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Abstract 19 

Effective responses to climate change may demand a radical shift in human lifestyles away 20 

from self-interest for material gain, towards self-restraint for the public good. The challenge 21 

then lies in sustaining cooperative mitigation against the temptation to free-ride on others’ 22 

contributions, which can undermine public endeavours. When all possible future scenarios 23 

entail costs, however, the rationale for contributing to a public good changes from altruistic 24 

sacrifice of personal profit to necessary investment in minimizing personal debt. Here we 25 

demonstrate analytically how an economic framework of costly adaptation to climate change 26 

can sustain cooperative mitigation to reduce greenhouse gas emissions. We develop game-27 

theoretic scenarios from existing examples of insurance for adaptation to natural hazards 28 

exacerbated by climate-change that bring the debt burden from future climate events into the 29 

present. We model the as-yet untried potential for leveraging public contributions to 30 

mitigation from personal costs of adaptation insurance, by discounting the insurance premium 31 

in proportion to progress towards a mitigation target. We show that collective mitigation 32 

targets are feasible for individuals as well as nations, provided that the premium for 33 

adaptation insurance in the event of no mitigation is at least four times larger than the 34 

mitigation target per player. This prediction is robust to players having unequal 35 

vulnerabilities, wealth, and abilities to pay. We enumerate the effects of these inequalities on 36 

payoffs to players under various sub-optimal conditions. We conclude that progress in 37 

mitigation is hindered by its current association with a social dilemma, which disappears upon 38 

confronting the bleak consequences of inaction. 39 

Key words: collective risk; game theory; natural disasters; public goods; risk reduction. 40 
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1. Introduction 41 

Climate-change mitigation for emissions reduction is widely agreed to require cooperation at 42 

all levels of society from individuals to nation states (Stern, 2007; IPCC, 2014b). Cooperative 43 

enterprises are always susceptible to being undermined by self-interest, however, unless the 44 

priorities of the group match those of its members. The threat of dangerous climate change 45 

pits the priority to reduce global greenhouse gas emissions against the priorities of individual 46 

consumers of fossil fuels, of businesses that profit from fossil-fuel consumption, and of 47 

policy-makers reluctant to pass unpopular environmental legislation. The misalignment of 48 

public and private needs presents a social dilemma (Capstick, 2013), which threatens disaster 49 

as a result of a global-scale ‘tragedy of the commons’ (Hardin, 1968; Milinski et al., 2006). 50 

Coordinated management of commons is facilitated by polycentric governance systems and 51 

the application of social norms (Kinzig et al., 2013), but presents particular challenges for 52 

scaling up to the global commons (Ostrom, 1999). In this paper we present a novel 53 

mechanism for removing the social dilemma by aligning private with public needs, which we 54 

model with game theory. 55 

Game theory has become an influential tool for conceptualizing the difficulty of 56 

motivating cooperative action on climate change (Tavoni, 2013). Previous applications have 57 

found that successful achievement of a mitigation target requires coordinated responses. 58 

These may take the form of altruism (Milinski et al., 2006), or locally interacting groups 59 

(Santos and Pacheco, 2011; Shirado et al., 2013), or bottom-up locally operating sanctions 60 

(Vasconcelos et al., 2013), or low costs relative to benefits and coordinated pledges where 61 

there is uncertainty on impacts (Barrett and Dannenberg, 2012, 2014). Here we demonstrate 62 

for the first time that coordination is not a necessary prerequisite for mitigation against 63 

dangerous climate change by self-interested individuals, organizations, or nations. We apply 64 

game-theoretic principles to a public-goods model of homogeneous interactions amongst 65 
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cooperators and defectors. We develop a novel mechanism for incentivizing cooperative 66 

mitigation that sets its cost against the counterfactual of a large personal cost in adaptation to 67 

climate change. The need for adaptation can incentivize mitigation efforts because the costs of 68 

adaptation depend on mitigation level (Ingham et al., 2013). We use insurance as a 69 

mechanism to bring into the present a future debt burden of natural hazards caused by climate 70 

change, in order to incentivize mitigation to reduce climate-change drivers. In the context of 71 

public-goods games, an option for players to purchase insurance against the costs of defection 72 

can undermine cooperation (Zhang et al., 2013). Our climate-change scenario uses non-73 

optional insurance, however, with the premium itself functioning as the cost of defection, 74 

against which players evaluate the utility of cooperation. 75 

Our rationale for homogeneous cooperation builds on national- and global-scale 76 

templates of insurance against natural hazards such as New Zealand’s mandatory Earthquake 77 

Commission insurance (Glavovic et al., 2010), the French CatNat system for insurance 78 

against flood damage (Poussin et al., 2013), and the Caribbean Catastrophe Risk Insurance 79 

Facility against a range of climatic uncertainties (Grove, 2012). We introduce a simple model 80 

for testing the strategic impact of mandatory adaptation insurance aimed at removing 81 

cooperation from the realm of a social dilemma. Such an approach has the potential to 82 

catalyse collective action on mitigation without the need of coordinating mechanisms. The 83 

Global Agenda Council on Climate Change (2014) recommends developing private-sector 84 

insurance as a vehicle to finance climate resilience. It cites an increasingly popular banking 85 

model for buildings insurance that leverages capital improvements to energy efficiency from 86 

securitized discounts on premiums. Our model applies the same principle to insurance for 87 

adaptation to natural hazards exacerbated by climate-change. In this case collective mitigation 88 

is leveraged from discounts that are securitized by reducing the premium in proportion to 89 

achieved mitigation. This application has not previously been explored in theory or practice, 90 
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yet its policy implication is that willingness to fund public mitigation for emissions reductions 91 

can be traded against private costs of adaptation to climate-change impacts. 92 

We define the conditions by which a mandatory adaptation insurance will incentivize 93 

purely self-interested actors to achieve the proposed mitigation target from voluntary 94 

contributions, without additional coordinating mechanisms. We start with the simplest model 95 

of independent players with equal ability to pay an insurance premium that is the same for all 96 

players. Real-world premiums are likely to vary, however, with geographic variation in risk, 97 

and abilities to pay the voluntary contribution will vary with wealth inequality  (Tavoni et al., 98 

2011; Burton-Chellew et al., 2013). We therefore consider options for accommodating 99 

potentially large regional differences in players vulnerabilities to climate change. We further 100 

extend the model to include players with unequal abilities to pay for mitigation or adaptation. 101 

We apply the model to players at the scale of households in a nation, and to players at the 102 

scale of nations in an international consortium. We discuss ways to adapt existing scenarios 103 

for multinational aggregation that would lead to the effective management of a global 104 

commons. We consider ways to minimize the political difficulty of approving up-front costs 105 

for future benefits. 106 

2. Framework 107 

In order to demonstrate the concept of aligning public need with private interest, we illustrate 108 

how insurance against natural hazards associated with climate change could leverage the UK 109 

government’s recently proposed annual target of £1.3bn for funding green-energy solutions to 110 

mitigation (Energy Companies Obligation, 2012). This target was introduced in January 2013, 111 

and repealed within a year in response to public opposition to it, largely centred around 112 

concerns that it would be raised from a mandatory annual supplement of ~£50 to all 113 

household energy bills (DECC, 2013).  114 
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Consider a scenario in which all households must buy insurance to cover them for 115 

adaptation to natural catastrophes caused by climate change. They can choose whether to 116 

contribute to a public fund for climate-change mitigation that secures a discount on the 117 

insurance premium, or to defect from contribution and still enjoy the discount won by others’ 118 

contributions. In our scenario, each household makes a personal choice either to pay the 119 

contribution or to defect from cooperation, according only to whichever strategy minimizes 120 

personal costs. Figure 1 describes the conceptual framework. With the insurance premium 121 

discounted for all in direct proportion to the size of collective pot, the decision variable on 122 

mitigation changes from a public target in raising funds to a private target in obtaining 123 

discounts. The discount cancels the premium altogether in the event of target success, on the 124 

premise that successful mitigation cancels the need for adaptation. 125 

 126 

Fig. 1. Mechanism for linking adaptation insurance against climate-related natural hazards to 127 

publically-funded mitigation for reducing climate-change drivers. (1) A collective mitigation 128 

target defines private adaptation need in the absence of mitigation, which determines the 129 

insurance premium. (2) The premium sets an optimal contribution for the mitigation target 130 

and associated defector fraction, which together determine the size of collective pot as a 131 

fraction of target. (3) This fraction determines the discount for all on the insurance premium, 132 

and informs updating of the mitigation target and adaptation need. 133 
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The game theoretic framework costs the hazard and likelihood of climate-related natural 134 

catastrophes through the mechanism of insurance, rather than modelling catastrophes directly. 135 

