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Abstract

The present paper deals with the problem of designing randomized multiarm
clinical trials for treatment comparisons in order to achieve a suitable trade-off
among inferential precision and ethical concerns. Although the large majority of
the literature is focused on the estimation of the treatment effects, in particular
for the case of two treatments with binary outcomes, the present paper
takes into account the inferential goal of maximizing the power of statistical
tests to detect correct conclusions about the treatment effects for normally
response trials. After discussing the allocation optimizing the power of the
classical multivariate test of homogeneity, we suggest a multipurpose design
methodology, based on constrained optimization, which maximizes the power
of the test under a suitable ethical constraint reflecting the effectiveness of the
treatments. The ensuing optimal allocation depends in general on the unknown
model parameters but, contrary to the unconstrained optimal solution or to
some targets proposed in the literature, it is a non-degenerate continuous
function of the treatment contrasts and therefore it can be approached by
standard response-adaptive randomization procedures. The properties of this
constrained optimal allocation are described both theoretically and through
suitable examples, showing good performances both in terms of ethical gain
and statistical efficiency, taking into account estimation precision as well.

Keywords
Asymptotic inference, Ethics, Power, Response-adaptive designs, Wald test.
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1 Introduction

Starting from the well-known Efron’s Biased Coin Deslgrseveral randomized
clinical trials have been designed in order to achieve leadror nearly balanced
allocations among the treatment groups, with the aim of méaing inferential
precision about the treatment comparisons. The main geiidin concerns the optimal
properties of balance, which is often regarded as desirfabia the viewpoint of
estimation accuracy. Indeed, under the linear homosdedasidel setup, balance
is universally optima, i.e., the balanced design optimizes every design criterion
applied to the variance-covariance matrix of the parameterestimators. In
particular, it optimizes the usual criteria for the estimation of the treatment effects
like, e.g., the well-known D-optimality (minimizing the volume of the confidence
ellipsoid of the parameters of interest), or thetr-optimality (i.e., trace-optimality,
also calledA-optimality, minimizing the sum of the variances of the estinators).

Although balancing the allocations is usually considergtinsal for estimation
under homoscedasticity, it is also appealing even in the aisheteroscedastic
treatment groups, since it is stilb-optimal for the joint estimation of the treatment
effects and it is nearly optimal under several optimalifyecia®.

Clearly, maximizing the power to detect a significant treatirdifference is another
major issue in designing clinical trials. In the case of tweatments, balance
is optimal also from the viewpoint of testing, since it makies the power for
homoscedastic outcomeand it is asymptotically optimal for binary triflsHowever,
in the case of several treatments, the inferential goalddcbe focused on the
treatment contrasts, in place of the main effects, and th@nbead allocation may
not be efficient. Although balance is stilP-optimal for the joint estimation of the
contrasts under homoscedasticity, it is netoptimal (namely, balance does not
minimize the average variance of the estimators of the treahent contrasts)
and it is significantly different from the optimal design faypothesis testing in
binary trials’. Moreover, balance could be strongly inappropriate inicéihtrials in
which ethical demands play a fundamental role, ldmological trials or clinical
experiments for rare diseaseswhere the demand of individual care often induces
to skew the allocations to more efficacious (or less toxieatiments. Frequently, the
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Baldi Antognini et al. 3

conflicting goals related to the ethical concern of maxingzthe subjects care and
to the statistical aim of drawing correct inferential carstbns with high precision
can be formalized into suitable combined/constrainednapttion problems and
several authors derived target allocations that could barded as a valid trade-off
among ethics and inferent@?. Generally, these allocations depend on the unknown
parameters and, under suitable conditions, they can betéaldy using response-
adaptive (RA) randomization procedures, namely sequentis that change at each
step the allocations probabilities of the treatments tor@gmate the chosen target
(e.g., the doubly-adaptive biased coin desfyrFor a recent review see the bodks”.

However, most of the target allocations for multiarm clalitrials proposed in the
literature are focused on estimation precision; whiléeliittention has been devoted to
hypothesis testing, almost exclusively for binary trisdgarticular, Tymofyeyev et al.
derived the target maximizing the power of Wald test of hoeraty subject to i) an
ethical constraint about the upper bound for the total ebguemumber of failures and ii)
a lower bound for each treatment allocation proportionhéligh the subjective choice
of these thresholds induces flexibility, the ensuing target discontinuous function
of the unknown model parameters, whose closed-form exipress not generally
available. Moreover, excluding binary trials, the suggdsarget allocations are quite
few, often of heuristic nature or characterized by compéiddunctional form&318-20

The present paper deals with the problem of designing randoimaed multiarm
clinical trials for treatment comparisons for the linear homoscedastic model.
Although in the literature most attention has been focused n binary outcomes,
there are many clinical trials where, especially in the degin phase, the primary
endpoint could be assumed normally distributed (like, e.g.the diastolic blood
pressure reductior?® or the duration of cold symptoms??). Furthermore, in
several circumstances the outcomes can be treated as appnmately normal either
via suitable transformation of the data®® or when the primary outcomes are
individual means of repeated measurements/scoréy. As a motivating example,
Dworkin et al. (2003) discussed a randomized placebo-corfied trial intended to
investigate the efficacy of pregabalin in the treatment of pstherpetic neuralgia.
The efficacy measure was a 11-point numerical pain rating see and the primary
endpoint was the mean pain score derived from patients’ las? days of diary
entries while taking the study drug. According to several athors (see e.¢10:1%25),
the observed mean scores in the two groups exhibit an appraxiate normal
distribution with different means but substantially equal standard deviations.

The first aim of the paper is to derive the allocation maximgzithe power
of the classical multivariate test about the treatment restd. This optimal target
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is a degenerate allocation which depends on the unknown Inpzatameters and
assigns 50% of the subjects both to the best and the wordtmiea Therefore,
we suggest a multipurpose design strategy that combinésaktfemands and the
inferential goal of maximizing the power of the statistitedt. Adopting a constrained
optimization framework, the suggested methodology is dirae maximizing the
non-centrality parameter of the classical Wald test of hgemeity subject to an
ethical constraint on the treatment allocation proposiceflecting the efficacy of the
competing drugs. When the ethical gain tends to be smallettseiing constrained
optimal target coincides with the balanced one; whereasheselative superiority
of the best treatment (wrt the other drugs) increases, ivskbe assignments to
the superior treatment maintaining all the others equicef#d. This target admits
a very simple analytical form and, contrary to the uncormsé@ optimal solution,
it is a non-degenerate continuous function of the treatneentrasts, so it can be
approached by standard response-adaptive randomizatioaqures. The properties of
this constrained optimal allocation are described botbristically and through suitable
examples, showing a very good behavior wrt some traditiorethods both in terms
of ethical gain and statistical efficiency, taking into agabestimation precision too.

