s ARCHIVIO ISTITUZIONALE
ONIVERSITA DI BOLOGNA DELLA RICERCA

Alma Mater Studiorum Universita di Bologna
Archivio istituzionale della ricerca

A scalable framework for online power modelling of high-performance computing nodes in production

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

Published Version:

Pittino, F., Beneventi, F., Bartolini, A., Benini, L. (2018). A scalable framework for online power modelling

of high-performance computing nodes in production. NEW YORK, NY 10017 USA : Institute of Electrical
and Electronics Engineers Inc. [10.1109/HPCS.2018.00058].

Availability:
This version is available at: https://hdl.handle.net/11585/659831 since: 2019-02-03
Published:

DOI: http://doi.org/10.1109/HPCS.2018.00058

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Universita di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

(Article begins on next page)
24 August 2024

http://doi.org/10.1109/HPCS.2018.00058
https://hdl.handle.net/11585/659831

This is the post peer-review accepted manuscript of:

F. Pittino, F. Beneventi, A. Bartolini and L. Benini, "A Scalable Framework for Online Power
Modelling of High-Performance Computing Nodes in Production," 2018 International Conference
on High Performance Computing & Simulation (HPCS), Orleans, 2018, pp. 300-307. doi:
10.1109/HPCS.2018.00058

The published version is available online at:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8514363&isnumber=8514305

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8514363&isnumber=8514305

A scalable framework for online power modelling
of high-performance computing nodes in production

Federico Pittino*, Francesco Beneventi*, Andrea Bartolini*, Luca Benini*'
*Department of Electrical, Electronic and Information Engineering (DEI), University of Bologna, Italy
{federico.pittino, francesco.beneventi, a.bartolini, luca.benini} @unibo.it
TIntegrated Systems Laboratory, ETH Zurich, Switzerland {lbenini} @iis.ee.ethz.ch

Abstract—Power and thermal design and management are
critical components of high performance computing (HPC)
systems, due to their cutting-edge position in terms of high
power density and large total power consumption. Many HPC
power management strategies rely on the availability of accurate
compact power models, capable of predicting power consumption
and tracking its sensitivity to workload parameters and oper-
ating points. In this paper we describe a methodology and a
framework for training two of the best-in-class power models
directly on the online in production nodes and without requiring
dedicated training instances. The compact power models are
obtained using an online regression-based approach which can
track non-stationary workloads and hardware variability. Our
experiments on a real-life HPC system demonstrate that the
models achieve very high accuracy over all operating modes.
We also demonstrate the scalability of our approach and the
small amount of resources needed for the online modeling, for
both the training and inference phases.

I. INTRODUCTION

High performance computing (HPC) systems are designed
to be at the cutting edge of computing power. To achieve
this goal, HPC installations are characterized by high com-
putational power density and as consequence, by high power
consumption density as well as high total power consumption.
Indeed HPC systems have 2-4x higher rack power density
w.r.t. server and industrial datacentre installations, with a per
rack power envelope ranging between 20-100 kWatts [1]. High
power density and envelope are obviously critical for HPC
system management and operation.

Today the most powerful supercomputer in Top500 is Sun-
way TaihuLight which consumes 15.3 MW for delivering
93 Petaflops. The second one, Tianhe-2 (ex 1st) consumes
17.8 MW for “only” 33.2 Petaflops. However, the power
consumption increases to 24 MW when considering also the
cooling infrastructure[2]. Such an amount of cooling power
serves to prevent thermal issues. In fact, the performance of
the processing elements is actively controlled by the internal
firmware logic, which modulates chip voltage and frequency
for maximizing the clock speed while satisfying power and
thermal constraints. However these mechanisms are usually
reactive, threshold-based and take significant safety margins:
authors in [3] show that, for hot-water liquid cooled nodes,
the processors are incapable of employing thermal throttling
by using DVFS states to prevent the critical thermal threshold
to be reached.

To solve these issues, several works in the literature [4], [5],
[6], [7], [8] propose to take advantage of proactive thermal
and power management strategies. These strategies all rely
on the availability of compact predictive power models, capa-
ble of predicting future power consumption and, even more
importantly to build a clear understanding on the sensitivity
of power consumption on workload parameters and hardware
knobs that can be controlled at run time. These models allow to
estimate and model the power consumption of the CPUs and
COREs based on workload characteristics extracted through
performance counters and micro-architectural usage. Thanks
to that an optimizer can leverage these models to find the
maximum clock frequency to apply based on the current
usage of the micro-architecture while satisfying a global power
budget or thermal constraints. A different approach to solving
the same problem is followed for instance by Intel’s RAPL [9]
by implementing a feedback loop on a direct measurement
of the power of the CPUs. However, as recent works show
[10], RAPL is sub-optimal and in several cases burns excessive
power when it is not needed.