We assume a state-enforced insurance, with basic premium before any discounts (henceforth 136 

‘premium’) determined by commercially available catastrophe models of hazard and 137 

likelihood in the absence of pre-emptive action (Toumi and Restell, 2014). Whereas a 138 

mandatory contribution to mitigation would function to safeguard public interests, mandatory 139 

insurance functions to prevent personal ruin. Implementing its legislation is justified on the 140 

same principles as for a compulsory health or national insurance scheme which builds 141 

entitlement to state benefits such as medical procedures or a pension; in this case it builds 142 

entitlement to an environment with an acceptable level of vulnerability to climate driven 143 

hazards. In contrast to the conventional aim of improving the opportunity for cooperation, 144 

insurance here works by devaluing mutual defection. It differs in this respect from 145 

mechanisms for coordinating incentives, such as policing and coercion that control unilateral 146 

behaviours. 147 

The framework depends on the insurance industry having adequate tools to build risk and 148 

uncertainty into the costs of adaptation, and mitigation effectively reducing this cost by 149 

reducing long-term risk. Catastrophe modelling technology is now used extensively by 150 

insurers, reinsurers, and governments to calculate fair pricing, and it is considered essential to 151 

understanding the natural world (Toumi and Restell, 2014). Here we focus on mitigation to 152 

decrease climate-change drivers, such as conversion to renewable energy for emissions 153 

reduction, although in principle the framework can apply also to adaptation for building 154 

resilience such as flood protection. In the Discussion we consider existing tools for costing 155 

adaptation. Prospects of tipping points to bifurcations in the climate-Earth system, leading to 156 

raised frequencies and magnitudes of natural catastrophes (Lenton et al., 2008), may render 157 

insurance prohibitively expensive without mitigation or other risk-reduction measures (Mills, 158 
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2005; Toumi and Restell, 2014). We accommodate this possibility by allowing for fairly-159 

priced premiums up to a putative infinite cost, prior to discounting by the value of any 160 

investment in cooperative mitigation. 161 

3. Model 162 

3.1. General model 163 

We wish to identify an optimal voluntary contribution by households for maximizing a 164 

collective mitigation target. As a two-strategy public-goods game, the alternative payoffs to a 165 

player for cooperating or defecting depend on what others do (Doebeli and Hauert, 2005). 166 

Table 1 shows the payoff matrix for a player of each strategy sampled from a finite population 167 

of n players (n households in our example). This is a version of an ecological Lotka-Volterra 168 

model of competition between two species or two phenotypes, constructed as a game between 169 

of two-strategies (Doncaster et al., 2013a, b). ‘Premium’ is the personal cost of mandatory 170 

insurance to cover adaptation to a catastrophe in the absence of mitigation. ‘Contribution’ is a 171 

voluntary contribution per player towards a collective target for mitigation. ‘Pot’ is the size of 172 

collective pot as a fraction of target, or as a fraction of its maximum size with pure 173 

cooperation if this is less than target; it can take any value between zero and unity.  174 

Cooperators pay the voluntary contribution, plus the premium discounted by the achieved 175 

fraction of target; defectors pay only the premium discounted by the achieved fraction of 176 

target. Self-interested players cooperate with a probability defined by their payoffs for 177 

unilateral interactions: Temptation, T (free-ride on others’ contributions) and Sucker, S 178 

(contribute when others do not), relative to mutual interactions: Reward, R (everyone 179 

contributes) and Penalty, P (nobody contributes). The Table-1 payoff matrix summarizes the 180 

problem at hand: a target for voluntary mitigation, combined with a mandatory insurance cost 181 
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that declines with achieved fraction of target, creates a two-strategy game for n players that 182 

either cooperate with, or defect from, contributions to the mitigation target.  183 

Table 1 184 

Matrix of payoffs for a player of the row strategy in the environment of the column strategy.  185 

 n – 1 cooperators  n – 1 defectors  

Cooperator R = –contribution S = –contribution – (1 – pot)premium 

Defector T = –(1 – pot)premium P = –premium 

 The payoffs to each player in an environment of n – 1, n – 2, n – 3, …, 0 cooperators decline 186 

linearly, from R to S for a cooperator and from T to P for a defector. 187 

For purposes of generality, we quantify the values of annual contribution and premium in 188 

multiples of the annual collective target as a per capita value: C. Predictions in this non-189 

dimensionalized currency unit then apply to any target and number of players. For example, 190 

we will interpret the model against a target pot of £1.3bn in public contributions by 191 

householders to fund mitigation, equalling the annual target of the UK government’s green-192 

energy levy (Energy Companies Obligation, 2012). Dividing this sum by the UK’s population 193 

of 26.4 million households (ONS, 2013) sets C = £49.24 per household. For alternative 194 

scenarios involving players as nation states, the larger target and smaller number of players 195 

may force the value of C larger by orders of magnitude; the type of player will not alter model 196 

predictions, however, when reported in units of C. 197 

3.2. Wealth equality 198 

Here we develop the theory of two-strategy games that identifies the optimal contribution to 199 

achieve or approach a given target for collective mitigation, at a given premium for personal 200 

adaptation insurance. We assume unordered and uncoordinated (homogeneous) interactions 201 

amongst independent players. The homogeneity implies equal wealth in the sense of players 202 
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not differing in their abilities to pay the mandatory premium or voluntary contribution. We 203 

will expand the model to address unequal wealth in the next section. 204 

The probability of defection y by a payoff-maximizing player drawn from an infinite 205 

population of players has the following strict Nash equilibrium: 206 

,    

with a stable mixed strategy, 1 > y* > 0, on conditions S > P and T > R (a Snowdrift game: 207 

Hofbauer and Sigmund, 1998). Pure defection (stable y* = 1, a Prisoner’s Dilemma) results 208 

from failing condition S > P only; pure cooperation (stable y* = 0, a Harmony game) results 209 

from failing condition T > R only; bi-stability (stable y* = 0 or 1, a Stag-Hunt game) results 210 

from failing both conditions (Doncaster et al., 2013a). An infinitely large population would by 211 

definition have an infinitely small value of C in the local currency (£ in our national-scale 212 

example). Under a widely applicable scenario, which we assume here, y* is the Pareto optimal 213 

(evolutionarily stable) fraction of defectors in a finite random sample of n payoff-maximizing 214 

players (Gokhale and Traulsen, 2010). Specifically, the scenario assumes a 2n payoff matrix 215 

in which the payoffs for alternative strategies adopted by a focal player decline linearly with 216 

the cooperator fraction in the population, from payoffs R and T in a pure cooperator 217 

population to payoffs S and P respectively in a pure defector population. Table 1 thus shows 218 

the corners of a 2×n payoff matrix on the assumption of proportionate payoffs in the 219 

intervening cells. 220 

The always-negative R and P payoffs, given by the costs of the contribution and 221 

premium respectively (Table 1), mean that S expresses alternative types of costly cooperation, 222 

depending on its relationship to P. If S > P, cooperation can persist amongst homogeneous 223 

interactions with S as a sustainable cost of hosting freeloader defectors, who are parasitic in 224 

the broad sense that they drive the unilateral interaction (Doncaster et al., 2013a). 225 

