pixels to suppress/enhance their influence
on the recognition process, according to the Robust Sparse
Coding (RSC) approach [38].

In summary, the two significant contributions of our work
are the following

• We propose a new general group-sparse representation
model which integrates a penalty term Fµ designed to
encourage group sparsity, matching the a priori knowl-
edge that pre-specified disjoint blocks of variables (train-
ing faces) should be selected or ignored simultaneously.

• We devise a suitable efficient optimization method based
on a robust graduated optimization strategy for solv-
ing the non-convex nonseparable minimization problem
(3). The proposed algorithm, called Group-Sparse Robust
Face Recognition (GSR-FR), is then successfully applied
to solve the FR problem.

Extensive experiments on widely used face databases demon-
strate that the proposed algorithm GSR-FR is competitive
with the state-of-the-art sparse representation based methods.
The use of a non-convex nonseparable sparsity-inducing func-
tion leads to better recognition rates than comparable meth-
ods, especially in the case of low dimensional feature spaces,
and in the presence of occlusions.

The paper is organized as follows. Section 2 briefly reviews
sparse representation for FR and some related works. Section 3
introduces the novel sparse-based representation model, and in
Section 4 we devise a majorization-minimization based numeri-
cal method for its optimization. Implementation details on the
GSR-FR algorithm are described in Section 5 and a discussion
on its convergence is presented in Section 6. The proposed ap-
proach is validated in Section 7 and conclusions are drawn in
Section 8.

2 Face recognition based on sparse
representation

The face recognition process is usually split into two steps.
The first is classification, that is, to identify the most likely
candidate among the samples in the database. The second is

validation, which verifies whether the test face actually repre-
sents the same person.

In a closed-set recognition protocol the system attempts to
determine the identity of an unidentified individual, known
to be in the database. In a more challenging open-set pro-
tocol, the system correctly identify identities that are present
in the database while detecting and rejecting as unknown all
other probe samples with identities that are not present in the
database.

Let us consider a set of sample facial images of K individuals,
called training faces, which consists of nκ images of the κth
individual, for 1 ≤ κ ≤ K. Each group of images of the same
person is called a class. The total number of training faces
is N =

∑
κ nκ. The training images represent well-aligned

slightly different poses taken under varying illumination of each
subject. Each image is column-major vectorized into an atom
of length M .

The given nκ atoms from the κth class are stacked as
columns of a submatrix Aκ of size M × nκ. The training dic-
tionary matrix A ∈ RM×N is defined as the concatenation of
N training samples of all K classes A = [A1, · · · , AK ].

In the sparse representation model (1), each column of the
training matrix A is considered as a basis vector, and the test
face b is approximately represented as a sparse linear combi-
nation of all the given sample faces. If the test face belongs
to class κ, we expect that α∗ is a sparse but structured vector
whose nonzero entries are mostly associated with the κth class.

Given a test face b, the task in FR is to classify and val-
idate this test face. Once the sparse coefficient vector α∗ is
recovered by solving the minimization problem (2), the classi-
fication of the test face b is done by determining the class κ for
which the `2-norm of the residual is minimal, i.e., by solving
the minimization problem

min
κ
‖Aκδκ(α∗)− b‖2, (4)

where δκ(α∗) denotes the coefficients of α∗ which correspond
to class κ.

The validation is carried out, following [36], by computing
the Sparsity Concentration Index (SCI) defined as

SCI(α∗) =
K ·maxκ ‖δκ(α∗)‖1/‖α∗‖1 − 1

K − 1
. (5)

If all coefficients in α∗ are concentrated in a single class κ, then
SCI(α∗) = 1. If the coefficients are spread evenly among all
the classes, then SCI(α∗) = 0. The result is considered to
be validated if SCI exceeds a given threshold. In an open-set
scenario we can introduce a suitable threshold on the similarity
score SCI to reject unknowns.

2.1 Feature extraction

A generally used preliminary procedure to reduce the data di-
mension and to cut down on the computational effort, is the
so-called feature extraction. Typically, the original images con-
tain tens of thousands of pixels each, which are reduced to
hundreds or even tens of features. Commonly used features
are obtained by Eigenfaces, Fisherfaces, Laplacianfaces, down-
sampling (randomly or by local regions), and other techniques
[16]. These traditional features are trivially obtained but de-
mand for robust classifiers. In contrast, the recently introduced
Deep Neural Network (DNN) features [32], naturally integrate
low/mid/high level features, and rely on sophisticated neu-
ral network frameworks, but provide good performance also
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for simple classifiers, like Nearest Neighbors Search (NNS).
To assess the performance of our proposed classifier, in the
experimental session we used Principal Component Analysis
(PCA) and downsampling for feature extraction in the closed-
set recognition protocol, and DNN feature extraction in the
more challenging open-set recognition protocol.

Therefore, from now on, we will consider the dictionary rep-
resented by the matrix A ∈ RM×N in the feature space, as
well as the test image b ∈ RM , so that M � N is the dimen-
sion of the feature space, which is significantly smaller than
the dimension of the vectorized images.

2.2 Related Works

Face recognition is a very active field of research due to its
practical applications in many areas such as biometric iden-
tification, information security, video surveillance, multimedia
retrieval, etc. A large variety of methods have been proposed
to solve this problem, such as Principal Component Analysis
(PCA) [21], Linear Discriminant Analysis (LDA) [22], Support
Vector Machine (SVM) [18], Local Binary Patterns (LBP) [1],
Local Derivative Pattern (LDP) [42], and Learning-Based De-
scriptors [5]. Although these methods perform well when the
test image is captured under controlled situations, their per-
formance degrades significantly when the test image contains
variations that are not present in the training images. The the-
ory of sparse representation and compressed sensing has shown
promise in handling this variability in the FR context.

In the following we briefly review only the sparse represen-
tation methods in the form of (2) which have been applied to
FR problem, with particular care to those approaches exploit-
ing sparsity or group-sparsity and local consistency.

The pioneering work on Sparse-Representation-based Classi-
fication (SRC) [36] proposed the minimization of the convex
functional (2) with `1 − `2 norms for F (·) and H(·), respec-
tively. SRC has achieved attractive performance in robust FR
and has motivated a large amount of works that modified one
or both of the two terms in the functional (2). Variants to the
`2-norm H function have been proposed to improve robustness
of the solution to data noise by giving less weight to outliers.
In [8] the authors used the `1-norm as for the fidelity H which
assumes a Laplace distribution for the residual, thus lowering
the influence of large errors. Yang et al. in [38] introduced
the Robust Sparse Coding (RSC) where they proposed a differ-
ent more effective non-convex fidelity term H which has been
generalized into the Iteratively Reweighted Regularized Robust
Coding (IR3C) [41], called RRC L1. In [30] a non-convex M-
estimator is proposed as fidelity term to enforce the robustness
of the sparse representation model which is minimized in the
Half Quadratic framework. A further improvement to the ro-
bustness to large outliers and non-Gaussian noise has been pro-
posed in [17], by incorporating in the fidelity term a maximum
correntropy criterion.

