
24 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Pittino, F., Beneventi, F., Bartolini, A., Benini, L. (2018). A scalable framework for online power modelling
of high-performance computing nodes in production. NEW YORK, NY 10017 USA : Institute of Electrical
and Electronics Engineers Inc. [10.1109/HPCS.2018.00058].

Published Version:

A scalable framework for online power modelling of high-performance computing nodes in production

Published:
DOI: http://doi.org/10.1109/HPCS.2018.00058

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/659831 since: 2019-02-03

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/HPCS.2018.00058
https://hdl.handle.net/11585/659831


 

 

 

 

This is the post peer-review accepted manuscript of:  

F. Pittino, F. Beneventi, A. Bartolini and L. Benini, "A Scalable Framework for Online Power 

Modelling of High-Performance Computing Nodes in Production," 2018 International Conference 

on High Performance Computing & Simulation (HPCS), Orleans, 2018, pp. 300-307. doi: 

10.1109/HPCS.2018.00058 

The published version is available online at: 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8514363&isnumber=8514305  

 

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 

current or future media, including reprinting/republishing this material for advertising or promotional purposes, 

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of 

this work in other works 

 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8514363&isnumber=8514305


A scalable framework for online power modelling

of high-performance computing nodes in production

Federico Pittino∗, Francesco Beneventi∗, Andrea Bartolini∗, Luca Benini∗†

∗Department of Electrical, Electronic and Information Engineering (DEI), University of Bologna, Italy

{federico.pittino, francesco.beneventi, a.bartolini, luca.benini}@unibo.it
†Integrated Systems Laboratory, ETH Zurich, Switzerland {lbenini}@iis.ee.ethz.ch

Abstract—Power and thermal design and management are
critical components of high performance computing (HPC)
systems, due to their cutting-edge position in terms of high
power density and large total power consumption. Many HPC
power management strategies rely on the availability of accurate
compact power models, capable of predicting power consumption
and tracking its sensitivity to workload parameters and oper-
ating points. In this paper we describe a methodology and a
framework for training two of the best-in-class power models
directly on the online in production nodes and without requiring
dedicated training instances. The compact power models are
obtained using an online regression-based approach which can
track non-stationary workloads and hardware variability. Our
experiments on a real-life HPC system demonstrate that the
models achieve very high accuracy over all operating modes.
We also demonstrate the scalability of our approach and the
small amount of resources needed for the online modeling, for
both the training and inference phases.

I. INTRODUCTION

High performance computing (HPC) systems are designed

to be at the cutting edge of computing power. To achieve

this goal, HPC installations are characterized by high com-

putational power density and as consequence, by high power

consumption density as well as high total power consumption.

Indeed HPC systems have 2-4x higher rack power density

w.r.t. server and industrial datacentre installations, with a per

rack power envelope ranging between 20-100 kWatts [1]. High

power density and envelope are obviously critical for HPC

system management and operation.

Today the most powerful supercomputer in Top500 is Sun-

way TaihuLight which consumes 15.3 MW for delivering

93 Petaflops. The second one, Tianhe-2 (ex 1st) consumes

17.8 MW for “only” 33.2 Petaflops. However, the power

consumption increases to 24 MW when considering also the

cooling infrastructure[2]. Such an amount of cooling power

serves to prevent thermal issues. In fact, the performance of

the processing elements is actively controlled by the internal

firmware logic, which modulates chip voltage and frequency

for maximizing the clock speed while satisfying power and

thermal constraints. However these mechanisms are usually

reactive, threshold-based and take significant safety margins:

authors in [3] show that, for hot-water liquid cooled nodes,

the processors are incapable of employing thermal throttling

by using DVFS states to prevent the critical thermal threshold

to be reached.

To solve these issues, several works in the literature [4], [5],

[6], [7], [8] propose to take advantage of proactive thermal

and power management strategies. These strategies all rely

on the availability of compact predictive power models, capa-

ble of predicting future power consumption and, even more

importantly to build a clear understanding on the sensitivity

of power consumption on workload parameters and hardware

knobs that can be controlled at run time. These models allow to

estimate and model the power consumption of the CPUs and

COREs based on workload characteristics extracted through

performance counters and micro-architectural usage. Thanks

to that an optimizer can leverage these models to find the

maximum clock frequency to apply based on the current

usage of the micro-architecture while satisfying a global power

budget or thermal constraints. A different approach to solving

the same problem is followed for instance by Intel’s RAPL [9]

by implementing a feedback loop on a direct measurement

of the power of the CPUs. However, as recent works show

[10], RAPL is sub-optimal and in several cases burns excessive

power when it is not needed.

Instead, the compact models can be used in combination

with optimization and artificial intelligence techniques to

select in a robust fashion the optimal operating points from

the target power and temperature and the current conditions.