* T R
y

S P T R




  
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Alternatively, If P ≥ S, then S is a cost of strongly altruistic cooperation that is a stable 226 

strategy only if cooperators interact preferentially amongst like types (enumerated in section 0 227 

below). It presents a social dilemma when the payoffs for defection exceed those for 228 

cooperation (P > S and/or T > R) whilst collective welfare pays better than individual welfare 229 

(2R > T + S, Macy and Flache, 2002). 230 

Substitution of the Table-1 payoffs into equation (1) gives y* in terms of contribution, 231 

premium and pot:  232 

,    

with a stable mixed strategy, 1 > y* > 0, if pot > contribution/premium > 1 – pot. Pure 233 

defection results from failing the left-hand condition only, pure cooperation from failing the 234 

right-hand condition only, and bi-stability from failing both conditions. Note that any 235 

contribution ≤ premium has a bi-stable outcome at pot = 0, which means it repels the defector 236 

fraction y away from equilibrium y* towards a pure strategy. Thus in the particular case of 237 

such a game starting at y = 1, its initial state of pure defection resists invasion by cooperation 238 

and the pot stays empty. If it starts at y < 1, however, the presence of cooperation ensures pot 239 

> 0, potentially allowing escape from pure defection. The following analyses assume a start at 240 

y = 0 in order to prevent initial strategies from dictating the game outcome. Section 3.4 below 241 

simulates an example of a mechanism for ensuring it. 242 

The predicted pot amassed by the equilibrium fraction of cooperators equals the 243 

contribution valued as a multiple of C (the per capita collective target), weighted by 244 

equilibrium cooperation: 245 

pot* = (1 – y*)contribution.    

The contribution that maximizes pot* is obtained by substitution of equation (2) into (3) 246 

to set pot* as a function of premium and contribution, and solving for the contribution at 247 

 

 
*

1

2 1

contribution pot premium
y

pot premium

  


 
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maximal pot* (henceforth ‘pot*
max’), when the differential d pot* / d contribution = 0. Target 248 

success is only achievable in principle if contribution ≥ 1C, since pure cooperation requires at 249 

least this size of contribution to achieve it. The target is then achieved if also pot*
max ≥ 1. We 250 

are now equipped with the necessary tools to assess whether the proposed insurance scheme is 251 

feasible. 252 

Proposition 1. Payoff-maximizing players with equal ability to pay the premium and 253 

contribute to mitigation may achieve the mitigation target without coordinating mechanisms.  254 

We use equations (2) and (3) to assess under which conditions Proposition 1 holds. The 255 

optimal contribution for achieving closest to target (including target success itself) is the 256 

contribution at pot*
max, for values of pot*

max < 1, and otherwise at pot* = 1. Solutions to 257 

simultaneous equations (2) and (3) at pot*
max yield the optimal contribution and y* as 258 

functions of premium (Table 2, derivations in Appendix A). The functions depend on whether 259 

stable equilibrium defection is pure (y* = 0 or 1) or mixed (0 < y* < 1), and whether this 260 

equilibrium achieves target success (pot*
max ≥ 1 at contribution ≥ 1C). For example, only 261 

premiums ≥ 4C satisfy the conditions for target success (equation A7); the optimal 262 

contribution is then obtained by substituting equation (2) into (3) and solving for contribution 263 

at pot* = 1. This function expresses minor and major contributions ≥ 1C that both achieve the 264 

target, associated with minor and major mixed-equilibrium defection (bottom rows of Table 265 

2).  266 
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Table 2 267 

Optimal contribution for achieving closest to target, and associated stable defector 268 

probability y*, for a given premium. 269 

Premium (C) Optimal contribution (C) y * 

0 to 1 0 1 

1 to 2  0 

2 to 4   

≥ 4   

Currency unit C = target/n for a population of size n. 270 

Having determined the optimal contribution and defector fraction in terms of premium 271 

size (Table 2), we predict the achieved fraction of target and the consequent payoff to players 272 

also as functions of premium size. We summarize these insights in the following proposition. 273 

Proposition 2: The size of premium determines the fraction of players that cooperate, 274 

their optimal contribution for maximizing the collective mitigation target, the achieved 275 

fraction of target, and the average outlay per player. 276 

The average payoff per player is an outlay that is summed from the contribution 277 

weighted by equilibrium cooperation, plus the premium discounted in proportion to the size of 278 

collective pot: 279 

average payoff = –[pot* + (1 – pot*)premium].    

3.3. Wealth inequality 280 

The personal payoff from helping another with shared characteristics has both direct and 281 

indirect components, which are aggregated by ‘inclusive fitness’ (Hamilton, 1964). In terms 282 

of collective mitigation, a player gains indirect benefit when some of the benefit to others 283 

from its own contribution to emissions reduction feeds back to itself. Such feedbacks arise 284 

 1premium premium

 2 8premium premium  1 2 premium

 1 1 4 2premium premium    1 1 4 2premium 
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wherever players have a vested interest in each other’s wealth, for example within a 285 

population of individuals that funds public services through taxes, or within a set of nation 286 

states that share trade agreements or subsidies. In the case of a population with unequally 287 

distributed wealth, indirect benefits are obtained in emissions reduction for players that 288 

subsidise those with lower ability to pay premiums. Here we enumerate wealth inequality 289 

amongst players as the assortment of interactions in the form of interests in each other’s 290 

wealth that resolves differences in their capacity for cooperation. 291 

In the two-strategy game, direct payoffs with P ≥ S have a Prisoner’s Dilemma outcome 292 

that resists invasion by the cooperative strategy under homogeneous interactions. They may 293 

yet have inclusive payoffs Si > Pi, however, that allow equilibrium cooperation. The threshold 294 

at which inclusive payoffs escape the Prisoner’s Dilemma is set by Hamilton’s rule 295 

(Hamilton, 1964): –cost + rbenefit > 0, where cost is the net direct costs to the donor of 296 

cooperation, benefit is the direct benefit to the recipient of the donor’s cooperation, and r is a 297 

‘relatedness’ coefficient that enumerates assortment of interactions with a value between 0 298 

and 1. In effect, cooperation persists if the cost of benefitting another is outweighed by the 299 

benefit returned through shared interests. Expressed in terms of the negative Table-1 payoffs 300 

for interactions between strategies, a cooperator obtains net payoff S – P from benefitting 301 

another, and the beneficiary receives payoff T = S – R from the interaction. This means that P 302 

– S defines cost, and –T defines the cost-cancelling benefit of which fraction r returns to the 303 

cooperator through interactions with like types. Hamilton’s rule is then: 304 

– (P – S) – rT > 0.    

