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ABSTRACT
We perform for the first time N-body simulations of interacting dark energy assuming non-
Gaussian initial conditions, with the aim of investigating possible degeneracies of these two
theoretically independent phenomena in different observational probes. We focus on the large-
scale matter distribution, as well as on the statistical and structural properties of collapsed
haloes and cosmic voids. On very large scales, we show that it is possible to choose the
interaction and non-Gaussian parameters such that their effects on the halo power spectrum
cancel, and the power spectrum is indistinguishable from a ! cold dark matter (!CDM)
model. On small scales, measurements of the non-linear matter power spectrum, halo-matter
bias, halo and subhalo mass function, and cosmic void number function validate the degeneracy
determined on large scales. However, the internal structural properties of haloes and cosmic
voids, namely halo concentration–mass relation and void density profile, are very different
from those measured in the !CDM model, thereby breaking the degeneracy. In practice, the
values of fNL required to cancel the effect of interaction are already ruled by observations. Our
results show in principle that the combination of large- and small-scale probes is needed to
constrain interacting dark energy and primordial non-Gaussianity separately.

Key words: galaxies: formation – dark energy – dark matter – large-scale structure of Uni-
verse – cosmology: theory.

1 I N T RO D U C T I O N

According to the most recent measurements of cosmic microwave
background (CMB) anisotropies performed by the Planck satel-
lite mission (Ade et al. 2016a), the standard ! cold dark matter
(!CDM) cosmological model is still extremely successful in re-
producing different observational data sets. This in turn favours the
more economic cosmological constant ! as an explanation of the
late-time cosmic acceleration over alternative and more complex
dark energy (DE) or modified gravity (MG) models. None the less,
theoretical problems in understanding the energy scale and the time
evolution of ! (known as the fine-tuning and coincidence problems,
respectively, see e.g. Weinberg 1989; Padilla 2015) as well as re-
cent observational tensions between CMB cosmological constraints
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and those inferred from independent probes in the local Universe
(see e.g. Vikhlinin et al. 2009; Heymans et al. 2013; Ade et al.
2016e; Simpson et al. 2016; Hildebrandt et al. 2017) motivate the
investigation of such alternative and more complex scenarios.

In particular, various possible realizations of interacting dark
energy (IDE) models (see e.g. Wetterich 1995; Amendola 2000;
Amendola, Baldi & Wetterich 2008; Pettorino & Baccigalupi 2008;
Baldi 2011a, 2012c; Pourtsidou, Skordis & Copeland 2013) based
on a direct energy-momentum exchange between a DE scalar field
and the CDM particle sector, have attracted significant interest and
for small values of the interaction strength appear still consistent
with current CMB constraints (Salvatelli et al. 2013; Costa et al.
2014; Salvatelli et al. 2014; Ade et al. 2016b).

Similarly, measurements of higher order statistics of the CMB
anisotropies are consistent with a nearly Gaussian distribution
of the primordial curvature perturbations by providing very tight
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constraints on the primordial non-Gaussianity (hereafter PNG)
parameters: f loc

NL = 0.5 ± 5.0 and f
eq
NL = −4.0 ± 43.0 for the local

and equilateral configurations, respectively (Ade et al. 2016c). As
some level of non-Gaussianity in the primordial density distribution
is a common and clean prediction of basically all models of inflation
(see e.g. Maldacena 2003) – i.e. the hypothetical mechanism driv-
ing the early exponential expansion of the Universe – measurements
of PNG are considered as a smoking gun to discriminate between
various inflationary models (Bartolo et al. 2004; Giannantonio et al.
2014).

Despite the tight constraints on the PNG amplitude from Planck
data, large-scale structure (LSS) observations in the late universe
coming from the next generation of wide-field galaxy redshift sur-
veys could outperform these constraints. More specifically, recent
measurements of galaxy clustering and of the integrated Sachs–
Wolfe (ISW) effect already provide constraints of σ (f loc

NL ) ∼30
(Ross et al. 2013; Giannantonio et al. 2014; Leistedt, Peiris & Roth
2014), while future redshift galaxy surveys like EUCLID (Laureijs
et al. 2011) and SKA (Camera, Santos & Maartens 2015; Maartens
et al. 2015) are forecast to outperform the CMB in constraining
PNG, especially via the multitracer method (Alonso & Ferreira
2015; Fonseca et al. 2015).

