

Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

Taking advantage from phenotype variability in a local animal genetic resource: identification of genomic regions associated with the hairless phenotype in Casertana pigs

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:

Schiavo, G., Bertolini, F., Utzeri, V., Ribani, A., Geraci, C., Santoro, L., et al. (2018). Taking advantage from phenotype variability in a local animal genetic resource: identification of genomic regions associated with the hairless phenotype in Casertana pigs. ANIMAL GENETICS, 49(4), 321-325 [10.1111/age.12665].

Availability:

This version is available at: https://hdl.handle.net/11585/660985 since: 2019-02-06

Published:

DOI: http://doi.org/10.1111/age.12665

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/). When citing, please refer to the published version.

(Article begins on next page)

- 1 This is the post-peer reviewed version of the following article: "Taking advantage from phenotype
- 2 variability in a local animal genetic resource: identification of genomic regions associated with the
- 3 hairless phenotype in Casertana pigs" by Giuseppina Schiavo, Francesca Bertolini, Valerio Joe
- 4 Utzeri, Anisa Ribani, Claudia Geraci, Laura Santoro, Cristina Óvilo, Ana I. Fernández, Maurizio
- 5 Gallo and Luca Fontanesi, which has been published in final form at
- 6 <u>https://doi.org/10.1111/age.12665</u>. *This article may be used for non-commercial purposes in*
- 7 accordance with Wiley Terms and Conditions for Self-Archiving."

	Г	1
	r	í
	L	1

10 SHORT COMMUNICATION

1	1
T	T

12	Taking advantage from phenotype variability in a local animal genetic resource: identification
13	of genomic regions associated with the hairless phenotype in Casertana pigs
14	
15	Giuseppina Schiavo ^{1,*} , Francesca Bertolini ^{1,2;*} , Valerio Joe Utzeri ¹ , Anisa Ribani ¹ , Claudia Geraci ¹ ,
16	Laura Santoro ³ , Cristina Óvilo ⁴ , Ana I. Fernández ⁴ , Maurizio Gallo ⁵ and Luca Fontanesi ¹
17	
18	¹ Department of Agricultural and Food Sciences, Division of Animal Sciences, University of
19	Bologna, Viale Fanin 46, 40127 Bologna, Italy
20	² Department of Animal Science, Iowa State University, 2255 Kildee Hall, 50011 Ames, Iowa,
21	USA
22	³ ConSDABI - National Focal Point Italiano FAO, Contrada Piano Cappelle, 82100 Benevento,
23	Italy
24	⁴ Departamento de Mejora Genética Animal, Instituto Nacional de Tecnología Agraria y
25	Alimentaria (INIA), Ctra. de la Coruña km. 7.5, 28040 Madrid, Spain
26	⁵ Associazione Nazionale Allevatori Suini, Via L. Spallanzani 4, 00161 Roma, Italy
27	
28	* These authors contributed equally to this work
29	
30	Corresponding author: luca.fontanesi@unibo.it
31	
32	
33	Running title: Hairless in Casertana pigs

34 Summary

35 Casertana is an endangered autochthonous pig breed (raised in the Central-South of Italy) that is considered the descendant of the influential Neapolitan pig population that was used to improve 36 37 British breeds in the 19th century. Casertana pigs are characterized by a typical, almost complete, 38 hairless phenotype. Despite this phenotype is the characteristic trait of this breed, few Casertana pigs 39 are normal-haired. In this work, using Illumina PorcineSNP60 BeadChip data, we carried out a 40 genome wide association study (GWAS) and an F_{ST} analysis in this breed by comparing animals 41 showing the classical hairless phenotype (n. 81) versus pigs classified as haired (n. 15). Combining 42 results obtained with the two approaches, we identified two significant regions, one on porcine 43 chromosome (SSC) 7 and one on SSC15. The SSC7 region contains the forkhead box N3 (FOXN3) 44 gene, the most plausible candidate gene of this region, considering that mutations in another gene of 45 the same family (forkhead box N1; Foxn1 or FOXN1) are responsible for the nude locus in rodents 46 and alopecia in humans. Another potential candidate gene, Rho guanine nucleotide exchange factor 47 10 (ARHGEF10) is located on the SSC15 region. FOXN3 and ARHGEF10 have been detected as 48 differentially expressed in androgenetic and senescent alopecia, respectively. This study in an 49 autochthonous pig breed contributed to shed some lights on novel genes potentially involved in hair 50 development and growth, demonstrating that local animal breeds can be valuable genetic resources 51 to disclose genetic factors affecting unique traits, taking advantage from phenotype variability 52 segregating in small populations.

