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The Chicken-Egg Dilemma and the Robustness Issue in Nonlinear Output
Regulation with a Look Towards Adaptation and Universal Approximators

Michelangelo Bin and Lorenzo Marconi

Abstract— In this paper we review the problem of output
regulation for nonlinear systems. We discuss how the robustness
properties and the simple structure of the linear regulator are
linear artefacts which do not extend in more general nonlinear
cases. We talk about the intertwining that is necessarily present
between the internal model and the stabilising parts of a
nonlinear regulator, in which the role of the exosystem mixes
up with those of the residual plant’s dynamics. We discuss
a general guideline to deal with such structural challenges,
by looking at adaptation and universal approximators as a
promising way to provide systematic design procedures for
approximate regulators in a general nonlinear setting.

I. INTRODUCTION

We consider a general class of continuous-time nonlinear
systems of the form

ẋ = f(w, x, u)
y = h(w, x)

(1)

with state x ∈ Rn, control input u ∈ Rm and output y ∈ Rq .
The input w ∈ Rnw is an exogenous signal that represents
references to be tracked, disturbances to be rejected and
unknown parameters. As customary in output regulation, we
assume that w is generated by a system of the form

ẇ = s(w) (2)

called the exosystem. We associate to the plant (1) the
regulation errors

e = he(w, x) ∈ Rp, (3)

that are those variables on which the effect of the exogenous
signal w must be eliminated at the steady state. We suppose
that e belongs to the measured outputs1 y, namely, that we
can write y = (e, ym), with ym ∈ Rq−p some additional
outputs that have no steady-state requirements.

For the system (1), (2), (3) we consider the following
approximate output regulation problem: given ε > 0 and
sets X ⊂ Rn and W ⊂ Rnw of initial conditions for (1),
(2), find an output feedback regulator of the kind

ζ̇ = g(ζ, y), ζ ∈ Rnζ
u = γ(ζ, y)

(4)
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1This assumption is motivated by the fact that for linear systems the
readability of e from y is necessary to obtain a robust design [1].

and a set Z ⊂ Rnζ , such that the closed-loop system (1), (2),
(4) is locally uniformly eventually bounded2 from W×X×Z
and lim supt→∞ |e(t)| ≤ ε. If ε = 0 we say that the
regulation property is asymptotic, if ε > 0 can be made
arbitrarily small, by opportunely tuning the regulator, we say
that the regulation property is practical. For what concerns
the sets W , X and Z: If X = Rn we say that the regulation
property is global, if it can be taken arbitrarily large by
opportunely tuning (4) we instead say that the regulation
property is semi-global.

The case in which the plant (1) and the exosystem (2)
are linear, with the exosystem is perfectly known, has been
solved in a very elegant way in the seminal works [1],
[2], [3], where the celebrated internal model principle has
been formulated. The control design of [3] is summarized
in section II. The linear regulator enjoys a very special
property: if the regulator is tuned for a nominal plant (and
for a nominal exosystem) to obtain asymptotic regulation,
asymptotic regulation holds also for any perturbation of
the plant’s data f and h that does not destroy linearity
and closed-loop stability. This robustness property is direct
consequence of linearity and has not been extended so far
to nonlinear systems (for a more detailed analysis about
robustness the reader is referred to [4]). The main existing
approaches for nonlinear systems (see e.g. [5], [6]) have
been developed only for the quite limited contexts of square
normal forms, and the control designs are strongly based on
the knowledge of a model of the ideal steady state control
action that is able to make the set in which the regulation
error vanishes invariant3. This ideal steady-state control law
strongly depends on the exosystem and the zero dynamics
associated to the plant, and hence, any design based on its
knowledge is in principle not robust to plant’s or exosystem’s
perturbations.

In this paper we review the main reasons why the ex-
tension of the very special properties of the linear regulator
to a nonlinear context is such a difficult task. In this way,
we delineate in a very general framework what are the
main structural difficulties and challenges that are behind
the design of a robust nonlinear regulator. The idea that
shines throughout the paper is that the robustness property
and the simplicity of structure of the linear regulator are
mere consequence of the strongest and dominant assumption

2Namely, for every bounded subset U ⊂ W × X × Z, there exists
M > 0 and T > 0 such that, for every solution (w, x, ζ) originating in U ,
|(w(t), x(t), ζ(t))| ≤M for all t ≥ T .

