
06 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

From Heterogeneous Sensor Networks to Integrated Software Services: Design and Implementation of a
Semantic Architecture for the Internet of Things at ARCES@UNIBO / Aguzzi, Cristiano; Antoniazzi,
Francesco; Azzoni, Paolo; Bononi, Luciano; Brasini, Francesco; Canegallo, Roberto; D'Elia, Alfredo; De Lisa,
Angelo; Felice, Marco Di; Franchi, Eleonora; Perilli, Luca; Roffia, Luca; Sciullo, Luca; Siagri, Roberto;
Verardi, Martina; Cinotti, Tullio Salmon. - ELETTRONICO. - (2018), pp. 12-20. (Intervento presentato al
convegno FRUCT23 tenutosi a Bologna, Italy nel November 13 - 16, 2018)
[10.23919/FRUCT.2018.8588024].

Published Version:

From Heterogeneous Sensor Networks to Integrated Software Services: Design and Implementation of a
Semantic Architecture for the Internet of Things at ARCES@UNIBO

Published:
DOI: http://doi.org/10.23919/FRUCT.2018.8588024

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/661242 since: 2021-01-27

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.23919/FRUCT.2018.8588024
https://hdl.handle.net/11585/661242

06 May 2024

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

C. Aguzzi et al., "From Heterogeneous Sensor Networks to Integrated Software
Services: Design and Implementation of a Semantic Architecture for the Internet of
Things at ARCES@UNIBO," 2018 23rd Conference of Open Innovations Association
(FRUCT), Bologna, 2018, pp. 10-18, doi: 10.23919/FRUCT.2018.8588024.

The final published version is available online at DOI:

http://dx.doi.org/10.23919/FRUCT.2018.8588024

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.23919/FRUCT.2018.8588024

From Heterogeneous Sensor Networks to Integrated
Software Services: Design and Implementation

of a Semantic Architecture for the Internet of Things
at ARCES@UNIBO

Cristiano Aguzzi∗, Francesco Antoniazzi∗, Paolo Azzoni‡, Luciano Bononi∗, Francesco Brasini∗, Roberto Canegallo§,
Alfredo D’Elia∗, Angelo De Lisa∗, Marco Di Felice∗, Eleonora Franchi∗, Luca Perilli∗,
Luca Roffia∗, Luca Sciullo∗ Roberto Siagri‡, Martina Verardi∗, Tullio Salmon Cinotti∗

∗ University of Bologna, Via Zamboni 33, Bologna, Italy
‡ Eurotech S.p.a., Via Fratelli Solari 3/a, 33020 Amaro (Udine), Italy

§ STMicroelectronics, Agrate Brianza, Italy

Abstract—The Internet of Things (IoTs) is growing fast both
in terms of number of devices connected and of complexity
of deployments and applications. Several research studies an-
alyzing the economical impact of the IoT worldwide identify
the interoperability as one of the main boosting factor for its
growth, thanks to the possibility to unlock novel commercial
opportunities derived from the integration of heterogeneous
systems which are currently not interconnected. However, at
present, interoperability constitutes a relevant practical issue
on any IoT deployments that is composed of sensor platforms
mapped on different wireless technologies, network protocols or
data formats. The paper addresses such issue, and investigates
how to achieve effective data interoperability and data reuse
on complex IoT deployments, where multiple users/applications
need to consume sensor data produced by heterogeneous sensor
networks. We propose a generic three-tier IoT architecture,
which decouples the sensor data producers from the sensor
data consumers, thanks to the intermediation of a semantic
broker which is in charge of translating the sensor data into
a shared ontology, and of providing publish-subscribe facilities
to the producers/consumers. Then, we describe the real-world
implementation of such architecture devised at the Advanced
Research Center on Electronic System (ARCES) of the University
of Bologna. The actual system collects the data produced by three
different sensor networks, integrates them through a SPARQL
Event Processing Architecture (SEPA), and supports two front-
end applications for the data access, i.e. a web dashboard and
an Amazon Alexa voice service.

I. INTRODUCTION

Context-awareness is a key ingredient of virtuous behaviors
over Internet of Things (IoT) scenarios, both by humans and
machines [1]. For example, in the energy domain, energy-
aware users can significantly reduce their power consumption
macroscopically, by accessing metering data and dynamic
price signals, and acting consequentially [2]. Similarly, several
Machine-to-Machine systems traditionally employed in smart
agriculture and home/industrial automation rely on context un-
derstanding to decide what data need to be processed, and the
proper actions to perform [3][4]. Awareness originates from the
information concerning the environment, which are often made

available by networked sensors; the pervasiveness of such
devices, with more than 30 billion expected to be connected
to the Internet by 2025 (Source: IDC, https://www.idc.com),
gives the idea of the IoT growth worldwide. At the same
time, the deployment of large-scale, context-aware IoT systems
is hindered by the heterogeneity of software platforms and
hardware devices available on the market, which translates
into the need of interconnecting systems using different com-
munication technologies, network protocols and data format.
The problem becomes even more challenging if we consider
that -in several IoT scenarios- the same sensor data must be
accessed by multiple consumers: for example, the information
provided by a light sensor can be used -in combination both
with other sensor data and with profile information- to set the
optimal ambient light, but it can influence the local energy
management system of a power-autonomous wireless sensor
and actuator network with nodes capable of harvesting energy
from light. Hence, proper data-reuse mechanisms must be
designed. However, beside constituting a research problem,
interoperability has been often identified as one of the main
boosting factor for the IoT growth worldwide: among others,
the McKinsey report quantifies in 40% the additional IoT
market value which might be provided by achieving full
interoperabilty among IoT ecosystems [5].
In this paper, we investigate how to achieve efficient data-
reuse and data integration on heterogeneous, large-scale IoT
systems, in order to ease the deployment of next-generation
context-aware services and applications. Both theoretical and
practical contributions are provided: hence, the paper can be
read as a scientific proposal, advancing the state-of-art of
IoT software architectures, as well as a tutorial, providing
details on the implementation, installation and seamless in-
tegration of heterogeneous IoT sensing platforms. Regarding
the theoretical contributions, we present a generic software
architecture which can fit the requirements and characteristics
of most of IoT scenarios. The proposed architecture features
three complementary layers, i.e. the connectivity layer, the
data interoperability layer, and the software service layer. The
system core is constituted by a semantic end-point, which