The paper is structured as follows. In Section 2, the modelsaame preliminaries
are presented, while Section 3 deals with optimal targeications for hypothesis
testing, taking into account both constrained and uncaim&d optimization, as well as
their properties. Section 4 discusses the performanceeopitbposed targets through
numerical examples, also compared with those of other atiloes suggested in the
literature while Section 5 highlights some general conclusionslathematical details
are given in the Appendix.

2 Preliminaries

Let us consider a clinical experiment where patients comaesatially to the trial and
are assigned to one df > 2 available treatments. The primary outcomig of the
jth patient assigned to thgh treatment is usually assumed to be a continuous variable
with

ij:,uk-i-ékj, kZl,...,K, jZl,...,Nk, (1)
whereyy, is the effect of thekth treatmente;,;s are independent random errors with
exj ~ N(0,02) and o2 denotes the unknown common variance. Letti¥g be the

number of patients assigned to treatmergndn = Zszl N, the total sample size,
thenm, = Ny /n is the proportion of patients assigned to ttl treatment; so let
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m = (m1,...,7x) ", thenm T 15 = 1 for everyn, wherel ; denotes thé{ -dim vector
of ones.

Letting jix, (k =1,..., K) be the MLE ofyu,, aftern steps, i.e., the corresponding
sample mean, them andf,, are theK -dim vectors collecting the treatment effects and
their estimates, respectively. As is well-known, conditibon the design the MLEs
are strongly consistent and asymptotically normal, i.en a» oo, ft,, — p a.s. and
Vi, — p) =a N (0, M~1), whereM = M(w) = o~ 2diag () is the so-called
normalized Fisher information matrix (conditional on thesin) associated witp.
Under this scenario, a natural design question is how teatéotheX treatments to
n subjects in order to optimize the inferential precision aaderal authors suggested
optimal targetp = (p1,...,px)" (With p, > 0andp’1x = 1) - as actual allocation
proportions out of, patients or asymptotic limiting proportions for sequelntigals
- in order to optimize the estimation of the treatment eBe@n the basis of the
optimal design theory, these targets were derived by maiimgi suitable convex
criteria measuring the loss of information; classical egke®s areD-optimality and
tr-optimality, intended to minimize the determinant or the trace -) of M~!(p).
By a well-known result (see, e.g., Silv®ythe balanced design® = K ~'1 is both
D- andtr-optimal.

In many circumstances, especially in the context of muttiatinical trials, the
inferential attention is devoted to the contrasts. SoingtA " = [1x 1 | —Ix_ 1],
the (K — 1)-dim vector of the contrasts with respect to the first treatinfeonsidered
asthereference)js, = ATy = (1 — pa, ..., 1 — px) " . The corresponding MLE
is f., = AT f1,,, which is still strongly consistent and asymptotically ma with

Vi, — e = Vi AT (o, — p) <+a N (0, ATM'A). @

Within this framework, the balanced design” is the so-calledD 4-optimal
allocation, which minimizes the determinaph "TM~'A|, while the tr4-optimal
design minimizing the trace of the asymptotic varianceac@nce matrix in (2) is

pft = (pf, ..., pR)T given by'*:

1
VK -1(1+VK-1)

R

1
T VR -1

and pf =

L k=2,...,K. (3)

It is worth noticing that bothp? and p” are motivated only by estimation precision
without taking into account ethics.

On the other hand, Atkinsdf proposed a target allocation intended to skew the
assignments towards the best treatment in order to minithzexposure of patients
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to inefficacious treatments. In particular, assuming thdiginer response is more
desirable for patients and letting= K ! Zszl 1 be the overall treatments mean,
targetp” proposed by Atkinson is

p§_¢(‘“‘“—;ﬁb)/[§@<@)], k=1, . K, )

where®(-) is the cdf of a standard normal distribution and- 0 is a randomization
parameter. Clearly, small values ofinduce a strong ethical skew at the expense of
estimation precision, while asincreaseg tends top” and therefore more emphasis
is given to inferential purposes.

3 Optimal target allocations for hypothesis testing

In what follows, we take into account the problem of testiggdthesis on the equality
of the treatments effects by considering the null hypotheShomogeneityd : p1 —
fo=...=p1 — pK, e, Hy: p. = 0gx_1, versus the alternativel 4 : pt, # Ox_1,
whereOx_ is the (K — 1)-dim vector of zerosln addition to its intrinsic validity
and generality, this overall homogeneity hypothesis reprgents the first stage of
multiple comparison techniques of a wide class of step-dowprocedures applied
in practice 2%, as will be discussed in Section 5.

The classical Wald test statistic is
W = 2o i, [AT diag(m) " A] " i,
g,

wheres? is the usual consistent estimator of the common variafc&nder the null
hypothesisd,, W,, tends asymptotically to a chi-squared random variable With 1
degrees of freedom, while under the alternative hypotlitlesisiverges to a non-central
chi-squared r.v. with’ — 1 degrees of freedom having non-centrality parameter

() = %HZ (AT diag(m) ' A] " .

The following Lemma provides a simple expression for the-nentrality parameter.
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Lemma 1. Aftern patients, the non-centrality parameteéf) of Wald test could be
rewritten as follows:

n [ X K 2
o(m) = > (= p)m — [ (11 — Mk)ﬂ'k‘| : ()

o?
k=1 k=1
Proof. See Appendix 6.1.

From now on we adopt “the-larger-the-better” scenario, nanely from an ethical
viewpoint we assume that a higher response is more desirabl®loreover, for
ease of notation and without loss of generality, we assumedHollowing ordering
between the treatment effectsu; > pus > ... > ux (i.e., the best treatment will
be labeled as the first one, while the(th treatment as the worst, admitting also
clusters of treatments with the same efficacy). We stress ththis choice is a simple
label-coding, intended to avoid more complex notation; clarly, the treatment
ranking is a-priori unknown but it can be estimated step-by-step in a sequential
fashion, as discussed in Section 3.1.