3This control action is usually called the friend and the design techniques
that rely on it, or on its dynamic model, are said to be friend centric.



of linearity, and that in a general context a neat separation
among the different parts of the regulator is not possible
and that the idea of robustness typically framed in the linear
context might not be appropriate for nonlinear systems. In
parallel to [4], which goes toward a more abstract idea of
robustness, in this paper we look at a regulator structure
that naturally embraces the different features that arise in
nonlinear systems, with a look toward adaptive strategies
and “universal approximators” seen as tools to deal with the
nonlinear challenges.

II. THE LINEAR REGULATOR

In this section we consider the system (1), (2), (3) under
the assumption that p ≤ m and the functions f , s and h are
linear and, in some fixed basis of Rnw × Rn, we have

ẇ = Sw
ẋ = Ax+Bu+ Pw

y =

(
e
ym

)
=

(
Cex+Qew
Cmx+Qmw

)
= Cx+Qw

(5)

for some matrices S, A, B, P , C and Q of appropriate
dimension, with S that is assumed to be neutrally stable.
Well known arguments (see e.g. [2]) show that necessary
and sufficient conditions under which asymptotic regulation
is possible is the existence of matrices (Π,Γ) solving the
following regulator equations:

ΠS = AΠ +BΓ + P
0 = CeΠ +Qe.

(6)

The functions x?(t) = Πw(t) and u?(t) = Γw(t) represent
respectively the ideal steady state trajectories for the state x
and the control input u ensuring a zero regulation error. The
linear regulator is obtained by letting in (4) ζ = (η, ξ) and
(g, γ) be such that

η̇ = Φη +Ge

ξ̇ = Hξξ +Hηη +Hyy
u = Kξξ +Kηη +Kyy

(7)

where nη := dim(η) = pnw, (Φ, G) is a controllable pair
with the characteristic polynomial of Φ that equals those of
S and with nξ := dim(ξ), Hξ, Hη , Hy , Kξ, Kη and Ky that
are chosen to stabilise the resulting closed-loop system. It can
be proved that, as long as the origin of closed loop system
is asymptotically stable with w = 0, then the state (x, η, ξ)
reaches a steady state (x?, η?, ξ?) with x?(t) = Πw(t),
u?(t) = Γw(t) and, hence, e?(t) := Cex

?(t) +Qew(t) = 0.
A celebrated property of the linear regulator is that it

is structurally robust. Namely, although uncertainties in the
plant’s data A, B, P , C and Q reflect into changes of the
solution (Π,Γ) to (6) (and hence of the steady state value
of (x, u)), as long as the regulator (7) maintains asymptotic
stability of the closed-loop system the steady state is still
characterised by the property that e?(t) = 0. In other words,
asymptotic regulation is achieved despite the presence of
(sufficiently small) linear variations of the plant’s data.

Nevertheless, the prefect knowledge of the exosystem
dynamics (i.e. the knowledge of the characteristic polynomial

of S) is instead necessary to obtain asymptotic regulation and
also slight variations in S from the nominal value destroy this
property, even if the plant’s data are perfectly known.

A further nice property is that the design of the different
parts of the regulator (7) can be accomplished in a “straight”
way. Namely, the internal model can be fixed just once the
exosystem dynamics is known and thereafter the stabilising
part ξ can be chosen so that to ensure the closed-loop
stability. In this respect, there is no intertwining in the design
of the subsystems η and ξ, with ξ that depends on η and with
η which is instead independent on ξ.

III. NONLINEAR REGULATION

In this section we consider again the system (1), (2),
(3) when the functions f , h and s are arbitrary nonlinear
functions. We first discuss why the robustness properties of
the linear regulator can not be extended to nonlinear systems
and then we talk about the intertwining that is present in the
design of the internal model η and the stabiliser ξ subsystems
when linearity does not hold.