Unlike these sparse representation methods which use the
1-D pixel-based error model to address the face classification
problem, the works [29, 37, 40, 46, 47, 19] introduced the lo-
cal consistency concept (nearby data points share the same
properties) by imposing that the error images have low-rank
or approximately low-rank structure. As a convex relaxation of
the rank-function, in [40] the authors proposed the minimiza-
tion of the nuclear norm of the error matrix. In [37] a weighted
nuclear norm is introduced to make the model more robust to
noise.

All the cited works so far addressed the sparsity, pixel-wise
or structured-wise, of the error image in the fidelity term H
to enforce robustness of the recognition model, considering `1-
norm as the penalty function F .

Many research efforts have been instead devoted to devising
variants of the penalty function F to enforce sparsity or group-
sparsity more severely on the coefficients α, approaching to the
maximally sparsifying `0-quasinorm.

The Block Sparse Bayesian Learning method (BSBL) in [45]
is based on this block sparsity notion, and it evaluates the
representation coefficients by exploiting the correlation within
blocks.

Various authors [10, 33] proposed methods based on group-
sparse representation that impose the `2,1-mixed-norm penalty
on the reconstruction coefficients, when the training samples
and the test sample are organized into classes.

In [35, 11] and [34] the similarity information between the
query sample and distinct classes has been taken into account
by weighting in the penalty term the `1-norm and the `2,1-
norm, respectively.

In [39], a Joint Representation and Pattern Learning (JRPL)
model is proposed, which captures structured information and
prior knowledge of image features.

Kernel Sparse Representation for Classification (KSRC),
proposed in [14], represents a different class of variational
sparse representation methods which aim to capture the non-
linear distribution of the face images within the data. KSRC
and its variants have been proposed for the FR problem in
[43, 12].

3 The robust Group-Sparse Repre-
sentation Model

In this section, we introduce and motivate our choices for the
penalty function Fµ and the loss function H in (3).

3.1 Group sparsity-inducing penalty Fµ(α)

Group or block sparsity relies on the a priori knowledge that
when the sample belongs to a class κ, the vector α∗ is not only
sparse, but the nonzero elements are mostly associated with
the κth class and correlated in amplitude. In this section we
devise the following penalty function which encourages group
sparsity

Fµ(α) =

K∑
κ=1

ψµ(‖δκ(α)‖1), (6)

where δκ(α) refers to the vector of coefficients of α belong-
ing to class κ and ψµ is a parameterized non-convex function
with parameter µ ∈ R+ \ {0} which, as µ → 0, tends to the
`0-quasinorm. The use of the non-convex ψµ encourages the
sparsity of the solution, while the argument of ψµ in (6) en-
forces solutions whose nonzero coefficients are located mostly
in one of the classes, making the function Fµ(α) non-separable
and non-convex.

Several families of non-convex ψ functions have been pro-
posed, including the `q-norms for q < 1, log-sum, exp, and
atan, see [24],[4],[25]. In our model we consider the following
parameterized log-exp family of functions ψµ(t) : R → R+,
proposed in [28],

ψµ(t) =
1

log(2)
log

(
2

1 + e−|t|/µ

)
, (7)
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(a) (b)

Figure 1: Log-exp sparsity-inducing function ψµ(t) for several
values of µ: (a) for small µ values ψµ(t) approximates the `0-
quasinorm; (b) for large µ values ψµ(t) tends to a line.

characterized by the properties in the Prop.1.

Proposition 1. Let ψµ(t) be defined as in (7). Then the fol-
lowing properties are satisfied:

P1)


ψµ(t) ∈ C2(R+ \ {0})
(ψµ twice continuously differentiable in t on R+ \ {0})
ψµ(t) ∈ C0(R+)

(ψµ continuous in t on R+)

P2) ψ′µ(t)> 0 ∀ t ∈ R+\{0}
(ψµ strictly increasing in t onR+ \ {0})

P3) ψ′′µ(t) ≤ 0 ∀ t ∈ R \ {0}
(ψµ concave in t onR+ \ {0})

P4) limµ→0 ψµ(t) = ‖t‖0 , limµ→+∞ ψµ(t) = 0,

P5) limt→∞ ψµ(t) = 1

The properties in Prop. 1 are derived from simple investiga-
tions of the first and second derivatives of the penalty function
ψµ, illustrated in Fig.2 and calculated respectively as

ψ′µ(t) =
1

µ log(2)

1

1 + e|t|/µ
, (8)

ψ′′µ(t) = − 1

µ2 log(2)

e|t|/µ(
1 + e|t|/µ

)2 . (9)

Property P4) (left) states that as µ→ 0 ψµ approximates the
`0-quasinorm more closely than the other families mentioned.
As µ→∞, ψ′′µ(t)→ 0 and thus ψµ(t) tends to a line, which is
a convex function.

Plots of the ψµ(t) function for different values of the µ pa-
rameter are illustrated in Fig.1. In particular for small values
of µ in Fig.1(a) and for large values of µ in Fig.1(b).

The following results motivate the clustering property of the
proposed penalty in (6), and the fact that it is a good approx-
imant of the `0-quasinorm penalty.

Lemma 2. Let ψµ in (7) defined for t ≥ 0, be strictly concave,
with ψµ(0) = 0. Then for any arbitrary µ > 0 and αj > 0,

ψ(

s∑
j=1

αj) <

s∑
j=1

ψ(αj), j = 1, . . . , s. (10)

(a) (b)

Figure 2: First (dashed line) and second (dotted line) deriva-
tives of ψµ(t) (solid line) for large µ values: (a) µ = 1000; (b)
µ = 106.

Proof. A strictly concave function satisfies ψµ((1−λ)a+λb) >
(1 − λ)ψµ(a) + λψµ(b), for any 0 < λ < 1, a < b. Set a = 0,
b =

∑
αj , λ = α1/

∑
αj , we get

ψµ(α1) >
α1∑
αj
ψµ(
∑

αj). (11)

Do the same for all the other αj , and add.

Proposition 3. Let ψµ satisfy the assumptions in Lemma 2.
Then for any vector α ∈ RN we have

Fµ(α) ≤ ‖α‖0 (12)

and for a vector t ∈ RK , adding up the values of ψµ for each
component tκ = ‖δκ(α)‖1 we approximate the `0-quasinorm for
vectors:

lim
µ→0

K∑
κ=1

ψµ(tκ) = ‖t‖0. (13)

Proof.

Fµ(α) =
∑
κ

ψµ(‖δκ(α)‖1) =
∑
κ

ψµ

 (κ+1)nκ∑
j=κnκ+1

αj

 =

≤
∑
κ

(κ+1)nκ∑
j=κnκ+1

ψµ(αj) (14)

=

N∑
i

ψµ(αi).