However, the strategies for learning these models rely on

design-time parameters that cannot cope with manufacturing

variability, which makes each chip different from the oth-

ers, differences in deployment conditions and ageing which

can induce very significant differences in compact model

parameters even for nominally identical nodes. In addition,

such models have been applied only to single node systems

operating in a test environment and therefore cannot cope

with the large number of computing elements in an HPC

system in production without causing significant calibration

costs (e.g. bringing the HPC machine off-line periodically for

power characterization).

In this paper we describe a methodology and a framework

for training advanced power models (we considered [11],

[12]) as best-in-class use cases) directly on the in production

nodes and without requiring dedicated training instances. More

specifically, we are targeting compact power modeling at the

socket level, since in the HPC systems we considered, nodes

are composed of multiple sockets (packages).

The power models are derived using linear regression. The



choice of linear power models is justified by their accuracy in

modeling real machines [11], [12] and comes extremely handy

for applications in power and thermal management, where we

need to invert the model to use it in a feedback control loop

[8].

II. RELATED WORK

The topic of predictive power modeling has been studied

for many years [13]. The main motivation behind the intro-

duction of such models relied in the increasing importance of

dynamic hardware adaptations, which provide an opportunity

for extracting maximum performance while remaining within

temperature and power limits [14], [15], [16]. The most ad-

vanced and accurate models rely on the usage of performance

counters from the architecture, which can provide a large and

complete set of information about the operation, not only

of the processor, but of the entire system [15], [16]. The

set of performance counters supported by processor vendors

has undergone a continuous enrichment, together with the

introduction of derived counters which are more suitable for

use in prediction algorithms [17].

The application of such models on multicore architecture

on servers and in cloud platforms is more recent [11], [18],

[19], [20], and it is driven mainly by the critical importance of

power and thermal capping in such systems. However, most

of these works do not fully address the complexity and scale

of a full HPC system: they are limited to analyzing only

single nodes. Moreover, in most cases, modeling construction

is not based on monitoring the continuous operation of a

production machine, instead focusing on the study of simple,

single node benchmarks in a controlled test environment. In

order to overcome these limitations, a powerful and scalable

infrastructure applied to a production cluster is needed. For

this purpose, the usage of Big Data techniques is becoming

increasingly promising in this field, as shown in [21].

The majority of models based on performance counters

rely on linear regression for the model construction. The

main differences between these models lie in the choice of

the counters to use. Different statistical methods have been

employed, ranging from Pearson’s correlation of the counters

with power [11] to the monitoring of the R2 of the fit and

of the multicollinearity between counters [12]. In some works

(eg. [11]) the features of the linear regression model are then

derived applying a non-linear transformation to the counters,

however these transformations are usually derived by visual

inspection and they are highly platform-specific. For these

reasons, we have decided to always use as features in the

linear regression model directly the performance counters.

Our main contribution is in the development of a full end-

to-end procedure for model characterization and continuous

adaptation which works online, during normal HPC system

operation. Furthermore, we focus on scalability, using state-

of-the-art big data analytics tools and framework, which allow

concurrently training and updating power models for all the

nodes in the HPC machine. Finally, we demonstrate that our

approach is flexible and it is not limited to a single model or

parameter set, and produce highly accurate results at the scale

of all the nodes of a real-life HPC system, with no perturbation

on production usage.

III. FRAMEWORK

The model-learning infrastructure described in this paper is

based on a distributed and scalable monitoring framework that

we presented in [21].

0101000111

0101110101

0111110101

pmu_pub

CPUs

Node0

RDD

Worker

Executor

Worker

Executor

Worker

Executor

Broker1

Cassandra

node1

BrokerM

Cassandra

nodeM

MQTT2KairosDB MQTT2kairosDB

KairosDB

CLUSTER

0101000111

0101110101

0111110101

pmu_pub

CPUs

Node1

0101000111

0101110101

0111110101

pmu_pub

CPUs

NodeN

Jobs

MQTT Brokers

NoSQL DB

Node0
(partition)

Node1
(partition)

NodeN
(partition)

Apache Spark

Node0

P. Model

Node1

P. Model

NodeN

P. Model

HPC Users

Fig. 1. Model-learning framework

With the help of the hierarchical view showed in Fig.1

we can distinguish four functional layers in the monitoring

and model construction systems. These blocks include: a

communication layer based on the MQTT communication

protocol[22]; A set of data collection agents which run on

each compute node, periodically measure physical and micro-

architectural quantities and publish them through the MQTT

protocol; A storage layer based on a distributed and scalable

time series database (KairosDB) [23], [24] built on top of a

NoSQL database (Apache Cassandra) [25], [26] which pro-

vides a mechanism to store metrics, mainly for visualization

and analysis of historical data; An application layer which uses

the collected data for visualization and data analytics purposes.

