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Abstract

The accuracy of rotational parameters obtained from high-level quantum-chemical

calculations is discussed for molecules containing second-row atoms. The main focus

is on computed rotational constants for which two statistical analyses have been

carried out. A first benchmark study concerns sulfur-bearing species and involves 15

molecules (for a total of 74 isotopologues). By comparing 15 different computational

approaches, all of them based on the coupled-cluster singles and doubles approach

(CCSD) augmented by a perturbative treatment of triple excitations, CCSD(T), we

have analysed the effects on computed rotational constants due to: (i) extrapolation to

complete basis-set limit, (ii) correlation of core electrons, and (iii) vibrational corrections

to rotational constants. To extend the analysis to other molecules containing second-

row elements, as well as to understand the effect of higher excitations, a second

benchmark study involving 11 molecules (for a total of 54 isotopologues) has been

performed. Finally, the rotational parameters of seven sulfur-containing molecules of

astrochemical interest (CCS, C3S, C4S, C5S, HCCS+, HC4S+ and HOCS+/HSCO+) have

been computed and compared to experimental data, when available, also addressing

the direct comparison of simulated and experimental rotational spectra.
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1 Introduction

Rotational spectroscopy plays a crucial role in astrochemical and astrophysical studies

because molecular species in the interstellar medium (ISM) are in most cases detected

via their rotational signatures.1,2 Indeed, the observation of spectroscopic signatures pro-

vides the unequivocal proof of the presence of the chemical species of interest,3 which in

turn is the starting point for the development of astrochemical models. To this end, the

rotational spectra of molecules of astrophysical and -chemical interest are investigated in

laboratory studies: rotational transitions are recorded in extended frequency regions and

then analysed and assigned. The derived spectroscopic parameters are used to predict

rotational transitions that have not been directly measured; therefore, the accuracy and

reliability of these constants are of great importance. In fact, the detection of a molecular

species in space by rotational spectroscopy critically depends on the availability of accurate

predictions of rotational transitions and in turn of the corresponding spectroscopic param-

eters. Among them the rotational constants are the most important ones.4 Nowadays, the

availability of large instantaneous bandwidth receivers, which are also characterized by

high spectral resolution, allows for large spectral surveys with uniform sensitivity. These

surveys are clearly the ideal means to obtain a complete census of the species that emit in

the recorded spectral survey. However, the simultaneous presence of the spectroscopic

features of several molecules requires the rotational transition frequencies to be known

with an accuracy of a few hundreds of kHz or even better.

To guide the first steps of the spectral assignment procedure in laboratory, as well as to

verify the reliability of rotational spectroscopic parameters determined from experiments,

quantum-chemical calculations are increasingly employed (see, for example, refs. 5–7). To

support the experimental investigation computational predictions of rotational spectra

should be accurate, thus implying that high-level quantum-chemical calculations are

to be used. These predictions involve two tasks, namely (a) the determination of the

required spectroscopic parameters, and (b) the simulation of the spectra based on the given
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set of spectroscopic parameters. The latter typically involves the diagonalization of an

appropriate Hamiltonian, while the accurate determination of the spectroscopic parameters

requires a quantum-chemical treatment of the molecular system under consideration. In

the last decade, numerous theoretical studies reporting computed rotational constants have

been published (see, for example, refs. 5,6,8 and 9). However, a systematic investigation

of the accuracy achievable in quantum-chemical computations of these parameters has

been carried out for most parts only for molecular species containing first-row elements.8

There is a great astrophysical interest in S-containing molecules because, despite the

fact that simple diatomic species up to astronomical complex molecules such as ethyl

mercaptan (CH3CH2SH) have been detected in interstellar gas clouds and circumstellar

outflows (see, for example, refs. 10,11), the details on the sulfur chemistry that takes

place in space are mostly unknown. Indeed, while sulfur compounds in the gas phase

have been observed in the diffuse ISM with almost no depletion with respect to its solar

abundance,12 the sulfur abundances detected in the cold and dense ISM are much lower.13

This is known as the “sulfur exhaustion problem”14 with the chemical form of the missing

sulfur not yet being identified. For this reason, there is a great interest in the spectroscopic

characterization of neutral as well as ionic sulfur-containing species.

The quantum-chemical approaches employed throughout our calculations are based

on coupled-cluster techniques.15 To investigate their accuracy two systematic benchmark

studies have been carried out. The first one focuses on the rotational constants of S-

bearing species (with 15 different molecules and 74 isotopologues being considered).

Starting from the coupled-cluster singles and doubles approach (CCSD) augmented by a

perturbative treatment of triple excitations, CCSD(T),16 in conjunction with a polarized

triple-zeta quality basis set, computational approaches which differ in the treatment of

core-correlation and in the extrapolation to the basis-set limit have been considered. To

extend our analysis as well as to understand the effect of higher-order excitations, a second

benchmark investigation involving molecules containing different second-row elements,
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namely S, P, S and Cl (with 11 molecules and 54 isotopologues being considered), has also

been performed.

The present investigation is intended to provide a statistical analysis for rotational

constants of molecules containing second-row elements, with a particular focus on sulfur-

bearing species. The computational methodologies employed in the benchmark studies

have also been applied to sulfur-containing molecules of strong astrochemical interest,

thus providing an accurate spectroscopic characterization of the thiocumulenes family CnS,

with n=2, 3, 4 and 5, and of the protonated species HCCS+, HC4S+, and HSCO+/HOCS+.

While for the neutral molecules some experimental data are available, these are completely

lacking for the cations, thus preventing so far the possibility of their detection in space.

Therefore, for the CnS family the main aim is to complement the experiment, while for

the cationic species the present work provides the first accurate computational spectro-

scopic characterization. The paper is organized as follows. In the succeeding section

computational details are described with particular emphasis on the calculations of the

spectroscopic parameters of interest and the benchmark studies. In the subsequent section,

the results of the two benchmark studies are reported and discussed. Finally, the accuracy

obtained for two different categories of species, small- and medium-sized molecules, of

astrochemical interest are presented and discussed.
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2 Computational details

In the present study, quantum-chemical calculations are based on the coupled-cluster

(CC) theory15 for the treatment of the electron correlation and have been performed

using the hierarchic series of correlation consistent basis sets developed by Dunning and

collaborators.17–19 For open-shell species, the unrestricted-HF reference wavefunction has

been employed. The quantum-chemical package CFOUR 20 has been used throughout,with

the only exception of the CC singles, doubles and triples, CCSDT,21,22 and CC with singles,

doubles, triples, quadruples, CCSDTQ,23 calculations which have been carried out using

the general CC program MRCC by Kállay 24 interfaced to the CFOUR package.