In (14) we applied the result in lemma 2. The result (12)
follows from the fact that 0 ≤ ψµ(t) ≤ 1, while (13) follows
from Prop. 1 - P4) left.

The function Fµ defined in (6) likewise approximately counts
the number of groups in which a vector α has non-negligible
coefficients. Minimizing Fµ encourages the coefficients to con-
centrate inside a small number of groups.

3.2 Loss function H(r)

Let us assume that the representation residual ri, defined as
ri = (A)iα − bi with (A)i the ith row vector of A, is indepen-
dently and identically distributed. Then we define the function
ρ : R→ R+, introduced in [38], as follows

ρ(ri; s, d) = − 1

2s

[
log(1 + es(d−r

2
i ) − log(1 + esd)

]
, (15)
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(a) (b)

Figure 3: The loss function ρ(r) (solid line) for sd = 8, the first
and second derivatives (dashed and dotted lines respectively),
the inflection points r∗ (stars): (a) for s = 1; (b) for s = 10−7.

where s, d are positive scalars. In particular, the parameter
s controls the sharpness of the transition between convex and
non-convex regimes, and the d parameter controls the point
of transition. In practice, the loss function ρ assigns a smaller
weight to the residual in the convex region, and a larger weight
to larger residuals in concave region. The loss function ρ to-
gether with its first and second derivatives is illustrated in Fig.
3 for a moderate value s on the left, and for s near 0 on the
right.

Proposition 4. Let ρ(r; s, δ) be defined as in (15). Then the
following properties are satisfied:

P1)
ρ(r; s, δ) ∈ C2(R+ \ {0})
(ρ twice continuously differentiable in r on R \ {0})

P2) ρ′(r; s, δ)≥ 0 ∀ r ∈ R+\{0}
(ρ increasing in r onR+ \ {0})

P3)

{
ρ′′(r; s, δ)(t) ≥ 0 ∀ r ∈ [−r∗, r∗] (r∗inflection point)

ρ′′(r; s, δ)(t) < 0 ∀ r ∈ (−∞,−r∗) or (r∗,∞)

P4) limr→∞ ρ(r; s, δ) = δ
2

P5) lims→0 ρ(r; s, δ) = r2

4

The properties in Prop. 4 are derived from simple investiga-
tions of the first and second derivatives calculated respectively
as

ρ′(r; s, δ) =
res(δ−r

2)

1 + es(δ−r2)
, (16)

ρ′′(r; s, δ) =
es(δ−r

2)
(
1− 2r2s+ es(δ−r

2)
)(

1 + es(δ−r2)
)2 . (17)

We note that ρ(r; s, δ) is even and increasing for positive ar-
guments, and ρ(0; s, δ) = 0. Property P5) indicates that for
sufficiently small values of s the loss function ρ is convex.

Following [38] the data fidelity term considered in the pro-
posed model (3) is the separable loss function:

H(r) =

M∑
i=1

ρ(ri). (18)

The function ρ resembles a quadratic for r near 0, but flattens
in a line for larger arguments. Thus, H(r) approximates the
`2-norm for moderately sized r, but the influence of outlier
features is suppressed.

The functional J(α;µ, λ) defined in (3) is lower semi-
continuous and bounded from below by zero, since both Fµ
and H have a global minimum at zero. However, due to Prop.
1 and Prop. 4, J(α;µ, λ) is not coercive and, in general, non-
convex.

4 Numerical solution via graduated
optimization

In this section we present an iterative algorithm for comput-
ing an approximate solution of the unconstrained non-convex
optimization problem (3) with H defined in (18) and Fµ in (6).

Following a graduated optimization-based strategy, at first
a convex relaxation of the original non-convex problem (3) is
generated by imposing a parameter µ0 sufficiently large and a
value of s in (15) sufficiently small, giving rise to the following
functional

J(α;µ0, λ) = Fµ0
(α) +

1

λ
H(Aα− b). (19)

The function (19) for any λ > 0 value is convex due to the fact
that for µ → ∞, ψµ in Fµ defined in (6), tends to a line, and
the function ρ in the loss function H defined in (18) tends to
r2/4 as s→ 0 - see P5) in Prop. 4 - and consequently both Fµ
and H are convex functions.

The iterative method is initialized by calculating a minimizer
of J(α;µ0, λ0) in (19), with any λ0 > 0. Afterward, at each
iteration k ≥ 1, an intermediate solution αk+1 is calculated by
solving the following minimization problem

αk+1 = arg min
α∈RN

{J(α;µk, λk)} , (20)

starting from the previously obtained αk, and setting s in ρ as
a suitable fixed value which induces the non-convexity of H.
At each iteration the parameters µk and λk are monotonically
decreased so that µk < µk−1, λk < λk−1, thus producing a
penalty function Fµ which approaches the `0-quasinorm.

The problem (20) is in general a challenging non-convex
non-separable optimization problem. An approximate solution
is obtained at each iteration by applying the Majorization-
Minimization (MM) strategy which carries out successive con-
vex minimizations [26].

In the majorization step, we generate a tangent majorant of
the function (surrogate functional) J(α;µk, λk) defined as

J̃(α, αk;µk, λk) := F̃µk(α;αk) +
1

λk
H̃(r; rk), (21)

where rk = Aαk− b, and the functions F̃ and H̃ are computed
as specified in Sections 4.1 and 4.2, respectively. Then, in the
minimization step, the following convex nonsmooth minimiza-
tion problem is solved

αk+1 = arg min
α∈RN

{
J̃(α, αk;µk, λk)

}
(22)

by applying the forward-backward splitting method [9] accel-
erated by a strategy proposed in [6] as described in Section
4.3.

The proposed method advances iteratively by gradually re-
ducing the parameters µ and λ, using the solution of the cur-
rent iteration as initial point for the next iteration, approach-
ing the solution of the original problem (3). The proposed
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procedure is then applied to the solution of the Group-Sparse
Representation FR (GSR-FR) problem; its algorithmic imple-
mentation is provided in Section 5. Numerical details on this
iterative graduated optimization procedure will be given in the
following section, and some convergence results will be pro-
vided in Section 6.

4.1 The majorant F̃µ of Fµ

We propose to majorize Fµ by a convex linear tangent majorant

F̃µ near αk, defined as follows

F̃µ(α;αk) = Fµ(αk) +

N∑
i=1

∂Fµ
∂αi

(αk)
(
αi − αki

)
=

N∑
i=1

∂Fµ
∂|αi|

(αk) · |αi|+ terms independent of α,

= ‖Wα‖1 + terms independent of α, (23)

where αi is the ith component of α ∈ RN , and

W = diag(wi), wi =
∂Fµ
∂|αi|

(αk) =
∂ψµ
∂|αi|

(‖δ`(αk)‖1), (24)

and ` represents the class to which αi belongs. Therefore,
F̃µ( · ;αk) is a tangent majorant of Fµ at αk, i.e. it satisfies

F̃µ(α;αk) ≥ Fµ(α) ∀α, and F̃µ(αk;αk) = Fµ(αk). (25)

4.2 The majorant H̃ of H

For the loss function H defined in (18) we propose to employ
a quadratic tangent majorant, since the function itself behaves
like a quadratic function for small arguments.

