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Abstract—Ultra-low power computing is a key enabler of
deeply embedded platforms used in domains such as distributed
sensing, internet of things, wearable computing. The rising
computational demands and high dynamic of target algorithms
often call for hardware support of floating-point (FP) arithmetic
and high system energy efficiency. In light of transprecision
computing, where accuracy of data is consciously changed during
the execution of applications, custom FP types are being used
to optimize a wide range of problems. We support two such
custom types - one 16 bit and one 8 bit wide - together with
IEEE binary16 as a set of ”smallFloat” formats. We present an
FP arithmetic unit capable of performing basic operations on
smallFloat formats as well as conversions. To boost performance
and energy efficiency, the smallFloat unit is extended with SIMD-
style vectorization support to operate on a conventional word
width of 32 bit. Finally, it is added into the execution stage of a
low-power 32-bit RISC-V processor core and integrated as part of
an SoC in a 65nm process. We show that the energy efficiency for
processing smallFloat data in this amended system is 18% higher
than the binary32 baseline, thus enabling hardware-supported
power savings for applications making use of transprecision.

I. INTRODUCTION

An increasing amount of deeply embedded applications
such as monitoring and processing of vital signs, building
health profiles, and audio processing algorithms require ex-
treme energy efficiency and complex, highly dynamic numer-
ical computations involving double-precision (64) or single-
precision (bynary32) floating-point (FP) operations [11], de-
fined by the IEEE 754 standard. In many of these FP in-
tensive applications, the execution of FP operations and the
related memory transfers emerge as the main bottleneck for
energy efficiency consuming up to 50% of the overall system
power [9]. The most traditional approach to optimize energy
consumption of applications requiring high dynamic range and
precision in power-constrained platforms is to shift to fixed-
point implementations, and adjust the dynamics and precision
of operands according to the requirements of the processing
chain. However, this approach is often highly intrusive, re-
quiring in-depth understanding of the target algorithms. To
trade energy for dynamic range and precision of FP operations,
IEEE 754-2008 introduced a 16-bit format referred to as half-
precision (binary16).

Several recent works propose the design of energy-efficient
approximate and variable precision FP units, such as the design
presented by Gautschi et al. [3] exploiting Logarithmic Num-
ber System (LNS) to approximate FP computations reducing
by 4x the power consumption, Tong et al. [10] that explored
an iterative, precision tunable (digit-serial) FP multiplier, Kaul
et al. [6], that implemented a variable-precision FP multiply-
add unit where each operand carries a 5-bit certainty field
to implement automatic precision tracking. As opposed to
traditional approximate computing approaches aimed at re-
laxing the precise-computing abstraction [1][7][5][2], a new

Fig. 1 Energy consumption of the KNN application for three precision
requirements, normalized to binary32 baseline

paradigm of transprecision computing is emerging [8], aiming
at explicitly designing systems that just deliver the required
precision for intermediate computations rather than tolerating
errors, creating opportunities for larger energy savings. A
step towards transprecision computing has been proposed by
Tagliavini et. al. [9], who designed a software library and an
automated methodology to tune the precision and dynamic of
FP operations according to the precision requirements of FP
applications in programmable SoC, also exploited in this work.

In this work we present a full SoC architecture for ultra-
low-power transprecision computing. The proposed hardware
architecture extends the PULPino open source SoC1 with a
transprecision FP unit integrated into the RI5CY processor
core [4]. Tagliavini et. al. [9] demonstrated that significant
energy savings can be achieved leveraging sub-32-bit FP
formats on top of standard IEEE binary32 and binary16. The
proposed FP unit thus supports – along with binary32 and
binary16 – two non-standard formats, namely binary16alt and
binary8, collectively referred to as ”smallFloat” formats. To
fully exploit the benefit of reduced precision formats, the
proposed FP unit implements Single Instruction Multiple Data
(SIMD) operations on smaller-than-32-bit formats, further in-
creasing the performance and energy efficiency of the SoC.
This concept is summarized in Fig. 1, that shows the energy
saving that can be achieved on a sample application (k-nearest
neighbors) by shifting 32-bit operations to reduced precision
FP operations while constraining the precision requirements
of the whole kernel with the methodology described in [9]. It
can be noted that significant energy savings can be achieved
exploiting SIMD operations that, on top of the lower energy
cost of reduced precision instructions, also reduce the exe-
cution time of applications leveraging data-level parallelism
(column 5 of Fig. 1).