2.1 Spectroscopic parameters

The theoretical background of the spectroscopic parameters needed for the accurate simula-

tion of the rotational spectrum are briefly reviewed in the following subsections. The focus

is mainly on the computational tasks these parameters require for their determination.

Rotational constants

Rotational constants are the main parameters that determine the rotational spectrum.

Molecules can have up to three different rotational constants (A � B � C) corresponding to

the three inertial axis (a, b, and c). In our case, those of interest are the rotational constants

for the vibrational ground-state, generally denoted as Bi
0, with i indicating an inertial axis.

The vibrational ground state rotational constants can be decomposed as:

Bi
0 = Bi

e + DBi
0 , (1)

where Bi
e is the equilibrium rotational constant, i.e., the one that corresponds to the mini-

mum of the Born-Oppenheimer (BO) potential energy surface (PES), while DBi
0 represents

its vibrational correction.
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The equilibrium contribution depends only on the isotopic composition of the molecule

and on its equilibrium structure re. Consequently, Bi
e is obtained in a straightforward

manner from a geometry optimization. By means of second-order vibrational perturbation

theory (VPT2),25 the vibrational correction can be expressed as:

DBi
0 = �Â

r
ai

r

✓
vr +

1
2

◆
, (2)

where the sum runs over all normal coordinates (r) with vr as the corresponding vibrational

quantum number. The ai
r in eq. (2) are the vibration-rotation interaction constants.5 To

evaluate the DBi
0 term, an anharmonic force field has to be computed. The reader is

referred to refs. 26–29 for a detailed description on how this task can be accomplished.

Since Bi
e provides by far the largest contribution to Bi

0, high accuracy is required for its

determination. This can be achieved by means of composite approaches, with the latter

permitting to evaluate various contributions separately, each at the highest possible level of

theory, and to combine them together using the additivity scheme.8,30,31 The contributions

that are combined are obtained in the following manner:

1. Extrapolation to the complete basis-set (CBS) limit of the Hartree-Fock energy using

the exponential three-point formula by Feller 32 in conjunction with either the cc-

pVQZ, cc-pV5Z, and cc-pV6Z basis sets (option 1) or the cc-pVTZ, cc-pVQZ, and

cc-pV5Z basis sets (option 2).

2. Extrapolation to the CBS limit of the CCSD(T) correlation energy, evaluated within

the frozen-core (fc-) approximation using the two-point equation reported in refs.

33,34. The basis sets used in combination with ‘option 1’ denoted above are either

cc-pVQZ and cc-pV5Z or cc-pV5Z and cc-pV6Z, while for ‘option 2’, cc-pVTZ and

cc-pVQZ have been used.

This contribution, together with the previous one, is referred to as: fc-CCSD(T)/

CBS(Q,5) for ‘option 1a’, fc-CCSD(T)/CBS(5,6) for ‘option 1b’, and fc-CCSD(T)/CBS(T,Q)
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for ‘option 2’.

3. The core-correlation contribution: This term is obtained as the difference between

all-electron and fc-CCSD(T) calculations using the same basis set, either cc-pCVQZ

or cc-pCVTZ.35,36

The contribution is referred to as core/cc-pCVQZ or core/cc-pCVTZ, respectively..

4. Full treatment of triple excitations beyond CCSD(T). This correction is obtained as

the energy difference between the CCSDT and CCSD(T) levels of theory using the

cc-pVTZ basis set.

The contribution is referred to as DT.

5. Full treatment of the quadruple excitations, which is obtained as the energy difference

between CCSDTQ and CCSDT. Due to its high computational cost, this contribution

is computed using a small basis set, cc-pVDZ.

This contribution is referred to as DQ.

By combining all of these contributions, different composite schemes can be defined, with

the fc-CCSD(T)/CBS(5,6) + core/cc-pCVQZ + DT + DQ one being the theoretically most

complete and thus the best one. It is noted that the extrapolation schemes above were

originally developed for energies; however, their use for forces (gradients)8,30,31 can be

justified because the corrisponding geometry optimization provides the minima on the

extrapolated potential-energy surface.

The Bi
0’s have then been obtained by adding vibrational corrections to the equilibrium

rotational constants, as indicated in equation (1). These corrections have been obtained

from a cubic force field computed at either the CCSD(T)/cc-pCVQZ or fc-CCSD(T)/cc-

pVTZ level of theory. According to the detailed analysis of errors carried out in ref. 37,

the two levels of theory considered should provide accurate estimates for vibrational

corrections.

8



Centrifugal-Distortion Constants

When aiming at high accuracy in the prediction of spectra, additional rotational parameters

need to be considered. In particular, the quartic and sextic centrifugal-distortion constants

have a non negligible effect on the actual frequencies of rotational transitions. The quartic

centrifugal-distortion constants (D, d) require the evaluation of a harmonic force field,

while the sextic constants (H, h) necessitate the computation of a cubic force field. The

levels of theory considered in the present work for these constants are fc-CCSD(T)/cc-

pVTZ, fc-CCSD(T)/cc-pVQZ, and CCSD(T)/cc-pCVQZ.

Electron Spin-Rotation Constant

In the case of open-shell molecules, a coupling between the magnetic moment associated

to the spin of the unpaired electrons and the magnetic field generated by the rotation

motion occurs. This interaction is described by the electron spin-rotation coupling constant,

denoted as g. The latter is calculated in a perturbative manner as second derivative of

the energy with respect to the electron spin and the rotational angular momentum as

perturbations, as described in Ref. 38. For the calculations presented in the following, the

CCSD method has been used in conjunction either with the aug-cc-pCVQZ basis set19,39

or, within the frozen-core approximation together with the aug-cc-pVTZ set.

2.2 Benchmark study

Based on the fact that theoretical predictions are based on approximate quantum-chemical

schemes, a proper estimate of the corresponding uncertainty is needed. Numerous studies

on the accuracy of computed molecular properties and energies,40–42 geometrical parame-

ters,30,31,43–45 and spectroscopic quantities5,8 have been reported in the literature. However,

a lack of reliable statistics for systems containing second-row atoms is noted in the case of

rotational constants. To fill this gap, the results of two benchmark studies are reported in
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the following.