As the function H is separable, each coordinate ρ(ri) is ma-
jorized separately by adding a quadratic term to the first order
Taylor approximant of ρ(ri) near rki , thus obtaining

ρ̃(ri; r
k
i ) = ρ(rki ) + ρ′(rki )(ri − rki ) +

1

2
vi(ri − rki )2. (26)

The constant vi is chosen so that ρ̃(ri; r
k
i ) has its minimum at

ri = 0, where also ρ(0) = 0. By differentiating (26) we have

ρ̃′(ri; r
k
i ) = ρ′(rki ) + vi(ri − rki ). (27)

By imposing the condition ρ̃′(0; rki ) = 0 we obtain vi =
ρ′(rki )

rki
,

which in turns leads to

ρ̃(ri; r
k
i ) =

1

2
vir

2
i + terms independent of ri. (28)

Replacing component-wise the majorants in (26) in the defini-
tion (18), we obtain the following majorant H̃ for H

H̃(r; rk) =

M∑
i=1

ρ̃(ri; r
k
i )

=
1

2
‖V 1/2r‖22 + terms independent of r, (29)

where the diagonal matrix V is defined as

V = diag(vi), vi =
ρ′(rki )

rki
. (30)

For all rk, the function H̃( · ; rk) is a quadratic tangent ma-
jorant of H at rk, i.e. it satisfies

H̃(r; rk) ≥ H(r), ∀r and H̃(rk; rk) = H(rk). (31)

4.3 Forward-Backward (FB) inner Iteration

The coefficients αk+1 are computed at each iteration by solv-
ing the minimization problem in (21)-(22) using the forward-
backward strategy [9] combined with the variant proposed in
[6] of the Fast Iterative Soft Thresholding Algorithm (FISTA)
[2] to achieve a convergent acceleration. By replacing in (21)
the majorants F̃µ, H̃ given in (23) and (29), and omitting the
terms independent of α, the convex optimization problem (22)
reads as

J̃(α, αk;µk, λk) = ‖W kα‖1 + 1
2λk
‖(V k)1/2(Aα− b)‖22

= ‖W kα‖1 + 1
2λk
‖Dkα− yk‖22, (32)

where Dk = (V k)1/2A and yk = (V k)1/2b.
Problem (32) is solvable and it can be cast in the form of

minimizing f + g, where f is a continuous convex function but
nonsmooth, due to the `1-norm, and g is a differentiable convex
function with Lipschitz constant L = ‖(Dk)T (Dk)‖2. The FB
splitting strategy then reduces to a soft thresholding with an
explicitly given closed-form solution

α̃k+1 = SλkβWk(αk + β(Dk)T (yk −Dkαk)).

The parameter β > 0 represents the step size, and St(ν) is a
point-wise soft-thresholding function which, for given vectors
t and ν, applies soft thresholding with parameter ti to the
element νi of ν, namely

[St(ν)]i = sign(νi) max(0, |νi| − ti), ∀i.

The FB algorithm with acceleration approximates αk+1 by it-
erating over j, assuming an initial αk0 and α̃k+1

0 , for all j ≥ 1

α̃k+1
j = SλkβWk(αkj−1 + β(Dk)T (yk −Dkαkj−1)) (33)

αk+1
j = α̃k+1

j + τj(α̃
k+1
j − α̃k+1

j−1), (34)

where the weights τj in (34) used for convergence acceleration
are computed as in [6], namely

τj =
tj − 1

tj+1
, tj =

j + a− 1

a
a > 2 ∀j. (35)

We stop the FB iterations (33)-(34) as soon as the relative
error sequences

errj :=

∣∣∣∣∣ J̃(αk+1
j , αk;µk, λk)− J̃(αk+1

j−1 , α
k;µk, λk)

J̃(αk+1
j , αk;µk, λk)

∣∣∣∣∣ (36)

drop below a prescribed threshold.

5 Algorithm GSR-FR

To summarize previous results, in Algorithm GSR-FR we re-
port the main computational steps of the overall proposed MM
iterative approach.

The GSR-FR Algorithm is initialized by setting α0 to be the
minimizer of (19), and stopped as soon as the relative change

‖αk+1 − αk‖2
‖αk+1‖2

, (37)

drops below a prescribed threshold.
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5.1 Choice of Parameters

The algorithm GSR-FR requires the choice of some parameters
that depend on the FR problem. This subsection describes how
they have been chosen.

The values of the parameters λ and µ have to be initialized
and then reduced in the iterative graduated optimization pro-
cess. For efficiency we would like to start with relatively small
values, and reduce them rapidly. The choices described here
have been found to work well in the face recognition setting.

The λ parameter is initialized as λ0 = cλin
‖ATV b‖∞, where

the value of cλin
ranges in the interval [5·10−8, 10−5], depending

on the number M of features used. The lower the value of M ,
the larger the factor cλin

required. The updating of λ requires

cλ =
Fµk (α

k)

Fµk+1
(αk)

0.99 in order to satisfy condition (39) in Prop.

6.

The parameter µ, which controls the penalty function (6), is
reduced at each step k by a factor cµ = 0.3.

Algorithm 1 GSR-FR

inputs: A ∈ RM×N , normalized training faces;
b ∈ RM , test face

outputs: κ class of b; SCI concentration index

parameters: λ0, µ0

Solve optimization problem (3):
Compute α0 by minimizing (19)
Outer Loop
repeat

Majorization step:

generate surrogate J̃(α, αk;λk, µk) in (32)
using (24) and (30)

Minimization step:
Inner Loop (FB)

αk+1
0 = αk

repeat

Compute α̃k+1
j+1 by solving (33)

Update αk+1
j+1 by (34)

until errj+1 ≤ γ · λk
Exit inner loop

αk+1 = αk+1
j+1 (result of inner loop)

Parameter reduction:
λk+1 = cλ · λk
µk+1 = cµ · µk

until (37) satisfied
α∗ = αk+1

Classify and Validate:
Compute the representative class κ by (4)
Compute the SCI(α∗) for the class κ by (5)

The inner loop FB approximately solves the optimization
problem (32). For larger λk, it is not necessary to solve the
inner loop to high accuracy, since the result αk simply serves
as a starting value for the next step. As λk gets close to 0, we
require more accuracy. Nevertheless, the number of iterations
required in the inner loop remains small thanks to the warm
starting strategy applied. In the stopping criteria of the inner
loop, the parameter γ ranges in the interval [5 · 10−8, 10−5],
depending on the number M of features used. The lower the
value of M , the smaller γ value is required.