For the population of n players, the assortment of interactions is defined by r = E [ f | 305 

cooperator] – E [ f | defector], in which f is the expected relative frequency of cooperators 306 

amongst interactions with the focal player (Doncaster et al., 2013b). 307 
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Application of Hamilton’s rule to a two-strategy game allows enumeration of the effect 308 

of coordinated interactions on equilibrium defection. A value of r > 0, indicating positive 309 

assortment, gives inclusive payoffs: Ri = R – (1 + r)T,  Si = S – rT,  Ti = 0,  Pi = P (derived in 310 

Doncaster et al., 2013b). By elaboration of equation (1), equilibrium defection in the presence 311 

of assortment: 312 

.    

with a stable mixed strategy, 1 > y* > 0, on conditions Si > Pi and Ti > Ri. Substitution of the 313 

Table-1 payoffs into equation (6) sets y* in terms of pot, premium and contribution: 314 

.    

with a stable mixed strategy, 1 > y* > 0, if 1 – (1 – r)·(1 – pot) > contribution/premium > (1 + 315 

r)·(1 – pot). Pure defection results from failing the left-hand condition only, pure cooperation 316 

from failing the right-hand condition only, and bi-stability from failing both conditions. 317 

Equation (7) shows larger values of r decreasing defection at given values of premium, 318 

contribution, and pot < 1, but r ceasing to have an effect upon achieving the target (pot = 1). 319 

The optimal contribution for achieving closest to target, and the associated y*, are derived in 320 

Appendix A as the general case of Table 2 extended to r ≥ 0.  321 

The final proposition summarizes the effect of wealth inequality on the outcome of the 322 

game. 323 

Proposition 3: Wealth redistribution amongst players that resolves inequalities, including 324 

trade agreements and subsidies, influences the achieved fraction of target, and hence the 325 

average outlay per player. 326 

We illustrate the properties of r by considering an application of the two-strategy game to 327 

nation states as players, starting with a simplified scenario of a group of nation-players that 328 

 *
1i i

i i i i

r T RT R
y

S P T R S P T R

  
 

     

   

 
*

1 1

2 1

contribution r pot premium
y

pot premium

    


 
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are equally wealthy in terms of their ability to pay a premium. Suppose they owe 20% of this 329 

wealth on average to trade agreements between them. They might each owe 20%, or one 330 

nothing and another 40%, and so on. The nations take relatedness coefficient r = 0.2. Its value 331 

has quantifiable impacts on the optimal contribution for the collective mitigation target and 332 

equilibrium defection, and consequently on the achieved fraction of target and average payoff 333 

per player. These impacts are enumerated by equations (3) and (4), given (7) (Appendix A). 334 

In an alternative scenario, the group of nations may have no trade agreements but 335 

unequal wealth in terms of ability to pay the premium. For the purposes of the Table-1 336 

framework, the value of r is the average proportionate redistribution of wealth amongst them 337 

that resolves this discrepancy. For example, r = 0.2 when the discrepancy is resolved by a 338 

20% redistribution of wealth available for paying the premium. Thus, r = 0.2 when all nations 339 

have equal ability to pay after one has subsidised four others each to the value of 25% of the 340 

premium; equally r = 0.2 when equality is obtained by four nations each subsidizing a fifth 341 

nation to the value of 25% of the premium. We assume that subsidies are paid through an 342 

intermediary such as the World Bank, to prevent donors from taking ownership of recipients’ 343 

choices in paying the contribution. A fully subsidized recipient stands to benefit from paying 344 

the contribution just as any other player, by holding on to all of the unspent premium in the 345 

event of target success, or otherwise fraction pot* of it. 346 

Combining the trade-agreement and subsidy scenarios, a group of nations may be 347 

connected by trade agreements, and by subsidies that resolve outstanding wealth inequalities. 348 

In the Table-1 framework of collective mitigation leveraged from discounts on premiums, 349 

their average relatedness is aggregated from the two sources of co-dependence. For example, 350 

r = 0.4 if nations owe 20% of their wealth on average to others, in terms of ability to pay the 351 

premium, and additionally one nation subsidises four others to the value of 25% of the 352 

premium. 353 
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3.4. Agent-based simulation 354 

We developed a simulation to represent a playable scheme. It requires all players to submit an 355 

annual deposit at the start of the year for an amount equal to a recommended contribution. At 356 

any time during the year, players may tag their deposit for retraction. At all times they can 357 

view the projection of their year-end invoice, payable as a pre-set insurance premium 358 

discounted by the fraction of collective target currently achieved in untagged contributions, 359 

minus any part of their contribution tagged for retraction. The simulation assumed that each 360 

player acts to maximize its individual payoff. The choice of cooperation or defection was 361 

simulated for homogeneous interactions (wealth equality) amongst players at the optimal 362 

contribution for a given premium set by Table-2 formulae. It was repeated at ±20% of 363 

optimum to gauge the sensitivity of the outcomes to the size of contribution. The simulation 364 

was repeated again for coordinated interactions (wealth inequality) quantified by r > 0 at the 365 

optimal contribution for a given premium set by Appendix-A formulae. 366 

Each simulation trial had n players, each set the same size of premium and voluntary 367 

contribution. The trial started with a population of pure cooperators and incrementally 368 

switched players to defectors for as long as it paid players to make the switch. As the 369 

observed defector fraction, yobs, rose in the population, it lowered the fractional size of 370 

collective pot, potobs = (1 – yobs)contribution, which in turn devalued unilateral payoffs T and 371 

S. Cooperators defected at an average rate of 1.0 defection per increment (s.d. = 0.29), until 372 

cooperation obtained a positive benefit per capita of not switching to defection, (Si – Pi)/(1 – 373 

y), as large or larger than the benefit per capita of defection not switching back to cooperation, 374 

(T i – Ri)/y. The resulting y*
obs set the year-end fraction of target, pot*

obs, which determined the 375 

final invoice, measured as an average payoff per capita: –[pot*
obs + (1 – pot*

obs)premium]. 376 

Appendix B shows examples of within-year trajectories towards  y*
obs and pot*

obs. 377 
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The simulation reported values of y*
obs, pot*

obs and payoff averaged over 50 replicated 378 

trials, at values of premium from 0 to 6C in 0.1 steps. Simulations were run for small 379 

populations (n = 5), indicative of players at the global scale of nation states, and for large 380 

populations (n = 500), indicative of players at the regional or national scale of individuals, 381 

households, or corporations. Appendix C contains the R script for the simulation. 382 

4. Results 383 

4.1. Well-mixed populations of independent players 384 

The principal finding is that successful achievement of the collective target for mitigation 385 

requires a premium for adaptation insurance worth at least four times the value of the target 386 

per capita (i.e., ≥ 4C, Fig. 2a-d). This validates Proposition 1. Premiums < 4C result in an 387 

average payoff as much as 42% worse than the payoff for achieving the target (Fig. 2d line). 388 

For premiums up to 1C (worth £49.24 in the example application), everyone defects (Fig. 2b) 389 

because the achievable fraction of target is too small for any resulting discount on the 390 

premium to compensate for paying a contribution even if everyone contributed to the 391 

collective pot. Premiums ≥ 1C initiate cooperation because the average payoff is then better 392 

than the –premium that obtains with pure defection. For premiums between 1C and 2C 393 

(£49.24-£98.48), the payoff for everyone cooperating with an optimal contribution cannot be 394 

bettered by defection (shifting the game from Prisoner’s Dilemma to Harmony). Full 395 

cooperation fails to achieve the target at these low premiums, and average payoff falls below 396 

–1C (Fig. 2c-d lines). Higher premiums up to 4C (£196.97) sustain increasing amounts of 397 

defection from paying the optimal contribution (shifting the game from Harmony to 398 

Snowdrift). Defection rises from zero to half the population of players (Fig. 2b line), as pot* 399 

rises to achieve the target at a premium of 4C (Fig. 2c line) and an average payoff of –1C 400 

(Fig. 2d line). This lowest target-achieving premium is also predicted directly from 401 
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substitution of equation (2) into (3) at pot* = 1, to obtain:  with a 402 

single minimum of 4C, at y* = 0.5. 403 

 404 

Fig. 2. Model predictions for uncoordinated interactions amongst independent players. 405 

Functions of premium predicted from Table 2 and equations (3)-(4) (lines), and observed by 406 

simulation (dots). (a) Optimal contribution for achieving closest to target (thick black line, 407 

dashed for major target-achieving contribution), and 20% above/below optimum (dark/light 408 

grey lines). (b)-(d) Equilibria for simulated populations of n = 5 at the optimal contribution 409 

 *

* *
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1 1

x
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(open circles), and at 20% above/below optimum (dark/light grey dots). (e)-(f) Equilibria for 410 

simulated populations of n = 500. 411 

A discontinuity occurs at the premium of 4C (Fig. 2a-b lines). For higher values, target 412 

success is achieved either by high cooperation with a minor contribution or by low 413 

cooperation with a major contribution. The minor optimal contribution declines rapidly from 414 

