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Abstract

The present paper deals with the problem of designing randomized multiarm

clinical trials for treatment comparisons in order to achieve a suitable trade-off

among inferential precision and ethical concerns. Although the large majority of

the literature is focused on the estimation of the treatment effects, in particular

for the case of two treatments with binary outcomes, the present paper

takes into account the inferential goal of maximizing the power of statistical

tests to detect correct conclusions about the treatment effects for normally

response trials. After discussing the allocation optimizing the power of the

classical multivariate test of homogeneity, we suggest a multipurpose design

methodology, based on constrained optimization, which maximizes the power

of the test under a suitable ethical constraint reflecting the effectiveness of the

treatments. The ensuing optimal allocation depends in general on the unknown

model parameters but, contrary to the unconstrained optimal solution or to

some targets proposed in the literature, it is a non-degenerate continuous

function of the treatment contrasts and therefore it can be approached by

standard response-adaptive randomization procedures. The properties of this

constrained optimal allocation are described both theoretically and through

suitable examples, showing good performances both in terms of ethical gain

and statistical efficiency, taking into account estimation precision as well.
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1 Introduction

Starting from the well-known Efron’s Biased Coin Design1, several randomized

clinical trials have been designed in order to achieve balanced or nearly balanced

allocations among the treatment groups, with the aim of maximizing inferential

precision about the treatment comparisons. The main justification concerns the optimal

properties of balance, which is often regarded as desirablefrom the viewpoint of

estimation accuracy. Indeed, under the linear homoscedastic model setup, balance

is universally optimal2, i.e., the balanced design optimizes every design criterion

applied to the variance-covariance matrix of the parameter estimators. In

particular, it optimizes the usual criteria for the estimation of the treatment effects

like, e.g., the well-knownD-optimality (minimizing the volume of the confidence

ellipsoid of the parameters of interest), or thetr-optimality (i.e., trace-optimality,

also calledA-optimality, minimizing the sum of the variances of the estimators).

Although balancing the allocations is usually considered optimal for estimation

under homoscedasticity, it is also appealing even in the case of heteroscedastic

treatment groups, since it is stillD-optimal for the joint estimation of the treatment

effects and it is nearly optimal under several optimality criteria3;4.

Clearly, maximizing the power to detect a significant treatment difference is another

major issue in designing clinical trials. In the case of two treatments, balance

is optimal also from the viewpoint of testing, since it maximizes the power for

homoscedastic outcomes5 and it is asymptotically optimal for binary trials6. However,

in the case of several treatments, the inferential goals could be focused on the

treatment contrasts, in place of the main effects, and the balanced allocation may

not be efficient. Although balance is stillD-optimal for the joint estimation of the

contrasts under homoscedasticity, it is nottr-optimal (namely, balance does not

minimize the average variance of the estimators of the treatment contrasts)

and it is significantly different from the optimal design forhypothesis testing in

binary trials7. Moreover, balance could be strongly inappropriate in clinical trials in

which ethical demands play a fundamental role, likeoncological trials or clinical

experiments for rare diseases, where the demand of individual care often induces

to skew the allocations to more efficacious (or less toxic) treatments. Frequently, the
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Baldi Antognini et al. 3

conflicting goals related to the ethical concern of maximizing the subjects care and

to the statistical aim of drawing correct inferential conclusions with high precision

can be formalized into suitable combined/constrained optimization problems and

several authors derived target allocations that could be regarded as a valid trade-off

among ethics and inference7–13. Generally, these allocations depend on the unknown

parameters and, under suitable conditions, they can be targeted by using response-

adaptive (RA) randomization procedures, namely sequential rules that change at each

step the allocations probabilities of the treatments to approximate the chosen target

(e.g., the doubly-adaptive biased coin design14). For a recent review see the books15–17.

However, most of the target allocations for multiarm clinical trials proposed in the

literature are focused on estimation precision; while little attention has been devoted to

hypothesis testing, almost exclusively for binary trials.In particular, Tymofyeyev et al.7

derived the target maximizing the power of Wald test of homogeneity subject to i) an

ethical constraint about the upper bound for the total expected number of failures and ii)

a lower bound for each treatment allocation proportion. Although the subjective choice

of these thresholds induces flexibility, the ensuing targetis a discontinuous function

of the unknown model parameters, whose closed-form expression is not generally

available. Moreover, excluding binary trials, the suggested target allocations are quite

few, often of heuristic nature or characterized by complicated functional forms13;18–20.

The present paper deals with the problem of designing randomized multiarm

clinical trials for treatment comparisons for the linear homoscedastic model.

Although in the literature most attention has been focused on binary outcomes,

there are many clinical trials where, especially in the design phase, the primary

endpoint could be assumed normally distributed (like, e.g., the diastolic blood

pressure reduction21 or the duration of cold symptoms22). Furthermore, in

several circumstances the outcomes can be treated as approximately normal either

via suitable transformation of the data23 or when the primary outcomes are

individual means of repeated measurements/scores24). As a motivating example,

Dworkin et al. (2003) discussed a randomized placebo-controlled trial intended to

investigate the efficacy of pregabalin in the treatment of postherpetic neuralgia.

The efficacy measure was a 11-point numerical pain rating score and the primary

endpoint was the mean pain score derived from patients’ last7 days of diary

entries while taking the study drug. According to several authors (see e.g.9;10;15;25),

the observed mean scores in the two groups exhibit an approximate normal

distribution with different means but substantially equal standard deviations.

The first aim of the paper is to derive the allocation maximizing the power

of the classical multivariate test about the treatment contrasts. This optimal target
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is a degenerate allocation which depends on the unknown model parameters and

assigns 50% of the subjects both to the best and the worst treatment. Therefore,

we suggest a multipurpose design strategy that combines ethical demands and the

inferential goal of maximizing the power of the statisticaltest. Adopting a constrained

optimization framework, the suggested methodology is aimed at maximizing the

non-centrality parameter of the classical Wald test of homogeneity subject to an

ethical constraint on the treatment allocation proportions reflecting the efficacy of the

competing drugs. When the ethical gain tends to be small, theensuing constrained

optimal target coincides with the balanced one; whereas, asthe relative superiority

of the best treatment (wrt the other drugs) increases, it skews the assignments to

the superior treatment maintaining all the others equireplicated. This target admits

a very simple analytical form and, contrary to the unconstrained optimal solution,

it is a non-degenerate continuous function of the treatmentcontrasts, so it can be

approached by standard response-adaptive randomization procedures. The properties of

this constrained optimal allocation are described both theoretically and through suitable

examples, showing a very good behavior wrt some traditionalmethods both in terms

of ethical gain and statistical efficiency, taking into account estimation precision too.

The paper is structured as follows. In Section 2, the model and some preliminaries

are presented, while Section 3 deals with optimal target allocations for hypothesis

testing, taking into account both constrained and unconstrained optimization, as well as

their properties. Section 4 discusses the performance of the proposed targets through

numerical examples, also compared with those of other allocations suggested in the

literature,while Section 5 highlights some general conclusions. Mathematical details

are given in the Appendix.

2 Preliminaries

Let us consider a clinical experiment where patients come sequentially to the trial and

are assigned to one ofK ≥ 2 available treatments. The primary outcomeYkj of the

jth patient assigned to thekth treatment is usually assumed to be a continuous variable

with

Ykj = µk + ǫkj , k = 1, . . . ,K, j = 1, . . . , Nk, (1)

whereµk is the effect of thekth treatment,ǫkjs are independent random errors with

ǫkj ∼ N(0, σ2) andσ2 denotes the unknown common variance. LettingNk be the

number of patients assigned to treatmentk andn =
∑K

k=1 Nk the total sample size,

thenπk = Nk/n is the proportion of patients assigned to thekth treatment; so let
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Baldi Antognini et al. 5

π = (π1, . . . , πK)⊤, thenπ⊤
1K = 1 for everyn, where1K denotes theK-dim vector

of ones.