In this paper we connected Apache Spark [27], [28] to the

storage layer of the monitoring framework to build prediction

models of the CPU power consumption.

For the model-learning application described in this work

we employed the pmu_pub data collection agent [21], which

runs as a service on each node of the cluster. It measures and

delivers on the MQTT bus the metrics described in Tab. I

and Tab. II. The collectors are configured to sample the CPU

counters every 2 seconds. Using this sample rate we can

achieve a measurement overhead on the target node that is

less than 0.6%.



TABLE I
PER-CORE METRICS

Metric name Description

temp (oC) Core temperature
instr Instructions retired
ipc Instructions per cycle
ips Instructions per second
freq (MHz) Actual core frequency
Ci (%) time in state Ci, with i= {0, 1, 3, 6}
AVXinst (%) Number of AVX instructions
back end bound (%) slots where no µops are delivered due to a lack

of required resources for accepting more µops in the
back-end of the pipeline.

core bound (%) This metric represents how much Core non-
memory issues were of a bottleneck.

L1L2 bound (%) This metric shows how often machine was stalled
without missing the L1 data cache + how often
machine was stalled on L2 cache.

front end bound (%) cycles where pipeline stalls caused by issues
during the fetching or decoding of instructions

retiring (%) cycles where pipeline slots are utilized by useful
work

bad speculation (%) cycles wasted due to removing mispredicted µops
from the execution pipeline

L3 bound (%) cycles where CPU was stalled on L3 cache, or
contended with a sibling Core.

issue loss idle (%) number of idle slots

TABLE II
PER-CPU METRICS

Metric name Description

Ci pkg (%) time in state Ci, with i= {0, 2, 3, 6}
freq pkg (MHz) Actual package frequency
temp pkg (oC) Package temperature

A. Power prediction model

As outlined in Sec. II, the power prediction model is based

on a linear regression algorithm, which is applied on the se-

lected features. All the computation is performed by Spark on

a service node (see Fig. 1), which reads data from KairosDB

or from the MQTT streaming interface and it processes them

using the Dataframe structure (a scalable and distributed data

structure provided by the extension SparkSQL [29]).

Reading from KairosDB is accomplished by executing a

query, as discussed in [21], for a specific subset of nodes and

time window. Only the features relevant for the model are

extracted (see Sec. IV-B), and each feature is scaled using a-

priori constant values in order to lie in the range [0, 1] (or to be

as close as possible, since some of them are unbounded, like

for example ips). The data is then stored in a Dataframe, which

ensures the scalability of our approach due to its inherent

scalable and distributed data structure.

We have now to distinguish two states of operation (see the

pseudocode in Alg. 1):

• linear regression model training phase;

• power prediction calculation.

In the training phase, the linear regression coefficients have

to be calculated. This is accomplished using the functions

provided by the “ml” package from Apache Spark 2.2.0. Once

the Dataframe with the model features observed for a defined

time window is loaded, it is passed to the fit method of the

Algorithm 1 Training and inference phases.

1: procedure TRAINING PHASE

2: node ← node of interest

3: time ← data time window

4: featchoice ← choice of linear regression model

features

5: for all sockets on the node do

6: dframe← query (node,time,featchoice)
7: model← LineaRegression.fit (dframe)
8: end for

9: end procedure

10: procedure INFERENCE PHASE

11: node ← node of interest

12: features ← linear regression model features

13: for all sockets on the node do

14: model ← query(node)
15: powpred ← model.evaluate (features)
16: end for

17: end procedure

LinearRegression class. The model coefficients are then

calculated and stored in KairosDB for subsequent use in the

power prediction calculation.

Once the model coefficients are trained and stored in the

database, the power prediction calculation can be performed.

Since we are interested in online power prediction, the model

features are now read directly from the MQTT interface while

the model coefficients are read from KairosDB and stored

again in an object of the LinearRegression class. The

power calculation is then performed using the evaluate

method of the same class, and the results are broadcasted on

the MQTT interface.

IV. RESULTS

A. Test bed

For our experimentation, we implemented the framework

from Fig. 1 on a cluster composed by 516 nodes of a working

production system (Galileo at Cineca) as a case study. Each

node is equipped with two 8-cores Intel Haswell CPUs (E5-

2630 v3 @ 2.40GHz) and 128GB of DRAM. The power

prediction algorithms are instead run on a separate service

node (Intel Haswell E5-2670 v3 @ 2.30GHz, 24 cores and

128GB DRAM), where the “Spark cluster” environment is

installed.

We want again to stress out the fact that, unlike most of the

previous literature on power models (for example, [14], [19],

[11], [12], [20]), in this work we trained and applied our power

prediction model in a production environment, where each

node has a different workload which can drastically change

over time, and not on benchmarks on single nodes. Fig. 2

reports an example of the sockets from two nodes in the cluster

over a period of 8 days. This example clearly demonstrates

that our model needs to be able to work in a wide variety of

situations, both on nodes in idle state and on nodes with a

high and frequently variable workload.