- 53
- 54 Key words: alopecia, animal genetic resource, animal model, baldness, hairless, *F*_{ST}, GWAS, SNP.

55 Text

Local animal genetic resources might be characterized by specific and inheritable phenotypes with relevant importance for current or potential future use in breeding programs or for many other purposes, including the definition of new biological models or to understand mechanisms of biological adaptations to different environments (Leroy *et al.* 2016).

60 Casertana is an endangered autochthonous pig breed mainly raised in the Central-South of Italy, 61 accounting for about 100 boars and sows currently registered to its herd book (ANAS 2016). 62 Casertana pigs are usually raised in extensive or semi-extensive systems to produce niche pork 63 products. This local breed is considered the descendant of the influential Neapolitan breed of the late 64 18th and 19th centuries that was used to improve British pig populations from which several modern 65 commercial breeds were derived (Porter 1993). Casertana pigs are characterized by a black or grey coat colour, wrinkled skin, forward ears, two goatlike wattles (not always present) and a typical, 66 67 almost complete, hairless phenotype not related to the age of the animals. This later characteristic is 68 also reported in one of its local names, i.e. Pelatella (that means plucked or bald). Despite the hairless 69 phenotype is the characteristic phenotype of this breed, Casertana population shows some variability 70 for this trait, including animals having from almost complete absence of hairs (hairless; the most 71 common pigs) to few animals having abundant hairs (normal-haired pigs; Figure 1a). The hairless 72 phenotype is also present in other pig breeds like the Creole hairless Mexican breed (also known as 73 Pelón Mexicano) and the black hairless Iberian strains, including the Guadyerbas strain maintained 74 as isolated population (Toro et al. 2000; Lemus-Flores et al. 2001). Casertana and all these other 75 hairless pigs seem historically connected through exchange of pig genetic material determined by commercial activities in the 18th and 19th centuries (Porter 1993), suggesting a potential common 76 77 origin of the hairless phenotype.

Hairless or hairlessness in pigs can be better described as hypotrichosis or congenital deficiency of hairs, as animals classified as "hairless" usually show a small number rather than a complete absence of hairs. Roberts & Carroll (1931) were the first authors that reported a possible inheritance 81 model for this hypotrichotic condition in Mexican pigs, suggesting the presence of a monogenic 82 autosomal factor with a recessive mutated h allele that could give the hairless phenotype when 83 homozygous. Homozygous pigs for the wild type allele H might be normal-haired whereas 84 heterozygous *Hh* pigs might show an intermediate phenotype. This early study was not followed by 85 any other genetic investigations on the hairless condition in pigs. More recently, variability in the 86 porcine hairless gene (known as HR, lysine demethylase and nuclear receptor corepressor), located 87 on porcine chromosome (SSC) 14, was evaluated in a candidate gene approach to study the hairless 88 phenotype in Iberian pigs but no association with this trait was reported (Fernández et al. 2003, 2006). 89 Mutations in the HR gene have been shown to impair hair growth in different mammals (i.e. Stoye et 90 al. 1988; Ahmad et al. 1998; Finocchiaro et al. 2003). A high number of other genes in humans and 91 rodents have been implicated in abnormal hair development and hypotrichosis (Shimomura & 92 Christiano 2010; Ramot & Zlotogorski 2015), making impractical a candidate gene approach to 93 successfully identify polymorphisms associated with the hairless phenotype in pig populations.