To analyze the rotational parameters obtained from the different schemes, statistical

measures are used. This means that for each computational approach we report the mean

error (D̄), the mean absolute error (D̄abs), the maximum error (Dmax), and the standard devi-

ation (Dstd). By denoting as Dk the deviation of the computed value from its corresponding

experimental counterpart, these statistical measures are defined as:

D̄ =
1
n

n

Â
k=1

Dk , (3)

D̄abs =
1
n

n

Â
k=1

|Dk| , (4)

Dmax = max
k

|Dk| , (5)

Dstd =

s
1

n� 1

n

Â
k=1

(Dk � D̄)2 , (6)

with the sums running over the n available values. All experimental rotational constants

are considered with the same statistical weight in the analysis. This means that for linear

molecules the weight of the unique rotational constant is 3, while for the asymmetric tops

the weight of each rotational constant is 1.

Assuming that the errors follow a normal distribution, a pictorial representation of our

results for each computational approach is obtained via:

r(D) =
1p

2pDstd
exp

"
�1

2

✓
D� D̄
Dstd

◆2
#

, (7)

where 1p
2pDstd

is a normalization constant.

Benchmark I

The first benchmark focuses on the rotational constants of S-bearing species and the results

for 15 different computational approaches have been compared.
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We start with the following levels of theory:

1. fc-CCSD(T)/cc-pVTZ

2. fc-CCSD(T)/cc-pVQZ

3. fc-CCSD(T)/cc-pV5Z

To evaluate the effect of core correlation we continue with the following schemes:

4. CCSD(T)/cc-pCVQZ

5. fc-CCSD(T)/cc-pV5Z + core/cc-pCVTZ

where the former stands for all-electron calculations at the CCSD(T) level using cc-pCVQZ.

The second approach instead use an additivity scheme and considers the core-correlation

contribution obtained at the CCSD(T)/cc-pCVTZ level on top a fc-CCSD(T)/cc-pV5Z

calculation.

To estimate the CBS limit, the extrapolation formula previously mentioned have been used.

We consider here:

6. fc-CCSD(T)/CBS(T,Q)

7. fc-CCSD(T)/CBS(Q,5)

i.e., two schemes that have been already introduced in section 2.1.

Using the additivity schemes, core correlation can also be considered for the last two

approaches. Both the cc-pCVTZ and cc-pCVQZ basis sets have been employed, thus

yielding to four different composite schemes:

8. fc-CCSD(T)/CBS(T,Q) + core/cc-pCVTZ

9. fc-CCSD(T)/CBS(T,Q) + core/cc-pCVQZ

10. fc-CCSD(T)/CBS(Q,5) + core/cc-pCVTZ
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11. fc-CCSD(T)/CBS(Q,5) + core/cc-pCVQZ

The equilibrium rotational constants obtained within the last four approaches have then

been corrected for vibrational corrections, DBi
0, to obtain the Bi

0 constants. These corrections

have been obtained at the fc-CCSD(T)/cc-pVTZ level. This leads to the following four

schemes:

12. fc-CCSD(T)/CBS(T,Q) + core/cc-pCVTZ + DBi
0/cc-pVTZ

13. fc-CCSD(T)/CBS(T,Q) + core/cc-pCVQZ + DBi
0/cc-pVTZ

14. fc-CCSD(T)/CBS(Q,5) + core/cc-pCVTZ + DBi
0/cc-pVTZ

15. fc-CCSD(T)/CBS(Q,5) + core/cc-pCVQZ + DBi
0/cc-pVTZ

All computational approaches have been applied to 9 closed- and 6 open-shell molecules,

and in this way a total of 74 isotopologues were considered in our first benchmark (see

Table I).

Benchmark II

To extend the analysis to other molecules containing second-row elements as well as to

investigate the effect of higher excitations, a second benchmark investigation has been

carried out using a set of 11 small molecules (and a total of 54 isotopologues) containing

other second-row elements: HCl, SiS, PN, CS, OCS, H2S, HBS, FBS, HCP, FCP, and ClCP.

The complete list of isotopologues considered in this benchmark is given in Table II.

For this study, seven levels of theory have been considered:

1. fc-CCSD(T)/CBS(5,6)

2. fc-CCSD(T)/CBS(5,6) + core/cc-pCVQZ

3. fc-CCSD(T)/CBS(5,6) + core/cc-pCVQZ + DT
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Table I: List of molecules and isotopic species employed in the "benchmark I" study.

Molecule Isotopologues
CS 12C32S, 12C34S, 12C33S, 12C36S

13C32S, 13C33S, 13C34S
CS+ 12C32S+

CCS 12C12C32S, 12C12C34S
C3S 12C12C12C32S, 12C12C12C34S, 13C12C12C32S

12C13C12C32S, 12C12C13C32S, 13C12C12C34S
12C13C12C34S, 12C12C13C34S, 13C12C13C32S
12C13C13C32S

C3O 12C12C12C16O, 12C12C12C18O, 13C12C12C16O
12C13C12C16O, 12C12C13C16O

HCS D12C32S
HSC H32S12C, D32S12C
HCS+ H12C32S+, D12C32S+, H13C32S+, H12C34S+

SO 32S16O, 34S16O, 32S17O, 32S18O
SO2

32S16O16O, 33S16O16O, 34S16O16O, 32S17O16O
32S18O16O

HSO H32S16O, D32S16O
OCS 16O12C32S, 16O13C32S, 17O12C32S, 16O12C34S

16O12C36S, 18O12C32S, 16O13C34S, 18O12C34S
18O13C32S, 16O13C36S, 18O12C36S, 18O13C34S

H2CS H12
2 C32S, HD12C32S, D12

2 C32S, H13
2 C32S

H12
2 C34S, H12

2 C33S
H2S H32

2 S, H36
2 S, H34

2 S, H33
2 S, DH32S, D32

2 S
HCO+ H12C16O+, D12C16O+, H13C16O+, D13C16O+

H12C18O+, D12C18O+, H12C17O+
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4. fc-CCSD(T)/CBS(5,6) + core/cc-pCVQZ + DT + DQ

5. fc-CCSD(T)/CBS(5,6) + core/cc-pCV5Z

6. fc-CCSD(T)/CBS(5,6) + core/cc-pCV5Z + DT

7. fc-CCSD(T)/CBS(5,6) + core/cc-pCV5Z + DT + DQ

These have been used to compute the equilibrium rotational constants, which have been

compared to the semi-experimental equilibrium constants derived from the experimental

B0’s by subtracting the vibrational contributions obtained at the CCSD(T)/cc-pCVQZ

level.

Table II: List of molecules and isotopic species employed in the "benchmark II" study.