Letting µ̂kn (k = 1, . . . ,K) be the MLE ofµk aftern steps, i.e., the corresponding

sample mean, thenµ andµ̂n are theK-dim vectors collecting the treatment effects and

their estimates, respectively. As is well-known, conditional on the design the MLEs

are strongly consistent and asymptotically normal, i.e., as n → ∞, µ̂n → µ a.s. and
√
n(µ̂n − µ) →֒d N (0K ,M−1), whereM = M(π) = σ−2diag (π) is the so-called

normalized Fisher information matrix (conditional on the design) associated withµ.

Under this scenario, a natural design question is how to allocate theK treatments to

n subjects in order to optimize the inferential precision andseveral authors suggested

optimal targetsρ = (ρ1, . . . , ρK)⊤ (with ρk ≥ 0 andρ⊤
1K = 1) - as actual allocation

proportions out ofn patients or asymptotic limiting proportions for sequential trials

- in order to optimize the estimation of the treatment effects. On the basis of the

optimal design theory, these targets were derived by minimizing suitable convex

criteria measuring the loss of information; classical examples areD-optimality and

tr-optimality, intended to minimize the determinant| · | or the trace tr(·) of M−1(ρ).

By a well-known result (see, e.g., Silvey2), the balanced designρB = K−1
1K is both

D- andtr-optimal.

In many circumstances, especially in the context of multiarm clinical trials, the

inferential attention is devoted to the contrasts. So, letting A
⊤ = [1K−1 | − IK−1],

the(K − 1)-dim vector of the contrasts with respect to the first treatment (considered

as the reference) isµc = A
⊤
µ = (µ1 − µ2, . . . , µ1 − µK)⊤. The corresponding MLE

is µ̂cn = A
⊤
µ̂n, which is still strongly consistent and asymptotically normal with

√
n(µ̂cn − µc) =

√
nA

⊤(µ̂n − µ) →֒d N
(

0,A⊤
M

−1
A
)

. (2)

Within this framework, the balanced designρB is the so-calledDA-optimal

allocation, which minimizes the determinant|A⊤
M

−1
A|, while the trA-optimal

design minimizing the trace of the asymptotic variance-covariance matrix in (2) is

ρ
R = (ρR1 , . . . , ρ

R
K)⊤ given by13:

ρR1 =
1

1 +
√
K − 1

and ρRk =
1√

K − 1
(

1 +
√
K − 1

) , k = 2, . . . ,K. (3)

It is worth noticing that bothρB andρR are motivated only by estimation precision

without taking into account ethics.

On the other hand, Atkinson18 proposed a target allocation intended to skew the

assignments towards the best treatment in order to minimizethe exposure of patients

Prepared usingsagej.cls



6 Journal Title XX(X)

to inefficacious treatments. In particular, assuming that ahigher response is more

desirable for patients and lettinḡµ = K−1
∑K

k=1 µk be the overall treatments mean,

targetρA proposed by Atkinson is

ρAk = Φ

(

µk − µ̄

τ

)

/

[

K
∑

i=1

Φ

(

µi − µ̄

τ

)

]

, k = 1, . . . ,K, (4)

whereΦ(·) is the cdf of a standard normal distribution andτ > 0 is a randomization

parameter. Clearly, small values ofτ induce a strong ethical skew at the expense of

estimation precision, while asτ increasesρA tends toρB and therefore more emphasis

is given to inferential purposes.

3 Optimal target allocations for hypothesis testing

In what follows, we take into account the problem of testing hypothesis on the equality

of the treatments effects by considering the null hypothesis of homogeneityH0 : µ1 −
µ2 = . . . = µ1 − µK , i.e.,H0 : µc = 0K−1, versus the alternativeHA : µc 6= 0K−1,

where0K−1 is the(K − 1)-dim vector of zeros.In addition to its intrinsic validity

and generality, this overall homogeneity hypothesis represents the first stage of

multiple comparison techniques of a wide class of step-downprocedures applied

in practice7;26, as will be discussed in Section 5.

The classical Wald test statistic is

Wn =
n

σ̂2
n

µ̂
⊤
cn

[

A
⊤diag(π)−1

A
]−1

µ̂cn,

whereσ̂2
n is the usual consistent estimator of the common varianceσ2. Under the null

hypothesisH0, Wn tends asymptotically to a chi-squared random variable withK − 1

degrees of freedom, while under the alternative hypothesisit converges to a non-central

chi-squared r.v. withK − 1 degrees of freedom having non-centrality parameter

φ(π) =
n

σ2
µ

⊤
c

[

A
⊤diag(π)−1

A
]−1

µc.

The following Lemma provides a simple expression for the non-centrality parameter.

Prepared usingsagej.cls



Baldi Antognini et al. 7

Lemma 1. Aftern patients, the non-centrality parameterφ(π) of Wald test could be

rewritten as follows:

φ(π) =
n

σ2







K
∑

k=1

(µ1 − µk)
2πk −

[

K
∑

k=1

(µ1 − µk)πk

]2






. (5)

Proof. See Appendix 6.1.

From now on we adopt “the-larger-the-better” scenario, namely from an ethical

viewpoint we assume that a higher response is more desirable. Moreover, for

ease of notation and without loss of generality, we assume the following ordering

between the treatment effectsµ1 ≥ µ2 ≥ . . . ≥ µK (i.e., the best treatment will

be labeled as the first one, while theKth treatment as the worst, admitting also

clusters of treatments with the same efficacy). We stress that this choice is a simple

label-coding, intended to avoid more complex notation; clearly, the treatment

ranking is a-priori unknown but it can be estimated step-by-step in a sequential

fashion, as discussed in Section 3.1.

Remark 1. Letting ∆k = µ1 − µk be the kth contrast wrt the best treatment

(where, clearly,∆1 = µ1 − µ1 = 0), for a given target allocationρ the non-centrality

parameter in (5) can be written as

φ(ρ) =
n

σ2







K
∑

k=1

∆2
kρk −

[

K
∑

k=1

∆kρk

]2






=
n

σ2

∑

1≤k<i≤K

(∆k −∆i)
2ρkρi, (6)

i.e., it is proportional to the variance of a discrete and non-negative random variable,

say∆, withK (possibly different) ordered support points∆K ≥ . . . ≥ ∆2 ≥ ∆1 = 0,

evaluated with respect to the pdfρ. Notice that, from the RHS of (6), the non-centrality

parameter does not formally depend on the chosen reference treatment and it can

be re-expressed in terms of every desirable treatment, say the rth, since∆k −∆i =

µi − µk = (µr − µk)− (µr − µi).

In the following Theorem we derive the optimal target allocation for K treatments

that maximizes the power of the Wald test of homogeneity.

Theorem 1. If µ1 > µ2 ≥ . . . ≥ µK−1 > µK , then the optimal allocation max-

imizing the non-centrality parameter (6) of Wald test of homogeneity isρ∗ =

(1/2, 0, . . . , 0, 1/2)⊤, namely the target which takes into account only the best

and the worst treatments in a balanced way. Moreover, in the case of a cluster
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of several best treatmentsµ1 = µ2 = . . . = µj (j = 2, . . . ,K − 1), every allocation

ρ
∗ = (ρ∗1, . . . , ρ

∗
K)⊤ such thatρ∗K = 1/2 and

∑j
i=1 ρ

∗
i = 1/2 is optimal (i.e., any

combination of the allocations of the treatments within thecluster with global

probability 1/2 is optimal). The case of a cluster of several worst treatments can be

derived analogously.

Proof. See Appendix 6.2.