0 1 2 3 4 5 6 7 8

Time [days]

0

10

20

30

40

50

60

70

80

90

S
o

c
k
e

t 
p

o
w

e
r 

[W
]

socket 0

socket 1

Fig. 2. Trace of measured socket power for two nodes of the cluster.

C
2
_
p
kg

C
3
_
p
kg

C
6
_
p
kg

te
m

p
_
p
kg

fr
e
q
_
p
kg

 *
 C

0
_
p
kg

A
V

X
in

st
C

1

C
3

C
6

fr
e
q
 *

 C
0

fr
e
q

in
st

r
ip

c

ip
s

te
m

p
L
1
L
2
_
b
o
u
n
d

L
3
_
b
o
u
n
d

b
a
ck

_
e
n
d
_
b
o
u
n
d

b
a
d
_
sp

e
cu

la
tio

n
co

re
_
b
o
u
n
d

fr
o
n
t_

e
n
d
_
b
o
u
n
d

is
su

e
_
lo

ss
_
id

le
re

tir
in

g

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

P
e
a
rs

o
n
's

 c
o
rr

e
la

ti
o
n
 w

it
h
 p

o
w

e
r

Fig. 3. Pearson’s correlation between the measured socket power and the
most relevant available counters.

B. Choice of counters

In order to build the features for our models, we used the

algorithms from [11] and [12] by employing the available per-

formance counters provided by the CPU architecture and the

counters that can be derived from them. We have performed

the counters choice on a small dataset consisting of 20 hours

of operation of three nodes of the cluster. We could then verify

that the choice of counters does not depend on the particular

node considered.

In the following we then describe how we derived the two

sets of features that correspond to the models [11] and [12].

Once the two sets of features are derived, the linear regression

algorithm is agnostic about how the features were selected.

As discussed in [11], the first step is to calculate Pearson’s

correlation of each counter with respect to the measured

package power. The results are reported in Fig. 3 for all the

fre
q_

pk
g 

* C
0_

pk
g

L3
_b

ou
nd

te
m

p_
pk

g

fro
nt

_e
nd

_b
ou

nd C
1

ip
s

ba
d_

sp
ec

ul
at

io
n

C
2_

pk
g

C
3

0.95

0.96

0.97

0.98

0.99

1

R
2

1

1.5

2

2.5

3

3.5

A
v
e

ra
g

e
 V

IF

R
2

average VIF

Fig. 4. Progression of R2 (blue) and average VIF (red) when using the
modified algorithm from [12].

TABLE III
COUNTERS CHOSEN AS FEATURES FOR THE CONSIDERED MODELS.

Feature number Model [11] Model [12]

1 freq * C0 C1
2 temp C3
3 C6 temp pkg
4 temp pkg ips
5 freq pkg * C0 pkg freq pkg * C0 pkg
6 C6 pkg C2 pkg
7 back end bound L3 bound
8 core bound front end bound
9 issue loss idle bad speculation

counters we considered (see Tabs. I-II for a description of the

counters). As discussed in Sec. IV-A, in our configuration each

node of the cluster is composed by multiple packages, and

each of them features multiple cores (8 in our case). Since

we are interested on power prediction at the package level,

we have decided to average all per-core counters on a per-

package basis. This allows us to greatly reduce the number

of coefficients in our models, while retaining a very good

accuracy (see Sec. IV-D). As is very well-known in the field

of machine learning (see [30]), this averaging corresponds to a

soft regularization, which helps in stabilizing the model coef-

ficients avoiding overfitting and leads to better generalization

of the model.

In order to keep the power model compact, we have chosen

to use only a maximum of 9 features, which corresponds to the

number of features with absolute correlation greater than 0.5

in Fig. 3, making sure not to include redundant information

(as would be the case if we included for example both freq

and freq * C0). The chosen features are reported in Tab. III,

where their ordering is arbitrary.

In order to derive the second set of features, we have

followed [12]. The algorithm works by iteratively adding fea-

tures to the model until the adjusted R2 continues to increase

significantly. Once the features are chosen, it is calculated the

variance inflation (VIF) of each of them with respect to all the

others as a measurement of multicollinearity. If any features

are identified as multicollinear using their VIF, one of the two

is discarded.

Similarly to what suggested in [12], we have started the

algorithm including always the feature freq pkg * C0 pkg.