We characterize the energy consumption of the smallFloat
instructions on the post place-&-route (P&R) implementation
of the proposed transprecision SoC, and evaluate the execution
of a set of signal processing benchmarks to assess the energy
saving when tuning the precision of the operations for pre-
defined accuracy targets. Special attention has been paid to the

1http://www.pulp-platform.org/
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Fig. 2 Simplified architectural overview of the PULPino SoC (left) and the
RI5CY core (right). The new smallFloat unit (labelled SFU) was
implemented in the execution stage of the core.

design and analysis of the binary16 and binary16alt datapath
(i.e., pipelined vs. non-pipelined), which are widely used in
most of the analyzed transprecision applications. The results
of the exploration show that the pipelined 16-bit units are
more energy efficient, even through the non-pipelined solution
execute faster (i.e., less cycles, no stalls), mainly due to
the power inflation caused by the high timing pressure on
the non-pipelined datapaths. The proposed transprecision SoC
improves system performance by 15% to 25% and the energy
efficiency by 14% to 18% over a traditional 32-bit FP SoC
on the analyzed applications, when constrained to match a
maximum accuracy loss of 10% compared to the binary32
baseline.

II. SYSTEM ARCHITECTURE

The transprecision SoC proposed in this work is based on
the PULPino open source architecture, and shown in Fig. 2.
The processor core is based on an implementation of the
RISC-V instruction set architecture optimized for energy-
efficient digital signal processing including custom extensions
such as hardware loops, load and store with address pre- and
post-increment to speed-up pointer arithmetic and lightweight
support for fixed-point computations, including small SIMD
instructions and saturation instructions [4]. The SoC features
4KiB of data memory, 4KiB of instruction memory and a
bootup ROM, tightly coupled to the processor, as well as a
standard peripheral set which includes SPI, I2C, UART, timers
and interrupt controller.

In this work we extend the PULPino SoC with a transpre-
cision FP unit supporting vectorization of reduced-precision
operations. The hardware unit, pictured in Fig. 3, consists
of three slices featuring a width of 32 bit, 16 bit and 8 bit,
respectively, that support additions, subtractions and multipli-
cations as well as conversion operations. Binary8 is an 8-bit
format featuring 3 bit of mantissa, and 5 bit of exponent, while
binary16alt is a 16-bit format complementary to the IEEE
featuring 8 bit of exponent and 8 bit of mantissa. To enable
SIMD sub-word parallelism inside the unit, the narrower slices
are replicated such that two 16-bit or four 8-bit FP operations
can be executed simultaneously. Individual operation blocks
are instantiated as Synopsys DesignWare FP Datapath IPs.
Operand isolation logic is employed at the inputs of every
data path in order to save dynamic power of unused subunits.

To meet the timing requirements of the SoC, 32-bit FP
arithmetic operations are pipelined with one stage. Arithmetic
operations in binary8 as well as all conversion operations
complete in one clock cycle. One design parameter explored
in this work concerns the option of pipelining the 16-bit
arithmetic operations: Although the timing requirements are
met with both options, this parameter imposes a trade-off
between the energy cost of 16-bit FP instructions and the
number of cycles required to run applications on the system,
analyzed in Section IV.

In addition to the integration of the smallFloat unit (SFU)
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Fig. 3 Sliced architecture used for the smallFloat unit.
Chip area excluding pad instances.