Theorem 1 shows how an unconstrained maximization of the non-centrality

parameter leads to a targetρ∗ whose characteristics are inadequate both from the

ethical and the inferential point of views. Indeed, even ifρ
∗ maximizes the power

of Wald test,ρ∗ does not allow to collect information on the efficacy of intermediate

treatments, making the variance of the estimates unreliable. At the same time, problems

also arise from the ethical viewpoint, since half of the patients are assigned to the less

effective treatment. Furthermore, notice that everyρ∗j is a discontinuous function of

the unknown treatment effects which vanishes at the intermediate treatments and this

does not allow the application of the classical asymptotic theory for response-adaptive

procedures.

Taking into account two distinct objectives related to the ethical demands of skewing

the allocations towards the superior treatment and the inferential goal of maximizing

the inferential precision, several authors suggested multipurpose methodologies

inspired by constrained/combined optimization approaches. In the context of binary

trials, Tymofyeyev et al.7 derived the allocation maximizing the power of Wald test of

homogeneity subject to the ethical constraint that the total expected number of failures

not exceed a given threshold. Since the corresponding solution involves only the best

and the worst treatments with no assignments to the intermediate drugs, the authors

superimposed an additional constraint by fixing a lower bound for each treatment

allocation proportion. Although this approach is apparently flexible, the ensuing target

is a discontinuous function of the unknown parameters, witha closed-form solution not

generally available. Moreover, the subjective choice of these two thresholds could not

be easy to interpret and could lead to formal contradictions, since they should depend

in general on the unknown parameters16. The same problems may also occur in the

combined optimization approach, where the choice of the weights assigned to ethics

and inference plays a crucial role strongly affecting the results11.

To overcome the aforementioned drawbacks, in what follows we propose a

new multi-objective design strategy based on a constrainedoptimization technique

without superimposing any subjective choices. In particular, from the assumed order

between the treatment effectsµ1 ≥ µ2 ≥ . . . ≥ µK , in the next Theorem we derive
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the constrained optimal allocatioñρ = (ρ̃1, . . . , ρ̃K)⊤ (with ρ̃k ≥ 0 for every k =

1, . . . ,K and
∑K

k=1 ρ̃k = 1) that maximizes the non-centrality parameter of the Wald

test under the ethical constraintρ̃1 ≥ ρ̃2 ≥ . . . ≥ ρ̃K .

Theorem 2. If µ1 > µ2 ≥ . . . ≥ µK , then the optimal constrained allocatioñρ =

(ρ̃1, . . . , ρ̃K)⊤ maximizing the non-centrality parameter of the multivariate Wald test

subject to the ethical constraint̃ρ1 ≥ ρ̃2 ≥ . . . ≥ ρ̃K is:

ρ̃ =







(1− t[K − 1], t, . . . , t)
⊤ if t ≤ K−1,

ρ
B if t > K−1,

where

t =

∑K
k=1(µ1 − µk)

2

2
[

∑K
k=1(µ1 − µk)

]2 . (7)

In the presence of a cluster of superior treatmentsµ1 = . . . = µj > µj+1 ≥ . . . ≥ µK

(with j = 2, . . . ,K − 1), then ρ̃ = ρ
B when t > K−1, while for t ≤ K−1 every

allocation ρ̃ = (ρ̃1, . . . , ρ̃j , t, . . . , t)
⊤ such thatρ̃1 ≥ . . . ≥ ρ̃j ≥ t and

∑j
i=1 ρ̃i =

1− (K − j)t is optimal.

Proof. See Appendix 6.3.

Remark 2. In the same setting of Remark 1, the skewing parametert in (7) could be

rewritten as follows:

t =

∑K
k=1 ∆

2
k

2
[

∑K
k=1 ∆k

]2 =
CV 2(∆) + 1

2K
,

whereCV (∆) is the coefficient of variation of the random variable∆ evaluated wrt

the uniform distribution. Thus, on the basis of the values ofthe unknown treatment

contrasts, the optimal constrained allocatioñρ coincides with the balanced target

if CV (∆) > 1; whereas, whenCV (∆) ≤ 1, then t ≤ K−1 and thereforeρ̃ skews

the assignments to the superior drug, while it maintains allthe other treatments

equireplicated.

From Theorem 2, the constrained optimal allocation has the following interesting

properties:

P1: through the skewing parameter t = t(µ), ρ̃ is a continuous and non-

degenerate function of the unknown treatments effects and therefore it can be

approached by standard response-adaptive randomization procedures;

Prepared usingsagej.cls
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P2: adopting̃ρ, the allocation proportioñρ1 to the best treatment is increasing as its

effectµ1 grows; more in general, every componentρ̃k (for k = 2, . . . ,K) is a

monotonically increasing function ofµk, provided thatµk ≥ µ̄ (see Appendix

6.4);

P3: excluding the degenerate caseµ1 = . . . = µK , from (7) it can be shown that

t ≥ [2(K − 1)]−1, where the minimum value of the skewing parametert is

attained whenµ1 > µ2 = . . . = µK (see Case 3 of Appendix 6.3); in such a case

the non-centrality parameter attains its maximum value, namelyφ(ρ̃) = φ(ρ∗);

P4: ρ̃ is invariant under label permutation of the treatments, namely it does not

change if the treatment labels are switched, provided thatµ1 is replaced by

max{µ1, . . . , µK} in (7) (clearly, the target allocation proportion corresponding

to the best treatment is1− t[K − 1], while the other drugs are still

equireplicated).

Example 1. To understand the behavior of the optimal constrained target ρ̃ defined

in Theorem 2, assume nowK = 3 treatments. From (7), it can be seen thatt ≤ 1/3 if

and only if(µ1 − µ2)(
√
3 + 1) ≥ (µ1 − µ3)(

√
3− 1), namely when

µ1 − µ2

µ1 − µ3
≥

√
3− 1√
3 + 1

≃ 0.268,

i.e., if µ1 − µ2 ≥ 0.366 · (µ2 − µ3). Thus, ρ̃ skews the assignments to the best

treatment only when its relative superiority wrt the seconddrug - compared to the

relative superiority between the other two treatments - is greater than the threshold

0.366, otherwise the allocations will be balanced. It is worth noticing that, even if

t ≤ 1/3 induces a skewed allocation to the best treatment, at the same time from

P3 the skewing parameter is always greater than[2(K − 1)]−1 = 1/4; therefore

ρ̃2 = ρ̃3 ≥ 1/4 and ρ̃1 ≤ 1/2, which allows one to obtain valid performance also in

terms of estimation precision. Table 1 summarizes the behavior of ρ̃ as the treatment

effects vary.
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µ ρ̃

µ1 µ2 µ3 ρ̃1 ρ̃2 ρ̃3 t

12 10 1 1/3 1/3 1/3 0.370

12 9 1 0.336 0.332 0.332 0.332

12 6 1 0.457 0.272 0.272 0.272

12 3 1 0.495 0.253 0.253 0.253

12 1 1 0.500 0.250 0.250 0.250

Table 1. The behaviour of the optimal constrained target ρ̃ with K = 3 treatments as
µ2 varies.

3.1 Implementing optimal target allocations via RA procedures

The above-mentioned optimal constrained target depends onthe unknown

model parameters and therefore it is itself unknown at the beginning of

the trial. So this allocation cannot be implemented directly, but it can be

approached asymptotically by using suitable RA randomization procedures,

namely sequential allocation rules that, in order to converge to the chosen target,

change at each step the probabilities of treatment assignments on the basis of

earlier responses and past allocations.

In particular, after a starting sample of n0 subjects assigned to each treatment -

usually made via restricted randomization - to obtain non-trivial estimates of the

unknown parameters, at each stepn > Kn0 the treatment effects are estimated

by µ̂n = (µ̂1n, . . . , µ̂Kn)
⊤ (where, according to our notation, the estimates are

ranked from the largest - coded as the first one - to the smallest, namely theKth

one, i.e.,µ̂1n ≥ . . . ≥ µ̂Kn). Thus, the skewing parametert in (7) is estimated by

means of

t̂n =

∑K
k=1(µ̂1n − µ̂kn)

2

2
[

∑K
k=1(µ̂1n − µ̂kn)

]2 (8)

and the the optimal constrained target is estimated accordingly by

ˆ̃ρn =







(

1− t̂n[K − 1], t̂n, . . . , t̂n
)⊤

if t̂n ≤ K−1,

ρ
B if t̂n > K−1.