94 In this work, with the aim to restrict the number of potential causative genes involved in the 95 hypotrichotic phenotype in pigs, we carried out a genome wide association study (GWAS) and a 96 genome wide F_{ST} analysis in the Casertana breed by comparing animals showing the classical hairless 97 phenotype (n. 81, 35 males and 46 females) versus pigs classified as haired (n. 15, 7 males and 8 98 females; a quite rare phenotype in this breed), without any distinction between possible different hair 99 levels that could not be precisely recorded in outdoor animals. Casertana breed offers a unique 100 possibility to investigate this phenotype that is segregating within the same population. This is one of 101 the first population based genome wide study in a local pig breed that is not only useful to characterize 102 a breed specific trait but also to obtain basic biology information that could be important to better 103 define an interesting animal model for alopecia or related phenotypes in humans (Shimomura 2012). 104 Blood or hair roots were collected from all these Casertana pigs raised in six different farms 105 located in the Campania and Molise regions (Central-South of Italy), having from 5 to 49 pigs each, 106 with unknown relationships. A two tailed chi-square analyses with Yates correction confirmed that

107 the occurrence of the observed phenotypes is not associated to the sex in the sampled animals 108 (P>0.10). Extracted DNA was used for genotyping with the Illumina PorcineSNP60 BeadChip v.2 109 (Illumina, Inc., San Diego, CA, USA) interrogating 61,565 single nucleotide polymorphisms (SNPs). 110 Genotyping data were processed with PLINK 1.9 software (Chang et al. 2015) using the following 111 criteria to filter SNPs: call rate >0.9, minor allele frequency >0.01 and Hardy-Weinberg equilibrium 112 P>0.001. A total of 36,533 autosomal SNPs, assigned to a unique position in the Sscrofa11.1 genome 113 version, were used for multidimensional scaling (MDS) obtained with the PLINK 1.9 software 114 (Chang et al. 2015) to evidence distance relationships among the animals of the investigated cohort. 115 The obtained MDS plot showed some structures not well defined in the analysed pigs that however 116 did not clearly separate the two Casertana groups (i.e. hairless and haired; Figure S1).

117 Genome wide association study was then carried out using the filtered SNPs by applying the 118 univariate mixed model of GEMMA to be able to correct for population relatedness and possible 119 clusterisation (Zhou & Stephens 2012). The centered relatedness matrix calculated from SNP 120 genotypes was included in the model to correct for population stratification. Figure S2 reports the 121 genomic inflation factor (λ) and quantile–quantile (Q–Q) plot, obtained with GenABEL (Aulchenko 122 et al. 2007). Figure 1b reports the Manhattan plot produced in this GWAS. Relevant data reported in 123 this work have been submitted to the Zenodo digital repository. At the P<0.05 Bonferroni corrected 124 level (P nominal value < 1.37E-06), three SNPs were significant whereas at the P<0.1 Bonferroni 125 corrected threshold (P nominal value = 2.74E-06) other three SNPs were suggestively significant (Table 1). Two of these SNPs were located on SSC7 (170.17 kb apart) and four on SSC15, in two 126 127 distinct regions of approximately 1.14 Mb and 338.61 kb.

 F_{ST} analysis was performed on the same dataset using PLINK 1.9 software (Chang *et al.* 2015). Missing SNPs were imputed using the Beagle 3.3.2 software (Browning and Browning, 2009). Figure 1c reported the Manhattan plot of the F_{ST} analysis. The top 0.9998 SNPs of the percentile distribution $(F_{ST}=0.345)$ were considered as the most divergent across the comparison and therefore retained for subsequent evaluation (Table 1). A total of 8 SNPs was above the selected threshold: one on SSC4, one on SSC2, two on SSC7 (170.17 kb apart), two on SSC15 (1.14 Mb apart) and two on SSC17
(32.00 kb apart).

