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Self-Aware Thermal Management for High 
Performance Computing Processors 

Andrea Bartolini Member, IEEE, Roberto Diversi, Daniele Cesarini, Francesco Beneventi  
DEI, University of Bologna, 40136 Bologna, Italy 

Abstract— Processors for high performance computing and server workload are today thermally constrained. To preserve 
a safe working temperature, state-of-the-art processors for this market segment integrates many cores on the same die 
and feature fine-grain power management and thermal management feedback loops implemented in hardware. However, 
to keep the control policy simple, these controllers fail in taking advantage on the underlining thermal heterogeneity, long 
thermal transients and specific user mode. In this paper, we present a self-aware thermal management framework for 
making each chip self-aware of its thermal and workload peculiarities and use it to maximize performance and thermal 
sustainability. 

Index Terms— C.1.2.e Load balancing and task assignment < C.1.2 Multiple Data Stream Architectures (Multiprocessors) 
< C.1 Processor Architectures < C Computer Systems Organization, Temperature-aware design < B.9 Power Management 
< B Hardware, B.9 Power Management < B Hardware, C.1.4.d Scheduling and task partitioning < C.1.4 Parallel 
Architectures < C.1 Processor Architectures < C Computer Systems Organization   

1. INTRODUCTION AND RELATED WORKS 
Nowadays it is well established that the pace dictated by the Moore’s law on technological scaling comes at the 
cost of increasing power consumption and leads to thermally-bound computing systems. Supercomputers as well 
as data centres are on the cutting edge of this crisis, because of aggressive performance, integration density and 
sustainable power budget [1]. The top500 list ranks worldwide supercomputers based on their peak performance 
(Flops - floating point operations per second - when running a Linpack benchmark) [2]. Today the most powerful 
supercomputer in Top500 is Sunway TaihuLight which consumes 15.3 MW for delivering 93 Petaflops. The 
second one, Tianhe-2 (ex 1st) consumes 17.8 MW for ”only” 33.2 Petaflops. However, the power consumption 
increases to 24 MW when considering also the cooling infrastructure [3]. Such an amount of cooling power serves 
to prevent thermal issues. Increasing the inlet coolant temperature reduces the cooling cost, but jeopardises the 
thermal budget and consequently the performance. 

Modern multicore processors are equipped with thermal sensors and with fine-grain power management support 
to modulate the power consumption of the processor and peripherals based on current operating conditions. Intel 
RAPL modulates the frequency of the cores to maintain the processor power consumption below a user defined 
power budget. In novel Intel server processors, the frequency of each core can be scaled independently [5]. 
However, this flexibility is currently not fully explored as the operating systems in HPC installations (99.6% of 
Top500 supercomputers in November 2016 use Linux as O.S.) work by keeping all the cores at the same 
frequency to avoid performance-unbalance across the cores of the same processor. When it comes to hardware 
mechanisms to protect the die from over temperature (referred as thermal management) today’s processors use 
two mechanisms: (i) dynamic voltage and frequency scaling (DVFS - ACPI P-states) as well as (ii) duty-cycling 
(Throttling -  ACPI T-states). Thanks to turbo logic, cores can run at frequencies above the nominal TDP frequency 
without incurring in overheating and voltage drop problems. Duty-cycling is used as protection mechanism when 
die temperature exceed a critical threshold (in Intel Xeon E5-26XX v3 HPC class processors vary from 69°C to 
101°C). However thermal throttling is strongly detrimental to core performance as the performance loss increases 
linearly with the power reduction. Differently, for DVFS low-power states the performance loss scales sub linearly 
with the power reduction. Moskovsky et al. [4] show that hardware built in mechanisms can use effectively the 
DVFS states for power and energy management but fail in preventing thermal throttling [4]. This is primarily due to 
the reactive nature of thermal controllers which takes corrective actions when the chip is already too hot.  