Instead, the compact models can be used in combination
with optimization and artificial intelligence techniques to
select in a robust fashion the optimal operating points from
the target power and temperature and the current conditions.
However, the strategies for learning these models rely on
design-time parameters that cannot cope with manufacturing
variability, which makes each chip different from the oth-
ers, differences in deployment conditions and ageing which
can induce very significant differences in compact model
parameters even for nominally identical nodes. In addition,
such models have been applied only to single node systems
operating in a test environment and therefore cannot cope
with the large number of computing elements in an HPC
system in production without causing significant calibration
costs (e.g. bringing the HPC machine off-line periodically for
power characterization).

In this paper we describe a methodology and a framework
for training advanced power models (we considered [11],
[12]) as best-in-class use cases) directly on the in production
nodes and without requiring dedicated training instances. More
specifically, we are targeting compact power modeling at the
socket level, since in the HPC systems we considered, nodes
are composed of multiple sockets (packages).

The power models are derived using linear regression. The

choice of linear power models is justified by their accuracy in
modeling real machines [11], [12] and comes extremely handy
for applications in power and thermal management, where we
need to invert the model to use it in a feedback control loop

[8].
II. RELATED WORK

The topic of predictive power modeling has been studied
for many years [13]. The main motivation behind the intro-
duction of such models relied in the increasing importance of
dynamic hardware adaptations, which provide an opportunity
for extracting maximum performance while remaining within
temperature and power limits [14], [15], [16]. The most ad-
vanced and accurate models rely on the usage of performance
counters from the architecture, which can provide a large and
complete set of information about the operation, not only
of the processor, but of the entire system [15], [16]. The
set of performance counters supported by processor vendors
has undergone a continuous enrichment, together with the
introduction of derived counters which are more suitable for
use in prediction algorithms [17].

The application of such models on multicore architecture
on servers and in cloud platforms is more recent [11], [18],
[19], [20], and it is driven mainly by the critical importance of
power and thermal capping in such systems. However, most
of these works do not fully address the complexity and scale
of a full HPC system: they are limited to analyzing only
single nodes. Moreover, in most cases, modeling construction
is not based on monitoring the continuous operation of a
production machine, instead focusing on the study of simple,
single node benchmarks in a controlled test environment. In
order to overcome these limitations, a powerful and scalable
infrastructure applied to a production cluster is needed. For
this purpose, the usage of Big Data techniques is becoming
increasingly promising in this field, as shown in [21].

The majority of models based on performance counters
rely on linear regression for the model construction. The
main differences between these models lie in the choice of
the counters to use. Different statistical methods have been
employed, ranging from Pearson’s correlation of the counters
with power [11] to the monitoring of the R? of the fit and
of the multicollinearity between counters [12]. In some works
(eg. [11]) the features of the linear regression model are then
derived applying a non-linear transformation to the counters,
however these transformations are usually derived by visual
inspection and they are highly platform-specific. For these
reasons, we have decided to always use as features in the
linear regression model directly the performance counters.

Our main contribution is in the development of a full end-
to-end procedure for model characterization and continuous
adaptation which works online, during normal HPC system
operation. Furthermore, we focus on scalability, using state-
of-the-art big data analytics tools and framework, which allow
concurrently training and updating power models for all the
nodes in the HPC machine. Finally, we demonstrate that our
approach is flexible and it is not limited to a single model or

parameter set, and produce highly accurate results at the scale
of all the nodes of a real-life HPC system, with no perturbation
on production usage.

III. FRAMEWORK

The model-learning infrastructure described in this paper is
based on a distributed and scalable monitoring framework that
we presented in [21].

Apache Spark

HPC Users

Fig. 1. Model-learning framework

With the help of the hierarchical view showed in Fig.1
we can distinguish four functional layers in the monitoring
and model construction systems. These blocks include: a
communication layer based on the MQTT communication
protocol[22]; A set of data collection agents which run on
each compute node, periodically measure physical and micro-
architectural quantities and publish them through the MQTT
protocol; A storage layer based on a distributed and scalable
time series database (KairosDB) [23], [24] built on top of a
NoSQL database (Apache Cassandra) [25], [26] which pro-
vides a mechanism to store metrics, mainly for visualization
and analysis of historical data; An application layer which uses
the collected data for visualization and data analytics purposes.
In this paper we connected Apache Spark [27], [28] to the
storage layer of the monitoring framework to build prediction
models of the CPU power consumption.