2C towards convergence with 1 + 1/premium, while the associated defection declines towards 415 

convergence with 1/premium (Fig. 2a-b continuous lines). The alternative major optimal 416 

contribution rises towards convergence with premium – 1, while the major defection 417 

probability rises towards convergence with 1 – 1/premium (Fig. 2a-b dashed lines). We focus 418 

on the minor contribution and defection as best suited to a government-driven initiative, 419 

whilst noting that the major contribution and defection may provide an alternative route to 420 

success given rising intra- and international disparities in wealth. 421 

For any premium of at least 4C, target success with both minor and major optimal 422 

contributions (Fig. 2c line) sets average payoff at a constant –1C (Fig. 2d line). Although 423 

cooperators obtain a worse payoff than defectors because only they pay the contribution (a 424 

cost of unavoidable parasitism), this deficit diminishes for the minor contribution at larger 425 

premiums as the higher cooperation sustains ever smaller contributions. Premiums less than 426 

4C obtain target shortfall from the optimal contribution, which worsens the average payoff for 427 

premiums down to 1C. With premiums below 1C attracting no cooperation with 428 

contributions, they obtain payoff P = –premium. These predictions demonstrate the 429 

strengthening motivation for achieving the mitigation target with higher premiums above 4C. 430 

For premiums below 4C, they demonstrate the cost to the collective pot and average payoff 431 

from undervaluing the premium for a given target, or overestimating the achievable target for 432 

a given premium. 433 
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Simulations of the game with the Table-1 payoff structure and stochastic defection tested 434 

the sensitivity of the model to finite population sizes, and the effects of non-optimal 435 

contributions. The simulations mapped y*
obs closely to y* for populations of n = 5 with the 436 

contribution set at optimal, and they had y*
obs falling either side of y* for contributions either 437 

side of the optimum (Fig. 2b circles and dots). This close mapping for the optimal 438 

contribution validates Proposition 2. Simulation outcomes show that the optimum 439 

contribution for maximizing the pot also gave the optimum average payoff per capita. Despite 440 

sub-optimal contributions attracting the most cooperation, their lower values reduced pot* and 441 

the associated average payoffs, particularly at premiums above 4C (Fig. 2c-d, light dots). For 442 

supra-optimal contributions, the inflated defection probabilities at premiums of 4C and 443 

marginally below caused substantial reductions in pot*, resulting in by far the worst of all 444 

average payoffs (Fig. 2c-d, dark dots). 445 

Simulated populations of n = 500 at the optimal contribution had a more precise mapping 446 

of pot* and average payoff onto analytical predictions than for n = 5 (Fig. 2e-f circles and 447 

lines). Non-optimal contributions produced deviations in pot* and average payoff of similar 448 

magnitude for n = 500 as for n = 5, except for premiums marginally above 1C and at 4C and 449 

marginally below it. In these regions, supra-optimal contributions had less impact on pot* and 450 

average payoff (Fig. 2e-f compared to c-d, dark dots) associated with less inflated defection. 451 

These simulations highlight the sensitivity of the collective pot and average payoff to 452 

population size in the event of overestimating the achievable target and optimal contribution. 453 

4.2. Players with unequal vulnerabilities or benefits 454 

The findings for the size of contribution in Fig. 2 assume that all players face the same 455 

vulnerability to natural hazards covered by the insurance, and will benefit equally from 456 

actions funded by the collective pot. To accommodate the reality of heterogeneity in the 457 

geographic spread of risk and benefit requires matching any regional variation in market price 458 
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for the premium with variation in either the optimal contribution or the distribution of action 459 

funded by the collective pot, or both. In effect, having created an insurance market, its 460 

regional variability can set the scale at which to determine the optimal contribution from the 461 

predicted defector fraction. The analytical method is the same, whether applied once to a 462 

nation of citizens or repeatedly to independent regional or local populations. 463 

4.3. Players with wealth inequalities 464 

Shared interests amongst players, expressed by r > 0, raise the optimal contribution for 465 

premiums of 1C to 4C (Fig. 3a). Although the higher contribution raises equilibrium 466 

defection (Fig. 3b), the net effect is to increase the achieved fraction of target and average 467 

payoff (Fig. 3c-d). Total co-dependency, at r = 1, means that self-interest aligns precisely with 468 

public interest regardless of premium. Despite r > 0 raising pot*, target success itself always 469 

depends solely on the premium being at least four times larger than the per capita target. 470 

Premiums ≥ 4C completely align private with public interests by virtue of the target success, 471 

with the same minor and major optimal contributions and y* as at r = 0, and with the same 472 

average payoff of –1C (Fig. 3a-d). Simulations with 5 players achieve approximate alignment 473 

with predictions (Fig. 3b-d), which becomes precise with 500 players, as at r = 0. These 474 

variations of Fig. 3 from Fig. 2 confirm Proposition 3. 475 

Any positive effects of r on pot* and average payoff apply regardless of the source of 476 

interdependence through interests in each other’s wealth. Where the interdependence arises 477 

from wealth inequalities, we have assumed that subsidies resolve differences in ability to pay 478 

the premium and willingness to pay the contribution. Given that condition, our general 479 

inference is that wealth inequalities make no difference for premiums ≥ 4C, while for lower 480 

premiums they increase the power to leverage mitigation by discounting the premium. 481 

Residual differences in ability to pay the premium that are not resolved by subsidies, 482 

however, may lead to poorer players defaulting on payments of both contribution and 483 
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premium. Their participation ceases in that event, which reduces the size of n and therefore 484 

raises the value of C, assuming an unchanged mitigation target. The overall consequence for 485 

all remaining participants is that the minimum target-achieving premium of 4C will cost more 486 

in the local currency, as will the optimal contribution and the average payoff. 487 

 488 

Fig. 3. Model predictions and simulation outcomes for dependent players (r ≥ 0). Functions 489 

of premium predicted from equations (3)-(4), given equation (7), with derivations in 490 

Appendix A. Lines plot r = 0 (black, independent players as Fig. 2), 0.25 (dark-grey), 0.50 491 

(mid-grey), 1.0 (light-grey). Symbols plot simulation results with 5 players at the optimal 492 

contribution, with r = 0.5 (grey triangles), r = 1.0 (light-grey circles). 493 

5. Discussion 494 

The analysis shows how mitigation that reduces the premium on mandatory insurance can be 495 

funded through voluntary contributions. Specifically, it illustrates three intuitive findings. A 496 
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premium at least four times larger than the per capita mitigation target provides sufficient 497 

motivation for payoff maximizing players to achieve the target even without coordinating 498 

mechanisms (Proposition 1). Moreover, smaller premiums underachieve relative to the target, 499 

with a worse average payoff per capita (Proposition 2), although the target fraction is raised 500 

and average payoff improved by subsidies between players that resolve wealth inequalities 501 

(Proposition 3). This final result is an example of wealth inequalities raising efficiency in the 502 

management of a public good (Baland and Platteau, 1997). 503 

5.1. Mandatory adaptation incentivizes voluntary mitigation  504 

Policy makers increasingly favour voluntary policies for environmental protection, in the 505 

form of self-regulation, negotiated agreements and public programmes (Segerson, 2013). In 506 

the context of climate change, this has become apparent since the signing of the Copenhagen 507 

Accord late in 2009, which marked a global-scale move away from top-down architectures in 508 

climate negotiations. The December 2015 Paris Accord sealed the transition to bottom-up 509 

initiatives, by centring around voluntary nationally determined contributions. The capacity for 510 

voluntary policies to outperform business-as-usual scenarios, however, depends on their 511 

effectiveness in improving both environmental outcomes and cost-effectiveness to 512 

participants. In the context of corporate targets to regulate environmental pollution, a 513 

voluntary policy can sustain free-riders provided a subset of polluters experience a cost of 514 

voluntary participation that is less than the costs they would incur under the alternative policy 515 