135 The comparison among GEMMA and F_{ST} genome-wide analyses identified two overlapping 136 regions encompassing two SNPs on SSC7 and two SNPs on SSC15 that constituted the 1.14 Mb 137 region previously mentioned (Table 1). A total of eight and nine genes were annotated in the SSC7 138 and SSC15 regions, respectively (in a window ± 500 kb from the first and the last SNPs; Table 1). 139 The most plausible candidate gene in the SSC7 region was the forkhead box N3 (FOXN3) gene 140 (position: 111036492-111454106 bp), that is 66.56 kb far from INRA0028322 (one of the two most 141 significant SNPs in the GWAS; Table 1). This gene has a role in the regulation of hepatic glucose 142 utilization (Karanth et al. 2016), craniofacial development (Samaan et al. 2010) and growth and 143 migration of colon cancer cells (Dai et al. 2017). The FOXN3 gene was also found differentially 144 expressed in a case-control study for androgenetic alopecia in humans (Mirmirani & Karnik 2010). 145 Forkhead box proteins constitute a family of transcription factors involved in embryo and fetal 146 development and function of adult organisms (Hannenhalli & Kaestner 2009). This group of proteins 147 list about 50 members in mammals, divided in 19 subfamilies indicated with the letters from A to S 148 (Jackson et al. 2010; Benayoun et al. 2011). Among the N subfamily, forkhead box N1 (FOXN1) 149 regulates keratin gene expression and the gene (Foxn1) is responsible for the nude locus in rodents 150 (Flanagan 1966; Meier et al. 1999). Mutations in this gene determine hairlessness, alopecia and other 151 pleiotropic effects in mice and rats (Nehls et al. 1994) and congenital alopecia, nail dystrophy, and 152 primary T-cell immunodeficiency in humans (Frank et al. 1999). Therefore, considering the 153 phylogenetic relationships and the partially conserved domains between the FOXN1 and FOXN3 154 genes (Benayoun et al. 2011), it seems plausible that FOXN3 might have conserved similar regulatory 155 functions of FOXN1 that could explain the effect of this SSC7 chromosome region on the hairless 156 phenotype in Casertana pigs. This indication might contribute to understand the involvement of 157 forkhead box proteins in hair development and, if confirmed by functional studies, adds another 158 candidate gene to the list of those potentially involved in alopecia and baldness.

159 No strong candidate gene could be identified in the SSC15 region. A possible candidate could 160 be Rho Guanine Nucleotide Exchange Factor 10 (ARHGEF10) gene. ARHGEF10 is involved in 161 neural morphogenesis and connectivity and in the regulation of small RhoGTPases (Verhoeven et al. 162 2003). The ARHGEF10 has been reported to be differentially expressed in a case-control study of 163 senescent alopecia in human (Mirmirani & Karnik 2010), supporting, to some extent, its possible role 164 in the hairless phenotype in the Casertana breed. According to the available functional information, 165 no other gene in the two identified regions might be involved in hair or follicle development or 166 phenotypes similar to the hairless condition we investigated.

167 The combination of the GWAS and F_{ST} results with the annotated gene functions was useful to 168 draft a possible biological explanation of the hairless phenotype in Casertana pigs and to identify 169 significant regions, excluding other regions that reached or were close to the defined thresholds in 170 one or the other genome wide investigation methods derived by several confounding factors that 171 could not be better managed in our study (i.e. genetic drift, population structure, ascertain bias of the 172 SNP chip tool). However, the results obtained in this breed, even if based on a small group of pigs 173 with normal-haired phenotype (that is a quite rare in this breed) in contrast with the hairless group, 174 seems to support the presence of more than one locus affecting this trait. A few of the associated 175 genomic regions contain candidate genes that, based on their function or inferred function may be 176 involved in the hypotricotic condition of the Casertana pigs, with the hypothesis that this trait might 177 be more complex than previously suggested.

This study adds another contribution to the genetic characterization of morphological traits in pigs that have been reported to describe breed specific phenotypes (i.e. ear size and coat colours) in other autochthonous populations (i.e. Ren *et al.* 2011; Fontanesi *et al.* 2016). This work demonstrated that endangered animal genetic resources could be investigated to disclose genetic factors affecting unique traits taking advantage from phenotype variability segregating within a small population. Other investigations are needed to refine these results obtained in Casertana and to evaluate if the hairless condition in other pig breeds is derived by the same genetic factors identified in this study. 185

186 **Competing interests**

187 The authors declare that they do not have competing interests. Data reported in this work can be 188 shared after signature of an agreement on their use with University of Bologna.