For the model-learning application described in this work
we employed the pmu_pub data collection agent [21], which
runs as a service on each node of the cluster. It measures and
delivers on the MQTT bus the metrics described in Tab. I
and Tab. II. The collectors are configured to sample the CPU
counters every 2 seconds. Using this sample rate we can
achieve a measurement overhead on the target node that is
less than 0.6%.

TABLE I
PER-CORE METRICS

Metric name

Description

temp

instr

ipc

ips

freq

Ci

AVXinst
back_end_bound

(°C) Core temperature

Instructions retired

Instructions per cycle

Instructions per second

(MHz) Actual core frequency

(%) time in state Ci, with i={0,1,3,6}

(%) Number of AVX instructions

(%) slots where no pops are delivered due to a lack

of required resources for accepting more pops in the
back-end of the pipeline.

core_bound (%) This metric represents how much Core non-
memory issues were of a bottleneck.
L1L2_bound (%) This metric shows how often machine was stalled

without missing the L1 data cache + how often
machine was stalled on L2 cache.

(%) cycles where pipeline stalls caused by issues
during the fetching or decoding of instructions

(%) cycles where pipeline slots are utilized by useful
work

(%) cycles wasted due to removing mispredicted pops
from the execution pipeline

(%) cycles where CPU was stalled on L3 cache, or
contended with a sibling Core.

(%) number of idle slots

front_end_bound
retiring
bad_speculation
L3_bound

issue_loss_idle

TABLE II
PER-CPU METRICS

Metric name Description

Ci_pkg (%) time in state Ci, with i= {0,2,3,6}
freq_pkg (MHz) Actual package frequency
temp_pkg (°C) Package temperature

A. Power prediction model

As outlined in Sec. II, the power prediction model is based
on a linear regression algorithm, which is applied on the se-
lected features. All the computation is performed by Spark on
a service node (see Fig. 1), which reads data from KairosDB
or from the MQTT streaming interface and it processes them
using the Dataframe structure (a scalable and distributed data
structure provided by the extension SparkSQL [29]).

Reading from KairosDB is accomplished by executing a
query, as discussed in [21], for a specific subset of nodes and
time window. Only the features relevant for the model are
extracted (see Sec. IV-B), and each feature is scaled using a-
priori constant values in order to lie in the range [0, 1] (or to be
as close as possible, since some of them are unbounded, like
for example ips). The data is then stored in a Dataframe, which
ensures the scalability of our approach due to its inherent
scalable and distributed data structure.

We have now to distinguish two states of operation (see the
pseudocode in Alg. 1):

o linear regression model training phase;

« power prediction calculation.

In the training phase, the linear regression coefficients have
to be calculated. This is accomplished using the functions
provided by the “ml” package from Apache Spark 2.2.0. Once
the Dataframe with the model features observed for a defined
time window is loaded, it is passed to the £it method of the

Algorithm 1 Training and inference phases.
1: procedure TRAINING PHASE

2: node < node of interest

3: time < data time window

4: featchoice < choice of linear regression model
features

5 for all sockets on the node do

6 dframe < query (node, time, featchoice)

7: model < LineaRegression.fit (dframe)

8 end for

9: end procedure

10: procedure INFERENCE PHASE

11: node < node of interest

12: features < linear regression model features

13: for all sockets on the node do

14: model + query(node)

15: powpred < model.evaluate (features)

16: end for

17: end procedure

LinearRegression class. The model coefficients are then
calculated and stored in KairosDB for subsequent use in the
power prediction calculation.

Once the model coefficients are trained and stored in the
database, the power prediction calculation can be performed.
Since we are interested in online power prediction, the model
features are now read directly from the MQTT interface while
the model coefficients are read from KairosDB and stored
again in an object of the LinearRegression class. The
power calculation is then performed using the evaluate
method of the same class, and the results are broadcasted on
the MQTT interface.

IV. RESULTS
A. Test bed

For our experimentation, we implemented the framework
from Fig. 1 on a cluster composed by 516 nodes of a working
production system (Galileo at Cineca) as a case study. Each
node is equipped with two 8-cores Intel Haswell CPUs (ES5-
2630 v3 @ 2.40GHz) and 128GB of DRAM. The power
prediction algorithms are instead run on a separate service
node (Intel Haswell E5-2670 v3 @ 2.30GHz, 24 cores and
128GB DRAM), where the “Spark cluster” environment is
installed.