Thus, the next assignment is (randomly) forced to progressively approach the

target. For instance, adopting the well-known sequential maximum likelihood

design27, the (n+ 1)th treatment is assigned with probabilities given by the

current estimate of the target. While adopting the doubly-adaptive biased coin
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design14, the treatment assignment is forced to the target increasingly as the

distance between the current allocation proportion and theestimated target

grows. As is well-known16, from P1 the treatment allocation proportion converges

almost surely to ρ̃ and the consistency of the estimators of the treatment effects

is guaranteed along with their asymptotic normality. Thus, the asymptotic chi-

squared approximation of Wald test follows directly; for a detailed discussion

about the choice ofn0 and the accuracy of the asymptotic approximation of Wald

test statistic, see Baldi Antognini et al.28.

4 Comparison among target allocations

This section is dedicated to the performance comparison of different targets. As

stressed by many authors, the interplay between different efficiency criteria (statistical

power, efficient estimation and ethical considerations) iscomplex and does not lead

to a unique best choice. To assess the performance with respect to different efficiency

measures, we take into account several criteria, both from statistical and ethical point

of views. More specifically, we consider the following design criteria:

• Ethical demand: as a measure of ethics we take into account the total expected

responses, which is clearly maximized by assigning all subjects to the best

treatment (i.e., in our setting, the first one); thus, given atargetρ we consider

the ratio between the total expected outcomes and its optimal value µ1, i.e.,

EE(ρ) =
∑K

k=1 µkρk/µ1;

• Statistical power: given the optimal targetρ∗ maximizing the non-centrality

parameter of Wald test (see Theorem 1), the measure of power-efficiency of an

allocationρ is evaluated byEP (ρ) = φ(ρ)/φ(ρ∗).

Theorem 3. The constrained optimal target dominates the balanced design in terms

of power and ethics, namelỹρ guarantees higher values ofEP and EE wrt ρ
B,

simultaneously.

Proof. See Appendix 6.5.

We compare the behavior of the constrained optimal targetρ̃ and the unconstrained

optimal oneρ∗, with three different allocations, namely theDA-optimal targetρB,

the trA-optimal allocationρR in (3) and Atkinson’sρA in (4) with τ = 1 andτ = 3

(denoted byρA
1 and ρ

A
3 , respectively). The aforementioned allocations have been

proposed in order to meet specific objectives and therefore their behavior could vary

with respect to different efficiency measures. More specifically,ρA has been suggested
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for ethical reasons,ρR andρB optimize a single design criterion for estimation goals,

ρ
∗ maximizes the power of the Wald test without ethical restrictions andρ̃ is derived

primarily for testing purposes but, at the same time, it tries to cope with the ethical

issues raised from the unconstrained maximization.

To stress the impact of a given target in terms of estimation precision, in our

comparisons we will also take into account thetrA- and theDA-efficiency, given

respectively by

EtrA(ρ) =
tr(A⊤

M
−1
(

ρ
R
)

A)

tr(A⊤M−1(ρ)A)
and EDA

(ρ) =

{

|A⊤
M

−1
(

ρ
B
)

A|
|A⊤M−1(ρ)A|

}
1

K−1

.

The following tables summarize the results forK = 3 and K = 5 treatments,

varying the values of the treatment effects. Note that bothρ
R andρB depend only on

the numberK of considered drugs and therefore they do not change asµ varies, while

ρ
∗ always assigns 50% of the allocations both to the best and theworst treatment.

It is worth noting that, although these targets do not dependon µ, the corresponding

efficiency measuresEE andEP change as the treatment effects vary.

Insert Table 2 and Table 3 here

Let us first consider the results in Table 2 withK = 3 treatments. As far as the

statistical power is concerned,̃ρ is the closest to the corresponding optimum target

ρ
∗, followed byρR. The gain in terms of power of̃ρ wrt ρR ranges from about1%

to about4%. Adopting the allocationρA, the choice of the randomization parameter

τ is crucial: for τ = 1 the ethical skew is strong, so that the assignment to the

worst treatment vanishes in almost every parameter setting; while τ = 3 gives more

emphasis to inference. In general,ρ
A shows the lowest statistical power but, at the same

time, it exhibits the highest ethical efficiency, followed by ρ̃ (except for the scenario

µ = (12, 11, 1)⊤ under whichρ̃ = ρ
B). In general, the ethical impact of̃ρ is superior

than that ofρR, with a gain up to 7%. For what concerns thetrA-efficiency and the

DA-efficiency,ρ̃ is always close to the optimum, with maximum losses lower than 3%

and8%, respectively. As stated previously,ρ
∗ andρA

1 are strongly inadequate from the

viewpoint of estimation precision.

Table 3 refers to the scenario withK = 5 treatments and the results substantially

reflect those obtained forK = 3. More specifically, in terms of power,̃ρ is still the

closest to the optimumρ∗; if compared toρR, the third best option,̃ρ induces a gain

of efficiency up to6%. As forK = 3, ρA tends to have the best performance in terms

of ethics, except for some cases whereρ̃ has substantially the same ethical efficiency
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wrt ρA
3 (notice that the choice ofτ = 1 does not always guarantee a superior ethical

efficiency wrtτ = 3). Whereas,̃ρ guarantees an ethical gain up to about 8% wrtρ
R.

Recalling that our proposal represents a valid compromise between ethics and

power, in the case ofK = 5 treatments,̃ρ becomes less efficient wrtρR in terms of

estimation precision; however, the constrained optimal target still ensures very good

performances, especially in terms oftrA-optimality with an efficiency always greater

than91%, while theDA-efficiency is always greater than 80%. Indeed, following the

results of Baldi Antognini and Giovagnoli11, it is easy to show that̃ρ isDA-admissible,

namely it does not exist another target which is superior wrtboth ethics andDA-

optimality, simultaneously. Once again,ρ∗ andρ
A
1 exhibit values oftrA-efficiency

andDA-efficiency close to zero.

In order to explore the behavior of the considered targets also from a graphical point

of view, Figure 1 shows their performance in the case ofK = 5 treatments withµ⊤ =

(µ1, 13, 12, 11, 9) asµ1 varies between14 and35. Essentially, this Figure confirms the

above-mentioned results, also showing an anomalous behavior of Atkinson’s target,

which exhibits a non-monotone efficiency in terms of both statistical power and ethical

demands as the effect of the best treatment grows. Indeed, asµ1 increases,ρA
1 tends to

assign all subjects to the best treatment; contrary to the other targets under which the

allocation proportion to the worst drug does not vanish. This explains why the power

of ρA
1 tends to vanish, while its ethical efficiency tends to one. For what concerns the

remaining targets, they have a decreasing ethical efficiency due to the denominatorµ1

of the considered ethical measure. In general,ρ̃ has better performance wrt all of them.

Also in this setting, adoptingρ∗ andρA
1 the estimation precision vanishes.
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Figure 1. Efficiency measures for ρA

1
, ρ̃, ρB, ρR and ρ

∗ with µ
⊤ = (µ1, 13, 12, 11, 9)

as µ1 varies between 14 and 35.

Finally, note thatρR assigns more subjects to the reference treatment of the

contrasts, which in our assumptions also coincides with thesuperior treatment;

thus, the ethical efficiency ofρR is emphasized under the previous scenarios.

Whereas, ifµ⊤ = (1, 3, 6) (i.e., the best treatment is the third one), thenρ
R =

(0.414, 0.293, 0.293)⊤ with EE(ρ
R) = 0.508, while ρ̃ = (0.266, 0.266, 0.468)⊤ has

ethical efficiencyEE(ρ̃) = 0.646.