We have verified that, if we started from freq * C0 instead,

the subsequent selected features remain the same, showing

that freq pkg * C0 pkg and freq * C0 convey a very similar

information (as expected, since freq ≤ freq pkg). The original

approach by [12] was however not fully general, since the

authors ended up having only two features with high VIF, and

therefore they could easily exclude one of them. This is only

a very special case, and indeed it was not what we obtained

in our case. For this reason, we slightly modified the model

by [12] by including a control on the VIF at each step of the

feature selection loop based on R2. Specifically, we had to set

a maximum value for the increment in average VIF between all

features from one step to another. This was necessary because

otherwise all selected features end up having a very high VIF,

with no clear indication of which feature is dependent on

which other.

The results of the application of the modified algorithm from

[12] to our dataset are shown in Fig. 4, where both the model

R2 and the average VIF for all features at each iteration are

shown. In the x-axis the chosen feature at each iteration is

displayed. To be consistent with the previous model, we have

decided to choose at most 9 features. Finally, Tab. III shows

a summary of the chosen features for the two algorithms, in

an arbitrary order.

C. Models tuning on a portion of the machine

In order to explore the behaviour of the models and to

tune their hyperparameters (like regularization parameter and

training time interval [30]), we decided to start with a series

of comprehensive tests on a reduced portion of the machine,

which helps keeping excessive variability and computational

time under control. For this reason, we selected only 8 nodes

monitored for a total of 8 consecutive days. All results in this

section refer to this dataset.

The linear regression model is defined to have no constant

term, since we want our model to be able to use the provided

features to predict also the idle power consumption. The

regularization parameter is set to 0.001, which has proven to

be a robust value to maximize accuracy.

The metric which is most commonly reported in literature

is the relative error on the predicted power, and in particular

the average relative error. Reporting only the average does

however exclude a large piece of valuable information, since

the average can be greatly influenced by few large outliers and

we have no indication about how often the error lies below

or above the average. For these reasons, we have chosen to

report the entire Empirical Cumulative Distribution (ECDF)

of the error.

Fig. 5 reports, in particular, the ECDF of the relative error

obtained with the two algorithms by training a different model

for each node and socket and varying the length of the training

time window. As we can see, model [11] performs generally

better, its accuracy improves with training time and has a lower

number of outliers. In contrast, model [12] is usually worse

and it does not improve substantially with the training time.

10
-1

10
0

10
1

10
2

Relative error [%]

0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n train. time 0.5 days

train. time 1 days

train. time 2 days

train. time 3 days

(a) Model [11]

10
-1

10
0

10
1

10
2

Relative error [%]

0

0.2

0.4

0.6

0.8

1

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n train. time 0.5 days

train. time 1 days

train. time 2 days

train. time 3 days

(b) Model [12]

Fig. 5. Relative error in the predicted socket power varying the training time
and the model, using the 8-nodes dataset.

The relative error is however not necessarily the most

important metric to assess the model performance. Since

our primary focus is on thermal management, it is instead

more insightful to convert the error in predicted power to

a temperature error on the package. For this purpose, we

have employed previously reported measurements to directly

convert a power error in temperature variation. We extracted

from the target system the thermal resistance (0.31oK/W ) and

we computed the watt necessary to increase of 1◦C (3.23 W)

and 3◦C (16.1 W).

Fig. 6 summarizes the results of this study by employing

two thresholds, one at 1◦C (3.23 W) and the other at 3◦C

(16.1 W). Each point on the x-axis is a different training

time, and for each training time and threshold they are shown

the median relative number of points below the threshold

together with the 25% and 75% percentiles (the error bars).

We again note that the error for model [11] when training

each node separately decreases significantly with the training

time. On the other hand, using a single model jointly trained

on all nodes provides generally a better performance when the

training time interval is short, however the accuracy does not

increase as significantly with the training time.

For model [12], instead, both training strategies are much less

sensitive to the training time and the accuracy is generally

lower with respect to model [11]. In all cases, even in the worst

case scenarios generally for 90% of the points the calculated

temperature error on the package is lower than 3◦C, and in

the best scenarios this is true in almost 100% of the points.



0.5 1 1.5 2 2.5 3

Training time [days]

30

40

50

60

70

80

90

100
P

o
in

ts
 b

e
lo

w
 t
h
re

s
h
o
ld

 [
%

]

1°C

3°C

(a) Model [11], separate training

0.5 1 1.5 2 2.5 3

Training time [days]

30

40

50

60

70

80

90

100

P
o
in

ts
 b

e
lo

w
 t
h
re

s
h
o
ld

 [
%

]

1°C

3°C

(b) Model [11], joint training

0.5 1 1.5 2 2.5 3

Training time [days]

30

40

50

60

70

80

90

100

P
o
in

ts
 b

e
lo

w
 t
h
re

s
h
o
ld

 [
%

]

1°C

3°C

(c) Model [12], separate training

0.5 1 1.5 2 2.5 3

Training time [days]

30

40

50

60

70

80

90

100

P
o
in

ts
 b

e
lo

w
 t
h
re

s
h
o
ld

 [
%

]

1°C

3°C

(d) Model [12], joint training

Fig. 6. Results comparing the models [11] and [12] on the 8-nodes dataset changing the training time interval, either training a different model for each node
and socket or performing a joint training on data from all nodes. The two lines in each plot show, between all nodes and sockets, the median (circle) and
25th and 75th percentiles (error bar) of the percentage of points where the power error due to the estimation results in a temperature change in the package
lower than a threshold (either 1◦C or 3◦C).