In addition, there are several nonidealities in the thermal characteristics of large multicore processors targeting the 
high-performance computing market. Namely thermal heterogeneity, thermal capacitance and thermal noise. 
Beneventi et al [6] measures for a top end Intel Xeon computing node featuring 36 physical cores, on the same 
silicon die, up to 24°C of temperature difference between active cores and idle cores, and more than 7°C of 
thermal heterogeneity when all the cores execute identical workload and run at the same frequency. Precision of 
thermal sensors is bound to 1°C due to quantization. Moreover, there is an important thermal capacitance due to 
the large heat-sink and heat spreader which causes long thermal transients taking minutes to reach the steady-
state after a change in the cores power consumption. These nonidealities worsen the efficiency of built in reactive 
controllers as the usage of a single frequency to control the temperature of a multicore chip - subjected to strong 



thermal heterogeneity - is detrimental. This in addition to the difficulties in finding a stable but thermally safe 
operating point.  

Finally, in a supercomputing environment, user’s applications run in isolation on a portion of the machine and are 
accounted based on the execution time. The peculiar usage model of supercomputing hardware and applications, 
which are not interactive, nor latency critical, but require sustained peak performance, is not yet well understood in 
terms of unique opportunities for domain specific power and thermal management. Each user runs parallel 
workload with synchronization points on the multi-core and multi-node hardware. For this reason, slowing the 
frequency of the core running the critical thread may induce a slow-down in threads waiting for its completion to 
progress. Thread migration is prevented to avoid performance loss. 

Authors of [7,8] survey thermal management and allocation strategies. From the survey we can conclude that most 
of the state-of-the-art works take advantage of (1) task migration to improve purely reactive approaches, (2) do not 
consider thread criticality but assumes deadlines or precedence constraints, (3) use thermal models obtained from 
thermal simulators and/or make simplifying assumptions on the intra-core temperature dependency, and neglect 
the thermal transients. These make them not directly applicable to supercomputers. Even if not directly applicable 
in the experimental results section we will compare the proposed strategy with thermal management ones which 
uses static thermal models for driving the task assignment, as well as purely reactive thermal controllers which 
uses short predictions to tune the power consumption dynamically. 

In this paper, we present a self-aware optimization framework which combines noisy thermal sensor readings, 
robust system identification strategy, integer-linear programming optimization and application awareness to ensure 
a stable and safe working temperature. At the same time, the framework maximizes the application performance in 
a state-of-the-art high-performance computing nodes. We use this framework for discussing the design trade-offs 
of self-aware and application-aware proactive thermal management run-times targeting HPC systems. These 
includes: (i) Thermal capacitance; (ii) Noise and system identification; (iii) Workload awareness and job placement; 
(iv) HPC peculiarities. 

2. SELF AND APPLICATION-AWARE THERMAL MANAGEMENT FRAMEWORK 
In this section, we describe the proposed framework. Figure 1 shows its building blocks. 

At the bottom, we have the HPC hardware which is composed of several compute nodes. Each compute node 
(Node#i in Figure 1) is composed of one to M computing engine. We consider as computing engine parallel 
processors, which are the most common case (more than 90% of Top500 systems use Intel Xeon Processors, as 
reported by the November 2016 Top500 list). Each parallel processor (CPU#i) is internally composed of N cores 
and uncore logic. The uncore logic accounts for the memory controllers, last level cache and I/O. Each processor, 
core and uncore are equipped with sensors which can be read periodically from the software stack. These sensors 
can monitor different architectural events as well as physical parameters. We focus on three main classes of 
sensors: per-core activity sensor, per-core thermal sensors, per-cpu power gauges.  



 
Figure 1: Block diagram of the self-aware and application aware power and thermal management framework. 

These sensors are used for two purposes: self-learning a predictive thermal model through system identification 
and estimating the current state of the cores (silicon temperature, power consumption, activity) to be used as the 
basis for estimating the future core temperature and power consumption in the thermal and power management 
problem.  

At the top of the stack we have the software applications running on the system which consist of parallel programs 
composed of several threads and processes which run exclusively on the computing resources (i.e. the cores). As 
effect of the computational patterns and data partitioning, threads of the same application running on different 
cores may require a longer computation before reaching a synchronization point. This makes the core running the 
thread which requires the longer computation the critical one in terms of completion time of the entire application. 
The programmer, or the run-time of the programming model, can estimate the criticality of the threads composing 
the application and flags the threads with a label which represent the application criticality (crx in Figure 1).  