The loss function (18) depends on the two parameters d and
s. We use the choice advocated in [38]. We set d to a certain
percentile of the square of the residual (80th percentile without
occlusion, 60th percentile with occlusion), and s is directly
derived by s = 8/d.

5.2 Complexity analysis

Assuming that the dimensionality M of face features is fixed,
and N is the number of sample images, the complexity of the
GSR-FR Algorithm basically depends on the update of the
weighting matrices V and W , defined in (30) and (24) respec-
tively, and on the solution of the FB inner loop by solving
(33)-(34).

In the outer loop, the weighting matrix updates cost O(M)
for V and O(N) for W . Since the FB inner loop relies on a soft
thresholding of a vector, the most computationally expensive
part is the update of this vector, which implies the evaluation
of the matrix-matrix-vector product (Dk)T (Dk)αk. This is

reduced to applying A, V
1/2
k and AT in sequence to αk, thus

the cost is 2MN +M .
Summarizing, the overall complexity is O(k1k2MN) where

k1 and k2 are the number of outer and inner iterations respec-
tively. Experimentally the outer loop usually requires a few it-
erations k1, while the number of iterations k2 of the inner loop
can vary from less than ten to several hundred, depending on
both the number of features considered and on the percentage
of outliers in the dictionary.

Finally, we remark that in order to guarantee the conver-
gence of the FB inner loop, the assumptions in Prop.5, that
will be discussed in Section 6, require the evaluation of the
step-size β at each outer loop, which in turn involves the esti-
mation of the dominant eigenvalue of the matrix (Dk)T (Dk).
In our experience, it is sufficient to fix β as a suitable reduction
of an initial estimation of ‖(D1)T (D1)‖2.

6 Convergence results

The convergence of Majorization-Minimization-based algo-
rithms for solving non-convex regularized optimization prob-
lems is a challenging issue. In [7] a convergence result is pro-
vided under the assumption of coercivity, which is not guaran-
teed in our model. In this section we analyze the convergence
of the MM approach for the face recognition problem, whose
main steps are given in Algorithm GSR-FR.

In order to guarantee that the proposed iterative approach
does not break down, we should require that at each iteration k
the solution αk+1 of the problem (32) exists and is unique. For
this aim, we recall in Prop. 5 the result proved in [6], on the
convergence of the sequence {αj}j∈N computed by (33)-(34)
to a minimum of problem (32) using (35) for the acceleration
strategy, and then we prove in Prop. 6 the descent property
for J(αk;µk, λk).

Proposition 5. The accelerated FB scheme (33)-(34) con-
verges to a minimizer of the convex functional J̃(α, αk;µk, λk)
in (32), if the sequence τj is computed as in (35) and the step
size satisfies 0 < β < 1/L, where L = λmax((Dk)T (Dk)).

Proposition 6. Assume that the conditions of Prop.5 hold.
Let µk, λk and µk+1, λk+1 be values of the penalization param-
eters at two successive iterative steps such that

λk+1 < λk and µk+1 < µk,
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and αk, αk+1 be the corresponding solutions of the optimization
problems (32). Then the objective function J(α;µk, λk) in (3)
satisfies

J(αk+1;µk+1, λk+1) < J(αk;µk, λk), (38)

provided that

λk+1 <
Fµk(αk)

Fµk+1
(αk)

λk. (39)

Proof.

J(αk;µk, λk) = Fµk(αk) +
1

λk
H(rk)

> Fµk+1
(αk) +

1

λk+1
H(rk) by (39)

= F̃µk+1
(αk;αk) +

1

λk+1
H̃(rk; rk) by (25),(31)

= J̃(αk, αk;µk+1, λk+1) by (21)

≥ J̃(αk+1, αk;µk+1, λk+1) by (32)

= F̃µk+1
(αk+1;αk) +

1

λk+1
H̃(rk+1; rk)

≥ Fµk+1
(αk+1) +

1

λk+1
H(rk+1) by (25),(31)

= J(αk+1;µk+1, λk+1). (40)

Condition (39) is naturally satisfied by observing the behav-
ior of ψµ for decreasing values of µ, as shown in Fig.1.

Definition 7. A convex (not necessarily differentiable) func-
tion f(α) is said to be σ-strongly convex if and only if there
exists a constant σ > 0, called the modulus of strong convexity
of f(α), such that the function f(α)− σ

2 ‖α‖
2
2 is convex.

The following important result on strongly convex functions
holds, [31].

Lemma 8. Let f(α) : Rn → R be σ-strongly convex and α∗

be a minimizer of function f(α). Then the following inequality
holds:

σ

2
‖α− α∗‖22 ≤ f(α)− f(α∗) ∀α ∈ Rn. (41)

Proposition 9. The surrogate functional J̃(α, αk, µk, λk) in
(32) is σ-strongly convex with σ = 1

λk
.

The proof of Prop. 9 follows straightforward by observing
that the sum of a convex term and a σ-strongly convex term is
σ-strongly convex (see [31]). The first term in J̃(α, αk, µk, λk)
is convex, due to the `1-norm, and the second term is σ-strongly
convex with σ = 1

λk
.

Proposition 10. Let {αk}∞k=1 denote the sequence of iter-
ates generated by the proposed procedure applied to the solu-
tion of the non-convex non-smooth optimization problems of
the form (3). For any initial guess α0 the following statements
hold:

s1) the sequence
{
J(αk;µk, λk)

}∞
k=0

is monotonically non-
increasing and convergent;

s2) the sequence
{
αk
}∞
k=0

is of finite length, in the sense that:∑+∞
k=0 ‖αk+1−αk‖22 < +∞, which implies limk→∞ ‖αk+1−

αk‖22 = 0.

Figure 4: Experiment 1: training images from the AR database
(first row) and EY database (second row).

Proof. Proof of s1) follows from Prop. 6 which guaran-
tees the monotonicity of J(αk;µk, λk), and by noting that{
J(αk;µk, λk)

}∞
k=0

is continuous and bounded from below by
zero, hence convergent.
Since J̃(α;αk, µk, λk) is σ-strongly convex (see Prop.9), we
apply inequality (41) in Lemma 8 where f(α) is replaced by
J̃(α, αk, µk, λk) and α∗ by αk+1, ∀α ∈ Rn, ∀k ≥ 0:

σ
2 ‖α− α

k+1‖22 ≤ J̃(α;αk, µk, λk)− J̃(αk+1;αk, µk, λk)
≤ J(αk;µk, λk)− J(αk+1;µk, λk),

(42)
where (42) comes from J̃(α;αk, µk, λk) = J(αk;µk, λk) and
J̃(αk+1;αk, µk, λk) ≥ J(αk+1;µk, λk). Summing the inequali-
ties (42) over k yields:

+∞∑
k=0

‖αk+1 − αk‖22 ≤
2

σ

+∞∑
k=0

[J(αk;µk, λk)− J(αk+1;µk, λk)] =

(43)

=
2

σ
(J(α0;µk, λk)− J∗). (44)

where J∗ denotes the finite limit of the convergent sequence{
J(αk;µk, λk)

}∞
k=0

. Since 0 < σ < +∞ and the sequence{
J(αk;µk, λk)

}∞
k=0

is monotonically non-increasing, then the
right-hand of (44) is a finite non-negative number and the series
on the left-hand of (43) is convergent, thus proving s2).