(Dawson and Segerson, 2008). Coupling the voluntary approach with an underlying 516 

regulatory structure has the potential to increase its effectiveness, depending on the cost of 517 

counterfactual scenarios (Segerson and Miceli, 1998; Segerson, 2013). Here we have 518 

quantified how the counterfactual of costly future adaptation brings resilience to the 519 

effectiveness of voluntary mitigation, which it otherwise lacks in terms of achieving both a 520 

public target and private cost-effectiveness. 521 
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The collective mitigation target is achievable amongst homogeneous interactions 522 

provided that: (i) players face a cost to themselves from no mitigation of at least 4C (£196.97 523 

for the UK scheme), and (ii) mitigation funded by achieving the target will have sufficient 524 

impact to nullify this cost. While mitigation demands an immediate investment, the 525 

consequences of inaction will be realized in a longer-term cost of adaptation. Our approach to 526 

aligning public with private needs is predicated on the reality of the individual’s tendency for 527 

future discounting, in which distant costs are not addressed given the relative importance of 528 

nearer costs (e.g. Pryce et al., 2011). We assume that the insurance industry depends on the 529 

application of reasonable functions for discounting the future, in order to satisfy shareholders 530 

that they will not face bankruptcy due to potentially infinite insurance pay-outs. Accurate 531 

functions are further motivated at the national scale if government provides the insurance with 532 

a fair-price pledge, or at the international scale if a consortium of countries participating in a 533 

risk-sharing agreement have similar preferences and uncorrelated risks.  534 

Mandatory adaptation insurance brings the long-term cost of adaptation into the present, 535 

and a market-led premium relieves government of some of the burden of persuasion. Market 536 

forces can set the premium on the basis of existing evidence for adaptation costs arising 537 

within the lifetime of the payee in the event of no mitigation. Any fraction of the anticipated 538 

adaptation costs that would accrue only to future generations could be costed separately by 539 

allocating that fraction of the premium to inheritance tax as a single payment in death duty. 540 

This would require a further elaboration of the model to weight the duty according to the 541 

treasury forecast of annual funds raised through inheritance tax. 542 

Uncertainty about when climate change will tip into a catastrophe, or what target will 543 

prevent it, may fatally delay cooperative action (Barrett and Dannenberg, 2014; Dannenberg 544 

et al., 2015). Our use of collective mitigation to discount the insurance premium directly 545 

addresses this uncertainty, because the size of the premium determines the maximum 546 
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achievable target (e.g., premiums < 4C cannot achieve target at equilibrium defection: Figs 2-547 

3). With a commercially set premium, adaptation insurance offers a free market for informed 548 

personal decisions on the collective mitigation that yields premium discounts. Any 549 

uncertainty about the sufficiency of the mitigation target provides a market incentive to 550 

reduce the rate of discounting the future (Wagner and Weitzman, 2015), and thereby to raise 551 

the premium. This in turn raises the commitment to cooperative action that generates 552 

discounts (Fig. 2b; cf. Lewandowsky et al., 2014). We have assumed that mitigation reduces 553 

adaptation costs linearly; model refinements could accommodate non-linear discounting to 554 

cover residual costs beyond the scope of mitigation. Further extensions of the model could 555 

partition out self-insurance (to reduce costs) and self-protection (to reduce risk) from the 556 

market-led mandatory insurance (Ehrlich and Becker, 1972), or could model insurance as a 557 

public good (Lohse et al., 2012).  558 

5.2. Implications for UK policy 559 

The UK government originally planned for a mandatory annual contribution that would add 560 

about £50 to the average household energy bill (DECC, 2013). Achieving the £1.3bn annual 561 

target for funding green-energy solutions would therefore allow no more than 2% defection 562 

amongst the 26.4 million UK households. Such a small defection probability is an equilibrium 563 

outcome given the Table-1 payoffs, and therefore freely chosen, only for an insurance 564 

premium valued at £3,300 per household. To date the British public has not been presented 565 

with options for anticipating the personal debt burden that will ensue from failing to take any 566 

cooperative action, or a mechanism for managing it. In the concurrent political context of 567 

large increases in the base rate of energy, this absence of information may have contributed to 568 

the public pressure that forced government into announcing plans in December 2013 to 569 

reform the contribution (DECC, 2013). Despite the coercion by government that made the 570 

contribution obligatory, the policy was defeated within a year. Yet we have seen that 571 
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voluntary contributions can raise any collective target without altruism, pledges, cliques, local 572 

policing, or other heterogeneous interactions associated with a social dilemma.  573 

Given the inevitability of climate change impacts becoming more pronounced in the 574 

future (IPCC, 2013), our analysis shows the importance of covering for the likely costs of 575 

adaptation, as a motivation for cooperative mitigation. Stern (2007, citing Barker et al., 2006) 576 

suggests that stabilizing the CO2 emissions trajectory at 500-550 ppm might incur costs for 577 

2050 in the order of 1% of GDP. With UK GDP currently worth £1,499bn (2012 value: The 578 

World Bank, 2013), a national cost of rectifying greenhouse emissions that is worth 1% of 579 

this amount resolves down to £568 per household. If the £1.3bn annual target for green-580 

energy mitigation stabilizes CO2 emissions (assuming a strong relationship between national 581 

and global emissions), an insurance premium of £568 (11.53C) is predicted by equations (2) 582 

and (3) to attract 90% cooperation with a target-achieving contribution of £54.47 (1.11C). The 583 

year-end insurance invoice equals the magnitude of the T payoff of Table 1, which in this case 584 

would be zero based on the contribution having achieved the target. Paying the contribution 585 

would therefore result in a >10-fold saving in personal outlay. 586 

5.3. Cooperation at national and global scales 587 

Market-led insurance as a method of costing alternatives to mitigation is reviewed in the 588 

IPCC Fifth Assessment Report, which emphasizes the need for government oversight (IPCC, 589 

2014b). Three-quarters of the global insurance industry has engagement with climate-change 590 

adaptation through investments totalling some US$25 billion (Mills, 2012). The Munich 591 

Climate Insurance Initiative exists to develop insurance-related management of climate-592 

change impacts, in partnership with the UNEP Finance Initiative. All such schemes present 593 

challenging opportunities for developing interactions between government measures aimed at 594 

risk reduction and insurance companies’ willingness to provide cover (IPCC, 2014b). Our 595 

analysis has demonstrated the potential, in principle, for using insurance to incentivize 596 
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mitigation of risk. New Zealand’s Earthquake Commission (EQC) is a government-regulated 597 

insurance scheme for natural disasters including storms, floods, and tsunamis, which is an 598 

obligatory component of insurance bought by all owners of residential dwellings and contents 599 

in New Zealand. Although the EQC pays owners the value of damaged land or repair costs 600 

following a natural disaster, the premium is not linked to mitigation or pre-emptive adaptation 601 

such as we propose here, which has been considered as a lost opportunity for risk reduction 602 

(Glavovic et al., 2010). The French CatNat system of insurance against flood damage includes 603 

deductibles from compensation linked to non-compliance with risk-prevention plans, but they 604 

are not adjusted to risk and are set too low to incentivize mitigation of risk (Poussin et al., 605 

2013). A survey has found that Dutch homeowners were willing in principle to invest in 606 

measures that mitigate flood damage in exchange for benefits on flood insurance policies 607 

(Botzen et al., 2009). Such opportunities remain under-developed for natural hazards 608 

associated with climate change (IPCC, 2014b). 609 

Our model of state-enforced insurance demonstrates a potential for aggregation that 610 

could lead to effective management of a global commons such as greenhouse gas emissions. 611 