Molecule Isotopologues
CS 12C32S, 12C34S, 12C33S, 12C36S

13C32S, 13C33S, 13C34S
OCS 16O12C32S, 16O13C32S, 17O12C32S, 16O12C34S

16O12C36S, 18O12C32S, 16O13C34S, 18O12C34S
18O13C32S, 16O13C36S, 18O12C36S, 18O13C34S

H2S H32
2 S, H36

2 S, H34
2 S, H33

2 S, DH32S, D32
2 S

HCl H35Cl, H37Cl, D35Cl, D37Cl
HBS H11B32S, D11B32S, H10B32S, D10B32S
FBS 19F11B32S, 19F11B33S, 19F11B34S

19F10B32S, 19F10B33S, 19F10B34S
HCP H12C31P, D12C31P, H13C31P, D13C31P
FCP 19F12C31P, 19F13C31P
ClCP 35Cl12C31P, 37Cl12C31P, 35Cl13C31P
SiS 28Si32S, 29Si32S, 30Si32S, 28Si34S
PN 31P14N, 31P15N

2.3 Rotational constants of sulfur containing molecules of astrochemi-

cal interest

Based the previous statistical analyses, the rotational constants for some member of the

thiocumulenes family CnS, with n=2, 3, 4 and 5 have been determined. Thiocumulenes
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are linear molecules with a typical cumulene bond distance, their electronic ground state

depending on the number n of carbon atoms present.46,47 Indeed, if n is odd the molecule

is a closed-shell species, while, if n is even, the molecule is an open-shell system in a X3S�

electronic ground state. Since H+ is abundant in the ISM, the protonated species HCCS+,

HC4S+, and HSCO+/HOCS+ have also been investigated.

Due to the different computational cost required by quantum-chemical calculations,

the systems under investigation have been classified in two categories:

1. "Small molecules" (CCS, HCCS+, HSCO+, and HOCS+) with a maximum of three

non-hydrogen atoms;

2. "Medium-sized molecules" (C3S, C4S, HC4S+ and C5S) with more than three non-

hydrogen atoms;

For the "small molecules" set, the best theoretical approach considered is the fc-

CCSD(T)/ CBS(5,6) + core/cc-pCVQZ + DT + DQ one. For the second set consisting

of the larger systems the best composite scheme to be employed is fc-CCSD(T)/CBS(T,Q) +

core/cc-pCVTZ. Vibrational contributions have been considered in all cases, for the small

molecules we use corrections obtained from CCSD(T)/cc-pCVQZ computations, while for

the larger systems we restrict ourselves here to the fc-CCSD(T)/cc-pVTZ level of theory.

In summary, the best rotational constants are obtained from the fc-CCSD(T)/CBS(5,6)

+ core/cc-pCVQZ + DT + DQ + DBi
0(cc-pCVQZ) scheme in the case of small molecules,

and with the fc-CCSD(T)/CBS(T,Q) + core/cc-pCVTZ + DBi
0(cc-pVTZ) scheme for the

medium-sized molecules.

Furthermore, for small systems both quartic and sextic centrifugal-distorsion constants

have been determined at the CCSD(T)/cc-pCVQZ level while the electron spin-rotation

constant for CCS and HCCS+ are determined at the CCSD/aug-cc-pCVQZ level. The same

quantities have also been computed for the "medium-sized molecules". In this case the

quartic centrifugal-distortion constants have been determined at the fc-CCSD(T)/cc-pVQZ
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level, while the sextic constants have been obtained at the fc-CCSD(T)/cc-pVTZ. The

electron spin-rotation constants have been computed at the CCSD/aug-cc-pVTZ level for

C4S and HC4S+.
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3 Results

3.1 Benchmark I

The rotational constants considered in the statistical analysis range from 2.7 to 310 GHz,

therefore only a discussion in terms of relative errors is meaningful.8 A summary of the

experimental constants considered48–80 is found in the Supporting Information (SI).

To analyze our results, different comparisons have been performed. First of all, a com-

parison between the computed Bi
e’s and the equilibrium rotational constants obtained from

the experimental Bi
0’s by subtracting the computed vibrational corrections has been carried

out. Then, to emphasize the importance of vibrational corrections a second comparison

involving computed and experimental Bi
0’s has been made. However, the reliability of both

comparisons somewhat depend on the accuracy of vibrational corrections. For this reason,

an internal theoretical comparison has also been carried out. This comparison involves the

fc-CCSD(T)/CBS(Q,5) + core/cc-pCVQZ + DBi
0(cc-pVTZ) results as reference. Indeed, the

results obtained at the the fc-CCSD(T)/CBS(Q,5) + core/cc-pCVQZ level are close to the

basis-set limit and electron-correlation effects beyond CCSD(T) can be considered small

and for our purposes negligible.

Computed vs. Semi-experimental Equilibrium Rotational Constants

The results of the first comparison, i.e. those involving the semi-experimental Bi
e as

reference, are reported in table III, thus showing the statistical measures for the various

levels of theory considered.

Extrapolation to the CBS limit. The first contribution addressed is the convergence

to the CBS limit, for which a graphical representation is provided in figure 1. It is noted

that, as the basis set enlarges from cc-pVTZ to cc-pV5Z, both the mean and standard errors

lower. This trend is graphically represented by tighter normal distribution functions, which

are centred closer to the y-axis. However, while extrapolation to the CBS limit improves
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Table III: Statistical analysis of the relative errors (in %) in the computed rotational con-
stants with respect to Bi

e values derived from experimental Bi
0 values corrected for com-

puted vibrational contributions at the fc-CCSD(T)/cc-pVTZ level.

Computational approach D̄ D̄abs Dstd Dmax

fc-CCSD(T)/cc-pVTZ -1.538 1.543 0.765 4.819
fc-CCSD(T)/cc-pVQZ -0.806 0.812 0.423 2.701
fc-CCSD(T)/cc-pV5Z -0.444 0.466 0.208 1.583
fc-CCSD(T)/CBS(T,Q) -0.094 0.345 0.501 2.684
fc-CCSD(T)/CBS(Q,5) -0.276 0.312 0.308 0.643
fc-CCSD(T)/cc-pV5Z+core/cc-pCVTZ -0.118 0.183 0.192 0.787
fc-CCSD(T)/CBS(T,Q)+core/cc-pCVTZ 0.234 0.244 0.485 2.947
fc-CCSD(T)/CBS(T,Q)+core/cc-pCVQZ 0.335 0.335 0.500 3.134
fc-CCSD(T)/CBS(Q,5)+core/cc-pCVTZ 0.051 0.107 0.191 1.049
fc-CCSD(T)/CBS(Q,5)+core/cc-pCVQZ 0.151 0.160 0.188 1.199
CCSD(T)/cc-pCVQZ -0.037 0.164 0.206 0.874

the mean error, the standard error increases with respect to the fc-CCSD(T)/cc-pV5Z level,

thus resulting in broader Gaussian distributions.