16-bit Pipelined? No Yes

Total [mm2] 0.906 0.872
RI5CY Core 13.5% 13.7%
smallFloat Unit 12.0% 9.0%
Data Memory 29.9% 31.1%
Instr. Memory 30.7% 31.8%
Periph. & Interc. 12.5% 13.1%
FLL 1.3% 1.4%

Fig. 4 Full layout of the SoC (left), highlighting significant blocks. The
area breakdown (right) shows both pipelined and non-pipelined
configurations.

into the execution stage of the RI5CY core, the decoder was
extended with a custom set of smallFloat instructions that bear
similiarity to standard RISC-V FP instructions. Binary32 op-
erations utilize the floating-point register file while smallFloat
values are stored in the general purpose register file to make
them visible to the vector shuffling hardware already present
in the RI5CY core.

III. SOC IMPLEMENTATION

The SoC was synthesized and implemented (i.e., full lay-
out) in the UMC 65 nm technology with Design Compiler
2015.6 and Cadence Innovus 15.2 using worst case libraries
(slow-slow, 1.08V, 125 ◦C) constraining the design to match
the same target frequency of the original PULPino SoC (i.e.,
350MHz) [4]. Two versions of the SoC were implemented,
one employing pipelining only for 32-bit operators, the other
resorting to pipelining for both 32-bit and 16-bit arithmetic
operations. The layout of the system is shown in Fig. 4,
together with a breakdown of the area utilization of the
different blocks.

The total area of the transprecision SoC is 0.906mm2,
with the largest contributor to chip area being the data and
instruction memory instances. The smallFloat unit – supporting
various operations on four FP formats – makes up a significant
part of the new core, filling 47% of the core area in the
baseline configuration with single-cycle 16-bit operations. In
the pipelined scenario, the SFU shrinks to 40% of core area
since the strong timing pressure on the 16-bit FP arithmetic
operations can be alleviated.

To provide an accurate estimation of the power consump-
tion of the transprecision SoC and characterize the system-
level power consumption of both original integer instructions
and the new FP instructions, we conduced post-place-&-
route power simulations in the typical corner (typycal-typical,
1.20V, 25 ◦C). To this end, the Value Change Dump (VCD)
traces of the system executing the various instructions have
been generated with Mentor Modelsim 10.5c 3 and passed to
Cadence Innovus to extract the power numbers. Fig. 5 shows
the power breakdown of the baseline transprecision system
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Fig. 5 Power distribution in the baseline SoC for multiply instructions.

TABLE I Average energy per operation extracted from post-layout
simulation, for various instruction groups on the two configurations of the
transprecision SoC.

16-bit pipelined?
Format Operation Instruction No Yes

Idle Cycle nop* 62.2pJ 62.9pJ

int32 Data movement lw,sw* 94.4pJ 94.6pJ
Arithmetic add, mul* 106.4pJ 102.4pJ

binary32 Arithmetic f{add,mul}.s* 106.8pJ 102.4pJ
Conversions e.g. fcvt.w.s* 79.7pJ 78.1pJ

binary16

Arithmetic f{add,mul}.h† 98.8pJ 82.0pJ
Conversions e.g. fcvt.h.s† 74.7pJ 74.6pJ
Vector Arithmetic vf{add,mul}.h† 132.6pJ 93.9pJ
Vector Conversions e.g. vfcvt.x.h† 86.4pJ 77.6pJ

binary16alt

Arithmetic f{add,mul}.ah† 87.2pJ 83.2pJ
Conversions e.g. fcvt.ah.s† 73.5pJ 73.7pJ
Vector Arithmetic vf{add,mul}.ah† 108.9pJ 92.7pJ
Vector Conversions e.g. vfcvt.x.ah† 79.5pJ 74.3pJ

binary8

Arithmetic f{add,mul}.b† 74.0pJ 75.5pJ
Conversions e.g. fcvt.b.s† 72.5pJ 72.8pJ
Vector Arithmetic vf{add,mul}.b† 95.2pJ 94.1pJ
Vector Conversions vfcvt.x.b† 77.8pJ 74.0pJ

* RISC-V mnemonic
† Custom smallFloat mnemonic, based on RISC-V mnemonic

in the non-pipelined configuration, while the energy cost of
pipelined and non-pipelined instructions is shown in Table I.