We want again to stress out the fact that, unlike most of the
previous literature on power models (for example, [14], [19],
[11], [12], [20]), in this work we trained and applied our power
prediction model in a production environment, where each
node has a different workload which can drastically change
over time, and not on benchmarks on single nodes. Fig. 2
reports an example of the sockets from two nodes in the cluster
over a period of 8 days. This example clearly demonstrates
that our model needs to be able to work in a wide variety of
situations, both on nodes in idle state and on nodes with a
high and frequently variable workload.

——socket0] |
—socket 1

o
S

Socket power [W]
B
o

100 T

80 [

20F

[
=]

IS
o

Socket power [W]

Time [days]

Fig. 2. Trace of measured socket power for two nodes of the cluster.

e
oy
o o

0.25

o

-0.25

o
o

-0.75

Pearson's correlation with power

- -
& N &
LLLLEITES LS EELILLSLLERE
Fod o o " S LTSI ETSS o &
v/ >/ ol o/ /N o IR R A
OO &OYT £ O 0 5§ @ o9
g * g @9
e FYEESE
03 ~ /7 & 9
S S @
&S

Fig. 3. Pearson’s correlation between the measured socket power and the
most relevant available counters.

B. Choice of counters

In order to build the features for our models, we used the

algorithms from [11] and [12] by employing the available per-
formance counters provided by the CPU architecture and the
counters that can be derived from them. We have performed
the counters choice on a small dataset consisting of 20 hours
of operation of three nodes of the cluster. We could then verify
that the choice of counters does not depend on the particular
node considered.
In the following we then describe how we derived the two
sets of features that correspond to the models [11] and [12].
Once the two sets of features are derived, the linear regression
algorithm is agnostic about how the features were selected.

As discussed in [11], the first step is to calculate Pearson’s
correlation of each counter with respect to the measured
package power. The results are reported in Fig. 3 for all the

1 T T T T T T T 3.5
0.99 H —A— average VIF] 7 3
L
>
., 08 1255
i g
0.97 12 o
<
0.96 415
0.95 L L L L L L L 1
> > N < 3
9\9 S 3\9 S 9 SIS 3\9 S
N i Q o N v
* %/ QJ@ % &
S v ~ & R
NS
NZ ‘Zrb/
@ © Ay

Fig. 4. Progression of R? (blue) and average VIF (red) when using the

modified algorithm from [12].

TABLE III
COUNTERS CHOSEN AS FEATURES FOR THE CONSIDERED MODELS.
Feature number Model [11] Model [12]
1 freq * CO Cl
2 temp C3
3 C6 temp_pkg
4 temp_pkg ips
5 freq_pkg * CO_pkg | freq_pkg * CO_pkg
6 C6_pkg C2_pkg
7 back_end_bound L3_bound
8 core_bound front_end_bound
9 issue_loss_idle bad_speculation

counters we considered (see Tabs. I-II for a description of the
counters). As discussed in Sec. IV-A, in our configuration each
node of the cluster is composed by multiple packages, and
each of them features multiple cores (8 in our case). Since
we are interested on power prediction at the package level,
we have decided to average all per-core counters on a per-
package basis. This allows us to greatly reduce the number
of coefficients in our models, while retaining a very good
accuracy (see Sec. IV-D). As is very well-known in the field
of machine learning (see [30]), this averaging corresponds to a
soft regularization, which helps in stabilizing the model coef-
ficients avoiding overfitting and leads to better generalization
of the model.

In order to keep the power model compact, we have chosen
to use only a maximum of 9 features, which corresponds to the
number of features with absolute correlation greater than 0.5
in Fig. 3, making sure not to include redundant information
(as would be the case if we included for example both freq
and freq * CO0). The chosen features are reported in Tab. III,
where their ordering is arbitrary.

In order to derive the second set of features, we have
followed [12]. The algorithm works by iteratively adding fea-
tures to the model until the adjusted R? continues to increase
significantly. Once the features are chosen, it is calculated the
variance inflation (VIF) of each of them with respect to all the
others as a measurement of multicollinearity. If any features
are identified as multicollinear using their VIF, one of the two
is discarded.

Similarly to what suggested in [12], we have started the
algorithm including always the feature freq_pkg * CO_pkg.

We have verified that, if we started from freq * CO instead,
the subsequent selected features remain the same, showing
that freq_pkg * CO_pkg and freq * CO convey a very similar
information (as expected, since freq < freq_pkg). The original
approach by [12] was however not fully general, since the
authors ended up having only two features with high VIF, and
therefore they could easily exclude one of them. This is only
a very special case, and indeed it was not what we obtained
in our case. For this reason, we slightly modified the model
by [12] by including a control on the VIF at each step of the
feature selection loop based on R2. Specifically, we had to set
a maximum value for the increment in average VIF between all
features from one step to another. This was necessary because
otherwise all selected features end up having a very high VIF,
with no clear indication of which feature is dependent on
which other.