Remark 1. Letting Ax = u1 — ux be the kth contrast wrt the best treatment
(where, clearlyA; = uy — uy = 0), for a given target allocatiom the non-centrality
parameter in (5) can be written as

2

:% > (Ak—2)’pkpi,  (6)

1<k<i<K

K
n
o(p) = p=) ZAiPk -
k=1

K
Z Appr
k=1

i.e., it is proportional to the variance of a discrete and noegative random variable,
sayA, with K (possibly different) ordered support poimdsy > ... > Ay > Ay =0,
evaluated with respect to the pdfNotice that, from the RHS of (6), the non-centrality
parameter does not formally depend on the chosen referaragntent and it can
be re-expressed in terms of every desirable treatment,teayth, sinceA, — A; =

fi = e = (e — pg) = (pr — 1)

In the following Theorem we derive the optimal target alli@a for K treatments
that maximizes the power of the Wald test of homogeneity.

Theorem 1. If py > ps > ... > ug—1 > ug, then the optimal allocation max-
imizing the non-centrality parameter (6) of Wald test of logeneity isp* =
(1/2,0,...,0,1/2)T, namely the target which takes into account only the best
and the worst treatments in a balanced way. Moreover, in thgecof a cluster
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of several best treatmenis = o = ... =p; (j =2,..., K — 1), every allocation

* = (p},...,pk) " such thatp =1/2 and Zle pi=1/2 is optimal (i.e., any
combination of the allocations of the treatments within #aster with global
probability 1/2 is optimal). The case of a cluster of several worst treatsmean be
derived analogously.

Proof. See Appendix 6.2.

Theorem 1 shows how an unconstrained maximization of the-ceotrality
parameter leads to a targpt whose characteristics are inadequate both from the
ethical and the inferential point of views. Indeed, evepif maximizes the power
of Wald test,p* does not allow to collect information on the efficacy of imediate
treatments, making the variance of the estimates unrelidlbthe same time, problems
also arise from the ethical viewpoint, since half of the guaii$ are assigned to the less
effective treatment. Furthermore, notice that evgfyis a discontinuous function of
the unknown treatment effects which vanishes at the intdiae treatments and this
does not allow the application of the classical asymptbigoty for response-adaptive
procedures.

Taking into account two distinct objectives related to ttiéaal demands of skewing
the allocations towards the superior treatment and theanfl goal of maximizing
the inferential precision, several authors suggested ipowiose methodologies
inspired by constrained/combined optimization approachethe context of binary
trials, Tymofyeyev et al. derived the allocation maximizing the power of Wald test of
homogeneity subject to the ethical constraint that the ogaected number of failures
not exceed a given threshold. Since the correspondingieolinvolves only the best
and the worst treatments with no assignments to the intdateedrugs, the authors
superimposed an additional constraint by fixing a lower libtor each treatment
allocation proportion. Although this approach is appdyeitéxible, the ensuing target
is a discontinuous function of the unknown parameters, avittosed-form solution not
generally available. Moreover, the subjective choice ekéhtwo thresholds could not
be easy to interpret and could lead to formal contradictisimee they should depend
in general on the unknown paramet€rsThe same problems may also occur in the
combined optimization approach, where the choice of thgktsiassigned to ethics
and inference plays a crucial role strongly affecting trehs'?.

To overcome the aforementioned drawbacks, in what followes pvopose a
new multi-objective design strategy based on a constragptiinization technique
without superimposing any subjective choices. In pardicurom the assumed order
between the treatment effeqgts > us > ... > ug, in the next Theorem we derive
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the constrained optimal allocatiogh= (j1,..., k)" (with 5 > 0 for every k =
1,...,K andeK:1 pr = 1) that maximizes the non-centrality parameter of the Wald
test under the ethical constrajpt > g2 > ... > pik.

Theorem 2. If pu; > ps > ... > ug, then the optimal constrained allocatigh=
(p1,.--,pr) " maximizing the non-centrality parameter of the multivégisvald test
subject to the ethical constraipt > po > ... > pk is:

(1—t[K —1],t,....t) ift< K
pB if t> K1,

™
I

where X«
Zk:l(:ul - Nk)Q

2
K
2[4 = )|
In the presence of a cluster of superior treatments= ... = u; > pj11 > ... > pg
(with j =2,..., K — 1), then p = p® whent > K, while for t < K~! every
allocation g = (p1, ..., pj,t,...,t)T such thatp, >...>p; >t and 37 j; =
1— (K — j)tis optimal.

t =

(7)

Proof. See Appendix 6.3.

Remark 2. In the same setting of Remark 1, the skewing parantete(7) could be
rewritten as follows:
Se A COVEA) +1

Tomeal R

whereCV (A) is the coefficient of variation of the random varialleevaluated wrt
the uniform distribution. Thus, on the basis of the valuethefunknown treatment
contrasts, the optimal constrained allocatigncoincides with the balanced target
if CV(A) > 1; whereas, wherCV (A) < 1, thent < K~! and thereforep skews
the assignments to the superior drug, while it maintainstaé other treatments
equireplicated.

From Theorem 2, the constrained optimal allocation has dlleviing interesting
properties:

P1: through the skewing parameter ¢ =¢(u), p is a continuous and non-
degenerate function of the unknown treatments effects laactfore it can be
approached by standard response-adaptive randomizatioaqures;
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P2: adoptingg, the allocation proportiop; to the best treatment is increasing as its
effect u; grows; more in general, every componept(for k =2,..., K) is a
monotonically increasing function qfy, provided thatu, > i (see Appendix
6.4);

P3: excluding the degenerate case= ... = uk, from (7) it can be shown that
t > [2(K —1)]7!, where the minimum value of the skewing parametés
attained whem; > ps = ... = ux (see Case 3 of Appendix 6.3); in such a case
the non-centrality parameter attains its maximum valumeing(p) = ¢(p*);

P4: p is invariant under label permutation of the treatments, elgnt does not
change if the treatment labels are switched, provided thais replaced by
max{u1, ..., uk +in (7) (clearly, the target allocation proportion corresgimg
to the best treatment id —¢[K — 1], while the other drugs are still
equireplicated).

Example 1. To understand the behavior of the optimal constrained tafgdefined
in Theorem 2, assume nal = 3 treatments. From (7), it can be seen that 1/3 if
and only if(j; — p2)(vV3 4+ 1) > (1 — p3)(v/3 — 1), namely when

Hl_ﬂ2>\/§_1
pr— 3 /341

~ 0.268,

i.e., if 3 —p2 >0.366- (ue — ps). Thus, p skews the assignments to the best
treatment only when its relative superiority wrt the secaitdg - compared to the
relative superiority between the other two treatments -resatgr than the threshold
0.366, otherwise the allocations will be balanced. It is worth iootg that, even if

t <1/3 induces a skewed allocation to the best treatment, at theesame from
P3 the skewing parameter is always greater thank — 1)]~! = 1/4; therefore

p2 = p3 > 1/4 and g, < 1/2, which allows one to obtain valid performance also in
terms of estimation precision. Table 1 summarizes the behaf/p as the treatment
effects vary.
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Iz p
Hio p2 H3 | P p2 p3 3
12 10 1| 1/3 1/3  1/3 | 0.370
12 9 1(0.336 0.332 0.332 0.332
12 6 1| 0.457 0.272 0.272 0.272
12 3 1] 0.495 0.253 0.253 0.253
12 1 1 (0500 0.250 0.250 0.250

Table 1. The behaviour of the optimal constrained target g with K = 3 treatments as
2 varies.