is in charge of providing a common semantic description to
the sensor data originated from the sensor networks, and of
offering content-based publish-subscribe facilities to the upper-
layer applications, including front-end dashboards and back-
end automation services. Differently from other IoT platforms
presented so far in the literature, our proposal does not require
any architectural change to the sensing platforms: indeed,
these latter can be abstracted as independent silos that -
according to the technology currently in use- convey data
from sensors to clouds/repositories via gateways. Data fusion is
performed at the semantic end-point, by converting the sensor
data into a domain-specific ontology. Regarding the practical
contributions, we describe how the abstract architecture has
been made concrete through a proof-of-concept implemen-
tation and installation at the Advanced Research Center on
Electronic System (ARCES) of the University of Bologna. The
sensing layer is constituted by three wireless sensor networks,
using different communication technologies (e.g. Dash-7 [6],
6LoWPAN [7] on SPIRIT and LoRa [8]), each connected
to a specific data repository, constituted by a cloud service
(e.g. The Things Network, https://www.thethingsnetwork.org
for LoRa) or by a local database instance (e.g. Apache
Cassandra, http://cassandra.apache.org). From here, data are
transferred to the SEPA platform [18], a semantic end-point
supporting SPARQL language, and offering publish-subscribe
mechanisms to the upper layer services, which can thus
be notified about any change in the query result due to a
sensor data update. Finally, two different applications have
been implemented at service layer in order to provide user-
friendly data access, one based on a Web dashboard, and
another one employing speech technologies (e.g. Amazon
Alexa, https://developer.amazon.com/it/alexa) for voice-based
interactions.
The paper is structured as follows. Section II reviews the
IoT literature regarding the data interoperability issue and
approaches based on the Semantic Web. Section III describes
the proposed IoT abstract architecture; the current implemen-
tation available at ARCES@UNIBO is discussed in Section
IV. Conclusions and future works can be found in Section V.

II. RELATED WORKS

The SPARQL Event Processing Architecture (SEPA) pre-
sented in this paper can be framed within the research topics
known as stream reasoning [22], linked stream data processing
[21] and content-based publish-subscribe [23]. In particular,
SEPA enables the detection and notification of events (i.e.,
changes over the Web of Data) by means of a content-based
publish-subscribe mechanism where the W3C SPARQL 1.1
Update (https://www.w3.org/TR/sparql11-update/) and Query
languages (https://www.w3.org/TR/sparql11-query/) are fully
supported and used respectively by publishers and subscribers.
The architecture is built on top of the W3C SPARQL
1.1 Protocol (https://www.w3.org/TR/sparql11-protocol/) and
introduces the SPARQL 1.1 Secure Event protocol (http:
//mml.arces.unibo.it/TR/sparql11-se-protocol.html) and the
SPARQL 1.1 Subscribe Language (http://mml.arces.unibo.it/
TR/sparql11-subscribe.html) as means for conveying and ex-
pressing subscription requests and notifications. Linked Data
changes would have an impact on the development of real
applications as much as Web standards will be adopted and
promoted. The main Web players, including W3C, are pushing

in this direction by promoting standards and defining on-
tologies and vocabularies. To this purpose, the Linked Data
concept and relative technologies were formalized for the first
time in [9]. Regarding Linked Data dynamics, [10] provides
a deep insight about aspects like discovery, granularity level,
description of changes, detection algorithms and notification
mechanisms. To the best of our knowledge, a first attempt
to use SPARQL as the subscription language is presented in
[25]. Other research works focusing on using SPARQL as a
subscription language include the one by Groppe et al. [26],
EventCloud [27], [28],INSTANS [13], [14], semantic event
notification s ervice (SENS) [29], [30], [15], [31] a nd Smart-
M3 [32] (i.e., Suomalainen et al. [33] proposed a secure broker,
called RIBS. Galov et al. [34] developed the CuteSIB, focusing
on extensibility, dependability and portability. Viola et al. [17]
proposed pySIB, targeted especially at resource-constrained
computing platforms).

Other early SPARQL-based RDF stream processing ap-
proaches, including continuous SPARQL (C-SPARQL) [35],
SPARQLStream [36], event processing SPARQL (EP-
SPARQL) [37], continuous query evaluation over Linked Data
streams (CQELS) [38] and Sparkwave [39], propose to extend
SPARQL with time-windows. A time-window specifies the
triples for which the query is executed; it can be defined
either by the number of triples (last triples from the stream) or
the time (e.g., the last 15 minutes). The window specification
defines also how often the window is updated and consequently
the frequency of query evaluation.

There are four notable aspects that differentiate SEPA from a
window-based approach. First, the SEPA does not use windows
to define the triples for which the query is evaluated (i.e., we
concentrate on real-time evaluation of events within the whole
system). Second, SEPA fully supports SPARQL 1.1 both to
generate (i.e., update) and subscribe (i.e., query) to events, and
it is based on the W3C SPARQL 1.1 Protocol (i.e., it would
be transparent to clients performing SPARQL 1.1 Updates and
SPARQL 1.1 Queries). Third, instead of processing individual
RDF triples coming from specific RDF streams, SEPA is based
on an interaction model where any agent can trigger events
by modifying the context of the system with SPARQL 1.1
Update Language operations. Fourth, the SEPA detects how the
results have changed from the initial query results, whereas the
window-based approaches provide the whole result set when-
ever it is modified in any way. Because of these fundamental
differences in the SPARQL event processing approaches, also
the implementations of the event processing mechanisms and
algorithms are totally different, as detailed in Section IV.
Last but not least, security plays also a crucial role in
IoT systems. For example, the approach presented in [16]
focused on providing a secure publish-subscribe mechanism
for the management of complex supply chains in enterprises
based on RDF. The solution proposed employed the same
authorization framework used by SEPA (i.e., the OAuth 2.0
Authorization Framework (https://tools.ietf.org/html/rfc6749),
suggesting also other solutions, like WebID (https://www.
w3.org/2005/Incubator/webid/spec/). They adopted WebSub
(https://www.w3.org/TR/2018/REC-websub-20180123/) (for-
merly PubSubHubBub) as a mean for conveying notifications;
the same notification mechanism is also mentioned in [40].