At the centre of the stack the proposed framework implements the Self Learning and the Thermal/Power 
Management policies. The Self-Learning policy consists of three stages. (i) First binary workload (1=active/0=idle) 
sequences are applied to each core to recreate a Pseudo Random Binary Sequence (PRBS) of power stress in 
each core. PRBS sequences have the characteristic of creating white noise spectrum with sequences of binary 
inputs. This guarantees that all the modes in the thermal removal path are equally exited. The power consumption 
values for each core is obtained by linear regression of each core’s activity (cycles in active state and cycles in idle 
state) and per CPU power consumption. Our framework uses the Workloader to schedule one power stressmark in 
each core and uses POSIX signals to schedule and de-schedule it to follow the PRBS sequence. (ii) During this 
stress pattern, the Data Collector monitors the sensors present on each core and cpu synchronously with the 
PRBS sampling time. The values collected are stored in a database and pre-processed to translate each core 
activity in a per core power profile. Finally, (iii) the power traces and thermal responses are provided as input to a 
system identification algorithm which extracts a predictive thermal model. The thermal model is in the form of a 
Multi-Input Single-Output (MISO) AutoreRegressive eXogenous (ARX) dynamic model for each core.  

The Self-learning policy is executed during system initialization and last for few minutes. The learnt thermal model 
is then fed as input to the Thermal/Power Management run-time. One of the main advantages of the proposed 
thermal modelling framework is that it is suitable to be integrated in a production environment. Indeed, it does not 
need to connect the computing node to lab equipment but it runs entirely in software on the inspected node. The 
running overhead is below the 1% and requires a small amount of data.  



Differently the run-time executes periodically. At each iteration, it reads the application criticality level (crx) for each 
thread running in the CPU, the sensors’ state, and based on these values it takes a decision. The decisions taken 
are different if taken at application start up or during its execution. At the 1st step the Thermal/Power Management 
run-time decides the thread to core mapping and the frequency at which running each core. At the n-th step the 
run-time decides only the frequency at which running the core without exceeding the critical temperature. Indeed, 
in scientific HPC environment once the threads of a parallel application are pinned to a core their migration is not 
allowed to avoid performance losses. The proposed Thermal/Power Management run-time uses an Integer Linear 
Programming formulation to find the optimal thread to core mapping and cores frequencies which maximizes the 
application performance while preserving a safe working temperature for each core. Thermal interaction between 
the cores, thermal differences, as well as thermal capacitance effects (dynamics) are accounted in the optimization 
problem by mean of the thermal model self-learnt on the HW which is the result of the Self Learning policy. To 
account for the different decision variables available at the 1st step and n-th step of the Thermal/Power 
Management run-time two different optimization problems are used. 

3. THE SELF-LEARNING POLICY 
The self-learning policy is implemented by adopting a distributed approach. Each core of a supercomputer node is 
represented by a MISO ARX model where the output is the actual core temperature T (t )  and the inputs are the 

power dissipated by all the N cores 0 1 1( ), ( ), ( )NP t P t P t  and the uncore power ( )uncP t . Note that the ( )uncP t  
represents the power consumed by the uncore of the CPU as reported in Figure 1. This model is described by the 
following difference equation 

(1.1)                                                          1 1( ) ( ) ( ) ( ) ( )A z T t B z u t w t    

 where ( )u t  is the input vector 

(1.2)                            , 

 is a white process with variance  and 1( )A z  and 1( )B z  are a polynomial and a 1 ( 1)r   matrix of 

polynomials in the backward shift operator 1z  (i.e. 1 ( ) ( 1)z x t x t   ): 

(1.3)                                                  

Previous works have shown that the relation between the core temperature and the dissipated power can be 
described by a purely dynamic model [9]. 