3.1 Implementing optimal target allocations via RA procedures

The above-mentioned optimal constrained target depends orthe unknown
model parameters and therefore it is itself unknown at the bginning of
the trial. So this allocation cannot be implemented directy, but it can be
approached asymptotically by using suitable RA randomizabn procedures,
namely sequential allocation rules that, in order to convege to the chosen target,
change at each step the probabilities of treatment assignmes on the basis of
earlier responses and past allocations.

In particular, after a starting sample of n( subjects assigned to each treatment -
usually made via restricted randomization - to obtain non-tivial estimates of the
unknown parameters, at each stepr > Kny the treatment effects are estimated
by i, = (fitn,---,iixn) | (Where, according to our notation, the estimates are
ranked from the largest - coded as the first one - to the smallésnamely the K'th
one, i.e.,fi1n, > ... > [ixns). Thus, the skewing parametert in (7) is estimated by
means of K L

fn _ Zkzl(ﬂln — flen) . (8)
2 [0 (i = fien)|

and the the optimal constrained target is estimated accordigly by

. (1= E[K = 1), Eny o Bn) | i £y < K1,
Pn = o

pP if £, > K™%
Thus, the next assignment is (randomly) forced to progressely approach the
target. For instance, adopting the well-known sequential raximum likelihood
desigr?’, the (n + 1)th treatment is assigned with probabilities given by the
current estimate of the target. While adopting the doubly-alaptive biased coin
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design4, the treatment assignment is forced to the target increasigly as the
distance between the current allocation proportion and theestimated target
grows. As is well-known'®, from P1 the treatment allocation proportion converges
almost surely to p and the consistency of the estimators of the treatment efféx
is guaranteed along with their asymptotic normality. Thus, the asymptotic chi-
squared approximation of Wald test follows directly; for a detailed discussion
about the choice ofng and the accuracy of the asymptotic approximation of Wald
test statistic, see Baldi Antognini et a8,

4 Comparison among target allocations

This section is dedicated to the performance comparisoniftérent targets. As
stressed by many authors, the interplay between diffeféaiescy criteria (statistical
power, efficient estimation and ethical considerationgosplex and does not lead
to a unique best choice. To assess the performance withataspdifferent efficiency
measures, we take into account several criteria, both ftatiscal and ethical point
of views. More specifically, we consider the following desigiteria:

e Ethical demandas a measure of ethics we take into account the total exgpecte
responses, which is clearly maximized by assigning all extbjto the best
treatment (i.e., in our setting, the first one); thus, giveargetp we consider
the ratio between the total expected outcomes and its optiatae 11, i.e.,
Eg(p) = Ypy tepr/tir;

e Statistical power given the optimal targep* maximizing the non-centrality
parameter of Wald test (see Theorem 1), the measure of paffigiency of an
allocationp is evaluated by p (p) = ¢(p)/d(p*).

Theorem 3. The constrained optimal target dominates the balancedydesi terms
of power and ethics, namel§y guarantees higher values d@p and Ex wrt p&,
simultaneously.

Proof. See Appendix 6.5.

We compare the behavior of the constrained optimal tapgahd the unconstrained
optimal onep*, with three different allocations, namely the,-optimal targetp?,

the tr ,-optimal allocationp® in (3) and Atkinson’sp® in (4) with 7 = 1 andr = 3
(denoted byps' and p4, respectively). The aforementioned allocations have been
proposed in order to meet specific objectives and therefaie behavior could vary
with respect to different efficiency measures. More speailficp* has been suggested
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for ethical reasong’ andp® optimize a single design criterion for estimation goals,
p* maximizes the power of the Wald test without ethical resitrits andp is derived
primarily for testing purposes but, at the same time, itsttie@ cope with the ethical
issues raised from the unconstrained maximization.

To stress the impact of a given target in terms of estimatigtipion, in our
comparisons we will also take into account the,- and the D 4-efficiency given
respectively by

_tr(ATM! (pF) A)
Frrall) = AT ()A)

ATM (o) A <
ATM 1 (p)A]

and Ep,(p) = {

The following tables summarize the results fAr=3 and K =5 treatments,
varying the values of the treatment effects. Note that pdtrand p” depend only on
the numbel of considered drugs and therefore they do not changewasies, while
p* always assigns 50% of the allocations both to the best anavtinst treatment.
It is worth noting that, although these targets do not defengd, the corresponding
efficiency measureBr and Ep change as the treatment effects vary.

Insert Table 2 and Table 3 here

Let us first consider the results in Table 2 witth = 3 treatments. As far as the
statistical power is concerneg,is the closest to the corresponding optimum target
p*, followed by p’. The gain in terms of power @& wrt p* ranges from about%

to about4%. Adopting the allocatiop”, the choice of the randomization parameter
7 is crucial: for 7 =1 the ethical skew is strong, so that the assignment to the
worst treatment vanishes in almost every parameter settihtle 7 = 3 gives more
emphasis to inference. In geneyatf, shows the lowest statistical power but, at the same
time, it exhibits the highest ethical efficiency, followeg p (except for the scenario

p = (12,11,1) " under whichp = p®). In general, the ethical impact @fis superior
than that ofp’®, with a gain up to 7%. For what concerns the -efficiency and the

D 4-efficiency,p is always close to the optimum, with maximum losses lowen &
ands%, respectively. As stated previouspy; andps! are strongly inadequate from the
viewpoint of estimation precision.

Table 3 refers to the scenario witki = 5 treatments and the results substantially
reflect those obtained fak = 3. More specifically, in terms of powep is still the
closest to the optimurp*; if compared top”, the third best optionj induces a gain
of efficiency up t06%. As for K = 3, p* tends to have the best performance in terms
of ethics, except for some cases whgrkas substantially the same ethical efficiency
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wrt p4' (notice that the choice of = 1 does not always guarantee a superior ethical
efficiency wrtr = 3). Whereasp guarantees an ethical gain up to about 8%t

Recalling that our proposal represents a valid comproméetevéen ethics and
power, in the case ok = 5 treatmentsp becomes less efficient wet? in terms of
estimation precision; however, the constrained optima@etastill ensures very good
performances, especially in termstof,-optimality with an efficiency always greater
than91%, while the D 4-efficiency is always greater than 80%. Indeed, following th
results of Baldi Antognini and Giovagndl it is easy to show thai is D 4-admissible,
namely it does not exist another target which is superiorbeth ethics andD 4-
optimality, simultaneously. Once agaip? and p7* exhibit values oftr 4-efficiency
andD 4-efficiency close to zero.