Fig. 1. The (abstract) IoT architecture for data-reuse and integration proposed
in this paper

III. ARCHITECTURE

Figure 1 depicts the proposed IoT architecture; we focus
here on the logic data flow, while details on the implementation
of the single components are provided in Section IV. The
proposed architecture includes three main layers: the connec-
tivity layer, the data interoperability layer, and the software
service layer. The connectivity layer is composed of a set
of so-called network silos, i.e. network architectures that are
specific of a sensing/network technology. Each silo might
include sensing edge devices, gateways and public/proprietary
clouds or local repositories, where the sensing data are stored
via any communication link. For instance, a LoraWAN silo
includes: wireless sensors equipped with LoRa transceivers,
LoRaWAN gateways, and the Network/Application servers
(e.g. provided by the Things Network). Similarly, a short-
range LR-PAN silo might include: 802.15.4/6LoWPAN sens-
ing devices, a 802.15.4/6LoWPAN gateway and a local/remote
DataBase Management System (DBMS). All the network silos
are assumed to work independently, i.e. no data exchange
occurs among them. The data integration among the available
silos is performed on the semantic end-point (at the interop-
erability layer): this latter works as a semantic repository, and
implements a publish-subscribe paradigm to allow sensor data
access from the upper layer applications. In the semantic end-
point, data are stored as RDF triples, according to a domain-
specific ontology. Since the sensing data gathered by the edge-
devices might have different file formats, a Semantic Adapter
is needed for each silos, implementing the data conversion into
the target RDF. The data transfer from each silo toward the
adapter (i.e. the dotted line in Figure 1) is managed through
any IoT protocol (e.g. MQTT, CoAP, HTTP, ...). Finally, the
applications operating on the session layer can retrieve sensor
data by interacting with the semantic end-point; the same data
can be made available to multiple applications (data-reuse),
moreover, the same application can consume sensor data from
multiple silos in a seamless way, i.e. abstracting from the data
source and from the original data format. In Fig 1, we
distinguish between two kinds of applications at the service
layer, i.e.: (i) front-end services, mainly offering data-access
to users or to external applications, and (ii) back-end services

implementing further data processing, e.g employing semantic
reasoning for autonomic, context-aware behaviours.

Fig. 2. The concrete IoT architecture currently implemented at
ARCES@UNIBO

IV. PROOF-OF-CONCEPT IMPLEMENTATION AT

ARCES@UNIBO

Fig 2 depicts the concrete version of the IoT ar-chitecture
proposed in this paper, as currently deployed at
ARCES@DISI. The connectivity layer is composed of three
wireless sensor networks, all operating in the SubGHz bands,
i.e. a Dash-7 network, a 6LoWPAN/Spirit network, and a
LoRA network. Each sensor node measures a context-specific
characteristic of the environment where it is placed, as better
explained in the following. The sensor data are hence trans-
ferred (via the MQTT protocol) to the corresponding Adapter,
where they are converted into semantic RDF triples. To this
aim, the W3C Semantic Sensor Network ontology is used. The
RDF triples are hence managed by the SEPA tool, which plays
a twofold role: (i) it serves as a semantic broker between the
connectivity and service layers, i.e. it allows the service
application to be notified when any change is observed on the
sensing data (details are provided below) and a (ii) i t can
work as a semantic cache of the sensor data gathered by the
network silos. At service layer, two front-end applications have
been implemented so far: i.e. (i) Sensor Dashboard, a Web
application providing a graphical visualization of the sensor
data (for each silo) in both the spatial and temporal domain;
and (ii) Sensor Speak, an Amazon Alexa application, allowing
to read the sensor values and to tune the current network
configuration through a vocal interface. The actual
implementation of SensorSpeak does not involve the utilization
of the SEPA, i.e. the application is retrieving data directly from
the ThingSpeak cloud (https://thingspeak.com) (dotted line in
Fig 2); we are currently implementing the missing link.
Similarly, no back-end services are currently available, but we
plan to integrate them as future work. In the following Sec-
tions, we provide details for each of the component mentioned
so far. Scalability issues are discussed in Section IV-D.

TABLE I. DAS7 WSAN NETWORK (433 MHZ). AVG. CURRENT VALUES FOR INDOOR SMART-HOME APPLICATIONS

Node type #Nodes Communication Mode TR Avg. current Beacon Mode Avg. current R/R Mode
Temperature sensor 3 beacon 10 s 14 μA NA
Water flooding sensor 1 beacon 10 s 14 μA NA
Actuator 2 request/ ≥ 5 s NA 2mA (R/R phase)
(brushed DC motor) response 35 μA (stand-by)

(a) (b) (c)

Fig. 3. The 6LoWPAN installation is depicted in Figure 3(a). Average network Goodput and Delay for different hop length and traffic loads are reported in
Figure 3(b) and Figure 3(c), respectively