As stressed by Sverdlov and Rosenberger13, a target showing high efficiency under

one criterion may have low efficiency under other criteria, since statistical and ethical

purposes can directly compete with one another, resulting in a complex pattern.

However, the optimal constrained targetρ̃ shows good performance both from statical

and ethical point of views, since the efficiency gains obtained in statistical power are

not achieved at the expense of poor ethical demands, guaranteing at the same time valid

performance in terms of estimation precision.
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5 Discussion

The present paper deals with the problem of finding suitable target allocations for

multiarm clinical trials with normally responses. To achieve an appropriate trade-

off among inferential precision and ethical concerns, we take into account the

inferential goal of maximizing the power of the test of homogeneity between the

treatment effects, under a suitable ethical constraint reflecting the effectiveness

of the treatments. The ensuing optimal constrained target,which guarantees very

good performances in terms of both ethical gain and statistical efficiency, is a non-

degenerate continuous function of the unknown contrasts that can be approached

by standard RA randomization procedures.

Besides its generality, the considered overall null hypothesis of homogeneity

represents a cornerstone in the statistical literature andconstitutes the first

stage of multiple comparison methodologies for several stepwise procedures. For

instance, Fisher’s least significant difference method is atwo-step test for pairwise

comparisons which is considered one of the most powerful methodologies for

comparing several treatments. In the first step, the overallnull hypothesis of

homogeneity is tested and, in the case of rejection, the second step is performed

in order to test the pairwise comparisons at the same level ofsignificance29.

Since in some practical applications not all the comparisons may be of primary

interest and the inferential goal consists in testing the superiority of a set of new

drugs with respect to the placebo (i.e., by considering a right-tailed alternative

hypothesis), Zhu and Wong30 derived the optimal compound target for normal

homoscedastic outcomes by combining into a single design criterion the variances

of the usual t-tests for pairwise comparisons with different weights reflecting the

relative importance of each of them. Clearly, this approachdoes not take into

account ethical concerns and, in the case of equal weights (namely when all the

K − 1 comparisons have the same importance), this compound optimal target

coincides withρR in (3).

From a design perspective, the normal linear model is a standard framework by

which approximating new phenomena. Such a model tends to be appropriate also

for real non-normal data by applying suitable transformations to the responses

(e.g., by the well-known power transformation23). However, in order to extend

the applicability of the suggested methodology, one of the future directions of

our work is to relax the assumption of homoscedasticity, taking also into account

covariates/prognostic factors that potentially affect the outcomes. In such cases,
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the level of complexity of the problem will increase significantly and we hope to

find out a tractable solution in the future.
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6 Appendix

Given a discrete r.v.∆ with values∆1, . . . ,∆K , from now on we setMρ(∆
s) =

∑K
k=1 ∆

s
kρk for s = 1, 2, so thatMρ(∆) =

∑K
k=1 ∆kρk and Vρ(∆) = Mρ(∆

2)−
[Mρ(∆)]2 are the expectation and the variance of∆ evaluated wrt the pdfρ. To avoid

a cumbersome notation, the same quantities evaluated wrtρ
B will be denoted byM(·)

andV (·).

6.1 Proof of Lemma 1

Note that

A
⊤diag(π)−1

A = diag
(

π−1
k

)

k=2,...,K
+ π−1

1 1K−11
⊤
K−1 = T+ uv

⊤,

whereT = diag
(

π−1
k

)

k=2,...,K
, u = 1K−1 andv = π−1

1 1K−1. Moreover,T+ uv
⊤

is invertible since1 + v
⊤
T

−1
u = 1 + π−1

1 1
⊤
K−1T

−1
1K−1 = π−1

1 6= 0; therefore, by

applying the Sherman-Morrison formula,

(T + uv
⊤)−1 = T

−1 − T
−1

uv
⊤
T

−1

1 + v⊤T−1u
.

Moreover,µ⊤
c T

−1
µc =

∑K
k=2 ∆

2
kπk, µ

⊤
c T

−1
u =

∑K
k=2 ∆kπk and v

⊤
T

−1
µc =

π−1
1

∑K
k=2 ∆kπk; thus,

µ
⊤
c

[

T
−1

uv
⊤
T

−1

1 + v⊤T−1u

]

µc =

(

K
∑

k=2

∆kπk

)2

and therefore the non-centrality parameter in (5) follows via simple algebra.

6.2 Proof of Theorem 1

As shown in Remark 1, the non-centrality parameter of Wald test of homogeneity

could be rewritten asφ(ρ) = nσ−2Vρ(∆), where∆ is a non-negative discrete r.v.
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with K (possibly different) ordered support points0 = ∆1 ≤ ∆2 ≤ . . . ≤ ∆K . By

a well-known result, for a given support the variance is maximized by the pdf that

assigns half mass of probability at the two extremes; moreover, this maximum is

global and is unique. Sinceµ1 > µ2 andµK−1 > µK , then∆K > ∆K−1 ≥ . . . ≥
∆2 > ∆1 = 0 and therefore the non-centrality parameterφ is maximized byρ∗ =

(1/2, 0, . . . , 0, 1/2)⊤. If there exists a cluster of treatments such thatµ1 = µ2 = . . . =

µj (with j < K), then the firstj support points collapse into a single value since

0 = ∆1 = . . . = ∆j and therefore every combination(ρ∗1, . . . , ρ
∗
j ) with ρ∗k ≥ 0 and

∑j
k=1 ρ

∗
k = 1/2 is optimal; clearly, the same reasoning still holds for morethan one

worst treatments.

6.3 Proof of Theorem 2

We now want to derive the target allocatioñρ = (ρ̃1, . . . , ρ̃K)⊤ maximizing the

non-centrality parameter of Wald test of homogeneity underthe ethical constraints

ρ̃1 ≥ ρ̃2 ≥ . . . ≥ ρ̃K . As shown in Remark 1,φ(ρ) = nσ−2Vρ(∆) and, sincenσ−2 is

a constant, the problem is finding the constrained targetρ̃ that maximizesVρ(∆) =

Mρ(∆
2)− [Mρ(∆)]2 =

∑

1≤k<i≤K(∆k −∆i)
2ρkρi. The corresponding Lagrange

function is

L(ρ, λ1, . . . , λK) =
∑

1≤k<i≤K

(∆k −∆i)
2ρkρi −

K−1
∑

j=1

λj(ρj+1 − ρj)− λK





K
∑

j=1

ρj − 1



 .

If we let now ai =
∑K

k=1(∆k −∆i)
2ρk for i = 1, . . . ,K, by putting the partial

derivatives of the Lagrangian equal to zero, we obtain the following system of

equations:


































a1 + λ1 = λK

a2 + λ2 − λ1 = λK

...

aK−1 + λK−1 − λK−2 = λK

aK − λK−1 = λK .

By summing up all the equations,(a1 + λ1) + (a2 + λ2 − λ1) + . . .+ (aK−1 +

λK−1 − λK−2) + (aK − λK−1) = KλK , which givesλK = K−1
∑K

k=1 ak = ā >

Prepared usingsagej.cls



Baldi Antognini et al. 21

0, so that the previous system could be rewritten as follows



































λ1 = ā− a1

λ2 = λ1 + λK − a2 = (ā− a1) + (ā− a2)
...

λK−1 =
∑K−1

i=1 (ā− ai)

λK = ā,

wherea1 =
∑K

k=1 ∆
2
kρk = Mρ(∆

2),

ak = a1 +∆2
k − 2∆kMρ(∆) = Vρ(∆) + [∆k −Mρ(∆)]2, k = 1, . . . ,K (9)

and

ā = a1 +M(∆2)− 2M(∆)Mρ(∆) = Vρ(∆) + V (∆) + [Mρ(∆)−M(∆)]2. (10)

Sinceµ1 > µK , then 0 = ∆1 < ∆K and thereforeV (∆) > 0, which implies that

ā > 0, namelyλK > 0.