A. Why robustness is far to be possible?

The key point that makes linear systems so special is that
they do not distort linear input signals. When the linear
closed-loop system (5), (7) is asymptotically stable and is
excited by the input w produced by a linear exosystem,
at the steady state all the signals in the closed-loop will
contain the same harmonics of w(t). In other words, all
the signals in the closed-loop systems can be generated by
linear processes with the same dynamic properties of the
exosystem. It is worth pointing out that the internal model
should not necessarily be a model of the exosystem. Rather it
should be a model of any process that can generate the ideal
steady state control law u?(t) that forces the regulation error
to be zero. For linear systems u?(t) can be generated by any
process that has the same frequencies of the exosystem, and
hence, the fact that Φ contains all the modes of S turns out to
be sufficient to ensure that η has the internal model property.
For nonlinear systems this fortunate property simply does not
hold. This can be easily seen by considering, for example, a
system of the form

ẇ1 = w2

ẇ2 = −w1

ẋ1 = x2 + x3
ẋ2 = −x1 − βx2 + εx31 + w1 + x3
ẋ3 = u− x1
e = x3

with β > 0 and ε ∈ R small numbers. In this case, every
regulator that ensures e(t) = 0 for all t ∈ R+, also must
ensure ė(t) = 0 almost everywhere in R+. This means that
u(t) must compensate, at the steady state, the effect of x1(t)
(restricted to the set in which x3 = 0). Hence, a possible
candidate of u?(t) is the output of the following system

ẇ1 = w2, ẇ2 = −w1

ẋ1 = x2, ẋ2 = −x1 − βx2 + εx31 + w1

u? = x1.
(8)



Therefore, any regulator solving the problem must embed a
model of (8) inside the control loop to be able to generate
u?(t). Now, no matter how small β and |ε| are, for suffi-
ciently large initial conditions of (w, x) the system (8) admits
chaotic solutions (see [7]). This means that the information
given by the exosystem (a simple harmonic in this case) is
arbitrarily far to be sufficient to individuate a model for the
desired u?, and the role of the exosystem in the internal
model fades away and mixes up with the parts of the plant
(in this case the dynamics of x1 and x2) that participate in
the definition of the possible u?(t)4. When the system is
linear (take ε = 0 in (8)) and asymptotically stable, then the
plant’s residual dynamics (x1 and x2 in this case) simply
do not participate in the definition of u?(t) unless changing
its phase or amplitude. That means that no matter we chose
β > 0 or add linear terms to (8), if ε = 0 and (x1, x2) is
stable, then u?(t) can be always produced by the system

η̇1 = η2, η̇2 = −η1
u? = η1

which is completely defined by the knowledge of the exo-
system.

This example shows how in nonlinear systems the plant
itself plays a strong active part in the definition of the law
u?(t), and hence, if a regulator is constructed to embed a
copy of the process that generates u?(t) then any arbitrarily
slight perturbation in the plant, as well as in the exosystem,
can in principle invalidate such an internal model, thus
breaking the possibility of obtaining asymptotic regulation.
This leads us to conclude the following important, even if
probably trivial, fact: an internal model based regulator can
in principle guarantee asymptotic regulation robustly only
under perturbations of the plant or the exosystem that do not
affect the process that generates u?(t). Thus looking for a
nonlinear regulator that is robust with respect to arbitrary,
even though small, perturbations of the plant is not different
than looking for a linear regulator that is robust also with
respect to variations in the exosystem matrix S. Simply it is
unlikely to exist (even in the linear case), and the very special
robustness property of the linear regulator seems to be just
a fortunate consequence of linearity that has no nonlinear
analogous for general systems.

B. The chicken-egg dilemma in nonlinear regulation
Inspired by the linear regulator we consider candidate

regulators of the kind (4) that are subdivided into an internal
model unit and a stabiliser. In particular we let ζ = (η, ξ),
with η ∈ Rnη and ξ ∈ Rnξ that fulfils equations of the form

η̇ = Φ(η, e)

ξ̇ = ϕ(η, ξ, y)
u = γ(η, ξ, y).