A. Wireless Sensor Platforms

1) Dash-7 Network: The prototype wireless sensor and
actuator network (WSAN) based on DASH7 [6] protocol
performs two tasks representative of indoor smart-home ap-
plications, i.e controlling radiator head distribution and water
flooding sensing [41][42]. The network architecture has a
star structure, where all the nodes communicate with the
DASH7 gateway. The nodes are composed of a low-power
microcontroller (STM32L1), a sub-GHz radio for data com-
munication (SPIRIT1) and sensor and/or actuator devices. A
real-time Operating System runs on STM32L1 microcontroller
and manages the DASH7 protocol stack, the radio activity and
the sensors and actuators operations. The smart heating control
system is composed of three temperature-sensing nodes and
one actuating node that drives a brushed DC motor connected
to a radiator valve. In the second application, sensing is done
measuring impedance changes between two electrodes in order
to detect the presence of water whereas one actuating node
drives a brushed DC motor connected to the water supply
system to cut off water flux. DASH7 communication protocol
is a low-power open source WSAN protocol which operates
in the 433 MHz (the one chosen in the prototype WSAN
network), 868 MHz and 915 MHz unlicensed ISM band. It
can achieve a data rate of 200 kbps and an outdoor range
up to 2 km. It supports two communication models that can
coexist in the same network and in the same node: a pull model
for a query method (request-response) and a push model for
data transfer initiated from the nodes (beaconing). In request-
response mode the communication between the nodes and the
gateway is bidirectional but the nodes can send data only
after a gateway request. In this communication mode, the node
periodically wakes-up from a sleep state to an active one to
perform RX scan phases needed for network synchronization
(stand-by phase). In the proposed implementation, a latency

equal to 5 s has been chosen as reasonable both for the smart
heating application and for the water flooding control. This
results in an average current equal to 35 μA. An average
current of 2 mA is absorbed during a 5 s data request-
response (R/R) phase. In beaconing mode the node periodically
initiates a communication sending a message to the gateway
with a programmable frequency while for the rest of the
time it remains in a sleep state. This involves lower average
current consumption than the request-response method, but
the communication is unidirectional which is not suitable for
applications that need data or commands sent on request.
On the contrary, this communication model is necessary for
sending alarm (e.g. flooding sensor nodes) or periodic alive
messages.
A summary of the DASH7-based network is given in Ta-
ble I. In Table, TR is the period between two successive
data/command transmissions.

2) 6LoWPAN Network: 6LoWPAN (IPv6 over Low-Power
Wireless Personal Area Networks) [7] [43] is a recent set
of IETF standards enabling IPv6 networking over low-power
devices with limited processing capabilities. This is achieved
by means of lossy compression mechanisms reducing the
IPv6 packet header, in order to meet the maximum frame
size imposed by some MAC/PHY wireless technologies (e.g.
the IEEE 802.15.4). Among others, the 6LoWPAN standard
defines a default multi-hop network architecture, composed of
hosts, i.e. edge sensing devices, relays, i.e. forwarding nodes,
and edge routers that connects the 6LoWPAN network to the
Internet. The 6LoWPAN network currently implemented is
composed of five edge/relay nodes and one edge router, all
located within the first floor of the ARCES building in Via
Pepoli (Bologna). Each host device is constituted by a Nucleo
ST32F401RE board, equipped with a SPIRIT X-NUCLEO-
IDS01A4 radio transceiver operating on the 868 MhZ ISM

TABLE II. LORAWAN WSN NETWORK (868 MHZ). AVG. CURRENT VALUES FOR OUTDOOR APPLICATIONS

Node type #Nodes Communication Mode. TR Avg. current
Soil moisture sensor 5 Beacon (class A type) 30 min 10.5 μA

band, and some environmental sensors (temperature, humidity,
etc); the edge router is also equipped with a Wi-Fi module,
through which it can connect to the Internet. Each device is
located in a different room, and connects to the router through
a direct or a multi-hop connection, as shown in Fig 3(a);
the RPL protocol is used as routing scheme, in mesh-under
mode [44].

Fig. 4. LoRa device used to measure the soil moisture

Fig 3(b) and 3(c) depict some performance metrics of the
installed 6LoWPAN network. More specifically, Figure 3(b)
shows the network goodput, when varying the packet load
produced by an edge device; each packet has a constant size of
65 bytes. Different curves are drawn based on the hop distance
between the sender device and the edge router. As expected, the
throughput increases with the network load till the saturation
point is achieved; however, the hop count has a considerable
impact on the system performance. Similar behaviours can be
observed on the delay curves in Fig 3(c).

3) LoRa Network: An outdoor prototype wireless sensor
network (WSN) based on LoRaWAN protocol [8] has been de-
signed to measure the soil moisture. The nodes are composed
of STM32-Nucleo board (based on low-power microcontroller
STM32L0) equipped with a shield with LoRa radio (SX1272)

and a soil moisture sensor based on impedance measurement.
The radio operates in the 868 MHz unlicensed ISM band.
The network is composed of five battery-powered nodes and
data transfer is initiated from the nodes (LoRaWAN class A
type nodes). The gateway is placed inside a building and the
nodes are placed outdoor in a range of about 20-30 meters. A
summary of the LoRa-based network is given in Table II. TR =
30 min is the period between two successive data acquisition.
Fig 4 depicts one of the LoRa device used to measure the
soil moisture.