189

190 Acknowledgements

This work has received funding from the Italian Ministry of Agriculture, Food and Forestry (MiPAAF) under the project INNOVAGEN and from the European Union's Horizon 2020 research and innovation programme under grant agreement No 634476 (Project acronym: TREASURE). The content of this paper reflects only the authors' view and the European Union Agency is not responsible for any use that may be made of the information it contains.

196

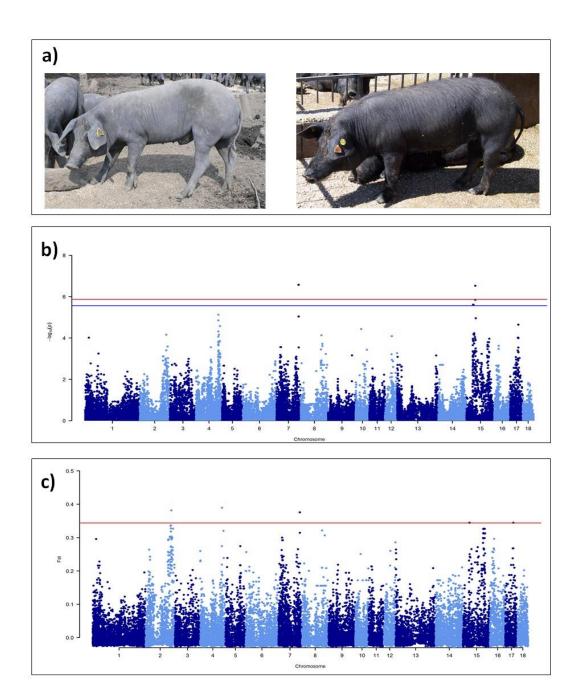
197 **References**

- Ahmad W., Haque M.F., Brancolini V., *et al.* (1998) Alopecia universalis associated with a
 mutation in the human hairless gene. *Science* 219, 720-4.
- 200 ANAS (2016) Registro Anagrafico. http://www.anas.it/.
- Aulchenko Y.S., Ripke S., Isaacs A. & van Duijn C.M. (2007) GenABEL: an R library for genomewide association analysis. *Bioinformatics* 23, 1294-6.
- Benayoun B.A., Caburet, S. & Veitia R.A. (2011) Forkhead transcription factors: key players in
 health and disease. *Trends in Genetics* 27, 224-32.
- 205 Browning B.L. & Browning S.R. (2009) A unified approach to genotype imputation and haplotype
- phase inference for large data sets of trios and unrelated individuals. *American Journal of Human Genetics* 84, 210-23.
- 208 Chang C.C., Chow C.C., Tellier L.C., Vattikuti S., Purcell S.M. & Lee J.J. (2015) Second-generation
- 209 PLINK: rising to the challenge of larger and richer datasets. *Gigascience* **4**:7.