In all the results presented so far we have found that model

[11] performs generally better than model [12]. However,

the main motivation behind model [12] was to avoid mul-

ticollinearity between the features, in order to obtain more

stable model coefficients which could then be more easily

used in power optimization techniques. In order to verify this

hypothesis, Fig. 7 shows the values of the coefficients for the

two models when the training time is 3 days, either doing

a joint training (red line) or training a different model for

each node and socket (blue line). In the latter case, the circles

represent the medians and the error bars are the 25% and

75% percentiles of the coefficients with respect to all nodes

and sockets.

Comparing the two models, there is no evidence that suggests

model [12] features coefficients are much more stable than

the ones from model [11]. Coupling this observation with

the fact that the relevance of the features in model [11]

is more intuitive to understand and that this model usually

performs better, in the following we will not consider model

[12] anymore.

D. Full system results

Having selected a model and understood its limitations, we

have moved to considering the application of our framework

to a more challenging dataset and to evaluate its performance

and scalability. For this purpose, we have selected from the

cluster described in Sec. IV-A the nodes for which we had a

long record of data by using the framework described in Sec.

III. The selected nodes are then 43, and correspond to a single

rack. From these results we are also able to show the scalability

of our framework to the entire cluster, by augmenting the data

in order to reproduce the dataset that would be generated by

all 516 nodes in the cluster.

For all the results in this section we have decided to use only

model [11] and to train a different model for each node and

socket, since we have shown that in this way we can achieve

the best accuracy.

1) Model accuracy: Fig. 8 shows the model accuracy on

the full cluster, as a function of the number of considered

nodes, with the same approach of Fig. 6, i.e., by evaluating the

temperature change in the package due to a power prediction

error. Since in this dataset we have acquired data for a longer

period of 20 days, we can now compare the results of longer

training time intervals of 3 and 6 days.

Comparing Figs. 8 and 6, we notice that in this larger dataset

the accuracy is slightly lower than in the 8-nodes dataset, given

the same training time of 3 days. This is justified by the fact

that we are now monitoring the nodes for a longer period of

time, and therefore it is more likely for the nodes to undergo

radical changes in workload. Indeed, by increasing the training

time to 6 days the model accuracy is now comparable to the

one obtained on the 8-nodes dataset. The observation that a

longer training time is needed is further supported by our a-



1 2 3 4 5 6 7 8 9

Feature number

-0.2

0

0.2

0.4

0.6
C

o
e
ff
ic

ie
n
t 
m

e
d
ia

n

separate train.

joint train.

(a) Model [11]

1 2 3 4 5 6 7 8 9

Feature number

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C
o
e
ff
ic

ie
n
t 
m

e
d
ia

n

separate train.

joint train.

(b) Model [12]

Fig. 7. Trained model coefficients, using a training time of 3 days. In the
case of separate trainings (blue lines), the circles represent the medians and
the error bars are the 25th and 75th percentiles of the coefficients with respect
to all nodes and sockets.

priori knowledge of the fact that the jobs running on the cluster

are typically expect to last for a few days, and therefore a

training interval of at least 6 days is needed to capture all

variations in the nodes operation.

Moreover, as expected we note that, when considering a

smaller number of nodes, the model accuracy is more variable

and greatly depends on the particular nodes considered and on

their operation during the current time frame.

2) Performance and resources: Having obtained an indi-

cation of the optimum model and training time interval, we

have then evaluated the performance of the algorithm on our

service node. We have checked that the amount of memory

required is about 790 MB per node, and it scales linearly with

the number of parallel executions. We have then evaluated the

execution time of the training algorithm varying the level of

parallelism, the results are shown in Fig. 9. Unsurprisingly,

due to the limited number of cores in our service node (see

Sec. IV-A), there is no increase in performance when using

more than 12 parallel jobs. Using then the best result of about

6 seconds per node, we conclude that the training process of a

complete cluster of 516 nodes (as in our test case) would take

on average 52 minutes using 9 GB of the RAM. Note also that

this computation is performed on resources that are external to

the calculation resources of the cluster, and its computational

demand is very limited compared to the one of the cluster.