B. The SPARQL Event Processing Architecture (SEPA)

The interoperability layer has been developed on top
of the SPARQL Event Processing Architecture (SEPA)
(https://github.com/arces-wot/SEPA, http://mml.arces.unibo.it/
TR/sepa.html) [18]. SEPA is the result of researches in smart
spaces [20] and Internet of Things technologies [19] and
it has been designed to support the development of inter-
operable, context aware, secure and distributed Web based
applications and services. In particular, as depicted in Fig-
ure 5, SEPA is built on top of Linked Data [45] tech-
nologies (https://www.w3.org/DesignIssues/LinkedData.html)
and standards like URI (https://tools.ietf.org/html/rfc3986),
HTTP (https://tools.ietf.org/html/rfc2616), RDF (https://www.
w3.org/TR/rdf11-concepts/), SPARQL (https://www.w3.org/
TR/sparql11-overview/), JSON-LD (https://json-ld.org/spec/
latest/json-ld/), Linked Data Platform (https://www.w3.org/
TR/ldp/) and Linked Data Notifications (https://www.w3.
org/TR/ldn/) and it extends the SPARQL 1.1 protocol
(https://www.w3.org/TR/sparql11-protocol/) with the SPARQL
1.1 Secure Event (SE) protocol (http://mml.arces.unibo.it/
TR/sparql11-se-protocol.html) offering a publish-subscribe
mechanism to its clients. The SPARQL 1.1 SE protocol
transparently conveys SPARQL 1.1 Query (https://www.w3.
org/TR/sparql11-query/) and Update (https://www.w3.org/TR/
sparql11-update/) so that a generic SPARQL protocol client
can interact with a SEPA broker like with a common
SPARQL protocol service (also knows as SPARQL endpoint).
Furthermore, the SPARQL 1.1 SE protocol introduces the
SPARQL 1.1 Subscribe as a language to describe subscrip-
tion requests and notifications (http://mml.arces.unibo.it/TR/
sparql11-subscribe.html). A subscription request acts as a
persistent SPARQL 1.1 Query and the subscriber is notified
of any changes in the query results due to any incoming
update. SEPA also introduces an application design pattern
(http://mml.arces.unibo.it/TR/jsap.html) where each client can
assume one of the following roles: producer (i.e., it acts
as a publisher), consumer (i.e., it acts as a subscriber) and
aggregator (i.e., it publishes aggregated data driven by the
received notifications). Eventually, SEPA is built around a
security layer (e.g.,TLS https://tools.ietf.org/html/rfc5246) and
it allows clients authentication by means of JSON Web Tokens
(https://tools.ietf.org/html/rfc7519).

Fig. 5. SEPA enables the development of Dynamic Linked Data applications

Fig. 6. The SEPA based sensor dashboard allows to visualize heterogeneous
data in real time (live data monitor) and to plot the evolution over a time
interval (historical data visualizer)

C. Smart Services

1) Sensor Dashboard: The sensor dashboard service pro-
vides two main functions (see Fig 6): the real time mon-itoring
of data and the plotting of data trends within a time interval.
The proof-of-concept implementation allows to gather data
from a generic MQTT broker. An MQTT broker can be
interfaced with the SEPA broker through an adapter (seeMQTT
Smartifier in Figure 6). As an example two different MQTT
brokers have been considered to validate the approach: the
ARCES MQTT broker who provides the temperatures of a set of
servers used by ARCES (e.g., CPU cores and HDD) and
environmental sensors (e.g., temperature and hu-midity of the
server rooms) and the The Things Network MQTT broker used
to collect data from the LoRa networks. Data collected by the
MQTT Smartifiers are published on a SEPA broker according
to the W3C Semantic Sensor Network ontology (https://
www.w3.org/TR/vocab-ssn/). The ontology has been extended
by adding two properties: one to link an observation with the
corresponding MQTT topic (e.g., arces-
monitor:hasMqttTopic) and one to link an observation with
its historical data (e.g., arces-monitor:refersTo). Timestamps

are expressed according to the W3C Time ontology in OWL
(https://www.w3.org/TR/owl-time/). Data are contextualized
according to Schema.org. In particular, the observations are
linked to their physical location (e.g., schema:Place). An
overview of the adopted ontology is drawn in Fig 7.

Fig. 7. The ontology of the IoT dashboard service

Fig. 8. Temperature with air conditioner off in a closed lab in summertime:
somebody enters at around 11:30

The underneath Fig 8 shows the temperature of a
laboratory (located at the ARCES building, in Bologna) in a
day in August. It clearly shows that the air conditioning system
was off or down, and that the windows where closed during
that day. It is also interesting to highlight that -through the
sensor data monitoring- we can infer that somebody entered
the laboratory at around 11:30 and opened a window, as the
temperature quite rapidly dropped from 32 to 30 degrees (i.e,.
the outdoor temperature). The temperature sensor acts as a
presence sensor in this case, very relevant at summertime,
when the lab is supposed to be closed.

Fig 9 shows the temperature in two ARCES laboratories on
July 30, when the outdoor temperature was approximately 32 C
and the air conditioning system was down. The figure shows
that, while the SEHM laboratory (above, brown profile) is kept
closed, with all its windows closed, somebody entered in the ST
office at around 8:00 am, and opened a window. Then the air
conditioning system was repaired at 10:30 and it took
approximately 3 hours for the temperature to stabilize at
around 28C. The 44C peak in the SEHM lab is simply

due to the location of the sensor, i.e. the peak is due to the
sun, filtering through the opening of two tends and hitting the
sensor at mid afternoon.

Fig. 9. Temperature in two labs of the same building in a summer day

2) SensorSpeak service: Humans expect to access data in
the most natural and unobtrusive way, and, in many circum-
stances, the human voice is the appropriate media for this
User-Environment Interaction (UEI). Many voice based smart
personal assistants already exist on the market. They leverage
on speech recognition, voice synthesis and artificial Intelli-
gence technologies and they are mostly provided by big players
like Apple (e.g. Siri), Microsoft (e.g. Cortana) Google (e.g.
Google Assistant), and Amazon (e.g. Alexa). In this research,
Amazon Alexa was selected and integrated in the architecture
of the voice service, depicted in Figure 10. This latter refines
the general architecture of Fig 2, however introducing a
fundamental difference, since the SensorSpeak application has
not been integrated yet with the SEPA platform, and hence with
the interoperability layer. The integration is currenly under
development. As a result, at present, ThingSpeak is the cloud
storage platform where all data collected by the heterogeneous
networks are conveyed through MQTT messages. SensorSpeak
main contribution is to introduce the man in the loop via
voice commands: users, through their interaction with Alexa,
monitor and control all devices reflected in the ThingS-
peak cloud. This interaction is achieved by implementing an
Alexa skill (https://developer.amazon.com/docs/ask-overviews/
build-skills-with-the-alexa-skills-kit.html) which maps com-
mands invoked by the users to specific requests to ThingSpeak.
Such skill is implemented in the blocks Alexa Service and
AWS Lambda, and it consists essentially of the following two
components:

1) A Voice interaction model, defining the features of-
fered by the skill (intents) and all the related sen-
tences or keywords (utterances).