The results of the application of the modified algorithm from
[12] to our dataset are shown in Fig. 4, where both the model
R? and the average VIF for all features at each iteration are
shown. In the x-axis the chosen feature at each iteration is
displayed. To be consistent with the previous model, we have
decided to choose at most 9 features. Finally, Tab. III shows
a summary of the chosen features for the two algorithms, in
an arbitrary order.

C. Models tuning on a portion of the machine

In order to explore the behaviour of the models and to

tune their hyperparameters (like regularization parameter and
training time interval [30]), we decided to start with a series
of comprehensive tests on a reduced portion of the machine,
which helps keeping excessive variability and computational
time under control. For this reason, we selected only 8 nodes
monitored for a total of 8 consecutive days. All results in this
section refer to this dataset.
The linear regression model is defined to have no constant
term, since we want our model to be able to use the provided
features to predict also the idle power consumption. The
regularization parameter is set to 0.001, which has proven to
be a robust value to maximize accuracy.

The metric which is most commonly reported in literature

is the relative error on the predicted power, and in particular
the average relative error. Reporting only the average does
however exclude a large piece of valuable information, since
the average can be greatly influenced by few large outliers and
we have no indication about how often the error lies below
or above the average. For these reasons, we have chosen to
report the entire Empirical Cumulative Distribution (ECDF)
of the error.
Fig. 5 reports, in particular, the ECDF of the relative error
obtained with the two algorithms by training a different model
for each node and socket and varying the length of the training
time window. As we can see, model [11] performs generally
better, its accuracy improves with training time and has a lower
number of outliers. In contrast, model [12] is usually worse
and it does not improve substantially with the training time.

1 T T =
5 ——train. time 0.5 days
= 0.8 | |—train. time 1 days b
2 train. time 2 days
® 0.6 | ——¢train. time 3 days E
S
o
2 04F L
st
E
co02f b
(©]

0 . .

107 10° 10" 102

Relative error [%)]
(a) Model [11]

1 T T
5 ——train. time 0.5 days
£ 0.8 [|—train. time 1 days b
e train. time 2 days
® 0.6 F|——train. time 3 days E
©
o
2 04F L
i
E
c02f b
(&)

0 . .

107 10° 10" 102

Relative error [%)]
(b) Model [12]

Fig. 5. Relative error in the predicted socket power varying the training time
and the model, using the 8-nodes dataset.

The relative error is however not necessarily the most
important metric to assess the model performance. Since
our primary focus is on thermal management, it is instead
more insightful to convert the error in predicted power to
a temperature error on the package. For this purpose, we
have employed previously reported measurements to directly
convert a power error in temperature variation. We extracted
from the target system the thermal resistance (0.31°K /W) and
we computed the watt necessary to increase of 1°C (3.23 W)
and 3°C (16.1 W).

Fig. 6 summarizes the results of this study by employing

two thresholds, one at 1°C (3.23 W) and the other at 3°C
(16.1 W). Each point on the x-axis is a different training
time, and for each training time and threshold they are shown
the median relative number of points below the threshold
together with the 25% and 75% percentiles (the error bars).
We again note that the error for model [11] when training
each node separately decreases significantly with the training
time. On the other hand, using a single model jointly trained
on all nodes provides generally a better performance when the
training time interval is short, however the accuracy does not
increase as significantly with the training time.
For model [12], instead, both training strategies are much less
sensitive to the training time and the accuracy is generally
lower with respect to model [11]. In all cases, even in the worst
case scenarios generally for 90% of the points the calculated
temperature error on the package is lower than 3°C, and in
the best scenarios this is true in almost 100% of the points.

100 R ———
90r—"f -I El

Points below threshold [%]

30 A A A)
0.5 1 1.5 2 25 3
Training time [days]
(a) Model [11], separate training
100 T T T T -

Points below threshold [%]

0.5 1 1.5 2 25 3
Training time [days]

(c) Model [12], separate training

100 T T

Points below threshold [%]

30 L L L L
0.5 1 1.5 2 25 3

Training time [days]
(b) Model [11], joint training

1004 . . ~————
90 “‘-} —————— { i

L

S
o
2 80 i
8
£ 70F 1
g 60f T I i
8 50 I I
2 71 —$—1°C
c 3 -
E 40 - 3°C|1
30
0.5 1 15 2 2.5 3

Training time [days]
(d) Model [12], joint training

Fig. 6. Results comparing the models [11] and [12] on the 8-nodes dataset changing the training time interval, either training a different model for each node
and socket or performing a joint training on data from all nodes. The two lines in each plot show, between all nodes and sockets, the median (circle) and
25th and 75th percentiles (error bar) of the percentage of points where the power error due to the estimation results in a temperature change in the package

lower than a threshold (either 1°C or 3°C).