In order to explore the behavior of the considered targstsfabm a graphical point
of view, Figure 1 shows their performance in the cas&of 5 treatments withu " =
(11,13,12,11,9) asp; varies betweemn4 and35. Essentially, this Figure confirms the
above-mentioned results, also showing an anomalous lwhafviAtkinson’s target,
which exhibits a non-monotone efficiency in terms of bothistiaal power and ethical
demands as the effect of the best treatment grows. Indegd insreasesp:' tends to
assign all subjects to the best treatment; contrary to therdargets under which the
allocation proportion to the worst drug does not vanishsThiplains why the power
of p{! tends to vanish, while its ethical efficiency tends to one.\oat concerns the
remaining targets, they have a decreasing ethical effigzidne to the denominatar,
of the considered ethical measure. In gengiélas better performance wrt all of them.
Also in this setting, adopting* andp{! the estimation precision vanishes.
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Figure 1. Efficiency measures for p?, g, pZ, p™ and p* with ™ = (u1,13,12,11,9)
as p1 varies between 14 and 35.

Finally, note thatp” assigns more subjects to the reference treatment of the
contrasts, which in our assumptions also coincides with ghperior treatment;
thus, the ethical efficiency op” is emphasized under the previous scenarios.
Whereas, ifu" = (1,3,6) (i.e., the best treatment is the third one), thefl =
(0.414,0.293,0.293) " with E(p’) = 0.508, while 5 = (0.266, 0.266, 0.468) " has
ethical efficiencyE' s (p) = 0.646.

As stressed by Sverdlov and Rosenbet§ex target showing high efficiency under
one criterion may have low efficiency under other criteriagcs statistical and ethical
purposes can directly compete with one another, resulting icomplex pattern.
However, the optimal constrained targeshows good performance both from statical
and ethical point of views, since the efficiency gains oladim statistical power are
not achieved at the expense of poor ethical demands, geargat the same time valid
performance in terms of estimation precision.
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5 Discussion

The present paper deals with the problem of finding suitablearget allocations for
multiarm clinical trials with normally responses. To achieve an appropriate trade-
off among inferential precision and ethical concerns, we tee into account the
inferential goal of maximizing the power of the test of homogneity between the
treatment effects, under a suitable ethical constraint refcting the effectiveness
of the treatments. The ensuing optimal constrained targetwhich guarantees very
good performances in terms of both ethical gain and statistial efficiency, is a non-
degenerate continuous function of the unknown contrasts tht can be approached
by standard RA randomization procedures.

Besides its generality, the considered overall null hypotbsis of homogeneity
represents a cornerstone in the statistical literature andconstitutes the first
stage of multiple comparison methodologies for several spgvise procedures. For
instance, Fisher’s least significant difference method is &vo-step test for pairwise
comparisons which is considered one of the most powerful mebdologies for
comparing several treatments. In the first step, the overallnull hypothesis of
homogeneity is tested and, in the case of rejection, the sexbstep is performed
in order to test the pairwise comparisons at the same level o$ignificance®®.
Since in some practical applications not all the comparisost may be of primary
interest and the inferential goal consists in testing the sueriority of a set of new
drugs with respect to the placebo (i.e., by considering a rigt-tailed alternative
hypothesis), Zhu and Wong?® derived the optimal compound target for normal
homoscedastic outcomes by combining into a single designterion the variances
of the usualt-tests for pairwise comparisons with different weights refécting the
relative importance of each of them. Clearly, this approachdoes not take into
account ethical concerns and, in the case of equal weightsgmely when all the
K — 1 comparisons have the same importance), this compound optimh target
coincides with pf in (3).

From a design perspective, the normal linear model is a staratd framework by
which approximating new phenomena. Such a model tends to bgpropriate also
for real non-normal data by applying suitable transformations to the responses
(e.g., by the well-known power transformatior?®). However, in order to extend
the applicability of the suggested methodology, one of theufure directions of
our work is to relax the assumption of homoscedasticity, talkng also into account
covariates/prognostic factors that potentially affect tre outcomes. In such cases,
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the level of complexity of the problem will increase signifiantly and we hope to
find out a tractable solution in the future.
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6 Appendix

Given a discrete r.vA with valuesAy,..., Ak, from now on we setV,(A®) =
SR Ajpr for s =1,2, so thatM,(A) = S0 Agpr and V,(A) = M, (A%) —
[M,(A)]? are the expectation and the varianceXoévaluated wrt the pdb. To avoid

a cumbersome notation, the same quantities evaluatgaliwrtill be denoted by\/ (-)
andV (-).

6.1 Proof of Lemma 1
Note that

A Tdiag(m)*A = diag (w,zl)k +a g 41 =T +uv',

=2,...,K

whereT = diag (w,;l)kZQ ou=1xg jandv = 7 "1x_1. MoreoverT + uv '

isinvertible sincd + v T lu =14+, '1, T '1x 4 = ;" # 0; therefore, by
applying the Sherman-Morrison formula,

T luv'T?

T Nt=rTt- o
(T+uv’) 1+v T-lu

Moreover, ] T 'y, = S, A2my, ] T lu= "1 Ay, and v T 'y, =
7'1'171 2522 A7y thus,

2
T luv'T ! K
.
- - - = A
e [1+VTT1U] e <1; KTk
and therefore the non-centrality parameter in (5) follovessimple algebra.

6.2 Proof of Theorem 1

As shown in Remark 1, the non-centrality parameter of Wasd ¢ homogeneity
could be rewritten ag(p) = no~2V,(A), where A is a non-negative discrete r.v.
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with K (possibly different) ordered support poiris= A; < A, < ... < Ag. By
a well-known result, for a given support the variance is mazed by the pdf that
assigns half mass of probability at the two extremes; maedhis maximum is
global and is unique. Sincg; > pe and pux—1 > pi, thenAg > A 1> ... >
As > A1 = 0 and therefore the non-centrality parameteis maximized byp* =
(1/2,0,...,0,1/2) . If there exists a cluster of treatments such fhat= pp = ... =
w; (with j < K), then the firstj support points collapse into a single value since
0=A; =...=A; and therefore every combinatidp;, ..., p;) with p; > 0 and

7 _, p; = 1/2is optimal; clearly, the same reasoning still holds for mitv@n one
worst treatments.