2) A Lambda Function, which is the logic driving the
Amazon Lambda Service which handles all user
requests and interacts with the cloud using a RESTful
API.

With this set up, numerous functions are performed through
voice commands, such as adding or removing devices from
the cloud, listing all devices that meet a particular property,
getting a specific measurement or a measurement aggregated
by multiple sensors, turning on and off devices and setting
their reconfigurable parameters.

Fig. 10. Current implementation of the SensorSpeak front-end service

As shown in the demo (https://www.youtube.com/watch?
v=EvYwDVXVWI8) (a screenshot is reported in Fig 11), the
proposed solution allows the interaction with individual sensors
(e.g. asking for the temperature in a specific lab), as well as the
simultaneous interaction with many of them (e.g. turning off all
devices in the cloud). This feature allows Sensor-Speak to be
used in many contexts where sensor networks are deployed,
both indoor and outdoor. With SensorSpeak there are no
restrictions on the types of devices included in the framework:
the only requirement is that the device must be connected to the
ThingSpeak cloud through an active Internet connection. The
procedure to add a new device starts with the voice command
Add new device: Alexa reacts asking for various parameters
regarding the new sensor to be connected to the cloud. At the
end of the dialogue, a virtual entity is created in the cloud with
an associated ID. Such ID is then used by the real device to
properly connect to its own virtual entity: we remark that this is
the only information required to integrate the sensor in the
voice system. From the users point of view, it is not practical to
identify the devices by means of a numeric ID consisting of
several digits. For this reason, it is easier and more intuitive to
associate names to the various devices. Such name is defined by
the user during the process of adding the new sensor and must
be unique within the cloud to avoid any ambiguity. The
mapping between name and ID of the device is performed by
several RESTful API provided by ThingSpeak and it is hidden
to the user. Comparing Fig 2 and 10, the voice service does not
share its data model with the SEPA that supports the
cooperative automation services enabled by the proposed
macroarchitecture. Consequently, once a new sensor is added to
the edge side of the ecosystem, this needs to be made visible
independently to all data models of the interoperability layer
shown in Figure 2. Furthermore, the proposed voice service is
able to interact with the private clouds and stores shown in
Figure 10, but it is not able to interact in SPARQL with the
semantic end point, or, in other words, it does not support
speech2sparql transformations yet. By providing this capability,
a major and ultimate step towards the data-service convergence
will be taken: seamless interaction both with the environment
and with context dependent semantic services shaped according
to unanticipated patterns will be enabled from a single voice
port.

Fig. 11. SensorSpeak service in action

D. Scalability Issues

The need to scale up is a major requirement of the IoT
domain, which relies on software infrastructures that will
be asked to manage a huge number of data sources and to
transport a massive quantity of data and process it efficiently.
To ensure that the interoperability solution proposed in this
paper will not be limited by scalability issues and could be
effectively adopted in real applications belonging to different
vertical domains, the next step of our research will consist in
the integration of an industrial platform within our platform.
In this respect, an interesting option is the Eclipse Kapua
IoT platform (https://www.eclipse.org/kapua/index.php). This
platform provides all services required for the management of
IoT gateways and devices in the field, including configuration
management, application life-cycle management and remote
access. It also connects the data collected by field-deployed
devices to enterprise applications and analytics, leveraging
reliable and open protocols. With respect to the architecture
depicted in Fig 2, the platform could potentially act both (i) as
a standard IoT cloud platform, providing an industrial-grade
solution for data collection, storage and first level analysis,
and (ii) as an integration platform that complements SEPA
capabilities, providing advanced management features for the
entire IoT ecosystem (remote control, device management,
diagnostics, lifecycle support, etc.). This cloud platform fo-
cuses also on the inclusion of the enterprise level, providing
integration flows that connect premises application, services,
processes and data. These services allow to see the IoT
infrastructure as any other enterprise application: the network
of distributed IoT devices and sensors is one extremity of the
integration flow, while the enterprise application is the other
extremity. In this way the general requirements of a cloud
computing platform, i.e. the ability to collect, control, transport
and analyze data coming from the field, together with the
functionalities required to deploy and maintain IoT solutions,
will be achieved.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we addressed data-reuse and interoperability
issues as the key for overcoming the current IoT fragmentation
and for opening the way to new IoT applications and market
opportunities. We presented an abstract reference application,
which decouples the sensor data producers from the data
consumers, thanks to the introduction of a semantic end-point.

Then, we discussed its implementation within a a framework
-currently installed at the ARCES centre of the University
of Bologna, Italy- resulting from the interplay of several
research projects and from the activity of several research
teams. More specifically, the research team in ARCES (leaded
by prof. Tullio Salmon Cinotti) is active on fields on data
interoperability and semantic architecture for the IoT, and
contributed to the development of the SEPA tool and of
the dashboard. The research team in DISI (leaded by prof.
Marco Di Felice and Luciano Bononi) is working on wireless
sensor networks and mobile application, and contributed to
the deployment and evaluation of the 6LowPAN network
and of the SensorSpeak application. The research team at
the DEI@UNIBO department (team leaded by prof. Eleonora
Franchi Scarselli) collaborates with the STMicroelectronics on
sensor design, and, in this paper, worked on the LoRa network
deployment and analysis. Finally, the Eurotech group provided
valuable insights on how to extend the current framework with
an industrial IoT vision. We remark that the framework is a
research result, and a habitat for new studies at the same time.
With respect to the Fig 2, there are still several challenges that
need to be faced in near future works, both in terms of novel
software contributions, integration with industrial IoT
platforms, and performance analysis. First of all, as already
mentioned in the previous Section, the integration of Sensor-
Speak with the SEPA has to be completed. Second, we plan
to devise context-aware, back-end services providing semantic
reasoning mechanisms, in order to infer new knowledge about
the environment from the triples available in the SEPA, and
to decide the proper actions to perform according to users’
defined policies. Regarding the integration with industrial
IoT platforms, the adoption of Eclipse Kapua will provide a
solid baseline to develop an industrial-grade interoperability
solution, capable to ensure scalability, efficiency, reliability,
security and enterprise level seamless integration. Regarding
the analysis, an extensive performance evaluation of the pro-
posed system must be conducted, in order to identify possible
bottlenecks, quantify the overhead introduced by the SEPA,
and test the scalability when increasing the number of devices
connected, and the applications supported.