Moreover, we have shown that the training computation needs

to be performed only rarely if we have a good amount of

5 10 15 20 25 30 35 40 45

Number of considered nodes

30

40

50

60

70

80

90

100

P
o
in

ts
 b

e
lo

w
 t
h
re

s
h
o
ld

 [
%

]

1°C

3°C

(a) Training time interval 3 days

5 10 15 20 25 30 35 40 45

Number of considered nodes

30

40

50

60

70

80

90

100

P
o
in

ts
 b

e
lo

w
 t
h
re

s
h
o
ld

 [
%

]

1°C

3°C

(b) Training time interval 6 days

Fig. 8. Results obtained with the model [11] on the large dataset as a function
of the number of considered nodes, changing the training time interval and
training a different model for each node and socket. The two lines in each
plot show, between all nodes and sockets, the median (circle) and 25th and
75th percentiles (error bar) of the percentage of points where the power error
due to the estimation results in a temperature change in the package lower
than a threshold (either 1◦C or 3◦C).

0 5 10 15 20 25

Number of Spark jobs

5

9

13

17

21

25

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 p

e
r 

n
o
d
e
 [
s
]

Fig. 9. Time required per node to perform the training as a function of the
number of parallel Spark jobs executed on our test machine. Each Spark job
could use at most 8 cores.

available data.

As far as the model inference at runtime is concerned, this is

only a minimal overhead since it involves only 9 products and

8 sums per each node, socket and time sample and therefore

can be done easily online.

V. CONCLUSIONS

In this work we have shown a scalable framework for

power prediction in HPC clusters, discussing the importance

of an accurate and efficient compact model in targeting real

time power and thermal management. We have evaluated



some of the most popular power models from the literature,

applied them to a real workload in a production environment

and studied their accuracy in detail. We have proposed a

novel method for evaluating their performance, compared the

models and pointed out which one is more promising for our

application.

The chosen model has a very high accuracy when trained

on a relevant amount of data which cover all possible states

of operation. In particular, we have obtained a median error of

5% or 2.5W on the predicted package power, and an error of

18% or 8.5W on the 95% percentile. Such power errors in our

case translate to a median temperature error on the package

of 0.7◦C and of 2.6◦C on the 95% percentile.

We have also demonstrated the scalability of our approach

and the small amount of resources needed for the model, for

both the training and inference phases. If the training phase is

done correctly, it is not necessary to retrain the model more

often than every 2 weeks, and probably well beyond this.

In addition, our framework offers a very powerful and

flexible way of automatically dealing with outliers due to a

model not up-to-date by continuous monitoring of the error in

predicted power. Once this error for a given node and package

exceeds a user-defined threshold for a certain time, a model

retraining phase can be automatically triggered.

Being a scalable and very efficient framework, it is suitable

for application in every HPC cluster up to date, even featuring

thousands of computational nodes.

VI. ACKNOWLEDGMENTS

This work was supported by the EU ERC Project MUL-

TITHERMAN (g.a. 291125) and the EU FETHPC project

ANTAREX (g.a. 671623).

REFERENCES

[1] L. Gilly, “Data centre design standards and best practices for public
research high performance computing centres,” Ph.D. dissertation, uzh,
2016.

[2] J. Dongarra, “Visit to the national university for defense technology
changsha, china,” Oak Ridge National Laboratory, Tech. Rep., June,
2013.

[3] A. Moskovsky, E. Druzhinin, A. Shmelev, V. Mironov et al., “Server
level liquid cooling: Do higher system temperatures improve energy
efficiency?” Supercomput. Front. Innov.: Int. J., vol. 3, no. 1, pp. 67–
74, Jan. 2016.

[4] A. Verma, P. Ahuja, and A. Neogi, “Power-aware dynamic placement
of hpc applications,” in Proceedings of the 22Nd Annual International

Conference on Supercomputing, ser. ICS ’08. New York, NY, USA:
ACM, 2008, pp. 175–184.

[5] I. Rodero, H. Viswanathan, E. K. Lee, M. Gamell et al., “Energy-
efficient thermal-aware autonomic management of virtualized hpc cloud
infrastructure,” Journal of Grid Computing, vol. 10, no. 3, pp. 447–473,
Sep 2012.

[6] F. Zanini, D. Atienza, C. N. Jones, L. Benini et al., “Online thermal
control methods for multiprocessor systems,” ACM Transactions on

Design Automation of Electronic Systems (TODAES), vol. 18, no. 1,
p. 6, 2013.

[7] F. Beneventi, A. Bartolini, C. Cavazzoni, and L. Benini, “Cooling-aware
node-level task allocation for next-generation green hpc systems,” in
High Performance Computing & Simulation (HPCS), 2016 International

Conference on. IEEE, 2016, pp. 690–696.
[8] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini, “Thermal and en-

ergy management of high-performance multicores: Distributed and self-
calibrating model-predictive controller,” IEEE Transactions on Parallel

and Distributed Systems, vol. 24, no. 1, pp. 170–183, 2013.