- 210 Dai Y., Wang M., Wu H., Xiao M., Liu H. & Zhang D. (2017) Loss of FOXN3 in colon cancer
- activates beta-catenin/TCF signaling and promotes the growth and migration of cancer cells.
 Oncotarget 8, 9783-93.
- Fernández A., Silió L., Noguera JL., Sánchez A. & Óvilo C. (2003) Linkage mapping of the porcine
 hairless gene (*HR*) to chromosome 14. *Animal Genetics* 34, 317-8.
- 215 Fernández A.I., Silió L. & Óvilo C. (2006) Caracterization del gen hairless, candidato para el
- fenotipo lampino caracteristico de una variedad de cerdo Ibérico. *Proceedings of the XIII Reunión Nacional de Mejora Genética Animal*, 28-30 June 2006, Gijón. Spain.
- 218 Finocchiaro R., Portolano B., Damiani G., et al. (2003) The hairless (hr) gene is involved in the
- congenital hypotrichosis of Valle del Belice sheep. *Genetics Selection and Evolution* **35**,
- 220 S147-56.
- 221 Fontanesi L., Scotti E., Gallo M., Nanni Costa L. & Dall'Olio S. (2016) Authentication of "mono-
- breed" pork products: Identification of a coat colour gene marker in Cinta Senese pigs useful
 to this purpose. *Livestock Science* 184, 71-7.
- Flanagan S.P. (1966) 'Nude' a new hairless gene with pleiotropic effects in the mouse. *Genetic Research* 8, 295-309.
- Frank J., Pignata C., Panteleyev A.A., *et al.* (1999) Exposing the human nude phenotype. *Nature* **398**:473-4.
- Hannenhalli S. & Kaestner K.H. (2009) The evolution of Fox genes and their role in development
 and disease. *Nature Reviews Genetics* 10, 233-40.
- Jackson B.C., Carpenter C., Nebert D.W. & Vasiliou V. (2010) Update of human and mouse
 forkhead box (FOX) gene families. *Human Genomics* 4, 345-52.
- Karanth S., Zinkhan E.K., Hill J.T., Yost H.J. & Schlegel A. (2016) FOXN3 regulates hepatic
 glucose utilization. *Cell Reports* 15, 2745-55.
- 234 Lemus-Flores C., Ulloa-Arvizu R., Ramos-Kuri M., Estrada F.J. & Alonso R.A. (2001) Genetic
- analysis of Mexican hairless pig populations. *Journal of Animal Science* **79**, 3021-6.

- Leroy G., Besbes B., Boettcher P., Hoffmann I., Capitan A. & Baumung R. (2016) Rare phenotypes
 in domestic animals: unique resources for multiple applications. *Animal Genetics* 47, 141-53.
- Meier N., Dear T.N. & Boehm T. (1999) Whn and mHa3 are components of the genetic hierarchy
 controlling hair follicle differentiation. *Mechanisms of Development* 89, 215-21.
- 240 Mirmirani P. & Karnik P. (2010) Comparative gene expression profiling of senescent and
- androgenetic alopecia using microarray analysis. In: *Aging Hair*. (Trueb R.M. & Tobin D.J.,
 eds), New York: Springer, pp. 67–76.
- 243 Nehls M., Pfeifer D., Schorpp M., Hedrich H. & Boehm T. (1994) New member of the winged-
- helix protein family disrupted in mouse and rat nude mutations. *Nature* **372**, 103-7.

245 Porter V. (1993) Pigs: A Handbooks to the Breeds of the World. Cornell University Press,

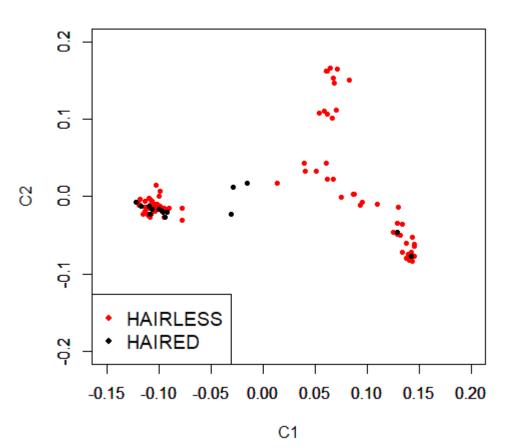

- Ramot Y. & Zlotogorski A. (2015) Molecular genetics of alopecias. *Current Problems in Dermatology* 47, 87-96.
- Ren J., Duan Y., Qiao R., *et al.* (2011) A missense mutation in *PPARD* causes a major QTL effect
 on ear size in pigs. *PLoS Genetics* 7, e1002043.
- Roberts E. & Carroll W.E. (1931) The inheritance of hairlessness in swine. *Journal of Heredity* 22, 125-32.
- 252 Samaan G., Yugo D., Rajagopalan S., et al. (2010) Foxn3 is essential for craniofacial development
- in mice and a putative candidate involved in human congenital craniofacial defects.