ARX models are widely used in system identification since they constitute the simplest way of representing a 
dynamic process in the presence of uncertainties [10]. Two important features of these models are the possibility 
of obtaining asymptotically unbiased estimates of their parameters by means of least squares and the absence of 
stability problems of the associated optimal one step-ahead predictors [10]. Nevertheless, it has been shown in [9] 
and [11] that the classic MISO ARX model (1.1) is not able to describe properly the thermal dynamics of the 
system because the estimated models are characterized by relevant negative poles and/or complex conjugate 
poles. This is in contrast with the physics of thermal systems, where only real positive poles can exist. As 
explained in [9], this problem is due to the presence of a significant level of measurement noise. To take into 
account the presence of this noise, MISO ARX models with noisy output have been considered. The actual core 
temperature T (t )  is thus assumed as affected by an additive noise ( )v t  so that the available measurement 

( )T t  is given by 

(1.4)                                                                     T (t ) T (t )v (t )  

where ( )v t  is a white process with variance . From (1.1) and (1.4) the available temperature ( )T t  can be 
expressed as  



(1.5)                                                   T (t )  B (z 1)
A (z 1)

u (t ) 1
A (z 1)

w (t )v (t )  

This equation emphasizes the presence of both a process disturbance 1/ A (z1)w (t )  and a measurement noise 

( )v t  as reported in Figure 1. The identification problem consists in estimating for each core the coefficients of 
1( )A z , 1( )iB z , ( 0 , )i r   i.e. the parameter vector 

(1.6)                                                            

starting from the input-output data (1), , ( ), (1), , ( )u u N T T N  .  

The MISO ARX model with additive noise (1.5) cannot be identified by using the least squares method as the 
presence of ( )v t  leads to asymptotically biased estimates [9]. For this reason, we propose an ad-hoc 
identification algorithm that exploits the properties of the dynamic Frisch scheme [12]. The rationale behind the 
Frisch scheme consists in searching for the solution of the identification problem within a locus of solutions which 
are compatible with the covariance matrix of the noisy data [12]. Let us introduce the 

vectorj(t )  [T (t )T (t n )u0(t 1)u0(t n )u1(t 1)u1(t  n )ur (t 1)ur (t  n )]T   

and its covariance matrix S  E [j(t )jT (t )]  . 

It can be shown that in this context the above-mentioned locus of solutions, compatible with the covariance matrix 
of the noisy data  , consists in an interval describing a set of admissible additive noise variances. More precisely, 
consider the following two partitions of the same matrix  : 

(1.7)                                                      S 
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where s T
2   is a scalar and STT   is a x   matrix. We define also the scalar s v ,max

2  as the 

minimum eigenvalue of the matrix  STT STuSuu
1STu

T( ) . It is possible to prove that every value   belonging to 

the interval   s v ,max
2 ] is an admissible additive noise variance from which it is possible to compute a 

possible parameter vector q (s v
2 )by means of  where 

 and diag denotes a diagonal matrix. It is also possible to compute a value of the 

process noise variance sw
2 sT

2 s v
2  rT q.  To find the true noise variance  within  , and then the true 

parameter vector  , it is necessary to introduce a suitable selection criterion. The criterion proposed in [11] 
exploits the properties of the instrumental variable (IV) approach and leads to asymptotically unbiased estimates 

when the covariance matrix  is replaced by its sample estimate Ŝ  1
N  n

j(t )jT (t )
t n1

t N

å  . A loss function 

 based on the IV approach is minimized along  to get consistent estimates of  ,  and , see 
[11] for the details. Finally, the identified models can be transformed into a state-space representation of the noisy 
ARX model (1.5) to be used in the ILP problem to proactively select the optimal usage of the resources.  
The proposed identification method is more effective in the considered supercomputer system framework. Thanks 
to its robustness it can extract the faster dynamics in the presence of quantization noise even when working with a 
slow sampling rate as shown in [11]. 