In all the results presented so far we have found that model

[11] performs generally better than model [12]. However,
the main motivation behind model [12] was to avoid mul-
ticollinearity between the features, in order to obtain more
stable model coefficients which could then be more easily
used in power optimization techniques. In order to verify this
hypothesis, Fig. 7 shows the values of the coefficients for the
two models when the training time is 3 days, either doing
a joint training (red line) or training a different model for
each node and socket (blue line). In the latter case, the circles
represent the medians and the error bars are the 25% and
75% percentiles of the coefficients with respect to all nodes
and sockets.
Comparing the two models, there is no evidence that suggests
model [12] features coefficients are much more stable than
the ones from model [11]. Coupling this observation with
the fact that the relevance of the features in model [11]
is more intuitive to understand and that this model usually
performs better, in the following we will not consider model
[12] anymore.

D. Full system results

Having selected a model and understood its limitations, we
have moved to considering the application of our framework
to a more challenging dataset and to evaluate its performance
and scalability. For this purpose, we have selected from the
cluster described in Sec. IV-A the nodes for which we had a

long record of data by using the framework described in Sec.
III. The selected nodes are then 43, and correspond to a single
rack. From these results we are also able to show the scalability
of our framework to the entire cluster, by augmenting the data
in order to reproduce the dataset that would be generated by
all 516 nodes in the cluster.

For all the results in this section we have decided to use only
model [11] and to train a different model for each node and
socket, since we have shown that in this way we can achieve
the best accuracy.

1) Model accuracy: Fig. 8 shows the model accuracy on
the full cluster, as a function of the number of considered
nodes, with the same approach of Fig. 6, i.e., by evaluating the
temperature change in the package due to a power prediction
error. Since in this dataset we have acquired data for a longer
period of 20 days, we can now compare the results of longer
training time intervals of 3 and 6 days.

Comparing Figs. 8 and 6, we notice that in this larger dataset
the accuracy is slightly lower than in the 8-nodes dataset, given
the same training time of 3 days. This is justified by the fact
that we are now monitoring the nodes for a longer period of
time, and therefore it is more likely for the nodes to undergo
radical changes in workload. Indeed, by increasing the training
time to 6 days the model accuracy is now comparable to the
one obtained on the 8-nodes dataset. The observation that a
longer training time is needed is further supported by our a-

0.6 T T T T T T T

—&— separate train.
—O—joint train. J

Coefficient median

Feature number
(a) Model [11]

0.8 T T T T T T T

—&— separate train.
—e—joint train.

0.4

Coefficient median

Feature number

(b) Model [12]
Fig. 7. Trained model coefficients, using a training time of 3 days. In the
case of separate trainings (blue lines), the circles represent the medians and

the error bars are the 25th and 75th percentiles of the coefficients with respect
to all nodes and sockets.

priori knowledge of the fact that the jobs running on the cluster
are typically expect to last for a few days, and therefore a
training interval of at least 6 days is needed to capture all
variations in the nodes operation.

Moreover, as expected we note that, when considering a
smaller number of nodes, the model accuracy is more variable
and greatly depends on the particular nodes considered and on
their operation during the current time frame.

2) Performance and resources: Having obtained an indi-
cation of the optimum model and training time interval, we
have then evaluated the performance of the algorithm on our
service node. We have checked that the amount of memory
required is about 790 MB per node, and it scales linearly with
the number of parallel executions. We have then evaluated the
execution time of the training algorithm varying the level of
parallelism, the results are shown in Fig. 9. Unsurprisingly,
due to the limited number of cores in our service node (see
Sec. IV-A), there is no increase in performance when using
more than 12 parallel jobs. Using then the best result of about
6 seconds per node, we conclude that the training process of a
complete cluster of 516 nodes (as in our test case) would take
on average 52 minutes using 9 GB of the RAM. Note also that
this computation is performed on resources that are external to
the calculation resources of the cluster, and its computational
demand is very limited compared to the one of the cluster.
Moreover, we have shown that the training computation needs
to be performed only rarely if we have a good amount of

100,

h gl

|

1
I#
o
o
<l

70F b

50 F k

——1°C

40T -& 3°C

30 L L L L L))

5 10 15 20 25 30 35 40 45
Number of considered nodes

Points below threshold [%]

(a) Training time interval 3 days

1004 g = - > - -
9} -
80
70
60
50
40F

30 L L L L L L
5 10 15 20 25 30 35 40 45

Number of considered nodes

—4—1°C
-§ 3°C

Points below threshold [%]

(b) Training time interval 6 days

Fig. 8. Results obtained with the model [11] on the large dataset as a function
of the number of considered nodes, changing the training time interval and
training a different model for each node and socket. The two lines in each
plot show, between all nodes and sockets, the median (circle) and 25th and
75th percentiles (error bar) of the percentage of points where the power error
due to the estimation results in a temperature change in the package lower
than a threshold (either 1°C or 3°C).