6.3 Proof of Theorem 2

We now want to derive the target allocatigh= (j1,...,0x)" maximizing the
non-centrality parameter of Wald test of homogeneity urttierethical constraints
p1 > P2 > ... > pi. As shown in Remark k(p) = no~2V,(A) and, sincews 2 is

a constant, the problem is finding the constrained taggitat maximizesl/,(A) =
My(A%) = [M,(A)]? = 31 cheick (D — Ai)?prpi. The corresponding Lagrange
function is -

K-1 K
Lo M, Ak) = Y, (D= 20)okpi — Y Nilpjer —pi) = Ak | D pi—1
1<k<i<K =1 P

If we let now a; = ZkK:l(Ak —A;)?py, for i =1,..., K, by putting the partial
derivatives of the Lagrangian equal to zero, we obtain thHeviing system of
equations:

a1+ A = g

ag + X — A\ = Mg

-1+ AK—1— Axk—2 = Ak

aKg — /\K—l = /\K-

By summing up all the equationga, + A1) + (a2 + Ao — A1) + ...+ (ax—1 +
Aic 1 — Aic—2) + (ax — Ax_1) = KAk, which givesAg = K'Y 1 a =a >
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0, so that the previous system could be rewritten as follows

Al =a—ap

)\2:/\1+)\K—a2=(d—a1)+(d—a2)

A1 =Y a— ap)
Ak = a,

wherea; = S | A2p, = M,(A?),

ar = ai + A} — 20, M, (A) = V,(A) + [Ay — M,(A)?, k=1,...,K (9)
and

a=ay+ M(A?) = 2M(A)M,(A) = V,(A) + V(A) + [M,(A) — M(A)?. (10)

Since 11 > pgk, then0 = A; < Ax and thereforeV (A) > 0, which implies that
a > 0, namely\x > 0.

Case 1:\; > Oforeveryi =1,..., K — 1.

Conditions \; > 0Vi imply that p; = ... = px = 1/K, namely the corresponding
target is the balanced ong®. Under p?, from (9) and (10) it follows that, =
V(A) + [Ar — M(A)]? for everyk = 1,..., K anda = 2V (A). Condition\; > 0,
namelya > a1, implies that

2V(A) > M(A?) & V(A) > M(A)? & CV(A) > 1;

while conditions); > 0 for everyi = 2,..., K — 1 correspond tonc:l(d —ay) >
0, namelyia > 2221 ar. Moreover, from (9)a; > a;11 < 2M(A)[Aj11 — A;] >
A12+1 — A?, i.e., (Al + A1+1)/2 < M(A) with Al’Jrl > 0. Since(0 = Al < AQ <
... < Ak, then3li such thata; > as > ... > a; < a; 4 < ... < ag, namely the

sequencday; k= 1,..., K} is decreasing for ang < 7, while it is increasing for
everyk > 1. Therefore, ifCV (A) > 1thena > a1 > ag > ... > a; which guarantees
that\; > 0 fori = 1,...,i. Whereas, foi > i the sub-sequencg ">} _, ay;i =
i+1,...,K — 1} becomes increasing and therefore if

D WA

a> === (11)
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then \; > 0 for everyi=1i+1,..., K — 1. Condition (11) could be rewritten as
follows

o i {V(A) + (A - MA)PY

2V (A) 1
namely
K—-1
(K=DV(A) > > [Ay = M(A)? = KV(A) = [Ax — M(A)P,
k=1

which is clearly satisfied if
V(A) < [Ax — M(A)]2. 12)

Recalling thatCV (A) > 1, from Popoviciu's inequality it follows thafl/ (A)? <
V(A) < A% /4, which implies thatAx > 2M (A); therefore (12) is satisfied, since
in this caseA?. /4 < [Ax — M(A)]2.

Case2 )\ =0and)\; > 0foreveryi=2,..., K —1.
Since \; >0 for every i =2,...,K, then ps = p3=...=pg, namely the
corresponding target should assume the form

pl =1 —(K—-Dtt,....t,t) with 0<t< —. (13)

1
K
Condition\; = 0, i.e.,a = ay, implies that

Vo(A) + V(A) + [My(A) = M(A)] = My(A%) & 2M,(A)M(A) = M(A?);
(14)
however, under (13)M,(A) = Zszg Art =tKM(A) and therefore, from (14),
2Kt[M(A)]? = M(A?), namely

M (A?)

"TIRMAT

(15)
which is an admissible solution only when< K1, i.e., forCV(A) < 1. Given this
solution, we have now to check if conditiong > 0 for every: = 2,..., K — 1 hold

true. These conditions are clearly satisfied when> 2 because in this case, from
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a = ay and (9),
a1 > as & 2MP(A)A2 > Ag
2a1 > as + a3 & 2MP(A)[A2 + Ag)] > A% + A%
K—1 K—1 K—1
(K =2)ar > Y ax < 2M,(A) Y Ap > Y A7
k=2 k=2 k=2

whereM,(A) = tK M (A) = M (A?)/[2M (A)]. Therefore, these conditions could be
rewritten as follows

M(A%) Af - M(AY)  AR+AF M(AY) T, A
M(A) ~ Ay’ M(A) T Ay+ A3 M(A) KA

(16)

which are clearly satisfied provided thak A, < Ag. Whereas,

e if 1 = pso (or, morein general, in the presence of a cluster of be#atrnents),
then A; =0 and thereforea = a; = as, namely As = 0, contradicting the
assumptions;

o if g >po=...=pug, namely Ay =... = Axg =a >0, then M(A) =
a(l —1/K) and M(A?) = o*(1 — 1/K), so thatM (A?)/M(A) = o which
contradicts (16), since we should obtdif(A?) /M (A) = a > a.

Case3 )\ =...=Ag_1 =0.

Under this scenario,a =a;, so 2M,(A) = M(A?)/M(A) and a; =...=
ax—1, hamely 2M,(A)=A,=...=Akg_1. By combining the previous
conditions, Ay =...=Ag_1 =Ag=a>0, so that M(A)=a(l-1/K)

and M(A?)=a?(1-1/K) and thus 2M,(A) =231  Awpp =, ie,
2a Zszz pr = a. Therefore, py =1/2 and the ensuing optimal target is
pl =02 52(K-D]7Y. 520 —-1)]7Y).  Notice that this  scenario
represents a special case of the optimal target derived 8e Qa indeed, when
p1 > pi2 = ... = g, thenCV(A) = (K —1)~Y/2 andt = [2(K — 1)]!, which is
the minimum value for the skewing parameter, since

K

A

k=2

K
2im2 A 1

K
t= > S (K-1)) A >
SRR

: 17)
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where the RHS trivially holds from Jensen’s inequality.