Case 1:λi > 0 for everyi = 1, . . . ,K − 1.

Conditionsλi > 0 ∀i imply that ρ1 = . . . = ρK = 1/K, namely the corresponding

target is the balanced oneρB. UnderρB, from (9) and (10) it follows thatak =

V (∆) + [∆k −M(∆)]2 for everyk = 1, . . . ,K and ā = 2V (∆). Conditionλ1 > 0,

namelyā > a1, implies that

2V (∆) > M(∆2) ⇔ V (∆) > M(∆)2 ⇔ CV (∆) > 1;

while conditionsλi > 0 for everyi = 2, . . . ,K − 1 correspond to
∑i

k=1(ā− ak) >

0, namelyiā >
∑i

k=1 ak. Moreover, from (9),ai ≥ ai+1 ⇔ 2M(∆)[∆i+1 −∆i] ≥
∆2

i+1 −∆2
i , i.e., (∆i +∆i+1)/2 ≤ M(∆) with ∆i+1 > 0. Since0 = ∆1 ≤ ∆2 ≤

. . . ≤ ∆K , then ∃!̃i such thata1 ≥ a2 ≥ . . . ≥ aĩ ≤ aĩ+1 ≤ . . . ≤ aK , namely the

sequence{ak; k = 1, . . . ,K} is decreasing for anyk ≤ ĩ, while it is increasing for

everyk > ĩ. Therefore, ifCV (∆) > 1 thenā > a1 ≥ a2 ≥ . . . ≥ aĩ which guarantees

thatλi > 0 for i = 1, . . . , ĩ. Whereas, fori > ĩ the sub-sequence{i−1
∑i

k=1 ak; i =

ĩ+ 1, . . . ,K − 1} becomes increasing and therefore if

ā >

∑K−1
k=1 ak
K − 1

(11)
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then λi > 0 for every i = ĩ+ 1, . . . ,K − 1. Condition (11) could be rewritten as

follows

2V (∆) >

∑K−1
k=1 {V (∆) + [∆k −M(∆)]2}

K − 1

namely

(K − 1)V (∆) >
K−1
∑

k=1

[∆k −M(∆)]2 = KV (∆)− [∆K −M(∆)]2,

which is clearly satisfied if

V (∆) < [∆K −M(∆)]2. (12)

Recalling thatCV (∆) > 1, from Popoviciu’s inequality it follows thatM(∆)2 <

V (∆) ≤ ∆2
K/4, which implies that∆K > 2M(∆); therefore (12) is satisfied, since

in this case∆2
K/4 < [∆K −M(∆)]2.

Case 2: λ1 = 0 andλi > 0 for everyi = 2, . . . ,K − 1.

Since λi > 0 for every i = 2, . . . ,K, then ρ2 = ρ3 = . . . = ρK , namely the

corresponding target should assume the form

ρ
⊤ = (1− (K − 1)t, t, . . . , t, t) with 0 ≤ t ≤ 1

K
. (13)

Conditionλ1 = 0, i.e.,ā = a1, implies that

Vρ(∆) + V (∆) + [Mρ(∆)−M(∆)]2 = Mρ(∆
2) ⇔ 2Mρ(∆)M(∆) = M(∆2);

(14)

however, under (13),Mρ(∆) =
∑K

k=2 ∆k t = tKM(∆) and therefore, from (14),

2Kt[M(∆)]2 = M(∆2), namely

t =
M(∆2)

2K[M(∆)]2
, (15)

which is an admissible solution only whent ≤ K−1, i.e., forCV (∆) ≤ 1. Given this

solution, we have now to check if conditionsλi > 0 for everyi = 2, . . . ,K − 1 hold

true. These conditions are clearly satisfied whenµ1 > µ2 because in this case, from
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ā = a1 and (9),

a1 > a2 ⇔ 2Mρ(∆)∆2 > ∆2
2

2a1 > a2 + a3 ⇔ 2Mρ(∆)[∆2 +∆3)] > ∆2
2 +∆2

3

...

(K − 2)a1 >
K−1
∑

k=2

ak ⇔ 2Mρ(∆)
K−1
∑

k=2

∆k >
K−1
∑

k=2

∆2
k,

whereMρ(∆) = tKM(∆) = M(∆2)/[2M(∆)]. Therefore, these conditions could be

rewritten as follows

M(∆2)

M(∆)
>

∆2
2

∆2
,

M(∆2)

M(∆)
>

∆2
2 +∆2

3

∆2 +∆3
, . . . ,

M(∆2)

M(∆)
>

∑K−1
k=2 ∆2

k
∑K−1

k=2 ∆k

, (16)

which are clearly satisfied provided that0 < ∆2 < ∆K . Whereas,

• if µ1 = µ2 (or, more in general, in the presence of a cluster of better treatments),

then ∆2 = 0 and thereforēa = a1 = a2, namely λ2 = 0, contradicting the

assumptions;

• if µ1 > µ2 = . . . = µK , namely ∆2 = . . . = ∆K = α > 0, then M(∆) =

α(1 − 1/K) andM(∆2) = α2(1− 1/K), so thatM(∆2)/M(∆) = α which

contradicts (16), since we should obtainM(∆2)/M(∆) = α > α.

Case 3: λ1 = . . . = λK−1 = 0.

Under this scenario,ā = a1, so 2Mρ(∆) = M(∆2)/M(∆) and a1 = . . . =

aK−1, namely 2Mρ(∆) = ∆2 = . . . = ∆K−1. By combining the previous

conditions, ∆2 = . . . = ∆K−1 = ∆K = α > 0, so that M(∆) = α(1− 1/K)

and M(∆2) = α2(1 − 1/K) and thus 2Mρ(∆) = 2
∑K

k=1 ∆kρk = α, i.e.,

2α
∑K

k=2 ρk = α. Therefore, ρ1 = 1/2 and the ensuing optimal target is

ρ
⊤ =

(

2−1; [2(K − 1)]−1; . . . ; [2(K − 1)]−1
)

. Notice that this scenario

represents a special case of the optimal target derived in Case 2; indeed, when

µ1 > µ2 = . . . = µK , thenCV (∆) = (K − 1)−1/2 andt = [2(K − 1)]−1, which is

the minimum value for the skewing parameter, since

t =

∑K
k=2 ∆

2
k

2
[

∑K
k=2 ∆k

]2 ≥ 1

2(K − 1)
⇔ (K − 1)

K
∑

k=2

∆2
k ≥

[

K
∑

k=2

∆k

]2

, (17)
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where the RHS trivially holds from Jensen’s inequality.

Case 4: λ1 > 0 and at least one multiplierλi = 0, 2 ≤ i ≤ K − 1.

If λi = 0 with 2 ≤ i ≤ K − 1, theniā = a1 + . . .+ ai. From (9) and (10),

ia1 + i[M(∆2)− 2M(∆)Mρ(∆)] = ia1 +∆2
2 + . . .+∆2

i − 2Mρ(∆)(∆2 + . . .+∆i),

namely

2Mρ(∆) =
iM(∆2)− (∆2

2 + . . .+∆2
i )

iM(∆)− (∆2 + . . .+∆i)
. (18)

Since λ1 > 0, then ā > a1 and thereforea2 + . . .+ ai > (i − 1)ā > (i− 1)a1.

However, note that

a2 + . . .+ ai > (i − 1)a1 ⇔ 2Mρ(∆) <
∆2

2 + . . .+∆2
i

∆2 + . . .+∆i
(19)

where
∑i

k=2 ∆k > 0, namely at least∆i > 0. Thus, combining (18) and (19),

iM(∆2)− (∆2
2 + . . .+∆2

i )

iM(∆)− (∆2 + . . .+∆i)
<

∆2
2 + . . .+∆2

i

∆2 + . . .+∆i
,

namely

(∆2 + . . .+∆i)
K
∑

k=2

∆2
k < (∆2

2 + . . .+∆2
i )

K
∑

k=2

∆k,

i.e.