Core correlation corrections. The second contribution that needs to be addressed

is the effect of core correlation, with the pictorial representation given in figure 2. To

understand the importance of this term, the comparison between the fc-CCSD(T)/cc-pVQZ

and CCSD(T)/cc-pCVQZ levels of theory is first of all discussed. Going from the former to

the latter, the standard deviation halves and the mean error decreases from -0.81% to -0.04%.

Focusing the attention on additive schemes, the performance of the two core-valence basis

sets used in the treatment of core correlation, namely cc-pCVTZ and cc-pCVQZ, can be

analyzed. According to our statistics, when the core-correlation contribution is considered

in conjunction with the extrapolation scheme, the cc-pCVTZ basis set interestingly provides

slightly better mean errors, which is somewhat unexpected. However, in line with what

is expected, Gaussian distributions for the fc-CCSD(T)/CBS(Q,5)+core(cc-pCVTZ) and

fc-CCSD(T)/CBS(Q,5)+core(cc-pCVQZ) additive schemes appear sharper and closer to

the origin with respect to the corresponding ones based on the fc-CCSD(T)/CBS(T,Q)

extrapolation. This tends to suggest limitations in the extrapolation scheme using the
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Figure 1: Comparison with semi-experimental Bi
e values: Convergence to the complete

basis set limit.

Figure 2: Comparison with experimental Bi
e values: Contribution of core correlation.
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cc-pVTZ and cc-pVQZ basis sets.

Computed vs. Experimental Ground-state Rotational Constants

The previous conclusions are also confirmed by the second comparison carried out for

which the statistical measures are reported in table IV (with the corresponding statistical

representation given in the SI). As shown in figure 3, the fc-CCSD(T)/CBS(T,Q)-based

approaches have definitely lower accuracy with respect to those based on the larger basis

sets and even when vibrational corrections are added, the Dstd still remains around 0.5%.

Vibrational Corrections. An important contribution to be discussed within the sec-

ond comparison is the effect of vibrational corrections. Table IV points out that, even

though the DBi
0 term accounts for a small fraction of the total Bi

0 value, its inclusion is

important for high accuracy. This is demonstrated by the Gaussian distributions of the

fc-CCSD(T)/CBS(Q,5) + core/cc-pCVTZ + DBi
0/cc-pVTZ and fc-CCSD(T)/CBS(Q,5) +

core/cc-pCVQZ + DBi
0/cc-pVTZ levels that are sharper than all the others, with remaining

mean errors very close to zero. The former approach gives our best computed rotational

constants, with a mean error of 0.06%, a standard deviation of 0.21%, and a maximum

error around 1%. For the fc-CCSD(T)/CBS(T,Q) + core/cc-pCVTZ + DBi
0/cc-pVTZ level,

which is the theoretical approach employed for the medium-sized molecules, the standard

and mean errors are 0.48% and 0.27%, respectively. In terms of absolute accuracy, to give

an example, for the C4S molecule, the computed rotational constant obtained is 1521.59

MHz and the corresponding error is expected to be 7.30 MHz.

From table IV it is noted that the fc-CCSD(T)/CBS(Q,5) + core/cc-pCVTZ + DBi
0/cc-

pVTZ level shows that smallest mean error, while for the standard deviation this scheme

and the analogous one with core at the CCSD(T)/cc-pCVQZ level provide very simi-

lar results. The fact that the best rotational constants are not unequivocally obtained

with the best theoretical approach could be due to 1) an underestimation of the vibra-

tional corrections. 2) remaining basis-set errors in the core-correlation treatment, or 3)
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missing contributions due to higher excitations in the CC treatment. To investigate the

first issue, we carried out a comparison of the rotational constants obtained from the

fc-CCSD(T)/CBS(T,Q) + core/cc-pCVTZ, fc-CCSD(T)/CBS(T,Q) + core/cc-pCVQZ, fc-

CCSD(T)/CBS(Q,5) + core/cc-pCVTZ, and fc-CCSD(T)/CBS(Q,5) + core/cc-pCVQZ com-

putational approaches corrected for the DBi
0 calculated at the fc-CCSD(T)/cc-pVTZ level

and at the CCSD(T)/cc-pCVQZ. The species involved in this comparison are: SO, HCS+,

HCO+, OCS, H2S, CS+, CS, and HSO, together with their corresponding isotopologues

reported in table I. As shown by the results collected in table V, improved vibrational cor-

rections do not necessarily lead to more accurate rotational constants. Indeed, only a small

improvement is seen in the mean error, which is however counterpoised a slight worsening

of the standard deviation. Indeed, the different performance of the fc-CCSD(T)/CBS(Q,5)

+ core/cc-pCVTZ + DBi
0/cc-pVTZ and fc-CCSD(T)/CBS(Q,5) + core/cc-pCVQZ + DBi

0/cc-

pVTZ composite schemes seems to be related to the core-valence correlation treatment,

with the rotational constants appearing to be slightly more overestimated when using

the core-valence correlation contribution calculated with the cc-pCVQZ basis set instead

of that cc-pCVTZ. However, the better performance of the CCSD(T)/cc-pCVTZ level is

most likely due to error compensations between the extrapolation to the CBS limit and the

core-valence contribution and/or missing DT and DQ terms.

Internal Theoretical Comparison

Moving to the third, internal comparison, we note that the fc-CCSD(T)/CBS(Q,5) + core/cc-

pCVTZ level shows very similar error statistics compared to the best theoretical approach

(see table VI and the corresponding graphical representation in the SI). Indeed, the standard

deviation of this scheme is only 0.04% and the mean error is -0.1%. The composite scheme

used for the characterization of the medium-sized molecule shows a standard deviation of

0.5% with respect to the best theoretical approach and a mean error quite small, this being

0.08%. As expected, all frozen-core results are very far from the best theoretical values and
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Table IV: Statistical analysis of the relative errors (in %) in the computed rotational con-
stants with respect to experimentally determined Bi

0 values. Vibrational corrections (DBi
0)

computed at the fc-CCSD(T)/cc-pVTZ level.