Case 4 \; > 0 and at least one multipliey, =0, 2 <i < K — 1.
If \; =0with2 <i < K —1, thenia = a; + ...+ a;. From (9) and (10),

iay +i[M(A%) — 2M(A)M,(A)] = ia; + A3 + ...+ AZ = 2M,(A)(Ag + ... + A)),

namely
2N (A) = iM(A?%) — (A +...+ A (18)
P M(A) = (A + .+ A

Since \; >0, then a > a; and thereforeas +...+a; > (i — 1)a > (i — 1)a;.
However, note that

A3+ + A?

axt..tai> (= 1ar & 2M)(A) < T——— =

(19)

WhereZZ:2 Ay > 0, namely at leasf\; > 0. Thus, combining (18) and (19),

iM(A?) — (A3 +...+A2) A3+ .. +A?
iM(A) = (Ao + ...+ A) Ao+ ...+ A7

namely
K

K
Dot +A) S A < (A3 +...+A) YA,
k=2 k=2

K K
(Dot +A) D AF<(AS+... +AY) Y Ay,
k=i+1 k=i+1

which could be rewritten as follows

K
> A

k=i+1

%

S A(AL - A)

=2

<0

and it is impossible sincA, > A; > 0 foranyk > [.

Case 5 \; = 0 with at least one\; > 0 and\;; = 0for: € [2; K — 2].
Under this setting = a; andia > a; + . .. + a;, namely

2 4 2
P = i > S
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with A; > 0. However, at the same timMié+ 1)a = a; + ... + a;41, SO that

WL A2 M(A?)

B W VIOV
which implies thatA, = ... = Ax = « > 0. However, this scenario is impossible
since _
2Mp(A)=a>M:a
22:2 Ay
CaseB); =0with Ay =...=X;=0and\;, >0fori=5+1,..., K — 1.

Under this settingi = a1, ja=a1 + ... +a;and(j + 1)a > a1 + ... + aj + a1,
namelya = a1 > a;41 and therefore M,(A) > A;;, > 0. At the same timeja =
jay = Zizl ar < (j—Day = Zi:z ar, SO that:

o if Zi:z Ay > 0, namely at leasf\; > 0, then

ko AR
2M,(A) = =2=—2 > Ay,
p( ) Zi:z Ax J+1
which is clearly impossible,lsincesjﬂ > Ay for every k=2,...,7 and
therefored 7 _, A? < Aji1 Y7o Ay
oif 7 ,AL,=0then Ay =...=A; =0 and, since); >0 for i=j+

1,...,K — 1, the corresponding target has the fgogrh = (21, ...,2;,t,...,1),
with 0 <t < K~ ', 2y >...>a;>tandY_, x, = 1 — (K — j)t. There-
fore, under this settingM,(A) = 2t ZkK:jH A = 2tKM(A) and, sincer =
a1, then2M,(A) = M(A?%)/M(A), so thatt = M(A?)/(2K[M(A)]?) is an
admissible solution only when< K1, namely ifCV(A) < 1. For the same
reasons of Case 2, it can be easily shown that the conditipns0 for i =
j+1,..., K —1 are trivially satisfied.

6.4 Proof of Property P2
Clearly if CV(A) > 1, i.e. when the optimal constrained target coincides with th
balanced one, then all the partial derivatives vanish. \&d&rassuming now that
CV(A) <1, thenp, is increasing inu;; indeed,

2
Sl = )] = (K = 1) DA — )?

{ZkK:z(,ul - Nk)} ’

o

G = (K- 1)

Prepared usingagej.cls



26 Journal Title XX(X)

is non-negative, since from (17JK — 1) o, A? > {Zk QAk] . Taking into
accountp; (j =2,..., K), then
0y _ Mia (= i) = (1 = ) 5% (ot — i)
Ou: 3
& [0 G = )]

is non-negative if and only ifM(A?%) > M(A)A;, namely when V(A) >
M(A)[A; — M(A)]. Clearly, the previous condition is verified for every traant
j such thatA; < M(A), namely whenu; > f.

6.5 Proof of of Theorem 3
Adopting the balanced target, théh: (p®) = fi/u; and

(%)
Taking into accountp, if + > K—! then p = p”; whereas, whent < K~! the
efficiency measure of ethics i€g(p) =1—tK +tK(ia/pn1) and the power-

efficiency becomes
(a%))?
Va(d) (2 m))
K

Ep(p) =

(B)* (&%)

since, from (6) and (15),

M(A2)>2

Va(A) = tK {M(A®) —tK[M(A)]*} = <2M(A)

ThereforeEx(p) > Er(p?), becauses; (1 —tK) > ji(1 — tK), sincetK < 1 and
w1 > ji. Moreover,Ep(p) > Ep(p?), due to the fact that

() - (25 v

namely{V(A) + [M(A)]2}? > 4[M(A)]PV(A), since{V(A) — [M(A)]?}? > 0.
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Table 2. The case of K = 3 treatments: p” = (1/3,1/3,1/3)T, p* = (0.5,0,0.5) " and

R —(0.414,0.293,0.293) "

p' Targets Ep(p) Er(p) || Ews(p) Ep,(p)

p1 =(0.724,0.269,0.007) " || 0.860  0.302 | 0.080 0.194
= (0.547,0.306,0.147) " || 0.724  0.591| 0.849 0.815
5 = (0.468,0.266, 0.266) " 0.646  0.722 || 0.988 0.945

(6,3,1) pE 0.556  0.676 || 0.971 1
pt 0.609 0.715 1 0.979
p* 0.643 1 -0 =0

pir =(0.916,0.083,0.001) " || 0.944  0.174 | 0.005 0.029
py = (0.671,0.234,0.095)" || 0.759  0.614| 0.656 0.635
[) = (0.49, 0.255, 0.255) " 0.603  0.797 || 0.978 0.928

(9,3,1) pP 0.481 0.722| 0.971 1
pt 0.544  0.780 1 0.979

p* 0.556 1 -0 -0
=(0.99,0.01,0) " 0.993  0.026 =0 0.001
;;‘ = (0 771,0.171, 0. 058)T 0.819  0.533 || 0.454 0.454
p = (0.494,0.253, 0.253) 0.579  0.843 || 0.975 0.923