An analysis of the convergence behaviour of the sequence
{αk} generated by (20) to the critical point of J(α;µ, λ) is
beyond the scope of this paper.

7 Numerical Experiments

In this section, we investigate the performance of the proposed
GSR-FR Algorithm, by presenting experiments on three widely
used benchmark face databases: AR face database [27], Ex-
tended Yale B [23], and PubFig [48].

The AR database consists of over 4,000 frontal images for 126
individuals (70 men and 56 women) of size 768×576 = 442, 368.
For each individual, 26 pictures were taken in two separate ses-
sions (2 different days). These images include facial variations,
illumination changes, expressions, and facial disguises, such as
sunglasses and scarves.

The Extended Yale B database (EY) consists of 2,414
cropped frontal face images of 38 individuals. For each sub-
ject, there are approximately 64 face images of size 192×168 =
32, 256, which are captured under various laboratory-controlled
lighting conditions.
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The PubFig is a large, real-world face dataset consisting of
58,797 images of 200 people in web photos and, unlike most
other existing face datasets, these images are taken in com-
pletely uncontrolled situations with non-cooperative subjects
[48].

We compare our method with recently proposed sparse-
representation-based classical methods, including the original
SRC [36], the RRC L1 method [41, 44], the half quadratic with
multiplicative form HQM proposed in [30], and two of the
state-of-the-art methods for face recognition, named FLR-IRC,
proposed in [19, 20], and the RMR method in [37]. We solve
the `1-minimization problem for the SRC method by using the
l1 ls() Matlab routine available from Mathworks database. For
all the other methods we used the solvers provided by the au-
thors of the corresponding papers.

All the experimental results were obtained by running a Mat-
lab implementation of the proposed algorithm on a PC with
Intel Core i7 3.40 GHZ and 16 GB of RAM under Windows
10.

In the remaining section we investigate the following FR
examples in a closed-set protocol:

• cases with non-contiguous variations, such as variations in
illumination or in facial expressions (Experiment 1).

• cases with contiguous variations, such as random block-
image occlusions of different sizes and facial disguises, such
as scarves and sunglasses (Experiment 2).

Finally, we test the algorithm under a FR open-set protocol
(Experiment 3).

7.1 Experiment 1: Illumination and Expres-
sion Changes

The aim of this experiment is validate the performance of the
proposed GSR-FR Algorithm in FR problems with variations
such as illumination and expression changes. In Figure 4 some
training images from database AR (first row) and EY (second
row) are shown, respectively.
Setup for AR Database
We chose a subset of 50 males and 50 females with only illu-
mination and expression changes. For each subject we selected
the first seven images from Session 1 for training, which leads
to a dictionary A ∈ RM×N with N = (50 + 50)× 7 atoms. For
testing, we used the associated seven images from Session 2,
which corresponds to different vectors b in (1). Each image is
resized and cropped to 60 × 43 pixels. For feature extraction
by downsampling, we further resized the images to sizes 7×5 ,
10× 7, 15× 10, 20× 14 and 30× 21. For PCA we used feature
spaces of dimensions 30, 54, 120 and 300.
Setup for EY Database
We randomly selected half of the images for training (about
32 images per subject), and the other half for testing, thus
composing a dictionary A ∈ RM×N with N = 32 × 38 atoms.
Each image is cropped and resized to size 54× 48. For feature
extraction by downsampling we did a further reduction to sizes
6 × 6, 9 × 8, 13 × 12, and 27 × 24. For PCA we used feature
spaces of dimensions 30, 84, 150, 304.

The recognition rates of this experiment have been reported
in Table 1 for feature extraction by downsampling and in Ta-
ble 2 for feature extraction by PCA. In both Tables the second
column represents the number M of features considered for the
dictionary A ∈ RM×N and the test b ∈ RM .

10% 20% 30% 40% 50%

Figure 5: Experiment 2: Block-occluded test image in EY
database, with varying occlusions from 10% to 50%.

Figure 6: Experiment 2: recognition of subject 14 from EY
database under 50% block image occlusion.

The results in the Tables for the RRC L1 method applied to
images in the Extended Yale B database, are slightly different
from those given in [41] because of the random selection of the
training and testing faces.

For both the considered databases, we observe that the pro-
posed GSR-FR Algorithm performs better than all the other
considered methods, especially in case of highly reduced data,
which correspond to lower M values. However, the improve-
ment in performance affects the computational timings, as il-
lustrated in Table 3 for the tests shown in Table 1.

7.2 Experiment 2: Occlusions and Disguises

In this subsection we test the robustness of GSR-FR Algo-
rithm to different kinds of contiguous occlusions, such as block
occlusion and real disguises.

7.2.1 Face recognition under block-image corruption

For training we used the faces from subset 1 and 2 of the EY
database, characterized by normal-to-moderate lighting condi-
tions, and, for testing, the faces from subset 3, with more ex-
treme lighting conditions. On each test image b of dimension
96×48, a randomly located square block has been replaced with
an unrelated image (the baboon image in SRC [36]), produc-
ing varying occlusions from 10% to 50% of the original testing
image (see Fig.5 for an example of occluded test images). For
the feature extraction we then downsampled all the images to
sizes 6× 5, 8× 7, 12× 10 and 24× 21.

Figures 6 and 7 show two examples of face recognition un-
der 50% block-image occlusions. In the first row of Figures 6
and 7 we report from left to right: the uncorrupted original
test images, the test images with an occlusion of 50%, the
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Table 1: Experiment 1: FR rates under changes in illumination and pose, feature extraction by downsampling
DB M GSR-FR RRC L1 SRC FLR-IRC HQM RMR

AR

7× 5 63.8% 54.7% 55.8 % 47.9 % 49.8 % 44.6 %
10× 7 81.3% 78.1% 78.2 % 81.3 % 71.9 % 69.8 %
15× 10 91.4% 88.4% 87.3 % 91.3 % 88.0 % 85.0 %
20× 14 95.0% 92.0% 91.3 % 94.5 % 94.0% 85.7 %
30× 21 96.7% 95.7% 92.4 % 96.4 % 96.6 % 95.8 %

EY

6× 6 81.5% 78.3% 81.0 % 26.2 % 60.0 % 55.2 %
9× 8 92.8% 90.0% 90.8 % 80.4 % 83.6 % 76.5 %

13× 12 97.2% 95.6% 94.8% 96.7 % 92.0 % 90.2 %
27× 24 99.1% 98.7% 98.2% 98.8% 96.8 % 96.8 %

Table 2: Experiment 1: FR rates under changes in illumination
and pose, feature extraction by PCA

DB M GSR-FR RRC L1 SRC

AR

30 75.3% 70.8% 73.5%
54 89.1% 87.6% 83.3%
120 95.3% 95.1% 90.1%
300 97.3% 96.3% 93.3%

EY

30 93.6% 88.5% 90.5 %
84 97.8% 97.6% 95.6 %
150 99.0% 98.4% 97.2 %
300 99.2% 98.9% 98.5%

Figure 7: Experiment 2: recognition of subject 35 from EY
database under 50% block image occlusion.

downsampled 8 × 7 test images which represent the input of
both reconstruction algorithms, and the reconstructed images
obtained by applying the GSR-FR and FLR-IRC algorithms.