Computational approach D̄ D̄abs Dstd Dmax

fc-CCSD(T)/cc-pVTZ -1.252 1.349 0.913 5.184
fc-CCSD(T)/cc-pVQZ -0.518 0.651 0.622 3.074
fc-CCSD(T)/cc-pV5Z -0.155 0.370 0.478 2.434
fc-CCSD(T)/CBS(T,Q) 0.195 0.414 0.594 2.299
fc-CCSD(T)/CBS(Q,5) 0.013 0.339 0.575 1.705
fc-CCSD(T)/cc-pV5Z+core/cc-pCVTZ 0.172 0.346 0.459 1.941
fc-CCSD(T)/CBS(T,Q)+core/cc-pCVTZ 0.525 0.574 0.571 2.560
fc-CCSD(T)/CBS(T,Q)+core/cc-pCVQZ 0.626 0.660 0.581 2.747
fc-CCSD(T)/CBS(Q,5)+core/cc-pCVTZ 0.341 0.448 0.450 2.048
fc-CCSD(T)/CBS(Q,5)+core/cc-pCVQZ 0.442 0.502 0.449 2.040
CCSD(T)/cc-pCVQZ 0.249 0.340 0.446 2.079
fc-CCSD(T)/CBS(T,Q)+core/cc-pCVTZ + DBi

0 0.261 0.244 0.485 2.936
fc-CCSD(T)/CBS(T,Q)+core/cc-pCVQZ + DBi

0 0.336 0.333 0.499 3.122
fc-CCSD(T)/CBS(Q,5)+core/cc-pCVTZ + DBi

0 0.055 0.113 0.194 1.053
fc-CCSD(T)/CBS(Q,5)+core/cc-pCVQZ + DBi

0 0.152 0.161 0.189 1.203

Figure 3: Comparison with experimental Bi
0 values: Effect of vibrational corrections.
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Table V: Comparison between the computed Bi
0 values obtained using vibrational correc-

tions at the fc-CCSD(T)/cc-pVTZ and CCSD(T)/cc-pCVQZ levels.

Computational approach D̄ D̄abs Dstd Dmax

fc-CCSD(T)/CBS(T,Q)+core/cc-pCVTZ + DBi
0(cc-pVTZ) 0.190 0.192 0.287 1.173

fc-CCSD(T)/CBS(T,Q)+core/cc-pCVTZ + DBi
0(cc-pCVQZ) 0.189 0.194 0.288 1.173

fc-CCSD(T)/CBS(T,Q)+core/cc-pCVQZ + DBi
0(cc-pVTZ) 0.291 0.285 0.297 1.325

fc-CCSD(T)/CBS(T,Q)+core/cc-pCVQZ + DBi
0(cc-pCVQZ) 0.290 0.284 0.298 1.324

fc-CCSD(T)/CBS(Q,5)+core/cc-pCVTZ + DBi
0(cc-pVTZ) 0.061 0.107 0.199 1.053

fc-CCSD(T)/CBS(Q,5)+core/cc-pCVTZ + DBi
0(cc-pCVQZ) 0.060 0.103 0.197 1.053

fc-CCSD(T)/CBS(Q,5)+core/cc-pCVQZ + DBi
0(cc-pVTZ) 0.161 0.172 0.204 1.203

fc-CCSD(T)/CBS(Q,5)+core/cc-pCVQZ + DBi
0(cc-pCVQZ) 0.160 0.173 0.207 1.203

sizeable improvements are observed only when core-correlation is considered.

Table VI: Statistical analysis of the relative errors (in %) in the computed rotational con-
stants with respect to Bi

e values at the CCSD(T)/CBS(Q,5)+core/cc-pCVQZ level.

Computational approach D̄ D̄abs Dstd Dmax

fc-CCSD(T)/cc-pVTZ -1.686 1.686 0.789 4.781
fc-CCSD(T)/cc-pVQZ -0.956 0.964 0.428 2.662
fc-CCSD(T)/cc-pV5Z -0.595 0.595 0.149 1.570
fc-CCSD(T)/CBS(T,Q) -0.245 0.382 0.474 2.725
fc-CCSD(T)/CBS(Q,5) -0.427 0.427 0.158 0.598
fc-CCSD(T)/cc-pV5Z+core/cc-pCVTZ -0.269 0.272 0.128 0.529
fc-CCSD(T)/CBS(T,Q)+core/cc-pCVTZ 0.083 0.144 0.459 2.988
fc-CCSD(T)/CBS(T,Q)+core/cc-pCVQZ 0.184 0.185 0.472 3.175
fc-CCSD(T)/CBS(Q,5)+core/cc-pCVTZ -0.100 0.100 0.038 0.336
CCSD(T)/cc-pCVQZ -0.188 0.238 0.161 0.617

3.2 Benchmark II

In addition to investigate the role played by full triples and quadruples corrections, this

benchmark study is also intended to analyze the effect of increasing the basis set from a

quadruple-zeta to a quintuple-zeta in the evaluation of the core-correlation contribution.

The latter is an important point because core correlation for second-row elements often

needs cc-pCV5Z basis sets to be correctly taken into account. Indeed, there is some
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indication in the literature that the use of a quadruple-zeta basis set is not sufficient.57,81

As before the discussion is in term of relative errors and the experimental values used as

reference48–63,82–93 are reported in the SI.

Table VII: Statistical analysis of the relative errors (in %) in the computed rotational
constants with respect to Bi

e values derived from experimental Bi
0 values corrected for

vibrational contribution computed at the CCSD(T)/cc-pCVQZ level.