Fig. 5 outlines the power consumption of the major blocks
in the system when running multiplication instructions on
either intergers or 32-bit FP values. It should be noted that data
memory is unused when executing an arithmetic instruction
in isolation and thus has negligible impact on system power.
When an integer multiplication is performed nearly 60% of
the system power is used inside the ALU, while the SFU is
isolated and clock gated, thus only contributing insignificant
static power. During FP multiplications, the SFU consumes
25% of the system power while the ALU power consumption
is reduced by approximately the same amount, indicating that
the power consumption of our FP multiplier is similar to its
integer counterpart.

Table I showcases the significant energy use of data move-
ment which is comparable to arithmetic operations themselves,
generally even overshadowing the operations on smallFloat
types in the pipelined scenario. Vectorizing arithmetic oper-
ations costs up to 35% more energy at system level, albeit
at double or quadruple throughput, depending on the format
used. Furthermore, vectorization directly reduces the number
of load and store operations in the same way, drastically
reducing the energy spent on a single value during a load-
execute-store cycle. The impact of added timing pressure in
the non-pipelined baseline over the pipelined configuration is
clearly visible, with an average 7% higher energy consuption,
up to 40% in some cases. However, the baseline instructions
complete within a single cycle, alleviating the need for stall

cycles in difficult-to-schedule applications. Since there is a
trade-off to be made between total number of cycles and energy
used per cycle which depends on the schedule friendliness of
the target application, a set of benchmarks was run in order to
explore this design space.

IV. BENCHMARKING

Benchmarking of the transprecision SoC has been per-
formed on a set of applications which implement algorithms
for two domains of ULP systems, near-sensor computing
and embedded machine learning. SmallFloat types have been
introduced in the source code using the methodology from
[9], where a software library (FlexFloat) emulates arbitrary
FP types while an external tool (fpPrecisionTuning) selects for
each variable the smallest FP type among the supported ones
meeting strict constraints on the result accuracy. The accuracy
of results is expressed as a value of signal-to-quantization-
noise ratio (SQNR) that program outputs must satisfy. In
addition, FlexFloat features a detailed run-time report on FP
operations, which provides the number of executions classified
by FP type, arithmetic operator and class (i.e., scalar, vectorial,
cast). The ANSI-C programs have been compiled using GCC
5.2 with a RISC-V backend optimized for PULPino [4],
featuring support for single-precision FP types as defined in
the RISC-V instruction set architecture (ISA). To perform
a wide exploration on large applications that would require
long simulation time on the RTL platform, binaries have been
executed on the PULPino virtual platform which is cycle
accurate and provides detailed statistics. Since the current
version of GCC does not include the support for the extended
instruction set needed to handle binary16, binary16alt and
binary8 formats, we have used the binary32 type to measure
the exact number of cycles required by each instruction to
execute. This value depends on the ability of the compiler to
schedule other classes of operations to fill latency cycles and
avoid stalls in the core pipeline, so it is strictly dependent on
both application and compiler back-end.

To assess the trade-off between the pipelined and non-
pipelined solution for binary16 units, we have made an
analytic exploration varying the percentage of latency slots
filled for every application. Fig. 6 depicts the ratio between
the energy consumption of the pipelined design (Pipelined
Energy) over the energy consumption of the non-pipelined
design (Unpipelined Energy) for the analyzed applications.
The horizontal axis reports the percentage of instructions that
require a latency slot, which varies from 0% (no latency cycles
for FP instructions) to 100% (a latency cycle per pipelined
FP instruction). The aim of this experiment is to explore a
full range of compiler capabilities, to understand the trade-off
between the energy/instruction (pipelined is better) and number
of execution cycles (non-pipelined is better). This trend may
be better explained by examining a breakdown analysis of
operation based on FP classes, which is depicted in Fig. 7.
The ratio of applications that require a high amount of 16-bit
vectorial operations w.r.t. scalar ones (DWT, SVM) is growing
with the number of latency slots with a limited slope, since
the energy savings of SIMD operation in the pipelined version
are relatively higher than in the non-pipelined case. The ratio
of applications with a predominance of binary32 or binary8
operations (JACOBI, KNN) is nearly constant since these oper-
ations are pipelined the same way in both designs. Finally, the
ratio of applications that are characterized by a relatively large
16-bit scalar workload (PCA, CONV) is particularly affected
by the number of latency slots and their slopes are steep, since
scalar operations are heavily penalized by the pipelined design.
However, if the compiler were able to reduce the latency
slots under 70% using instruction scheduling techniques, the



Fig. 6 Energy of applications running on the binary16 pipelined design
normalized to that of non-pipelined design when varying the percentage of
latency slots in in binary16 and binary32 operations.