254 Biochemistry Biophysics Research Communications **400**, 60-5.

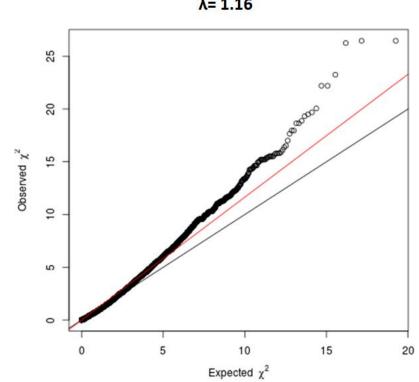
- Shimomura Y. (2012) Congenital hair loss disorders: rare, but not too rare. *Journal of Dermatology*39, 3-10.
- Shimomura Y. & Christiano A.M. (2010) Biology and genetics of hair. *Annual Review of Genomics and Human Genetics* 11, 109-32.
- 259 Stoye J.P., Fenner S., Greenoak G.E., Moran C. & Coffin J.M. (1988) Role of endogenous
- retroviruses as mutagens: the hairless mutation of mice. *Cell* **54**, 383-91.

- Toro M.A., Rodriganez J., Silio L. & Rodriguez C. (2000) Genealogical analysis of a closed herd of
 black hairless Iberian pigs. *Conservation Biology* 14, 1843-51.
- 263 Verhoeven K., De Jonghe P., Van de Putte T., et al. (2003) Slowed conduction and thin myelination
- of peripheral nerves associated with mutant rho Guanine-nucleotide exchange factor 10.
 American Journal of Human Genetics 3, 926-32.
- 266 Zhou X. & Stephens M. (2012) Genome-wide efficient mixed-model analysis for association studies.
- 267 *Nature Genetics* **44**, 821-4.

Figure 1. Casertana pigs and results of the genome wide association study (GWAS). a) Casertana pigs with the hairless (left) and haired (right) phenotypes. b) Manhattan plot of the GWAS results showing Bonferroni significant (red line: P<0.05) and suggestively significant (blue line: P<0.10) single nucleotide polymorphisms (SNPs; thresholds are Bonferroni corrected P values). c) F_{ST} plot. Single nucleotide polymorphisms above the red line ($F_{ST}=0.345$) are the top 0.9998 SNPs.



274


276	Table 1. List of significant ($P < 0.05$) and suggestively significant ($0.05 < P < 0.10$; Bonferroni
277	corrected) single nucleotide polymorphisms (SNPs) obtained in the genome wide association study
278	(GWAS) in the Casertana pigs (GEMMA) and the top 0.998 detected in the F_{ST} analysis. For the
279	overlapping regions among the two approaches, annotated genes nearby the SNPs (± 500 kb from the
280	first to the last SNP of the region) were reported (Sscrofa11.1 genome version). The candidate genes
281	that could be involved in the hair phenotype are indicated with the "*" symbol. P , F_{ST} and annotated
282	genes are reported only for the SNPs and regions for which both P and F_{ST} values trespassed the
283	indicated thresholds.

			GWAS, P nominal	F_{ST}	Annotated genes
SSC	SNP	position	value	value	
2	ALGA0016212	134598604	-	0.381	-
4	INRA0016870	113277535	-	0.390	-
7	INRA0028322	111520662	2.68E-07	0.376	LOC106504536, PSMC1, EFCAB11, NRDE2,
7	ALGA0044817	111690832	2.68E-07	0.376	CALM1, TDP1, KCNK13, FOXN3*
15	MARC0009352	33679138	2.45E-06	0.345	C110257074, CLN8, KBTBD11, DLGAP2,
				0.345	LOC106509653, ARHGEF10*, LOC106506202, CSMD1,
15	ALGA0084906	34793592	2.45E-06		MYOM2
15	H3GA0044265	44006149	3.00E-07	-	-
15	INRA0049225	44344760	1.43E-06	-	-
17	DRGA0016747	41675886	-	0.345	-
17	H3GA0049027	41643251	-	0.345	-

- Figure S1. Multidimensional scaling (MDS) plot of hairless (red spots) and haired (black spots)
 pigs, on the first and second dimension.

Casertana breed

<mark>λ= 1.16</mark>