(9)

Clearly, as in the linear case, the design of the stabiliser
requires the knowledge of the internal model unit, since

4This reflects also in the fact that for general nonlinear systems, the
solutions to the nonlinear equivalent of the regulator equations (6) cannot
be expressed only in terms of w(t), as instead is supposed in almost all the
literature of output regulation so far (see [8] for a more extended treatise).

it is supposed to stabilise the cascade of the exosystem,
the plant and the internal model unit. However, if a steady
state (w?, x?, η?, ξ?) must be reached such that e? :=
he(w

?, x?) = 0, necessarily we must have

u? = γ(η?, ξ?, y?) a.e. (10)

where y? := h(w?, x?). As a consequence, the ideal steady
state η?, which for fixed u? must give, together with (ξ?, y?),
a solution to (10), cannot be defined independently of ξ?. As
η? must be a solution to η̇ = Φ(η, 0), this means that the
choice of Φ is necessarily dependent on γ and ϕ, as the
first appears explicitly in (10), and the second relates to ξ?.
If the plant, the exosystem and the stabiliser are linear, this
intertwining fades away, as no matter how η? will depend on
ξ?, it will always solve the equation η̇? = Φη?, as long as
Φ contains the exosystem frequencies. In the nonlinear case
though this decoupling is not in general possible anymore,
and the intertwining among the design of the stabiliser and
the internal model unit manifests itself in what we call the
chicken-egg dilemma: in order to fix the internal model unit
we must first fix the stabiliser but, on the other hand, the
stabiliser must be fixed to stabilise a system that includes
the internal model and therefore relies on its knowledge.

Among the different design solutions to handle output
regulation problems for purely nonlinear systems it is worth
mentioning [5] and [6] (see also [9], [10], [11], [12], [13]
and the references therein). Interesting enough, both the
design dealt with the chicken egg dilemma in the context
of minimum-phase square (i.e. dim(u) = dim(e)) normal
forms, with y = e and with a common solution structure
which is referred to as pre-processing. The pre-processing
design is composed of a stabiliser which processes the
available measurement e and produces a stabilising action
v = v(e). This stabilising action is fed into an internal model
unit that thus has access to e only throughout v. The output
of the internal model unit then sums up with v to produce
the control input u. The pre-processing design is somewhat
complementary to the structure that arises naturally in the
linear regulator, which is called a post-processing structure.
In the post-processing schemes the internal model unit is
directly fed by the regulation errors and its state, as well as
the output y, constitutes the inputs of the stabiliser which
has to stabilise the resulting closed-loop system. The reason
why both the designs of [14] and [6] have been cast as
pre-processing designs should be probably sought in the
fact that such structure allowed to avoid dealing with the
chicken-egg dilemma for the class of systems considered.
Nevertheless, the pre-processing structure reveals some struc-
tural properties that seem to be hard, at least conceptually,
to be consistent with a control design able to deal with
nonlinear systems more general than minimum-phase square
normal forms having simple controllability properties. For
instance it is not clear how to deal in a pre-processing
scheme with non-square multivariable systems, where the
dimension of u is larger than those of e. In this case, indeed,
the internal model unit would be driven by an input v(e),
which has the same information as e, but possibly a higher



dimension. Moreover, there is not a clear road map to handle
additional measured outputs ym whenever they are needed
for stabilisation but they do not need to vanish at the steady
state. In fact, if ym are needed to form the stabilising action
v (that in this case would be a functions also of ym, i.e.
v = v(y)) the steady state value y? of y would be either
filtered by the stabiliser or included in the definition of the
internal model, thus making the design, in principle, more
fragile. For further details on the properties of pre- and post-
processing schemes the reader is referred to [15], [16], [8].
For both the designs of [5] and [6], an equivalent post-
processing scheme has been found, respectively in [16] and
[15]. Although the post-processing versions have a structure
more likely suitable for further generalisations, the current
designs have been applied only to the same class of problems
that pre-processing schemes can deal with, with the further
complication that the intertwining between the internal model
and the stabiliser appears explicitly (i.e. Φ depends on v).

IV. DEALING WITH THE CHICKEN-EGG DILEMMA

As the intertwining between the internal model unit and
the stabiliser is a feature that seems to be hardly avoidable
whenever general nonlinear systems are considered, a co-
design strategy for the two systems appears to be the natural
way to proceed. In this section we discuss, at a high level, the
main steps that a possible iterative co-design strategy needs
to follow in order to deal with the chicken egg dilemma in the
design of nonlinear regulators. An interesting point that will
be discussed in the next section is that adaptation turns out to
be a natural way to deal with the structural problems induced
by the intertwining between the regulator components and
the robustness issues, and it candidates as a prominent way
to solve the chicken-egg dilemma in a quite general sense.
In this respect, we also talk about “universal approximators”
as an appealing way to construct systematic procedures for
practical regulators. The use of adaptation and universal
approximators in the control loop is further motivated in view
of the robustness issues discussed in Section III-A, which led
us to think that approximate or practical regulation objectives
seems to be more suitable tasks in nonlinear contexts, and
that adaptation, in the system identification terms, means also
giving a meaning to the residual bound on the regulation
errors in terms of prediction error5.