(12,3,1) pP 0.444 0757 | 0.971 1
ph 0.512 0.821 1 0.979

p* 0.542 1 -0 -0

ot =(1,0,0)" 1 -0 —0 —0
p3 = (0.818, 0.09170.091)T 0.833  0.597 | 0.478 0.429
p=1(0.5,0.25025" 0.542 1 0.971 0.919

(12,1,1) p° 0.389 0.889 || 0.971 1
pt 0.463 0.971 1 0.979

p* 0.542 1 -0 -0

p1 = (0.613,0.387,0) " 0.839  0.196 =0 =0

= (0.626, 0.354,0.019) " 0.835 0.240 0.200 0.339
p = (0.43,0.285,0.285) " 0.620 0.688 0.999 0.971

(12,7,1) pP 0.556 0.669 | 0.971 1
pf 0.609  0.688 1 0.979

p* 0.542 1 =0 -0

pir = (0.5,0.5,0)" 0.958  0.008 =0 =0
= (0.516,0.478,0.006) " || 0.955  0.028 || 0.063 0.193

(12,11,1) p=p° 0.667 0.815| 0.971 1
pt 0.707  0.773 1 0.979

p* 0.542 1 =0 -0
p1 = (0.667,0.333,0) " 0.861  0.222 =0 0.001

= (0.635,0.333,0.032)" | 0.835 0303 | 0.311 0.427
5:(0.44470.278,0.278)T 0.653  0.694 | 0.996 0.962

(12,7,2) pP 0.583 0.667 | 0.971 1
ph 0.634  0.692 1 0.979

p* 0.583 1 =0 -0
p1 = (0.798,0.202,0) " 0.916 0.252 || 0.001 0.021

(o639,0.284,0.076)T 0.83 0.492 || 0.591 0.613
5:(0.47370.263,0.263)T 0.715 0.732| 0.986 0.941

(12,7,4) pP 0.639 0.681| 0.971 1
ph 0.683  0.723 1 0.979
p* 0.667 1 =0 -0

p T =(0.908,0.083,0.009)" || 0.961 0.241| 0.092 0.135
Prepared usingagd?ésf 0619, 0229, 0.152 T 0.829 0.774 0.822 0.763
p = (0.496,0.252,0.252) " 0.769 0.854| 0.974 0.922
(12,7,6) pP 0.694 0.765| 0.971 1
pf 0.732  0.832 1 0.979
p* 0.750 1 =0 —0
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Table 3. The case of K = 5 treatments: p” = (0.2,0.2,0.2,0.2,0.2) T,

p* =(0.5,0,0,0,0.5)" and p© = (1/3,1/6,1/6,1/6,1/6) .

p' Targets Ep(p) Er(p) || Eewa(p) Ep,(p)
pit = (0.37,0.332,0.217, 0.08,0.001) " 0.928 0.147 || 0.034 0.282
p3 = (0.305,0.26,0.209, 0.157,0.07) " 0.893  0.321| 0.847 0.867
p = (0.355,0.161,0.161,0.161, 0.161) " 0.873  0.503 || 0.998 0.930
(14,13,12,11,9) pP 0.843  0.474 || 0.900 1
pE 0.869  0.502 1 0.947
p* 0.821 1 =0 -0
pit = (0.43,0.339,0.181, 0.05,0) 0.876  0.264 | 0.011 0.186
P4 = (0.364,0.246,0.192,0.14,0.058) " || 0.837  0.392 || 0.807 0.813
p = (0.452,0.137,0.137,0.137,0.137) " 0.837  0.554 || 0.947 0.840
(16,13,12,11,9) p? 0.763  0.438 || 0.900 1
pt 0.802  0.528 1 0.947
p* 0.781 1 =0 -0
pit = (0.504, 0.33,0.138, 0.028,0) " 0.851 0.367 || 0.003 0.112
P4 = (0.41,0.235,0.179, 0.126, 0.049) 0.801  0.479| 0.751 0.760
p = (0.476,0.131,0.131,0.131,0.131) " 0.803 0.618 || 0.925 0.814
(18,13,12,11,9) p? 0.700  0.446 || 0.900 1
pt 0.750 0.572 1 0.947
p* 0.750 1 =0 -0
pit = (0.595,0.297,0.094,0.014,0) 0.852 0.428 | 0.001 0.060
p3 = (0.449,0.227,0.168,0.115,0.041) " || 0.779  0.550 || 0.690 0.710
p = (0.486,0.129,0.129,0.129,0.129) " 0.775  0.669 || 0.915 0.803
(20,13,12,11,9) p? 0.650  0.463 || 0.900 1
pt 0.708  0.611 1 0.947
p* 0.725 1 =0 -0
pit = (0.315,0.304, 0.248,0.133,0) " 0.781  0.118 =0 =0
Py = (0.354,0.26,0.217,0.169,0) " 0.789  0.130| 0.014 0.253
p = (0.367,0.158,0.158, 0.158, 0.158) " 0.701  0.453 || 0.995 0.921
(18,13,12,11,2) p? 0.622  0.421 || 0.900 1
pt 0.685  0.451 1 0.947
p* 0.556 1 =0 -0
pit = (0.351,0.323, 0.23,0.096, 0) " 0.796  0.155 =0 =0
Py = (0.372,0.257,0.209,0.159,0.002) " || 0.795  0.175| 0.073 0.382
p = (0.402,0.149, 0.149, 0.149, 0.149) " 0.734  0.467 || 0.981 0.890
(18,13,12,11,4) p? 0.644  0.413| 0.900 1
pt 0.704  0.460 1 0.947
p* 0.611 1 =0 -0
pit = (0.4,0.337,0.2,0.063,0) " 0.815  0.213 =0 0.007
p3 = (0.391,0.252,0.2,0.148,0.009) " 0.800 0.252 || 0.265 0.537
p = (0.436,0.141,0.141,0.141,0.141) " 0.765  0.498 || 0.959 0.857
(18,13,12,11,6) p? 0.667  0.411| 0.900 1
pt 0.722  0.481 1 0.947
p* 0.667 1 =0 -0
p T = (0.587,0.293,0.093,0.013,0.013) " || 0.877 0.580] 0.211 0.307
p3 = (0.409,0.215,0.159,0.109,0.109) " || 0.803  0.747 || 0.919 0.847
p = (0.492,0.127,0.127,0.127,0.127) " 0.823  0.826 || 0.909 0.800
(18,13,12,11,11) p? 0.722  0.555| 0.900 1
pt 0.769  0.746 1 0.947
p* 0.806 1 =0 -0

Prepared usingagej.cls