25 T T T T

21 { E
17 1

2 3 g T T T T
10 15 20 25
Number of Spark jobs

Average execution time per node [s]

o
(%))

Fig. 9. Time required per node to perform the training as a function of the
number of parallel Spark jobs executed on our test machine. Each Spark job
could use at most 8 cores.

available data.

As far as the model inference at runtime is concerned, this is
only a minimal overhead since it involves only 9 products and
8 sums per each node, socket and time sample and therefore
can be done easily online.

V. CONCLUSIONS

In this work we have shown a scalable framework for
power prediction in HPC clusters, discussing the importance
of an accurate and efficient compact model in targeting real
time power and thermal management. We have evaluated

some of the most popular power models from the literature,
applied them to a real workload in a production environment
and studied their accuracy in detail. We have proposed a
novel method for evaluating their performance, compared the
models and pointed out which one is more promising for our
application.

The chosen model has a very high accuracy when trained
on a relevant amount of data which cover all possible states
of operation. In particular, we have obtained a median error of
5% or 2.5W on the predicted package power, and an error of
18% or 8.5W on the 95% percentile. Such power errors in our
case translate to a median temperature error on the package
of 0.7°C and of 2.6°C on the 95% percentile.

We have also demonstrated the scalability of our approach
and the small amount of resources needed for the model, for
both the training and inference phases. If the training phase is
done correctly, it is not necessary to retrain the model more
often than every 2 weeks, and probably well beyond this.

In addition, our framework offers a very powerful and
flexible way of automatically dealing with outliers due to a
model not up-to-date by continuous monitoring of the error in
predicted power. Once this error for a given node and package
exceeds a user-defined threshold for a certain time, a model
retraining phase can be automatically triggered.

Being a scalable and very efficient framework, it is suitable
for application in every HPC cluster up to date, even featuring
thousands of computational nodes.

VI. ACKNOWLEDGMENTS

This work was supported by the EU ERC Project MUL-
TITHERMAN (g.a. 291125) and the EU FETHPC project
ANTAREX (g.a. 671623).

REFERENCES

[1] L. Gilly, “Data centre design standards and best practices for public
research high performance computing centres,” Ph.D. dissertation, uzh,
2016.

[2] J. Dongarra, “Visit to the national university for defense technology
changsha, china,” Oak Ridge National Laboratory, Tech. Rep., June,
2013.

[3] A. Moskovsky, E. Druzhinin, A. Shmelev, V. Mironov et al., “Server
level liquid cooling: Do higher system temperatures improve energy
efficiency?” Supercomput. Front. Innov.: Int. J., vol. 3, no. 1, pp. 67—
74, Jan. 2016.

[4] A. Verma, P. Ahuja, and A. Neogi, “Power-aware dynamic placement
of hpc applications,” in Proceedings of the 22Nd Annual International
Conference on Supercomputing, ser. ICS *08. New York, NY, USA:
ACM, 2008, pp. 175-184.

[5] 1. Rodero, H. Viswanathan, E. K. Lee, M. Gamell et al., “Energy-
efficient thermal-aware autonomic management of virtualized hpc cloud
infrastructure,” Journal of Grid Computing, vol. 10, no. 3, pp. 447473,
Sep 2012.

[6] F. Zanini, D. Atienza, C. N. Jones, L. Benini er al., “Online thermal
control methods for multiprocessor systems,” ACM Transactions on
Design Automation of Electronic Systems (TODAES), vol. 18, no. 1,
p. 6, 2013.

[7]1 F. Beneventi, A. Bartolini, C. Cavazzoni, and L. Benini, “Cooling-aware
node-level task allocation for next-generation green hpc systems,” in
High Performance Computing & Simulation (HPCS), 2016 International
Conference on. 1EEE, 2016, pp. 690-696.

[8] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini, “Thermal and en-
ergy management of high-performance multicores: Distributed and self-
calibrating model-predictive controller,” IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 1, pp. 170-183, 2013.