Despite all states contributing to global emissions of greenhouse gases, coercion is not 612 

currently an option for improving cooperation amongst nation states in the absence of global 613 

governance. On the international stage, governments could seek to apply the same strategy of 614 

premium discounts to a multinational insurance partnership to achieve international 615 

mitigation. The Caribbean Catastrophe Risk Insurance Facility (2007) is the only such 616 

multinational pool so far to insure against sovereign risks of climate change and other national 617 

catastrophes (Grove, 2012). This not-for-profit company is a public-private partnership owned 618 

by a trust and governed by trust deed. It currently holds policies for 16 Caribbean countries, 619 

which benefit in low premiums from pooling a wide basin of climatic uncertainties. It 620 

therefore represents an organically seeded form of international governance. Similar schemes 621 
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are currently under consideration for Europe, Africa, and the Pacific (IPCC, 2014a). They use 622 

‘parametric’ insurance, which pays a predetermined remuneration when parameters are met 623 

such as thresholds of hurricane category or average temperature. Reinsurance mechanisms 624 

cover rare events that would otherwise leave obligations outstripping capital reserves. Instead 625 

of responding to pre-established threats, parametric insurance with reinsurance prepares for 626 

future-possible threats independently of their probability (Grove, 2012). This makes it 627 

particularly well suited to funding climate-change mitigation through securitized premium 628 

discounts, because effective mitigation will reduce the frequency of threshold crossings. The 629 

current absence of any such link to mitigation again represents a missed opportunity. 630 

6. Conclusions 631 

We have provided a simple game-theoretic framework for optimizing collective payments 632 

towards climate-change mitigation. The method quantifies a currently ignored opportunity for 633 

adaptation insurance to leverage collective mitigation through discounts in personal insurance 634 

premiums. Although we have focused on insurance, any mechanism for bringing adaptation 635 

costs into the present can leverage cooperation with mitigation. The analysis demonstrates the 636 

effect of full and fair knowledge about adaptation costs in motivating preventative action for a 637 

payoff-maximizing population. Mitigation achieves ambitious targets when it reduces 638 

otherwise high costs of adaptation to climate change and it works even for anticipated 639 

catastrophes otherwise considered uninsurable. The galvanizing effect of a potential debt 640 

burden suffices alone, and independently of any coordinated responses, to align personal with 641 

social interests. The prevailing absence of cover for a bleak future, however, perpetuates the 642 

association of collective action with a social dilemma, overlooking its potential as an efficient 643 

strategy for minimizing personal costs in adaptation.  644 
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Appendix A: Derivation of Table-2 predictions 

The following derivations of optimal contribution and stable equilibrium defector probability 

y* incorporate Hamilton’s relatedness coefficient r, to extend the predictions of main-text 

Table 2 for homogenous interactions (r = 0) to coordinated interactions (r > 0). For ease of 

presentation, we code premium as ‘p’ and contribution as ‘c’. Both are measured in non-

dimensionalized currency units of C, the collective target as a per capita value. The intuition 

behind the predictions from these relationships is given in main-text Results section 4.1. 

Step 1. Find pot* at y* as a function of contribution, c, for a given premium, p, and relatedness 

coefficient, r, by substitution of main-text equation (2) with r = 0, or equation (7) with r ≥ 0, 

into equation (3): 

  
 

*

*

*

1 1
1

2 1

c r pot p
pot c

pot p

   
  

  

. (A1)  

Rearrange in terms of pot*: 

 * 2 2 2 2 2 2 2 2 2 2 21
1 2 2 6 8

4
pot r cp p c p c p r cp c p r cp r p c p

p
          
 

. (A2) 

 

 

 

 

 

 

 

Fig. A1. Pot* at y* as a function of contribution (equation (A2)), at premium = 1C, 2C, …, 6C 

from smallest to largest ellipse for each of r = 0 (black) and 0.5 (grey). Black dot at the 

intersection of the blue marker lines shows the contribution at the maximum pot for 

premium = 4 (equation (A4) below), and the corresponding maximum pot (equation (A5)). 
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Step 2. Obtain the optimal contribution for maximizing the pot, c[pot*
max], by differentiating 

the larger of the two solutions for pot* with respect to c: 

 
* 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

d 1 2 4 2 2 6 16
1

d 4 2 2 2 6 8

pot cp cp r p cp r p r cp
r p

c p c p c p r cp c p r cp r p c p

     
   

        

. (A3) 

Then set d pot* / d c = 0 and rearrange in terms of c to obtain the contribution at pot*
max: 

    * 2

max 2
3 1 1 1

2 8

p
c pot r r pr pr

pr pr p
           

. (A4) 

This gives the optimal contribution in row 3 of main-text Table 2 with 0 ≤ r ≤ 1, for (2 + r)/(1 

+ r) ≤ p < 4. The lower limit of p is the value of p when y*[pot*
max] = 0 (solved from equation 

(A6) below). 

Step 3. Obtain pot*
max by substitution of equation (A4) into the larger of the two solutions of 

equation (A2): 

2 2

*

max 2

2 2 1
.

2 8

pr pr pr pr
pot

pr pr p

    


  
 (A5) 

Step 4. Obtain stable y* at pot*
max by substitution of equations (A4) and (A5) into main-text 

equation (7): 

 2 2

* *

max
2 2

5 3 3 1

4 4 1

p pr r r pr pr
y pot

p pr pr pr

      
   

    
. (A6) 

This gives y* in row 3 of main-text Table 2 with 0 ≤ r < 1, for (2 + r)/(1 + r) ≤ p < 4. 

With r = 0, equations (A4) to (A6) simplify to: 

*

max

2

8

p
c pot

p
    

,   
*

max

4

8
pot

p



,  * *

max 1 2y pot p     . (A7) 

These give optimal contribution and stable y* in row 3 of main-text Table 2 with r = 0, for 2 ≤ 

p < 4. 

Figure A1 shows p = 4C being the lowest premium to achieve target success (pot*
max = 1), 

with c = 2C (black dot), in accordance with equations (A4) to (A7) above. At r = 0, however, 

note that c = 2C also has an alternative pot* = 0.5. This is the pot at y* = 0.75 in a bi-stable 

Stag Hunt game which fails both conditions given below main-text equation (2). Generally for 

any given c, the alternative pot* < pot*
max is the pot at y* in a bi-stable game set by failing both 



Appendix A   38 

 

conditions below main-text equation (7). Main-text analyses and simulations assume an initial 

condition of y = 0, in order to prevent initial strategies from dictating the game outcome. 

Step 5. Obtain the target-achieving contribution and y* at pot* = 1 by rearranging equation 

(A1) in terms of c: 

 
*

1 1 4
1

2

p p
c pot

 
    . (A8)  

The corresponding stable y* at pot* = 1 obtains from substitution of equation (A8) into main-

text equation (7): 

* * 1 1 4
1

2

p
y pot

 
    . (A9) 

Equations (A8) and (A9) give the optimal contribution and y* (both invariant with respect to 

r) in row 4 of main-text Table 2, for p ≥ 4.  

Step 6. Find the optimal contribution at y* = 0. From main-text equation (3), pot* = c at y* = 0. 

Substituting c for pot* in the larger of the two solutions of equation (A2), and rearranging in 

terms of c: 

 

 
*

1
0

1 1

r p
c y

r p


     

. (A10) 

This gives the optimal contribution in row 2 of main-text Table 2 with 0 ≤ r ≤ 1, for 1 ≤ p < (2 

+ r)/(1 + r). Given main-text equation (3), it is also the value of pot*[y* = 0]. 