4. THERMAL/POWER MANAGEMENT RUN-TIME  
As introduced in Section 2, the thermal model self-learnt on the target HW is used to solve two optimization 
problems: the 1st step and the n-th step. The Thermal/Power Management run-time operates at the node level and 
it is composed of two main components: the thermal-aware thread mapper and 
controller (TMC) and an energy-aware Message Passing Interface (MPI) wrapper. The TMC is triggered: (a) after 
the job scheduler has deployed the parallel application on the reserved portion of the HPC machine for the job 
execution; (b) periodically with period Ts . At  job startup (a) the TMC specifies the thread to core mapping which 
will be maintained until application completion. Clearly, if a critical thread is mapped to a thermally inefficient core 
this will more likely cause a severe degradation of the final application performance. To abstract this requirement, 
we use a per-thread criticality level (crx). Higher criticality means higher impact of the thread performance on the 
final application. 
 
The 1st step optimization problem (FSP) is solved during the initialization of the application. Its purpose is to 
allocate the application’s threads on the available cores and selecting for each of them the maximum frequency 
which meets the thermal constraint Tmax in the prediction interval (PIFSP ). As we will see in the experimental results 
the prediction interval (i.e. the time horizon) plays an important role. Indeed, if it is too short, the TMC cannot 
predict the long-term impact of a thread allocation on the cores temperatures as its effect is hidden by the thermal 
capacitance. On the contrary, if the predicted interval is too long the TMC cannot take advantage of the thermal 
capacitance for sustaining short time power burst. In addition, as early introduced not all the threads have the 
same criticality. This is reflected in the optimization model which maximizes the frequency of the most critical 
thread penalizing the frequencies of others. The optimization problem considers K threads to be assigned to N 
cores where there are less or equal threads than cores i.e., K ≤ N. Each core can be configured with a frequency 
in a set of M levels. The Object Function (O.F.) maximizes the sum of frequencies of all active cores jf  weighted 

by the criticalities icr  of the thread assigned on each core. To model the problem, we use two sets of binary 
decision variables: 
 

(1.8) 
1 if core j( j=1, , N)works at frequency f (f=1, , M) and executs job i(i=1, ,K)
0 otherwise

i
jfx

  





 

(1.9) 
f core j( j=1, , N)is active

0 otherwise, i.e., if it is id
 i

le
1

jy







  

We can formulate the following ILP model with three constraints to model the assignments and the thermal 
bounds: 

1.10 
1 1 1
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K M N
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The constraint (1.11) specifies that a thread must be assigned only on a single core which works at a given 
frequency. In addition, it specifies that all the threads are assigned. The constraint (1.12) is needed to determine 
the decision variables which represent the idle cores. These variables are used in the constraint (1.13) in case 
there are less jobs than cores i.e., K ≤ N. This constraint guarantees that the temperature of each core does not 
exceed TMAX  during the next predicted interval ( FSPPI ). In the last constraint (1.13) GS is a gain matrix with 

dimension N N . This matrix is used to calculate the increment of temperature of all the cores when a core is 

subjected to a constant power input for FSPPI  seconds. 0
lT  represents the dependency of the future temperature 



(@ FSPPI )  from the current cores temperature. These values are derived from the state-space thermal model 

learnt in Section 3. T a  is the ambient temperature. When threads are less than cores the decision variable iy  is 
used in conjunction with the vector of idle powers p , to add the idle power components. 
 
After the threads have been assigned to the cores in the FSP, the TMC must solve periodically the assignment 
problem of frequencies to cores only, but at a finer time scale. The i-th step problem (ISP) has the same objective 
function as FSP (1.10) as well as the same thermal model formulation. However, the prediction interval for the ISP 
(PIISP) can be generally different from the FSP. 
Differently from the previous case, the model considers only active cores (K) because the thermal constraints 
cannot be broken by an idle core. This reduces the overall complexity. As threads have been already allocated in 
FSP in this model, threads and cores do not need separate variables, thus a criticality level is referred to a core. 
  

1.14 
1 if core r( =1, , )works at frequency f (f=1, ,M)
0 otherwiserf

r K
x
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




  

The ISP model requires fewer constraints than FSP due the lower number of variables. 
 

(1.15) 
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The constraint (1.16) bounds each core to a selected frequency. The constraint (1.17) guarantees the thermal 
limits imposed on the model, where the set iA a  contains the index of the active cores, the set iI i  contains 

the index of Idle cores directly defined from the solution of FSP and A I  is empty. In general, the ISP problem is 
computationally simpler than the FSP problem due to the much lower number of decision variables and 
constraints. 
 