(∆2 + . . .+∆i)

K
∑

k=i+1

∆2
k < (∆2

2 + . . .+∆2
i )

K
∑

k=i+1

∆k,

which could be rewritten as follows

K
∑

k=i+1

∆k

[

i
∑

l=2

∆l(∆k −∆l)

]

< 0

and it is impossible since∆k ≥ ∆l ≥ 0 for anyk > l.

Case 5: λ1 = 0 with at least oneλi > 0 andλi+1 = 0 for i ∈ [2;K − 2].

Under this settinḡa = a1 andiā > a1 + . . .+ ai, namely

2Mρ(∆) =
M(∆2)

M(∆)
>

∑i
k=2 ∆

2
k

∑i
k=2 ∆k

,
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with ∆i > 0. However, at the same time(i + 1)ā = a1 + . . .+ ai+1, so that

2Mρ(∆) =

∑i+1
k=2 ∆

2
k

∑i+1
k=2 ∆k

=
M(∆2)

M(∆)
,

which implies that∆2 = . . . = ∆K = α > 0. However, this scenario is impossible

since

2Mρ(∆) = α >

∑i
k=2 ∆

2
k

∑i
k=2 ∆k

= α.

Case 6: λ1 = 0 with λ2 = . . . = λj = 0 andλi > 0 for i = j + 1, . . . ,K − 1.

Under this settinḡa = a1, jā = a1 + . . .+ aj and(j + 1)ā > a1 + . . .+ aj + aj+1,

namelyā = a1 > aj+1 and therefore2Mρ(∆) > ∆j+1 > 0. At the same time,jā =

ja1 =
∑j

k=1 ak ⇔ (j − 1)a1 =
∑j

k=2 ak, so that:

• if
∑j

k=2 ∆k > 0, namely at least∆j > 0, then

2Mρ(∆) =

∑j
k=2 ∆

2
k

∑j
k=2 ∆k

> ∆j+1,

which is clearly impossible, since∆j+1 ≥ ∆k for every k = 2, . . . , j and

therefore
∑j

k=2 ∆
2
k < ∆j+1

∑j
k=2 ∆k.

• if
∑j

k=2 ∆k = 0 then ∆2 = . . . = ∆j = 0 and, sinceλi > 0 for i = j +

1, . . . ,K − 1, the corresponding target has the formρ⊤ = (x1, . . . , xj , t, . . . , t),

with 0 ≤ t ≤ K−1, x1 ≥ . . . ≥ xj ≥ t and
∑j

k=1 xk = 1− (K − j)t. There-

fore, under this setting2Mρ(∆) = 2t
∑K

k=j+1 ∆k = 2tKM(∆) and, sincēa =

a1, then2Mρ(∆) = M(∆2)/M(∆), so thatt = M(∆2)/(2K[M(∆)]2) is an

admissible solution only whent ≤ K−1, namely ifCV (∆) ≤ 1. For the same

reasons of Case 2, it can be easily shown that the conditionsλi > 0 for i =

j + 1, . . . ,K − 1 are trivially satisfied.

6.4 Proof of Property P2

Clearly if CV (∆) > 1, i.e. when the optimal constrained target coincides with the

balanced one, then all the partial derivatives vanish. Whereas, assuming now that

CV (∆) ≤ 1, thenρ̃1 is increasing inµ1; indeed,

∂ρ̃1
∂µ1

= −(K − 1)







[

∑K
k=2(µ1 − µk)

]2

− (K − 1)
∑K

k=2(µ1 − µk)
2

[

∑K
k=2(µ1 − µk)

]3






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is non-negative, since from (17),(K − 1)
∑K

k=2 ∆
2
k ≥

[

∑K
k=2 ∆k

]2

. Taking into

account̃ρj (j = 2, . . . ,K), then

∂ρ̃j
∂µj

=

∑K
i=1(µ1 − µi)

2 − (µ1 − µj)
∑K

i=1(µ1 − µi)
[

∑K
i=1(µ1 − µi)

]3

is non-negative if and only ifM(∆2) ≥ M(∆)∆j , namely when V (∆) ≥
M(∆)[∆j −M(∆)]. Clearly, the previous condition is verified for every treatment

j such that∆j ≤ M(∆), namely whenµj ≥ µ̄.

6.5 Proof of of Theorem 3

Adopting the balanced target, thenEE(ρ
B) = µ̄/µ1 and

EP (ρ
B) =

V (∆)
(

∆K

2

)2 .

Taking into accountρ̃, if t > K−1 then ρ̃ = ρ
B; whereas, whent ≤ K−1 the

efficiency measure of ethics isEE(ρ̃) = 1− tK + tK(µ̄/µ1) and the power-

efficiency becomes

EP (ρ̃) =
Vρ̃(∆)
(

∆K

2

)2 =

(

M(∆2)
2M(∆)

)2

(

∆K

2

)2 ,

since, from (6) and (15),

Vρ̃(∆) = tK
{

M(∆2)− tK[M(∆)]2
}

=

(

M(∆2)

2M(∆)

)2

.

ThereforeEE(ρ̃) ≥ EE(ρ
B), becauseµ1(1 − tK) ≥ µ̄(1− tK), sincetK ≤ 1 and

µ1 ≥ µ̄. Moreover,EP (ρ̃) ≥ EP (ρ
B), due to the fact that

(

M(∆2)

2M(∆)

)2

=

{

V (∆) + [M(∆)]2

2M(∆)

}2

≥ V (∆),

namely{V (∆) + [M(∆)]2}2 ≥ 4[M(∆)]2V (∆), since{V (∆)− [M(∆)]2}2 ≥ 0.
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Table 2. The case of K = 3 treatments: ρB = (1/3, 1/3, 1/3)⊤, ρ∗ = (0.5, 0, 0.5)⊤ and
ρ
R = (0.414, 0.293, 0.293)⊤.

µ
⊤ Targets EE(ρ) EP (ρ) EtrA

(ρ) EDA
(ρ)

ρ
A

1
= (0.724, 0.269, 0.007)⊤ 0.860 0.302 0.080 0.194

ρ
A

3
= (0.547, 0.306, 0.147)⊤ 0.724 0.591 0.849 0.815

ρ̃ = (0.468, 0.266, 0.266)⊤ 0.646 0.722 0.988 0.945
(6, 3, 1) ρ

B 0.556 0.676 0.971 1
ρ
R 0.609 0.715 1 0.979

ρ
∗ 0.643 1 → 0 → 0

ρ
A

1
= (0.916, 0.083, 0.001)⊤ 0.944 0.174 0.005 0.029

ρ
A

3
= (0.671, 0.234, 0.095)⊤ 0.759 0.614 0.656 0.635

ρ̃ = (0.49, 0.255, 0.255)⊤ 0.603 0.797 0.978 0.928
(9, 3, 1) ρ

B 0.481 0.722 0.971 1
ρ
R 0.544 0.780 1 0.979

ρ
∗ 0.556 1 → 0 → 0

ρ
A

1
= (0.99, 0.01, 0)⊤ 0.993 0.026 → 0 0.001

ρ
A

3
= (0.771, 0.171, 0.058)⊤ 0.819 0.533 0.454 0.454

ρ̃ = (0.494, 0.253, 0.253)⊤ 0.579 0.843 0.975 0.923
(12, 3, 1) ρ

B 0.444 0.757 0.971 1
ρ
R 0.512 0.821 1 0.979

ρ
∗ 0.542 1 → 0 → 0

ρ
A

1
= (1, 0, 0)⊤ 1 → 0 → 0 → 0

ρ
A

3
= (0.818, 0.091, 0.091)⊤ 0.833 0.597 0.478 0.429
ρ̃ = (0.5, 0.25, 0.25)⊤ 0.542 1 0.971 0.919