In the second row of Figures 6 we plot the coefficient vec-
tors (α∗) associated with the reconstructions illustrated in the
first row of Figures 6, together with the residuals per class ob-
tained by solving the minimization problem in (4) for both the
considered methods.

The reconstruction obtained by the GSR-FR Algorithm in
Fig. 6 is of significantly better quality, this is justified by a visu-
ally inspection of the plots in the second row, which show that
the solution α∗ obtained by the GSR-FR Algorithm is very
sparse, with significant values in the correct class; and theoret-
ically motivated by the group-sparsity induced in the solution
in the non-convex functional minimized by the proposed GSR-
FR Algorithm. In contrast, the coefficients of the FLR-IRC
algorithm present significant values corresponding to the exact
class, but also some spurious coefficients in other classes which
lead to a corrupted reconstruction (see Fig. 6, right image).

In the case illustrated in Fig. 7 the FLR-IRC algorithm fails
to recognize the test image in the training database and it
produces a reconstructed image which combines several faces
belonging to different classes into the resulting image face (see
Fig. 7, last image in the first row).

Table 4 shows the FR rates of the several considered algo-

Figure 8: Experiment 2: training images for class 1 in AR
database (first row); test images in AR database with sun-
glasses and scarves (second row).

rithms on different downsampling dimensions (labeled as M in
the Table) in terms of varying percentages of occlusion ranging
from 10% to 50%. The GSR-FR Algorithm outperforms the
compared algorithms for highly reduced data and high occlu-
sion percentages. For each test the best recognition rate results
are marked in boldface.

The FLR-IRC algorithm relies on the nuclear norm of the
residual image, therefore the test setting used in Experiment
1, which presents non-contiguous occlusions, is not optimal for
this method since the residual image is not modelled as a low-
rank matrix. This partially motivates the better performance
of the proposed GSR-FR with respect to the FLR-IRC method.
On the other hand, the test setting of Experiment 2 contains
contiguous block occlusions which represent the optimal con-
text for FLR-IRC method. However, the better recognition
rates of the FLR-IRC method are maintained only if the fea-
tures considered are represented either by the entire image or
by a downsampling of large dimensions of it (not less than
24 × 21 pixels). Moreover, unlike our proposal, the FLR-IRC
method is suitable only for features extracted from the val-
ues of the original image, and thus the use of PCA or similar
features for FLR-IRC would not produce good performance.

Table 5 shows the performance in terms of execution times
of GSR-FR, RRC L1, HQM , RMR and FLR-IRC methods.
Unfortunately, the main drawback of the GSR-FR Algorithm is
the computational timing, since it is slower than the compared
methods at least in its current naive implementation.

7.2.2 Face recognition under real face disguise

We considered a subset of the AR database to test the per-
formance of our method on face recognition under disguises.
We chose a subset of 799 images of various facial expressions
without occlusion for training, which leads to a dictionary
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Table 3: Experiment 1: Time (secs) under changes in illumination and pose, feature extraction by downsampling

DB M GSR-FR FLR-IRC RRC L1 SRC HQM RMR

AR

7 × 5 0.32 0.01 0.07 0.74 0.14 0.023
10 × 7 0.39 0.06 0.08 0.80 0.17 0.024
15 × 10 0.47 0.08 0.11 0.82 0.19 0.027
20 × 14 0.60 0.12 0.24 0.90 0.27 0.27
30 × 21 0.80 0.14 0.44 0.90 0.36 0.47

EY

6 × 6 0.66 0.21 0.31 1.75 0.08 0.07
9 × 8 0.87 0.29 0.42 2.15 0.55 0.08

13 × 12 0.93 0.31 0.68 2.18 1.05 0.09
27 × 24 1.13 0.44 1.33 2.24 1.873 1.22

Table 4: Experiment 2: FR rates with image-block occlusion

ALG M
Percentage occluded

10% 30% 40% 50%

SRC

6× 5 36.3% 22.6% 17.4% 14.3%
8× 7 51.0% 31.7% 20.7% 17.4%

12× 10 75.4% 48.6% 30.3% 20.9%
24× 21 96.5% 72.3% 54.3% 35.2%

RRC L1

6× 5 50.9% 24.4% 19.6% 13.8%
8× 7 67.3% 32.4% 19.6% 16.4%

12× 10 93.3% 50.7% 31.8% 26.4%
24× 21 99.8% 94.7% 80.4% 61.3%

HQM

6× 5 58.2% 35.8% 25.1% 17.9%
8× 7 81.8% 60.9% 43.2% 31.5%

12× 10 95.6% 80.9% 64.9% 43.2%
24× 21 98.2% 93.1% 87.1% 66.7%

FLR-IRC

6× 5 29.56% 20.0% 12.22% 9.11%
8× 7 85.6% 48.4% 33.62% 19.3%

12× 10 99.1% 86.0% 62.9% 36.2%
24× 21 100% 100% 99.8% 92.4%

GSR-FR

6× 5 54.7% 40.7% 31.8% 23.6%
8× 7 75.1% 61.8% 46.9% 32.4%

12× 10 95.3% 82.9% 73.8% 52.7%
24× 21 100.0% 94.7% 89.3% 81.1%

RMR

6× 5 45.8% 24.9% 22.9% 13.3%
8× 7 67.3% 38.9% 26.4% 22.0%

12× 10 89.6% 56.9% 51.3% 35.3%
24× 21 97.6% 76.2% 59.6% 46.0%

Table 5: Experiment 2: time in seconds under block occlusion

M Percentage Occluded 10-50 %
RRC L1 FLR-IRC GSR-FR HQM RMR

6× 5 1.3 0.15 0.60 0.1 0.024
8× 7 1.5 0.20 0.63 0.25 0.025

12× 10 2.4 0.21 0.64 0.33 0.027
24× 21 4.6 0.26 0.67 0.52 0.38

Figure 9: Experiment 3: Facial images from PubFig83+LFW
database. A few distractors are shown in the second row.

A ∈ RM×N with N = 799. Fig.8(first row) shows an example
of eight selected training images of the first subject (class 1)
in the AR database.