A. The class of internal models

By following the linear systems philosophy, the first step
would consist in choosing a class of possible internal model
units. As a different system structure will be able, in princi-
ple, to deal with a different classes of problems, we stress that
the class of internal model units must be chosen according
to the a-priori knowledge of the plant and exosystem. By
way of example in this paper we choose a system structure
inspired by the post-processing version [16] of the high-gain
design of [5]. We remark though that all the other designs,
such as the Luenberger-like approach of [6], can be used

5For further details in this relationship between output regulation and
system identification the reader is referred to [17], [8].

as well, with minor adjustments. With d ∈ N an arbitrary
integer, let η ∈ Rpd be decomposed as η = (η1, . . . , ηd),
with ηi ∈ Rp fulfilling

η̇i = ηi+1 +Gie i = 1, . . . , d− 1
η̇d = ψ(η) +Gde,

(11)

with Gi ∈ Rp×p and ψ : Rpd → Rp to be fixed. The
degrees of freedom in this design are: the dimension d, the
matrices Gi and the function ψ and they will be fixed later
by exploiting some additional knowledge on the stabiliser.
It is worth noting that (11) extends the linear regulator as it
can implement (up to a possible change of coordinates) the
system (7) whenever G := col(G1, . . . , Gd) and ψ is linear.

B. The class of stabilisers

The stabiliser subsystem must be designed to stabilise
the closed-loop system to the ideal steady state in which
the regulation errors vanish. As a second step, a class of
stabilisers must be fixed, and this task has to be done
on the basis of the a-priori knowledge of the plant and
exosystem and on the class of internal model units chosen
at the previous stage. The information about the plant and
exosystem comes into play as the functions s, f and h
define an ideal steady state value of the control input that
the regulator must produce. In particular we suppose that
for each solution w of interest to the exosystem there exists
locally Lipschitz functions x? : R+ → Rn and u? : R+ →
Rm satisfying the following regulator equations:

ẋ? = f(w, x?, u?)
0 = he(w, x

?).
a.e. (12)

The class of stabilisers must be chosen so that, for any
solution (x?, u?) to (12), the following consistency equations
hold

ξ̇? = ϕ(η?, ξ?, y?)
u? = γ(η?, ξ?, y?),

a.e. (13)

for some ξ? : R+ → Rnξ and η? : R+ → Rnη and with
y? := h(w, x?). The existence (for each (x?, u?) solving
(12)) of a solution (ξ?, η?) to (13) is a steady-state left
invertibility property that is necessary for the regulator to
generate the friend u?. For what concerns η?, it represents
the ideal steady state of the internal model unit. As we fixed a
structure of the kind (11), we must add to (13) the following
consistency constraint:

η̇?i = η?i+1, i = 1, . . . , d− 1. (14)

Equations (13), (14) must hold together. If they do not hold,
either the internal model class or the stabiliser class should be
changed. The constraint (14), is obtained by (11) by imposing
the condition e = 0 and by using only the “fixed” features
of (11) represented by the “chain-of-integrators” structure.

C. Co-design of the internal model unit and the stabiliser

This stage is where the chicken-egg dilemma comes into
play. Once fixed the class of internal model units and the
stabilisers, we should pick a choice of the actual degrees
of freedom d, Gi, ψ, ϕ and γ inside the chosen classes