Fig. 7 Breakdown of FP operations for three precision requirements.

negative effect of these cases would be highly mitigated.
Compiling the baseline version of applications (which uses
binary32 scalars) we measured a number of latency slots
between 50% and 80%, so we conclude that the pipelined
design is in general the best solution.

Fig. 8 depicts a groups of bars for each application running
on the pipelined architecture, reporting a breakdown of the
executions cycles for three precision requirements (SQNR =
10−3, 10−2, 10−1). The bottom contributions take into account
the best execution scenario with no stalls due to latency cycles
(0% latency), while the gray segment on top considers the
worst case, in which each operation involving 16-bit and 32-bit
FP types requires a stall (100% latency). The reported values
are normalized to the binary32 version of the application,
and operation classes are highlighted with distinct patterns.
The performance improvements and energy savings due to
the utilization of transprecision operations are mainly due to
the vectorization which allows to execute multiple reduced
precision operations in parallel and reduce the number of mem-
ory accesses, and due to the smaller energy cost of reduced
precision FP instructions. The overhead is mainly caused by
the cast operations required to dynamically move from one
FP format to another. In Fig. 8 we see that on average, the
number of cycles is decreased by 15% and 25% for 100%
and 0% latency slots, respectively. The number of cycles
reported for JACOBI is higher than the original version, since
this application only uses a limited number of binary16alt
variables limited to disjoint program regions, and this behavior
introduces a high number of casts. In other benchmarks we can
observe that the overhead of cast operations is not relevant.

Fig. 9 reports the energy consumption of each application,
normalized to the binary32 baseline. Each bar contains three
contributions, the FP operations (FP ops), the memory accesses
(Memory ops) and all the remaining instructions (Other ops).
These values are strictly related to the ones shown in Fig. 8,

Fig. 8 Execution cycles of applications for three precision requirements
and assuming two latency slots conditions (0%, 100%), normalized to
binary32 baseline

Fig. 9 Energy consumption of applications for three precision
requirements and assuming two latency slots conditions (0%, 100%),
normalized to binary32 baseline

and also in this figure the contribution to energy consumption
due to stalls is shown on top (100% latency). The energy
consumption of PCA is greater than the baseline, due to the
high number of casts coupled with a predominant number of
scalar operations on binary32 values. The other applications
have average energy savings between 14% and 18% compared
to the baseline, with a maximum of 31% measured for KNN.

V. CONCLUSION

This work we presented a SoC for ultra-low-power trans-
precision computing extending the PULPino microcontroller
architecture with a transprecision floating-point unit integrated
into the RI5CY processor core [4]. The FP unit supports, along
with IEEE binary32, the IEEE binary16 FP format and two
additional formats. To fully exploit the benefit of reduced pre-
cision formats, the proposed transprecision floating-point unit
implements Single Instruction Multiple Data (SIMD) opera-
tions on smaller-than-32-bit formats, further increasing energy
efficiency and performance of the SoC. We have characterized
the energy consumption of the smallFloat instructions on the
post P&R implementation of the proposed transprecision SoC
in UMC 65 nm technology, and evaluated the execution of a
set of signal processing benchmarks on the proposed system.
The results of our exploration show that the introduction of a
smallFloat unit improves system performance by 15% to 25%
and the energy efficiency by 14% to 18% for 100% and 0%
latency slots, respectively, on the analyzed applications when
allowing the target precision to be relaxed by 10% compared
to a traditional binary32 baseline.
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