ACKNOWLEDGMENT

Part of this project was funded by the Electronic Com-
ponent Systems for European Leadership Joint Undertaking
under grant agreement No 737434 (CONNECT). This Joint
Undertaking receives support from the European Unions Hori-
zon 2020 research and innovation programme and Germany,
Slovakia, Netherlands, Spain, Italy. Moreover, part of the
project was supported by the AlmaIdea Senior Project ”Bee-
Drones: Environmental monitoring systems based on ultra
low-power sensors and unmanned aerial vehicles”. Finally,
the authors would like to thank Dr. Giovanni Modica and
Dr. Giovanni Pisana for their valuable contribution in the
design and implementation of the 6LoWPAN sensor network
platform.

REFERENCES

[1] C. Perera, A. Zaslavsky, P. Christen and D. Georgakopoulos Context
Aware Computing for The Internet of Things: A Survey IEEE Commu-
nications Surveys & Tutorials, 16(1), pp. 414-454, 2014

[2] FLEXIENCY H2020 Project. http://www.flexiciency-h2020.eu

[3] P. Corista, D. Ferreira, J. Giao, J. Sarraipa and R. J. Gonalves. An IoT
Agriculture System Using FIWARE. Proc. of IEEE ICE/ITMC, Stuttgart,
Germany, 2018.

[4] A. Akbar, F. Carrez, K. Moessner, J. Sancho and J. Rico. Context-
aware stream processing for distributed IoT applications. Proc. of IEEE
WF-IoT, Milan, Italy, 2015.

[5] McKInsey Global Institute. The Internet of Things: Mapping the value
beyond the hype. Executive Summary. 2015.

[6] DASH7 Alliance Protocol Specification v1.1. http://www.dash7-
alliance.org/product/d7ap1-1/.

[7] IETF RFC 4919. IPv6 over Low-Power Wireless Personal Area Networks
(6LoWPANs): Overview, Assumptions, Problem Statement, and Goals.
https://tools.ietf.org/html/rfc4919.

[8] LoRa Alliance. https://lora-alliance.org/

[9] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data—The Story So Far.
Int. J. Semant. Web Inf. Syst. 5, 1–22, 2009..

[10] J. Umbrich, B. Villazön-Terrazas and M. Hausenblas. Dataset Dynamics
Compendium: A Comparative Study. Proc. of the First International
Conference on Consuming Linked Data, Shanghai, China, 2010.

[11] Capadisli, S.; Guy, A.; Lange, C.; Auer, S.; Sambra, A.; Berners-Lee, T.
Linked Data Notifications: A Resource-Centric Communication Protocol.
In ESWC 2017 - The Semantic Web, Switzerland, 2017.

[12] Bhide, M.; Deolasee, P.; Katkar, A.; Panchbudhe, A.; Ramamritham,
K.; Shenoy, P. Adaptive push-pull: Disseminating dynamic Web data.
IEEE Trans. Comput., 51, 652–668, 2002.

[13] Abdullah, H.; Rinne, M.; Törmä, S.; Nuutila, E. Efficient Matching of
SPARQL Subscriptions Using Rete. In Prof. of the 27th Annual ACM
Symposium on Applied Computing, Trento, Italy, 26–30 March 2012.

[14] Rinne, M.; Abdullah, H.; Törmä, S.; Nuutila, E. Processing Hetero-
geneous RDF Events with Standing SPARQL Update Rules. In On the
Move to Meaningful Internet Systems: OTM 2012.

[15] Murth, M.; Kühn, E. A heuristics framework for semantic subscription
processing. In The Semantic Web: Research and Applications, 2009,
pp. 96–110.

[16] Frommhold, M.; Arndt, N.; Tramp, S.; Petersen, N. Publish and
Subscribe for RDF in Enterprise Value Networks. In Proc. of the
Workshop on Linked Data on the Web, Montreal, Canada, 11–15 April
2016.

[17] Viola, F.; D’Elia, A.; Roffia, L.; Salmon Cinotti, T. A modular
lightweight implementation of the Smart-M3 semantic information bro-
ker. In Proc. of the 2016 18th Conference of Open Innovations
Association and Seminar on Information Security and Protection of
Information Technology (FRUCT-ISPIT), St. Petersburg, Russia, 18–22
April 2016.

[18] Roffia, L.; Azzoni, P.; Aguzzi, C.; Viola, F.; Antoniazzi, F.; Salmon
Cinotti, T. Dynamic Linked Data: A SPARQL Event Processing Archi-
tecture. Future Internet 2018, 10, 36.

[19] L. Roffia et al., ”A Semantic Publish-Subscribe Architecture for the
Internet of Things,” in IEEE Internet of Things Journal, vol. 3, no. 6,
pp. 1274-1296, Dec. 2016.

[20] Morandi, F.; Roffia, L.; DElia, A.; Vergari, F.; Salmon Cinotti, T.
RedSib: A Smart-M3 semantic information broker implementation. In
Proc. of the 12th FRUCT Conference, Oulu, Finland, 59 November 2012;
pp. 8698.

[21] Le-phuoc, D.; Parreira, J.X.; Hauswirth, M. Linked Stream Data
Processing. In Proc. of the Reasoning Web. Semantic Technologies
for Advanced Query Answering: 8th International Summer School 2012,
Vienna, Austria, 3–8 September 2012, pp. 245–289.

[22] Della Valle, E.; Ceri, S.; Harmelen, F.V.; Fensel, D. It’s a Streaming
World! Reasoning upon Rapidly Changing Information. IEEE Intell.
Syst., 24, 83–89, 2009.