(12, 1, 1) ρ
B 0.389 0.889 0.971 1

ρ
R 0.463 0.971 1 0.979

ρ
∗ 0.542 1 → 0 → 0

ρ
A

1
= (0.613, 0.387, 0)⊤ 0.839 0.196 → 0 → 0

ρ
A

3
= (0.626, 0.354, 0.019)⊤ 0.835 0.240 0.200 0.339

ρ̃ = (0.43, 0.285, 0.285)⊤ 0.620 0.688 0.999 0.971
(12, 7, 1) ρ

B 0.556 0.669 0.971 1
ρ
R 0.609 0.688 1 0.979

ρ
∗ 0.542 1 → 0 → 0

ρ
A

1
= (0.5, 0.5, 0)⊤ 0.958 0.008 → 0 → 0

ρ
A

3
= (0.516, 0.478, 0.006)⊤ 0.955 0.028 0.063 0.193

(12, 11, 1) ρ̃ = ρ
B 0.667 0.815 0.971 1

ρ
R 0.707 0.773 1 0.979

ρ
∗ 0.542 1 → 0 → 0

ρ
A

1
= (0.667, 0.333, 0)⊤ 0.861 0.222 → 0 0.001

ρ
A

3
= (0.635, 0.333, 0.032)⊤ 0.835 0.303 0.311 0.427

ρ̃ = (0.444, 0.278, 0.278)⊤ 0.653 0.694 0.996 0.962
(12,7,2) ρ

B 0.583 0.667 0.971 1
ρ
R 0.634 0.692 1 0.979

ρ
∗ 0.583 1 → 0 → 0

ρ
A

1
= (0.798, 0.202, 0)⊤ 0.916 0.252 0.001 0.021

ρ
A

3
= (0.639, 0.284, 0.076)⊤ 0.83 0.492 0.591 0.613

ρ̃ = (0.473, 0.263, 0.263)⊤ 0.715 0.732 0.986 0.941
(12,7,4) ρ

B 0.639 0.681 0.971 1
ρ
R 0.683 0.723 1 0.979

ρ
∗ 0.667 1 → 0 → 0

ρ
A

1
= (0.908, 0.083, 0.009)⊤ 0.961 0.241 0.092 0.135

ρ
A

3
= (0.619, 0.229, 0.152)⊤ 0.829 0.774 0.822 0.763

ρ̃ = (0.496, 0.252, 0.252)⊤ 0.769 0.854 0.974 0.922
(12,7,6) ρ

B 0.694 0.765 0.971 1
ρ
R 0.732 0.832 1 0.979

ρ
∗ 0.750 1 → 0 → 0
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Table 3. The case of K = 5 treatments: ρB = (0.2, 0.2, 0.2, 0.2, 0.2)⊤,
ρ
∗ = (0.5, 0, 0, 0, 0.5)⊤ and ρ

R = (1/3, 1/6, 1/6, 1/6, 1/6)⊤.

µ
⊤ Targets EE(ρ) EP (ρ) EtrA

(ρ) EDA
(ρ)

ρ
A

1
= (0.37, 0.332, 0.217, 0.08, 0.001)⊤ 0.928 0.147 0.034 0.282

ρ
A

3
= (0.305, 0.26, 0.209, 0.157, 0.07)⊤ 0.893 0.321 0.847 0.867

ρ̃ = (0.355, 0.161, 0.161, 0.161, 0.161)⊤ 0.873 0.503 0.998 0.930
(14,13,12,11,9) ρ

B 0.843 0.474 0.900 1
ρ
R 0.869 0.502 1 0.947

ρ
∗ 0.821 1 → 0 → 0

ρ
A

1
= (0.43, 0.339, 0.181, 0.05, 0)⊤ 0.876 0.264 0.011 0.186

ρ
A

3
= (0.364, 0.246, 0.192, 0.14, 0.058)⊤ 0.837 0.392 0.807 0.813

ρ̃ = (0.452, 0.137, 0.137, 0.137, 0.137)⊤ 0.837 0.554 0.947 0.840
(16,13,12,11,9) ρ

B 0.763 0.438 0.900 1
ρ
R 0.802 0.528 1 0.947

ρ
∗ 0.781 1 → 0 → 0

ρ
A

1
= (0.504, 0.33, 0.138, 0.028, 0)⊤ 0.851 0.367 0.003 0.112

ρ
A

3
= (0.41, 0.235, 0.179, 0.126, 0.049)⊤ 0.801 0.479 0.751 0.760

ρ̃ = (0.476, 0.131, 0.131, 0.131, 0.131)⊤ 0.803 0.618 0.925 0.814
(18,13,12,11,9) ρ

B 0.700 0.446 0.900 1
ρ
R 0.750 0.572 1 0.947

ρ
∗ 0.750 1 → 0 → 0

ρ
A

1
= (0.595, 0.297, 0.094, 0.014, 0)⊤ 0.852 0.428 0.001 0.060

ρ
A

3
= (0.449, 0.227, 0.168, 0.115, 0.041)⊤ 0.779 0.550 0.690 0.710

ρ̃ = (0.486, 0.129, 0.129, 0.129, 0.129)⊤ 0.775 0.669 0.915 0.803
(20,13,12,11,9) ρ

B 0.650 0.463 0.900 1
ρ
R 0.708 0.611 1 0.947

ρ
∗ 0.725 1 → 0 → 0

ρ
A

1
= (0.315, 0.304, 0.248, 0.133, 0)⊤ 0.781 0.118 → 0 → 0

ρ
A

3
= (0.354, 0.26, 0.217, 0.169, 0)⊤ 0.789 0.130 0.014 0.253

ρ̃ = (0.367, 0.158, 0.158, 0.158, 0.158)⊤ 0.701 0.453 0.995 0.921
(18,13,12,11,2) ρ

B 0.622 0.421 0.900 1
ρ
R 0.685 0.451 1 0.947

ρ
∗ 0.556 1 → 0 → 0

ρ
A

1
= (0.351, 0.323, 0.23, 0.096, 0)⊤ 0.796 0.155 → 0 → 0

ρ
A

3
= (0.372, 0.257, 0.209, 0.159, 0.002)⊤ 0.795 0.175 0.073 0.382

ρ̃ = (0.402, 0.149, 0.149, 0.149, 0.149)⊤ 0.734 0.467 0.981 0.890
(18,13,12,11,4) ρ

B 0.644 0.413 0.900 1
ρ
R 0.704 0.460 1 0.947

ρ
∗ 0.611 1 → 0 → 0

ρ
A

1
= (0.4, 0.337, 0.2, 0.063, 0)⊤ 0.815 0.213 → 0 0.007

ρ
A

3
= (0.391, 0.252, 0.2, 0.148, 0.009)⊤ 0.800 0.252 0.265 0.537

ρ̃ = (0.436, 0.141, 0.141, 0.141, 0.141)⊤ 0.765 0.498 0.959 0.857
(18,13,12,11,6) ρ

B 0.667 0.411 0.900 1
ρ
R 0.722 0.481 1 0.947

ρ
∗ 0.667 1 → 0 → 0

ρ
A

1
= (0.587, 0.293, 0.093, 0.013, 0.013)⊤ 0.877 0.580 0.211 0.307

ρ
A

3
= (0.409, 0.215, 0.159, 0.109, 0.109)⊤ 0.803 0.747 0.919 0.847

ρ̃ = (0.492, 0.127, 0.127, 0.127, 0.127)⊤ 0.823 0.826 0.909 0.800
(18,13,12,11,11) ρ

B 0.722 0.555 0.900 1
ρ
R 0.769 0.746 1 0.947

ρ
∗ 0.806 1 → 0 → 0
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