 

Step 7. Obtain the average payoff per player at y* = 0 by substitution of equation (A10) into 

main-text equation (4): 

 

 
*

2
0

1 1

r p
payoff y

r p

 
     

. (A11) 

For any 0 ≤ r ≤ 1 at p < 1, note that payoff [y
* = 0] is worse than payoff [y

* = 1] = –p. This sets 

optimal contribution = 0 and y* = 1 in row 1 of main-text Table 2, for p < 1. 
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Appendix B: Stepwise trajectories towards equilibria from simulations 

 

Fig. B1. Examples of within-year trajectories (arrowed) towards year-end pot and payoff (at 

arrow head). Simulation runs started with pure cooperation, y = 0, and ended in the vicinity 

of equilibria predicted by main-text equations (2) to (4) (blue lines). Each graph shows one 

run at each of premium = 5 (continuous arrow), 4 (long-dashed arrow), 3 (short-dashed 

arrow), 2.5 (shorter-dashed arrow), 1.5 (black dot), and 0.5 (dotted arrow), all at r = 0. For 

any premium ≥ 1C, there always exists some positive fraction of cooperators for which the 

benefit to a cooperator of not switching to defection starts to exceed the benefit to a 

defector of not switching back to cooperation. The simulation finds this balance iteratively. 

(a)-(b) Populations of 5 players, with sequential defections marked by circles, continuing 

until cooperation obtained a positive benefit per capita of not switching to defection that 

was as large or larger than the benefit per capita of defection not switching back to 

cooperation. (c)-(d) Populations of 500 players. 



Appendix C   40 

 

Appendix C: R script for simulation 

The following R script provides outputs for main-text Figs 2 and 3, and Appendix B Fig. B1. 

# Agent-based simulation of cooperative mitigation traded against costly adaptation. 
# Stepwise switches from pure cooperation towards equilibrium defection as a function 
# of the premium for mandatory adaptation insurance. 
# C. P. Doncaster, 16 August 2016 
# 
rm(list = ls()) ; search() 
######################################################################################## 
### Input constants ### 
####################### 
rounds = 50 # Number of rounds over which to average year-end outputs 
N = 5 # Number of players 
fraction.of.optimum = 1.0 # Fraction of optimum contribution 
r = 0.0 # Hamilton's relatedness coefficient, 0 <= r <= 1 
outfile1 = "Incentives_stepwise_output.csv" # File to contain stepwise outputs, round 1 
outfile2 = "Incentives_year-end_output.csv" # File to contain year-end average outputs 
######################################################################################## 
### y.star function ### 
####################### 
y.star = function(){ 
  # Reports premium, contribution, expected y and payoff, and observed y, pot and payoff 
  sum.y = 0 ; sum.pot = 0 ; sum.payoff = 0 
  for (i in 1:rounds) { 
    y = 0 ; pot = contribution ; payoff = -pot-(1-pot)*p # Start with pure cooperation 
    T = -(1-pot)*p ; S = -contribution -(1-pot)*p # Unilateral payoffs with r = 0 
    Si = S-r*T ; Ti = 0 ; Ri = -contribution-(1+r)*T # Convert to inclusive fitness payoffs 
    if (y*(Si+p) >= (1-y)*(Ti-Ri) && Si+p > 0 && payoff > -p) { # If y = 0 pays best 
      y.last = y ; pot.last = pot ; payoff.last = payoff 
    } 
    else { # If pure cooperation doesn't pay best, then start defection ... 
      N.defectors = -1 ; ybest = FALSE 
      while (!ybest && N.defectors < N) { 
        y.last = y ; pot.last = pot ; payoff.last = payoff 
        lim = 0.5 # Defection prob y varies up to lim players either side of y = N.defectors/N 
        N.defectors = N.defectors+1 ; y = (N.defectors + runif(1,-lim,lim))/N 
        y[y<0] = 0 ; y[y>1] = 1 
        pot = (1-y)*contribution ; payoff = -pot-(1-pot)*p 
        T = -(1-pot)*p ; S = -contribution-(1-pot)*p 
        Si = S-r*T ; Ti = 0 ; Ri = -contribution-(1+r)*T 
        if (y*(Si+p) >= (1-y)*(Ti-Ri) && Si+p > 0 && payoff > -p) {ybest = TRUE} else { 
          if (i == 1) { 
            result = paste(round(p,4), round(y,4), round(pot,4), round(payoff,4), sep = ",") 
            write(result, file = outfile1, append = TRUE) 
          } 
        } 
      } 
      if (!ybest || y == 1) { # If nothing beats pure defection ... 
        y = 1 ; pot = 0 ; payoff = -p 
        y.last = y ; pot.last = pot ; payoff.last = payoff 
      } 
    } 
    y = (y+y.last)/2 ; pot = (pot+pot.last)/2 ; payoff = (payoff+payoff.last)/2 
    if (i == 1) { 
      result = paste(round(p,4), round(y,4), round(pot,4), round(payoff,4), sep = ",") 
      write(result, file = outfile1, append = TRUE) 
    } 
    sum.y = sum.y+y 
    sum.pot = sum.pot+pot 
    sum.payoff = sum.payoff+payoff 
  } 
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  average.y = sum.y/rounds ; average.pot = sum.pot/rounds ; average.payoff = sum.payoff/rounds 
  result = paste(round(p,4), round(contribution,4), round(expected.y,4), 
                 round(expected.payoff,4), round(average.y,4), 
                 round(average.pot,4), round(average.payoff,4), sep = ",") 
  write(result, file = outfile2, append = TRUE) 
  writeLines(result) 
} ### end function ### 
######################################################################################## 
### Increment premium, p, from 0 to 6C ### 
########################################## 
# Write header lines to output file for stepwise values 
write("Incentives simulation output", file = outfile1, append = FALSE) 
write(paste("Observed traces for ",N," players with ", 
            fraction.of.optimum," x optimum contribution and r = ",r,sep=""), 
      file = outfile1, append = TRUE) 
write("",file = outfile1, append = TRUE) 
write("premium, y observed, pot observed, payoff observed", 
      file = outfile1, append = TRUE) 
# 
# Write header lines to output file for final values 
write("Incentives simulation output", file = outfile2, append = FALSE) 
write(paste("Observed averages of ",rounds," rounds for ",N," players with ", 
            fraction.of.optimum," x optimum contribution and r = ",r,sep=""), 
      file = outfile2, append = TRUE) 
write("",file = outfile2, append = TRUE) 
result.header = paste("premium, contribution, y expected, payoff expected, y observed,", 
                    " pot observed, payoff observed", sep="") 
write(result.header, file = outfile2, append = TRUE) ; writeLines(result.header) 
# 
# Get defector fraction and average payoff for p from 0 through to 6 in 0.1 increments 
# 
# 0 <= premium <= 1 
for (p in seq(0,1,0.1)) { 
  contribution = 0 
  expected.y = 1 ; expected.payoff = -p 
  y.star() 
} 
# 1 <= premium <= (2+r)/(1+r) 
for (p in seq(1,round((2+r)/(1+r)-0.05,1),0.1)) { 
  contribution = fraction.of.optimum*(1+r)*p/(1+(1+r)*p) 
  expected.y = 0 
  expected.payoff = -((1-expected.y)*contribution + (1-(1-expected.y)*contribution)*p) 
  y.star() 
} 
# (2+r)/(1+r) < premium <= 4 
for (p in seq(round((2+r)/(1+r)-0.05,1)+0.1,4,0.1)) { 
  a = sqrt((p*r^2+p*r+1)*(1-r)^2) ; b = sqrt((p*r^2+p*r+1)*p^2) 
  contribution = fraction.of.optimum*(3*r+1+a)*p/(2*p*r-p*r^2-p+8) 
  potmax = (4*(p*r-p*r^2+2)*p+(1-r)*p^2*a+(2*p*r-p*r^2-p+8)*b)/(4*(2*p*r-p*r^2-p+8)*p) 
  expected.y = (contribution-(1+r)*(1-potmax)*p)/((2*potmax-1)*p) 
  expected.payoff = -((1-expected.y)*contribution + (1-(1-expected.y)*contribution)*p) 
  y.star() 
} 
# 4 < premium <= 6 
for (p in seq(4.1,6,0.1)) { 
  contribution = fraction.of.optimum*0.5*p*(1-sqrt(1-4/p)) 
  expected.y = 0.5*(1-sqrt(1-4/p)) 
  expected.payoff = -1 
  y.star() 
} 
######################################################################################## 
 

 