Then we formed two separate testing sets of 200 images. The
images in the first set were from the neutral expression with
sunglasses (the 8th image in each session) which cover roughly
20% of the face (see Fig.8(second row)), while the images in
the second set were from the neutral expression with scarves
(the 11th image in each session) which cover roughly 40% of
the face (see Fig.8(second row)). All the images were resized
to 9× 6, 13× 10, 27× 20 and 42× 30, respectively.

The recognition rates in case of real face disguises are shown
in Table 6. For both the considered disguises, sunglasses
and scarves, the proposed GSR-FR algorithm outperforms the
other methods. In particular, in the case of sunglasses GSR-
FR achieved a recognition rate between 0.5% and 9.2% higher
than RRC L1, between 1% and 29% higher than FLR-IRC, be-
tween 4% and 8% higher than HQM , and between 3.3% and
30.5% higher than RMR. In the case of scarves, GSR-FR Al-
gorithm achieved a 7.5% to 29% higher recognition rate than
RRC L1, between 18% and 30.5% higher than FLR-IRC, be-
tween 37.5% and 42.5% higher than HQM , and between 23.5%
and 25% higher than RMR.

7.3 Experiment 3: Open-Set Face Recogni-
tion

In this experiment we test the effectiveness of the proposed
GSR-FR algorithm in an open-set protocol. For this aim we
introduced in the algorithm a decision threshold θ ∈ [0, 1] on
the Sparsity Concentration Index defined in (5). We analyzed
the performance on the following two test cases:

1. EY+EY: the training set includes only a half of the sub-
jects in the database EY, namely 608 face images of 19
subjects, while the test set contains all the same subjects
of the training set (590 faces), but under different illumina-

11



Table 6: Experiment 2: face recognition rates with disguise

M
Sunglasses

SRC RRC L1 FLR-IRC GSR-FR HQM RMR
9× 6 46.5% 61.3% 41.0% 70.5% 70.8 % 41.0 %

13× 10 72.0% 92.0% 76.4% 93.5% 85.5% 56.5 %
27× 20 83.0% 96.0% 98.0% 99.5% 94.0% 75.0 %
42× 30 89.0% 99.0% 98.5% 99.5% 95.5% 96.2 %

Scarves
SRC RRC L1 FLR-IRC GSR-FR HQM RMR

9× 6 10.0% 32.0% 30.5 % 61.0% 18.5 % 36.0 %
13× 10 16.0% 69.0% 58.0% 84.5% 35.5 % 57.0 %
27× 20 21.5% 81.5% 79.0% 94.0% 41.5 % 66.0 %
42× 30 37.0% 89.5% 79.0% 97.0% 60.5 % 73.5 %

Figure 10: Experiment 3: Face Recognition Evaluation for
the dataset EY+EY (first row), and PubFig83+LFW (sec-
ond row): (left) Detection & Identification Rate (DIR) curve;
(right) Detection rate with respect the decision thresholding θ.

tions and poses, plus 608 extra face images of the other 19
subjects in the EY database which are not in the training
set (the unknown identities or distractor set). We con-
sidered feature extraction by downsampling reducing the
images to size 27× 24.

2. PubFig83+LFW: this enriched dataset proposed in [3] is
the combination of PubFig [48] and the LFW [50] datasets
to form a new benchmark dataset for open face identifica-
tion. PubFig83+LFW divides the 13,002 faces of 83 indi-
viduals from PubFig database into 2/3 training set (8720
faces) and 1/3 testing set (4282 faces) and sets 12,066
faces of 5503 individuals from LFW as distractor set. All
images are aligned by eye position and cropped to the di-
mension 256×256. Figure 9 illustrates some facial images
from PubFig. We considered feature extraction by DNN
ResNet, introduced in [32], which reduces each face image
to a vector of dimension 128.

The GSR-FR algorithm has been evaluated by using the De-
tection and Identification Rate (DIR) curve [15] which plots
the identification rates with respect to the false identifications,
where an unknown subject is recognized as an identity of the

gallery (training dataset), see Fig.10(first row, left) for case 1,
and Fig.10(second row, left) for case 2.

The algorithm achieved its good identification accuracies up
to 92% (case 1) and 94% (case 2), at low false identification
rates.

For a more detailed analysis on the optimal thresholding θ
value, we also report in Fig.10(right) the identification rate
with respect to increasing θ values. In particular, we plot the
identification rate (True Positive - TP -), the false rejected
rate of known identities (False Negative - FN -), the false iden-
tification rate (- FI -) and the false acceptance rate of known
identities (False Acceptance - FA -).

For θ = 0 our algorithm is forced in any case to classify the
test subject as one of the subject in the dictionary, that is why
for θ = 0 the TP+FN corresponds to the percentage of subjects
in the gallery, while the FI decreases for increasing θ values up
to an optimal θ value which is between 0.6 and 0.7 which leads
to very good performance in terms of maximum identification
rate and minimum false identification rate for both the test
cases. Both FI and FA rates contribute to false acceptance in
an open-set identification system. However, in a real scenario,
e.g. in surveillance systems, is much more dangerous to accept
an unknown identity rather than to misdetect a known identity
in the gallery. The proposed algorithm turns out to be robust
to both these false detections.

8 Conclusion

We proposed, analyzed and tested a new variational model for
solving the sparse representation problem which, relying on
properly designed non-convex penalty and loss functions, can
take full advantage of sparsity and clustering intrinsic prop-
erties of the face recognition problem. In sparsity-based face
recognition, the functional to be minimized consists typically of
two functions to choose – a regularizer on the coefficients F (·)
and an error penalty H(·). Recently, most of the effort has
been addressed to induce sparsity in the error term H(·) which
makes the model robust to noise and occlusions without the
need for augmenting the training matrix. For this aim, many
variants of the separable nonconvex function H(·) introduced
in [38] have been proposed, which, however, relax the penalty
F (·) to a convex `1-norm term. Based on the assumption that
in the training matrix A the samples are sorted such that sam-
ples from the same class are contiguous, we proposed to built
a group-sparsity penalty Fµ(·) as a superposition of penalties
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for group of contiguous coefficients. This leads to a non-convex
structured sparsity-inducing regularizer and a numerical chal-
lenging non-convex non-smooth optimization problem. The
novelty in this work is not only the choice of F (·), but also the
robust graduated optimization scheme based on majorization-
minimization strategy combined with FB accelerated splitting
methods, which in particular reduces the solution to a sequence
of convex optimization sub-problems. The experimental re-
sults show an improvement in terms of recognition rates es-
pecially when using feature extraction with a low number of
features, and in the presence of occlusions. The results of this
paper can be extended to a number of models involving sparse
representations where the training data are grouped in classes
and in each class they live in a low-dimensional subspace of
a high-dimensional ambient space, thus reducing significantly
the problem dimension.
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