[9]
(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]
[23]
[24]
[25]
[26]

[27]

[28]

[29]

(30]

Intel 64 and IA-32 Architectures Software Developers Manual, Decem-
ber 2017.

D. Cesarini, A. Bartolini, and L. Benini, “Benefits in relaxing the power
capping constraint,” in Proceedings of the 1st Workshop on AutotuniNg
and aDaptivity AppRoaches for Energy Efficient HPC Systems, ser.
ANDARE ’17. New York, NY, USA: ACM, 2017, pp. 3:1-3:6.

M. Witkowski, A. Oleksiak, T. Piontek, and J. Wglarz, “Practical
power consumption estimation for real life hpc applications,” Future
Generation Computer Systems, vol. 29, no. 1, pp. 208 — 217, 2013,
including Special section: AIRCC-NetCoM 2009 and Special section:
Clouds and Service-Oriented Architectures.

M. J. Walker, S. Diestelhorst, A. Hansson, A. K. Das et al., “Accurate
and stable run-time power modeling for mobile and embedded cpus,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 36, no. 1, pp. 106-119, Jan 2017.

L. Benini, A. Bogliolo, and G. D. Micheli, “A survey of design
techniques for system-level dynamic power management,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 8, no. 3,
pp. 299-316, June 2000.

B. C. Lee and D. M. Brooks, “Accurate and efficient regression modeling
for microarchitectural performance and power prediction,” SIGARCH
Comput. Archit. News, vol. 34, no. 5, pp. 185-194, Oct. 2006.

W. L. Bircher and L. K. John, “Complete system power estimation:
A trickle-down approach based on performance events,” in 2007 IEEE
International Symposium on Performance Analysis of Systems Software,
April 2007, pp. 158-168.

K. Singh, M. Bhadauria, and S. A. McKee, “Real time power estimation
and thread scheduling via performance counters,” SIGARCH Comput.
Archit. News, vol. 37, no. 2, pp. 46-55, Jul. 2009.

A. Yasin, “A top-down method for performance analysis and counters
architecture,” in 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), March 2014, pp. 35-44.
K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang et al., “Power contain-
ers: An os facility for fine-grained power and energy management on
multicore servers,” SIGARCH Comput. Archit. News, vol. 41, no. 1, pp.
65-76, Mar. 2013.

G. T. Chetsa, L. Lefvre, J. Pierson, P. Stolf et al., “Exploiting per-
formance counters to predict and improve energy performance of hpc
systems,” Future Generation Computer Systems, vol. 36, no. Supplement
C, pp. 287 — 298, 2014, special Section: Intelligent Big Data Processing
Special Section: Behavior Data Security Issues in Network Information
Propagation Special Section: Energy-efficiency in Large Distributed
Computing Architectures Special Section: eScience Infrastructure and
Applications.

M. Chadha, T. Ilsche, M. Bielert, and W. E. Nagel, “A statistical
approach to power estimation for x86 processors,” in 2017 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), May 2017, pp. 1012-1019.

F. Beneventi, A. Bartolini, C. Cavazzoni, and L. Benini, “Continuous
learning of hpc infrastructure models using big data analytics and
in-memory processing tools,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, March 2017, pp. 1038-1043.
OASIS, “MQTT 3.1.1 specification,” dec 2010, http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

B. Hawkins, “Kairosdb, fast time series database on cassandra,” jan
2017, http://kairosdb.github.io.

A. Bader, O. Kopp, and M. Falkenthal, “Survey and comparison of open
source time series databases.” in BTW (Workshops), 2017, pp. 249-268.
A. Lakshman and P. Malik, “Apache Cassandra,” sep 2016,
http://cassandra.apache.org.

——, “Cassandra: A decentralized structured storage system,” SIGOPS
Oper. Syst. Rev., vol. 44, no. 2, pp. 35-40, Apr. 2010.

M. Zaharia, R. S. Xin, P. Wendell, T. Das et al., “Apache spark: A
unified engine for big data processing,” Commun. ACM, vol. 59, no. 11,
pp. 5665, Oct. 2016.

X. Meng, J. Bradley, B. Yavuz, E. Sparks et al., “Mllib: Machine
learning in apache spark,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1235-1241, 2016.

M. Armbrust, R. S. Xin, C. Lian, Y. Huai et al., “Spark SQL: Relational
data processing in spark,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’15.
New York, NY, USA: ACM, 2015, pp. 1383-1394.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

	Introduction
	Related work
	Framework
	Power prediction model

	Results
	Test bed
	Choice of counters
	Models tuning on a portion of the machine
	Full system results
	Model accuracy
	Performance and resources

	Conclusions
	Acknowledgments
	References