[9] Intel 64 and IA-32 Architectures Software Developers Manual, Decem-
ber 2017.

[10] D. Cesarini, A. Bartolini, and L. Benini, “Benefits in relaxing the power
capping constraint,” in Proceedings of the 1st Workshop on AutotuniNg

and aDaptivity AppRoaches for Energy Efficient HPC Systems, ser.
ANDARE ’17. New York, NY, USA: ACM, 2017, pp. 3:1–3:6.

[11] M. Witkowski, A. Oleksiak, T. Piontek, and J. Wglarz, “Practical
power consumption estimation for real life hpc applications,” Future

Generation Computer Systems, vol. 29, no. 1, pp. 208 – 217, 2013,
including Special section: AIRCC-NetCoM 2009 and Special section:
Clouds and Service-Oriented Architectures.

[12] M. J. Walker, S. Diestelhorst, A. Hansson, A. K. Das et al., “Accurate
and stable run-time power modeling for mobile and embedded cpus,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 36, no. 1, pp. 106–119, Jan 2017.
[13] L. Benini, A. Bogliolo, and G. D. Micheli, “A survey of design

techniques for system-level dynamic power management,” IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, vol. 8, no. 3,
pp. 299–316, June 2000.

[14] B. C. Lee and D. M. Brooks, “Accurate and efficient regression modeling
for microarchitectural performance and power prediction,” SIGARCH

Comput. Archit. News, vol. 34, no. 5, pp. 185–194, Oct. 2006.
[15] W. L. Bircher and L. K. John, “Complete system power estimation:

A trickle-down approach based on performance events,” in 2007 IEEE

International Symposium on Performance Analysis of Systems Software,
April 2007, pp. 158–168.

[16] K. Singh, M. Bhadauria, and S. A. McKee, “Real time power estimation
and thread scheduling via performance counters,” SIGARCH Comput.

Archit. News, vol. 37, no. 2, pp. 46–55, Jul. 2009.
[17] A. Yasin, “A top-down method for performance analysis and counters

architecture,” in 2014 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), March 2014, pp. 35–44.
[18] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang et al., “Power contain-

ers: An os facility for fine-grained power and energy management on
multicore servers,” SIGARCH Comput. Archit. News, vol. 41, no. 1, pp.
65–76, Mar. 2013.

[19] G. T. Chetsa, L. Lefvre, J. Pierson, P. Stolf et al., “Exploiting per-
formance counters to predict and improve energy performance of hpc
systems,” Future Generation Computer Systems, vol. 36, no. Supplement
C, pp. 287 – 298, 2014, special Section: Intelligent Big Data Processing
Special Section: Behavior Data Security Issues in Network Information
Propagation Special Section: Energy-efficiency in Large Distributed
Computing Architectures Special Section: eScience Infrastructure and
Applications.

[20] M. Chadha, T. Ilsche, M. Bielert, and W. E. Nagel, “A statistical
approach to power estimation for x86 processors,” in 2017 IEEE

International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), May 2017, pp. 1012–1019.
[21] F. Beneventi, A. Bartolini, C. Cavazzoni, and L. Benini, “Continuous

learning of hpc infrastructure models using big data analytics and
in-memory processing tools,” in Design, Automation Test in Europe

Conference Exhibition (DATE), 2017, March 2017, pp. 1038–1043.
[22] OASIS, “MQTT 3.1.1 specification,” dec 2010, http://docs.oasis-

open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.
[23] B. Hawkins, “Kairosdb, fast time series database on cassandra,” jan

2017, http://kairosdb.github.io.
[24] A. Bader, O. Kopp, and M. Falkenthal, “Survey and comparison of open

source time series databases.” in BTW (Workshops), 2017, pp. 249–268.
[25] A. Lakshman and P. Malik, “Apache Cassandra,” sep 2016,

http://cassandra.apache.org.
[26] ——, “Cassandra: A decentralized structured storage system,” SIGOPS

Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40, Apr. 2010.
[27] M. Zaharia, R. S. Xin, P. Wendell, T. Das et al., “Apache spark: A

unified engine for big data processing,” Commun. ACM, vol. 59, no. 11,
pp. 56–65, Oct. 2016.

[28] X. Meng, J. Bradley, B. Yavuz, E. Sparks et al., “Mllib: Machine
learning in apache spark,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1235–1241, 2016.

[29] M. Armbrust, R. S. Xin, C. Lian, Y. Huai et al., “Spark SQL: Relational
data processing in spark,” in Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data, ser. SIGMOD ’15.
New York, NY, USA: ACM, 2015, pp. 1383–1394.

[30] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.


	Introduction
	Related work
	Framework
	Power prediction model

	Results
	Test bed
	Choice of counters
	Models tuning on a portion of the machine
	Full system results
	Model accuracy
	Performance and resources


	Conclusions
	Acknowledgments
	References