Computational approach D̄ D̄abs Dstd Dmax

fc-CCSD(T)/CBS(5,6) -0.406 0.406 0.112 0.774
fc-CCSD(T)/CBS(5,6) + core/cc-pCVQZ 0.057 0.077 0.101 0.369
fc-CCSD(T)/CBS(5,6) + core/cc-pCVQZ + DT -0.076 0.195 0.248 0.763
fc-CCSD(T)/CBS(5,6) + core/cc-pCVQZ + DT + DQ -0.018 0.094 0.126 0.404
fc-CCSD(T)/CBS(5,6) + core/cc-pCV5Z 0.193 0.306 0.300 0.862
fc-CCSD(T)/CBS(5,6) + core/cc-pCV5Z + DT 0.121 0.140 0.133 0.468
fc-CCSD(T)/CBS(5,6) + core/cc-pCV5Z + DT + DQ 0.189 0.202 0.172 0.808

The results of this benchmark are summarized in table VII. We first of all note that

the apparently best results are obtained at the fc-CCSD(T)/CBS(5,6) + core/cc-pCVQZ

level, with a clear worsening observed once the contribution due to full treatment of

triples is included. The subsequent account of quadruple excitations lowers all statistical

measures, with mean absolute error and standard deviation that are close to those at the

fc-CCSD(T)/CBS(5,6) + core/cc-pCVQZ level. According to these results, the full-triples

and full-quadruples give contributions that tend to cancel each other out, thus rendering

their computational cost not always justified. On the other hand, in terms of the mean

error the fc-CCSD(T)/CBS(5,6) + core/cc-pCVQZ + DT + DQ composite approach is the

level of theory performing at best. In the case of core-correlation contributions evaluated

using the cc-pCV5Z basis set, it is apparent that worse results are obtained. The large

core/cc-pCV5Z correction seems to be partially balanced by the full treatment of triples,

while the subsequent inclusion of the DQ contribution leads to a worsening. This outcome

clearly deserves to be further investigated, possibly by considering a larger benchmark

set. A last comment concerns relativistic and non-BO corrections. Both of them typically

provide only very small contributions. For the former this is at least true for compounds
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with second-row elements, for the latter this seems generally the case.5,94,95

3.3 Accurate prediction of rotational spectra for S-containing molecules

of astrochemical interest

This section aims at discussing the results obtained for the specific sulfur-containing

molecules of astronomical interest. Furthermore, general conclusions on the level of theory

required for the accurate prediction of rotational spectra in the specific case of molecular

species containing second-row elements are drawn.

Small-sized molecules

The results obtained for CCS, HCCS+ and the protonated species of OCS are presented

with particular emphasis on the accuracy obtained for each spectroscopic parameter. To

discuss the accuracy of the computational schemes investigated, we have selected the CCS

radical, for which the best theoretical results are reported in table VIII, where they are also

compared with the best experimental data. The rotational spectrum was simulated using

Pickett’s SPCAT program96 incorporated in the VMS-ROT97 software. The agreement

between the experimental B0 and that obtained using the fc-CCSD(T)/CBS(5,6) + core/cc-

pCVQZ + DT + DQ + DBi
0(cc-pCVQZ) composite scheme is very good, with a relative error

as small as 0.005%, which is similar to that derived in ref. 8 for molecules containing first

row atoms, i.e., 0.007%. The error for the quartic centrifugal distortion constant, being

around 7% at the CCSD(T)/cc-pCVQZ (all electrons) level, is rather high, but such a large

error is acceptable considering the smallness of this constant. This conclusion is in line

with what has been already observed in the literature (see, e.g., refs. 5,6). The theoretical

value of the electronic spin-rotation interaction constant, g, is in qualitative agreement

with the experimental one with the relative error being ⇠18%.

The theoretical data reported in table VIII have been used to simulate the rotational
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Table VIII: Spectroscopic parameters of CCS. All values reported are in MHz.

Parameter Theoretical prediction Experimental value77(a)

B0 6477.403(b) 6477.75036(71)
D 1.6 ⇥ 10�3(c) 1.72796(95)⇥ 10�3

H 2.1 ⇥ 10�11(c) -
l 97196.07(d) 97196.07(77)

lD 0.02700(d) 0.02700(67)
g -12.1(e) -14.737(49)

gD 5.5(37) ⇥ 10�5(d) 5.5(37) ⇥ 10�5

(a) The number in parentheses represents the standard deviation in units of the last
significant digits.

(b) fc-CCSD(T)/CBS(5,6) + core/cc-pCVQZ + DT + DQ + DBi
0(cc-pCVQZ).

(c) CCSD(T)/cc-pCVQZ.
(d) Fixed to the value of Yamamoto et al..

(e) CCSD/aug-cc-pCVQZ.

spectrum of CCS at T=100 K (figure 4), which is compared with the experimental counter-

part that has been obtained using the data from ref. 77. It can be seen that the two spectra

agree quite well, with errors going from 4 MHz in the case of low frequencies up to 1 GHz

for higher frequencies. In the inset of figure 4, one transition and its fine structure are

shown in detail. The considered line lies at a frequency around 505 GHz and it is noted

that the theoretical predictions overestimate the experimental values by ⇠760 MHz, i.e.,

by about 0.15%.

To exclusively analyze the impact of the computed rotational constant on the predicted

spectra, the rotational spectrum of CCS has been simulated using the B0 constant evaluated

at four different levels of theory, with all the other spectroscopic parameters fixed at the

corresponding experimental values, and compared to experiment. In this way, the errors

in the predicted spectra are only due to the level of theory employed for computing B0.

The computational schemes considered are: fc-CCSD(T)/CBS(5,6) + DBi
0(cc-pCVQZ), fc-

CCSD(T)/CBS(5,6) + core/cc-pCVQZ + DBi
0(cc-pCVQZ), fc-CCSD(T)/CBS(5,6) + core/cc-

pCVQZ + DT + DBi
0(cc-pCVQZ), and fc-CCSD(T)/CBS(5,6) + core/cc-pCVQZ + DT + DQ +

DBi
0(cc-pCVQZ). It is noted that when only the extrapolation to the CBS limit is considered
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Figure 4: The rotational spectrum of CCS: comparison of experiment and theory.

the computed rotational transitions are underestimated by about 0.3%. Inclusion of the

core-correlation correction leads to an overestimation by about 0.25%. The discrepancy is

lowered once the full treatment of triple excitations is taken into account, with remaining

deviations on the order of +0.14%. A further improvement is obtained by incorporating

the effect of quadruples, thus lowering the disagreement to around -0.01%. This means

that the transition frequency at ⇠505 GHz is underestimated with an error of about 55

MHz. If we compare the last result with the spectrum simulated using the complete set

of theoretical values VIII (see discussion in the previous paragraph), differences of about

0.16% are noted in reproducing the experimental spectrum is noted. Since in both cases

the same level of theory is used for B0, by inspecting this table, it is apparent that this

discrepancy is mostly due to the limited accuracy of the computed electronic spin-rotation

interaction constant g.