guaranteeing that the resulting closed-loop system converges
(even approximately) to the desired steady state (x?, η?, ξ?).
As the choice of the class of the internal model units
guides the definition of a class of stabilisers, in view of the
invertibility conditions (13)-(14), the choice of the class of
stabilisers leads to the definition of a class Cη? of possible
ideal steady states that the internal model (11) must provide.
We shall include in Cη? also the variations of η? induced by
the expected perturbations in the plant or in the exosystem. In
the linear case, if the stabiliser is linear and the exosystem is
nominal, then the class Cη? is included in the set of solutions
to a system with the same modes as the exosystem and this
information leads to a single natural choice of d and ψ (G can
be chose to enforce controllability) that is able to generate all
the possible elements η? in Cη? . In other words, in the linear
case with a linear class of stabilisers, Cη? is what suffices
to univocally fix the internal model inside the class of linear
systems. For general nonlinear systems we cannot expect
this feature to hold anymore and a perfect design of d, Gi
and ψ need not to exist. Motivated by an approximate or
practical regulation framework, we can though exploit the
information given by Cη? (which is the nonlinear equivalent
of the information that comes from the knowledge of the
exosystem in the linear case) to pick a value for d, Gi
and ψ that is the best possible relatively to the available
information.

Once the internal model is fixed, the stabiliser is chosen
inside the predefined class so that to stabilise the closed-loop
system in such a way that the state (w, η, ξ) gets as close
as possible to the ideal resulting steady state (x?, η?, ξ?). In
more formal terms, consider the change of coordinates

(x, η, ξ) 7→ (x̃, η̃, ξ̃) := (x, η, ξ)− (x?, η?, ξ?)

and let
ε? := η̇?d − ψ(η?). (15)

For compactness, let x := (x, η, ξ), x? := (x?, η?, ξ?) and
x := (x̃, η̃, ξ̃). In the new coordinates, we have

ẇ = s(w)
˙̃x = f̃(x̃,x?, ε?)

a.e. (16)

with f̃(x̃,x?, ε?) := (f(w, x̃+x?, γ(η̃+η?, ξ̃+ξ?, h(w, x̃+
x?))) − f(w, x?, γ(η?, ξ?, h(w, x?))), η̃2 + G1he(w, x̃ +
x?), . . . , η̃d+Gd−1he(w, x̃+x), ψ(η̃+η?)−ψ(η?)+ε?, ϕ(η̃+
η?, ξ̃ + ξ?, h(w, x̃+ x?))). We note that, for every value of
x?, f̃(0,x?, 0) = 0, i.e. for every x?, the set A := {(w, x̃) ∈
Rnw × Rn+nη+nξ : x̃ = 0} is invariant for (16) as long as
ε? = 0. This suggests a choice of the internal model unit in
such a way to make the expected ε? as small as possible,
and the stabiliser so that the system (16) is practically input-
to-state stable (see [18]) relatively to A and with respect to
the input ε?. In particular we ask the existence of class KL
function β, a class K function ρ and a constant ν such that,
the solutions to (16) satisfy6

|(w(t), x̃(t))|A ≤ β(|(w(0), x̃(0))|A, t)+ρ(|ε?|t)+ν. (17)

6We denoted by |(w, x̃)|A := inf(w′,x̃′) |(w, x̃) − (w′, x̃′)| the usual
distance of (w, x̃) to the set A and by |ε?|t := sups∈(0,t) |ε?(s)|.

Condition (17) permits to conclude that the asymptotic
distance of x to the ideal steady state x? in which the error
vanishes7 is asymptotically bounded by the quantities ε?

and ν. As defined by (15), the quantity ε? represents the
mismatch between the chosen internal model unit (11) and
the actual process that generates η?. As a matter of fact, if
η? solves (11) (i.e. if the internal model unit has the internal
model property) then ε? = 0. The quantity ν is a term that
represents the ability of the stabiliser in driving the closed-
loop system to the ideal steady state value x?. Therefore, if
the internal model unit and the stabiliser are perfectly chosen,
we can obtain (w, x̃) → A, which implies e → 0. In view
of the complexity of the system, the unmodelled dynamics
in both the plant and the exosystem and the parametric
or structural uncertainties, we cannot expect, outside the
linear case, to be able to chose the internal model unit and
the stabiliser so that ε? = 0 and µ = 0. Nevertheless,
approximate or even practical regulation problems fit into this
framework and, as it will be delineated in the next section,
naturally lead to adaptive solutions.