[23] Eugster, P.T.; Felber, P.A.; Guerraoui, R.; Kermarrec, A.M. The many
faces of publish/subscribe. ACM Comput. Surv., 35, 114–131, 2003.

[24] Dell’Aglio, D.; Le Phuoc, D.; Le-Tuan, A.; Ali, M.; Calbimonte, J.P.
On a Web of data streams. In Proc. of the ISWC2017 workshop on
Decentralizing the Semantic Web, Vienna, Austria, 21–22 October 2017.

[25] Skovronski, J. An Ontology-Based Publish-Subscribe Framework.
Master’s Thesis, State University of New York at Binghamton, Vestal,
NY, USA, 2006.

[26] Groppe, S.; Groppe, J.; Kukulenz, D.; Linnemann, V. A SPARQL
Engine for Streaming RDF Data. In Proc. of the 2007 3rd International

IEEE Conference on Signal-Image Technologies and Internet-Based
System, Shanghai, China, 16–18 December 2007; pp. 167–174.

[27] Pellegrino, L.; Baude, F.; Alshabani, I. Towards a scalable cloud- based
RDF storage offering a pub/sub query service. In Proc. of the 3rd
International Conference on Cloud Computing and GRIDs Virtualization,
Nice, France, 22–27 July 2012.

[28] Pellegrino, L.; Huet, F.; Baude, F.; Alshabani, A. A Distributed
Publish/Subscribe System for RDF Data. In Data Management in Cloud,
Grid and P2P Systems, 2013; pp. 39–50.

[29] Murth, M. A Semantic Event Notification Service for Knowledge-
Driven Coordination. In Proc. of the1st Int’l. workshop on emergent
semantics and cooperation in open systems (ESTEEM), cooperation with
the 2nd Int’l. Conf. on Distributed Event-Based Systems (DEBS 2008),
Rome, Italy, 1 July 2008.

[30] Murth, M.; Kühn, E. Knowledge-based coordination with a reliable
semantic subscription mechanism. In Proc. of the 2009 ACM Symposium
on Applied Computing, Honolulu, HI, USA, 8–12 March 2009.

[31] Murth, M.; Kühn, E. Knowledge-based interaction patterns for semantic
spaces. In Proc. of the 4th International Conference on Complex, Intel-
ligent and Software Intensive Systems, Krakow, Poland, 15–18 February
2010; pp. 1036–1043.

[32] Honkola, J.; Laine, H.; Brown, R.; Tyrkko, O. Smart-M3 information
sharing platform. In Proc. of the IEEE symposium on Computers and
Communications, Riccione, Italy, 22–25 June 2010; pp. 1041–1046.

[33] Suomalainen, J.; Hyttinen, P.; Tarvainen, P. Secure Information Sharing
Between Heterogeneous Embedded Devices. In Proc. of the Fourth
European Conference on Software Architecture, Copenhagen, Denmark,
23–26 August 2010.

[34] Galov, I.V.; Lomov, A.A.; Korzun, D.G. Design of semantic information
broker for localized computing environments in the internet of things.
In Proc. of the 2015 17th Conference of Open Innovations Association
(FRUCT), Yaroslavl, Russia, 20–24 April 2015; pp. 36–43.

[35] Barbieri, D.F.; Braga, D.; Ceri, S.; Grossniklaus, M. An Execution
Environment for C-SPARQL Queries. In Proc. of the 13th International
Conference on Extending Database Technology, Lausanne, Switzerland,
22–26 March 2010.

[36] Calbimonte, J.P.; Corcho, O.; Gray, A.J.G. Enabling Ontology-Based
Access to Streaming Data Sources. In The Semantic Web—ISWC 2010;
pp. 96–111.

[37] Anicic, D.; Fodor, P.; Rudolph, S.; Stojanovic, N. EP-SPARQL: A
Unified Language for Event Processing and Stream Reasoning. In Proc.
of the 20th International Conference on World Wide Web, Hyderabad,
India, 28 March–1April 2011.

[38] Le-Phuoc, D.; Dao-Tran, M.; Xavier Parreira, J.; Hauswirth, M. A
Native and Adaptive Approach for Unified Processing of Linked Streams
and Linked Data. In The Semantic Web—ISWC 2011, pp. 370–388.

[39] Komazec, S.; Cerri, D.; Fensel, D. Sparkwave: Continuous Schema-
enhanced Pattern Matching over RDF Data Streams. In Proc. of the
6th ACM International Conference on Distributed Event-Based Systems,
Berlin, Germany, 16–20 July 2012.

[40] Passant, A.; Mendes, P.N. SparqlPuSH: Proactive Notification of Data
Updates in RDF Stores Using PubSubHubbub. In Proc. of the Sixth
Workshop on Scripting and Development for the Semantic Web (ESWC
2010), Crete, Greece, 31 May 2010.

[41] A. D’Elia, L. Perilli, F. Viola, L. Roffia, F. Antoniazzi, R. Canegallo,
T. Salmon Cinotti. A self-powered WSAN for energy efficient heat
distribution. Proc. of IEEE SAS, Catania, Italy, 2016. (ESWC 2010),
Crete, Greece, 31 May2010; Volume 699. Applications Symposium
(SAS), Catania, 2016, pp. 1-6.

[42] L. Perilli et al. Wake-up radio impact in self-sustainability of sebsir
and actuator wireless nodes in smart-home applications. to appear in
Proc. of IGSC, Pittsburgh, USA, 2018.

[43] C. Bormann and Z. Shelby. 6LoWPAN: The Wireless Embedded
Internet. Wiley Press. 2009.

[44] IETF RFC 6550. RPL: IPv6 Routing Protocol for Low-Power and
Lossy Networks. https://tools.ietf.org/html/rfc6550.

[45] Bizer, C.; Heath, T.; Berners-Lee, T. Linked DataThe Story So Far. Int.
J. Semant. Web Inf. Syst. 2009, 5, 122.