A simulation of the entirely computed rotational spectrum has also been performed

also for the protonated species of CCS and OCS, namely, HCCS+ and HSCO+, for which

the experimental data present in the literature are missing or limited. A summary of the
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computed spectroscopic parameters is reported in the SI and will be of future interest

for experimental measurements. Indeed, the same accuracy as that obtained for CCS

is expected. However, when comparing the theoretical and experimental98 rotational

constants of HOCS+, larger relative errors are observed: 0.43%, 0.025% and 0.015% for

the A0, B0, and C0 constants, respectively. Nevertheless, these experimental data were

obtained only with a very limited number of low frequency measurements and call for an

improvement, and for this reason, HOCS+ has not been included in the benchmark set

of molecules. In particular, the accuracy of the experimental rotational constants is very

limited, with a standard deviation from the fit as large as 4 MHz. Results of mixed quality

have been also obtained for the quartic-centrifugal distortion constants, with errors ranging

from 6 to 13%. However, once again, the experimental counterparts are not particularly

accurate with one parameter (d1) clearly wrongly determined. Furthermore, it should be

noted that, as already mentioned in ref. 99, despite the fact that HSCO+ is about 20 kJ/mol

lower in energy than HOCS+, only the latter one has been observed experimentally; this

renders both protonated species worthy of further experimental investigation.

Medium-sized molecules

The discussion of the results for the medium-sized molecules is mainly focussing on the

C3S molecule. The theoretical data from the present work data are reported in table IX

together with the corresponding experimental values. We note that the relative error

for the rotational constant obtained at the fc-CCSD(T)/CBS(T,Q) + core/cc-pCVTZ +

DBi
0(cc-pVTZ) level is ⇠0.03%, thus being nearly one order of magnitude smaller than

that predicted by the benchmark study. The same trend is observed for C5S, for which

the relative error is ⇠0.05%. Instead, for C4S a relative error of 0.13% has been obtained.

However, also this uncertainty is lower than what is expected based on the benchmark

study, thus suggesting that the latter might provide rather conservative error estimates. The

relative error for the quartic-centrifugal distortion constant of C3S is around 6%, consistent
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with previous results, even if the parameter has been obtained at the CCSD(T)/cc-pVQZ

level of theory within the frozen-core approximation. A similar relative error is also

observed in the case of C5S, while it doubles for the C4S radical.

As shown in figure 5, the agreement between the experimental and predicted spectra in

the case of C3S is still good. The transition highlighted in the inset indicates that deviations

of ⇠100 MHz are observed for frequencies above 300 GHz, i.e., deviations of about ⇠0.04%

in relative terms. Results of similar quality are seen for C4S and C5S and are expected for

HC4S+. For all these molecules, the computational results are collected in the SI.

4 Concluding remarks

By employing different composite schemes, an accurate spectroscopic characterization

has been carried out for the thiocumulenes family CnS, with n=2, 3, 4 and 5, and for

the HCCS+, HC4S+, and HSCO+/HOCS+ protonated species. While the former family

of molecules mainly allowed us to investigate the accuracy obtainable, for the cationic

species accurate predictions of the rotational parameters have been provided for the first

time. Different composite approaches have been investigated and their accuracy has been

addressed thanks to a benchmark study. In particular, for HCCS+, HSCO+, and HOCS+

the CCSD(T)/CBS(5,6) + core/cc-pCVQZ + DT + DQ + DBi
0(cc-pCVQZ) level of theory is

Table IX: Rotational parameters of C3S in MHz.

Parameter Theoretical value Experimental value67 (a)

B0 2891.27(b) 2890.37959(29)
D 1.96 ⇥ 10�4(c) 2.086(75) ⇥ 10�4

H 2.00 ⇥ 10�12 (d) -
(a) The number in parentheses represents the standard deviation in units of the last

significant digits.
(b) fc-CCSD(T)/CBS(T,Q) + core/cc-pCVTZ + DBi

0(cc-pVTZ).
(c) fc-CCSD(T)/cc-pVQZ.
(d) fc-CCSD(T)/cc-pVTZ.
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Figure 5: The rotational spectrum of C3S: comparison of experiment and theory.
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expected to provide rotational constants with an accuracy better than 0.01%. For HC4S+,

the best approach considered is CCSD(T)/CBS(T,Q) + core/cc-pCVTZ + DBi
0(cc-pVTZ),

which should predict rotational constants with an accuracy better than 0.1%.

From the inspection of the results collected in Tables III and VII, it is noted that impor-

tant improvements in the mean error and in the standard deviation are observed once, in

conjunction with core-correlation corrections at the CCSD(T)/cc-pCVQZ level, we move

from CCSD(T)/CBS(T,Q) to CCSD(T)/CBS(Q,5), and then to the CCSD(T)/CBS(5,6) extrap-

olation. On the other hand, according to Table V, vibrational corrections can be computed

with very similar accuracy at the fc-CCSD(T)/cc-pVTZ and CCSD(T)/cc-pCVQZ levels of

theory.

The optimized geometrical parameters that are at the basis of the statistical analysis

reported in Table VII point out that moving from core/cc-pCVQZ to core/cc-pCV5Z

leads to an additional shortening of the bond distances. This means that, once the core-

correlation contribution is evaluated at the CCSD(T)/cc-pCV5Z level and coupled with

extrapolation to the CBS limit performed with basis sets as large as cc-pV5Z and cc-pV6Z,

the combination of the two effects ends up in bond lengths which appear to be too short,

thus leading to computed rotational constants that slightly overestimate the corresponding

experimental values.

Overall, the statistical analyses of the present study suggest that (i) the CCSD(T)/CBS(5,6)

+ core/cc-pCVQZ level provides high-accuracy results, not requiring full-triples and full-

quadruples contributions; (ii) similar accuracy can be obtained only with the inclusion of

the latter corrections if the extrapolation to the CBS limit is performed with smaller basis

sets; (iii) the employment of the cc-pCV5Z basis set in the evaluation of the core-correlation

contribution is discouraged unless in conjunction with CCSD(T)/CBS(Q,5); (iv) in the

case of medium-sized molecules containing second-row elements, geometry optimizations

using the CCSD(T)/CBS(T,Q) + core/cc-pCVTZ composite scheme in conjunction with

vibrational corrections evaluated at the fc-CCSD(T)/cc-pVTZ level are able to provide
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rotational parameters that are suitable and sufficiently accurate to guide experiment.

5 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at

DOI: ...

1. Experimental values and best theoretical estimates for the rotational constants of all

the isotopologues considered in the benchmark I study.

2. Experimental values for all the rotational constants considered in the benchmark II

study.

3. Graphical representations of the comparison between computed and experimental

rotational constants as well as of the theoretical internal comparison.

4. Computed spectroscopic parameters for HCCS+, HOCS+, HSCO+, C4S, C5S, and

HC4S+ compared with experimental data and/or previous computational results.
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