V. ADAPTATION AND UNIVERSAL APPROXIMATORS

Once the class of stabilisers is fixed as in Section IV-
B a class Cη? of possible candidate ideal steady states η?

is defined. Suppose to have fixed d ∈ N, the Gi’s, ψ and
the stabiliser and assume that there exists a known function
σ : Rdp → Rdp such that, possibly after a transitory, we have

|σ(η)− η?| ≤ µ (18)

for some “small” µ > 0. If (18) holds, we can use σ(η) as
an approximate measurement of η? and we can look at (15),
better rewritten as

η̇?d = ψ(η?) + ε,

as a prediction error model (see [19]). We can use the
available information on η? to adapt the function ψ at
runtime inside the class of internal model unit previously
chosen. Under this system identification point of view, the
knowledge of the class Cη? can be used to chose the order
d ∈ N and the model set, that is, the set of possible models
ψ that may produce a good prediction model for the signal
in Cη? . In this way we can “move” the internal model unit
inside the predefined class to match at best the information
available on the actual η?. The stabiliser might be possibly
changed consequently inside the correspondent class.

The condition (18) can be obtained, for instance, by
choosing Gi := giaiIp, with g > 0 a control parameter and
(ai)i a set of coefficients of a Hurwitz polynomial (see [11],
[8]). This high-gain design guarantees (18) with σ(η) = η
and µ that can be arbitrarily reduced as g is increased. The
high-gain construction, and the corresponding nice property
that η is asymptotically close to η? despite the ψ chosen, has
been exploited in [17] and [8] to construct adaptive internal

7By continuity, (17) also implies lim supt→∞ |e(t)| ≤
ρ(lim supt→∞ |ε?(t)|) + ν, so that we directly obtain a bound on
the regulation error.



model schemes, the first in a hybrid framework for single-
input-single-output minimum-phase normal forms, and the
second in a more general multivariable context by following
essentially the same guideline discussed in this paper. Further
adaptation techniques can be thought of to be cast in a two
time-scales framework (see [20]), in which the adaptation
of ψ happens much slower than the underlying closed-
loop dynamics. This permits to separate the two problems
as customarily done in singular perturbations literature, by
looking at (16) as the boundary layer system and to the
adaptation algorithm as the reduced one. This idea has been
exploited, in slightly different terms, in [21] in the context
of linear systems, where the identification algorithms is
discrete-time.

Adaptation itself does not solve the chicken-egg dilemma,
that is instead moved to a higher level. As a matter of fact,
in order to choose the order d and the model set of ψ (and
thus the identification algorithm) we still need to rely on the
class Cη? (which is defined also by the stabiliser class) of
possible steady states, as different data sets lead in general
to different identification problems. What adaptation gives is
instead a more flexible way to deal with the actual stabiliser
chosen in the pre-defined class, by allowing the chance to
obtain asymptotic regulation also in presence of uncertainties
in the plant or exosystem and, more important, by ensuring
an approximate regulation objective with a bound on the
regulation error that is directly related to the performance
of the identification algorithm (see [8] for further details).
It is thus natural to wonder if there is an identification
model set that is able to produce a meaningful model for
arbitrary functions η?. This identification model is referred
to as an universal approximator, as it would be able, in
principle, to approximate the right model for any element of
any class Cη? . Examples of universal approximators might be
wavelets as well as neural networks. Even though asymptotic
regulation would require in principle an infinite order d (as
it is the case of wavelets and neural networks), what is
appealing of universal approximators is a universal practical
regulation result of the kind: for each system of the form
(1), (2) and each ε > 0 there exists an order d ∈ N such
that approximate regulation holds with an error bound of ε.
This result could be possible in view on basic approximation
theorems (see e.g. [22], [23]) and could be obtained by
increasing the complexity of the identification model to
match the desired error bound.

VI. CONCLUSIONS

In this paper we discussed the main challenges that are
present in the design of nonlinear regulators, by underlining
the fact that nonlinear regulators in general cannot have the
same robustness properties and simplicity of structure of
the celebrated linear regulator. We presented a guideline for
the co-design of internal model units and stabilisers and we
discuss how adaptation and universal approximators could be
a promising way to deal in general cases with the chicken-
egg dilemma. Many research directions are open in this
respect, from the co-design of internal models and stabilisers

able to ensure (17), to the design of identification schemes
that can be used with them. In this respect, the introduction of
universal approximators in the output regulation framework
is a promising research direction which could provide a
solution to the chicken-egg dilemma and a systematic design
method for practical regulation.
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