In the next section, we will evaluate the performance of the proposed TMC in a realistic scenario and under 
different trade-offs in between the predicted horizons of the FSP and ISP problems. 

5. EXPERIMENTAL RESULTS 
In this section, we first describe the performance of the system identification step we carried on a supercomputing 
node based on dual socket Intel Haswell E5-2630 v3 CPUs, with 8 cores with 2.4 GHz clock speed and 130W 
Thermal Design Power (TDP). We will use this thermal model together with the proposed framework to study the 
implication of the prediction interval/horizon in the thermal-aware thread mapping and control of supercomputer 
nodes. For executing these tests we have assigned the highest criticality on the core running the MPI process with 
rank 0.  

The TMC optimization problem proposed in Section 4 has been solved using IBM ILOG CPLEX 12.6.1. The solver 
call CPLEX each time there is a new TMC problem to be solved.  At each CPLEX call, the run-time builds a new 
instance of the problem with the new thermal parameters and the criticality of the threads and it waits for CPLEX 
results.  In our tests, we conducted the following experiments with different prediction intervals for both FSP and 
ISP problems. We considered FSPPI  and ISPPI  ={1s,10s,100s,SS}. In the following we name these tests with the 

notation FSP ISPPI PI .  It must be noted that 1s-1s represent state-of-the-art DTM solutions with no thermal-
aware thread-to-core mapping, while SS-SS represents state-of-the-art static DTM solutions. 

For all the experiments, we set the temperature limit 65% of maximum temperature which can be reached by the 
hottest core at the maximum frequency.  



Figure 2a) shows the accuracy for one core of the predicted temperature in the target architecture. The residual is 
always below ±1°C.  

 
Figure 2 : Self-learned thermal model accuracy (a); Thermal/Power Manager performance vs. prediction horizon (b); 
Cumulative Overhead (c) 

Figure 2b) depicts the average frequency of the core that hosts the highest criticality thread and the average 
frequency for all the cores in each configuration. The error bar shows the variance for each configuration among 
different executions. Larger error bars happen when FSP has a prediction horizon which is too short to see the 
effect of long term thermal evolution, and thus it cannot predict which core will hit the thermal constraint. For this 
case, the allocation problem FSP is trivial and threads are allocated following a simple numerical binding. If the 
most critical thread is lucky, it will be pinned on a ``cold'' core. Vice versa, if the most critical thread is unlucky, it 
will be mapped on a ``hot'' core.  At the steady-state the frequencies of the cores will be limited by the ISP to 



respect the thermal constraint. On the other cases, the FSPPI  is always enough to sense the thermal constraint. 
The optimization model will pin the highest criticality thread on a ``cold'' core, making it run at maximum frequency. 

In the following analysis we take as a baseline the SS-SS configuration, which model the state-of-the-art solutions 
based on static allocation of jobs and frequency.  The 1s-1s and 10s-10s induces performance penalties on the 
high criticality task, while they lead to an increase of performance of the 4.97% and 4.50% respectively in average 
in all the cores. For the remaining configurations, we measure no penalties for the high criticality tasks and a gain 
of to 7.46%, 7.06% and 3.65% respectively for the configuration SS-1s, SS-10s and SS-100s. These results show 
that short horizon predictive models pay off in the ISP as they allow to take advantage of the thermal capacitance. 
When considering also the problem solution overhead (Figure 2c) the best choice is the SS-10s configuration 
which induces an overhead of the 0.64% which in conjunction to the 7.06% of performance gain lead to an overall 
performance gain of the 6%. 

6. CONCLUSIONS 
In this paper we presented self-aware thermal management for high performance computing processors which 
features a robust self-calibrating thermal model policy and a ILP based application aware thermal controller. Our 
results show that our proposed framework is suitable to learn the thermal model with high accuracy and to take 
advantage of thermal heterogeneity and capacitance present in state-of-the-art HPC processors. 
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