This is possible due to the various observational signatures that
PNG imprints on LSS at late times, namely on the abundance of
massive objects (which can be either enhanced or suppressed for
positive and negative values of the PNG amplitude, respectively),
on the bias between galaxies and the underlying matter distribution
(that becomes scale dependent on large scales in the presence of
some PNG) and on the 3-point correlation function of galaxies that
encodes the shape of PNG (for more details, see e.g. Desjacques
& Seljak 2010; Liguori et al. 2010; Desjacques, Jeong & Schmidt
2018).

Recent studies on the effects of IDE models on structure for-
mation (Baldi et al. 2010; Cui, Baldi & Borgani 2012; Hashim,
Bertacca & Maartens 2014; Moresco et al. 2014; Duniya, Bertacca
& Maartens 2015) have shown that similar features may arise also
in these models. In particular, Hashim et al. (2014) showed that
the observational signatures of IDE and PNG on the large-scale
galaxy power spectrum can mimic each other. This is due to the
fact that some models of IDE introduce a k−2 scale dependence in
the matter density contrast on very large scales, mimicking PNG
scale-dependent halo bias. Also on non-linear scales, numerical sim-
ulations of IDE (see e.g. Baldi & Pettorino 2011; Baldi 2012b,a;
Cui et al. 2012) and of PNG (Grossi et al. 2007; Pillepich, Por-
ciani & Hahn 2010; Wagner, Verde & Boubekeur 2010; LoVerde
& Smith 2011) scenarios showed that IDE enhances the abun-
dance of massive haloes in a similar way to PNG with a positive
amplitude.

This degenerate behaviour between PNG and IDE indicates that
separate observational constraints on the PNG amplitude and the
IDE interaction rate could be misinterpreted or possibly that their
joint effects could become indistinguishable from the standard
!CDM reference model. This represents the main motivation for
the present work, where we will present for the first time a joint nu-
merical analysis of non-linear structures forming from PNG initial
conditions through an IDE cosmological evolution. Our main goal
is to test whether such degeneracy holds for all observables at all
scales and if not to identify specific statistics that clearly disentangle
the two phenomena. To this end we will consider – as a proof of
concept – very large values of the PNG amplitude fNL ≈O(100)
which are already ruled out by CMB observations for the simple
case of scale-independent non-Gaussianity. This allows us to obtain

larger effects on structure formation and to identify more clearly
the degeneracy with DE interactions. Although not directly appli-
cable to realistic PNG scenarios for the case of a scale-independent
fNL, our results will provide a guideline for scale-dependent PNG
models (see e.g. Sefusatti et al. 2009; Oppizzi et al. 2018) having
fNL ≈O(100) or larger at the scales relevant for non-linear struc-
ture formation while remaining consistent with CMB constraints at
the Planck pivot scale.

This paper is organized as follows: in Section 2 we introduce IDE
and PNG extensions to the standard !CDM scenario. In Section 3,
we use the linear halo power spectrum as an observational probe to
test the IDE–PNG degeneracy on large scales. In Section 4, we test
the IDE–PNG degeneracy on non-linear scales by running a set of N-
body simulations for all models under consideration. In Section 5,
we present all results for the non-linear matter power spectrum,
halo-matter bias, halo mass function, subhalo mass function, halo
concentration-mass relation, void number density, and void density
profiles. Finally, conclusions are summarized in Section 6.

2 N O N - S TA N DA R D C O S M O L O G I C A L M O D E L S

In this section, we present the two non-standard extensions to the
fiducial !CDM model that we will consider in this work. The first
extension is based on the assumption of a non-Gravitational inter-
action between CDM particles and a dynamical DE scalar field. The
other extension relays on a non-Gaussian distribution of the primor-
dial density field as generically predicted by inflationary models.

2.1 Interacting dark energy

Various models of IDE have been proposed in the literature over
the past two decades (see e.g. Amendola 2000, 2004; Koyama,
Maartens & Song 2009; Baldi 2011a; Clemson et al. 2012). In this
paper, we consider the most widely studied example of such models
based on a quintessence dynamical scalar field φ playing the role
of the DE, subject to a self-interaction potential V(φ) and to a direct
interaction with the CDM fluid via energy-momentum exchange
(Amendola 2000; Bertolami & Martins 2000). The background
evolution of such cosmological scenarios is governed by the Klein–
Gordon equation for the scalar field:

φ̈ + 3H φ̇ + dV

dφ
=

√
2
3
κβρc, (1)

and by the continuity equations of the different components that
contribute to the total energy density of the universe:

ρ̇c + 3Hρc = −
√

2
3
κβρcφ̇, (2)

ρ̇b + 3Hρb = 0, (3)

ρ̇r + 4Hρr = 0, (4)

as well as by the Friedmann constraint

3H 2 = κ2 (ρφ + ρc + ρb + ρr
)
, (5)

where ρc, ρb, and ρr are the energy density of CDM, baryons, and
radiation, respectively. An overdot represents a derivative with re-
spect to the cosmological time t. The Hubble function is defined
as H ≡ ȧ/a where a is the scale factor and κ2 = 8πG. The pa-
rameter ρφ represents the energy density of the DE fluid defined
as ρφ = φ̇2/2 + V (φ). The right-hand side source terms in equa-
tions (1) and (2) represent the interaction parameter between CDM
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particles and DE that is proportional to the CDM energy density
ρc through the dimensionless constant β that sets the strength of
the coupling. The sign of the βφ̇ term determines the direction of
the energy-momentum exchange between the two interacting com-
ponents. In order to fulfil Bianchi identities and not violate total
energy-momentum conservation, the source terms in equations (1)
and (2) should be equal and have opposite sign.

By integrating the CDM conservation equation (2) one gets the
time evolution of the CDM density as

ρc

ρc0
= a−3 exp

(
−
√

2
3

κβφ

)
, (6)

which shows a basic property of IDE models: matter density is
not separately conserved as the energy exchange results in a time-
dependent CDM particle mass. In this work, we consider the expo-
nential form for the self-interaction potential (Lucchin & Matarrese
1985; Wetterich 1988),

V (φ) = A exp

(
−
√

2
3

κλφ

)
, (7)

where A and λ are constants.
In the Newtonian gauge, the perturbed metric (assuming flatness

and vanishing anisotropic stress) is given by

ds2 =
[
−(1 + 2*)dt2 + (1 − 2*)a2dxxx2] , (8)

where * is the gravitational potential. The Poisson equation is1

(Hashim et al. 2014):

∇2* = κ2

2

[
ρc+c + ρφ+φ −

√
2
3
κβφ̇

ρc

(ρc + ρφ)
(vφ − vc)

]
, (9)

where +c,φ are the comoving density contrasts and vc,φ are the
velocity potentials, defined by vc,φ = ∇vc,φ , so that θ c,φ = −k2vc,φ ,
where θ is the velocity divergence. The velocity potentials include a
k−2 scale dependence due to the potential * in the Euler equation –
see equation (10) below. Therefore, the coupling term in the Poisson
equation (9) introduces a k−2 scale dependence to the matter growth
factor on large scales. Since +c,φ are gauge-invariant, the resulting
k−2 signal is an explicit coupling effect and not a false gauge effect.

The perturbed conservation equations are then given by (Hashim
et al. 2014)

v̇i + Hvi + c2
si

(1 + wi)
+i + *

= 1
(1 + wi)ρi

[
Qi (v − vi) ρc + fi

]
,

(10)

+̇i − 3wiH+i − k2(1 + wi)vi − 9
2
H 2(1 + wi)(1 + wt)(vi − v)

= Q+
i

H
, (11)

where Qφ =
√

2/3κβρcφ̇ = −Qc and i indicates CDM and scalar
field φ, respectively, csi is the sound-speed of the ith species (which
is vanishing for CDM while for DE perturbations csφ = 1), wt is
the total equation of state, v = 1/(1 + wt)

∑
i(1 + wi)-ivi is the

total peculiar velocity potential, and fi is the momentum transfer
potential given by (Koyama et al. 2009)

fi = Qi(vφ − v) . (12)

1We also ignore baryons for simplicity.

The source term on the right-hand side of equation (11) is given by

Q+
i = Qi

ρi

[
Q̇i

Qi

− ρ̇i

ρi

]
vi − Qi

ρi

[
3 + Qi

(1 + wi)ρiH

]
(v − vi)

− 1
ρi

[
3 + Qi

(1 + wi)ρiH

]
fi + Qi

ρi

[
3(1 + wi) + Qi

ρiH

]
vi

+ 1
ρiH

δQi − Qi

ρiH

[
c2
si

(1 + wi)
+ 1

]
+i + 2

Qi

ρiH
*. (13)

These equations fully specify the evolution of the linear gauge-
invariant perturbations of the coupled system, we refer the interested
reader to Hashim et al. (2014) for a more complete derivation of
these equations.

As we will be interested in the evolution of the system at small
scales and beyond the linear regime (see Section 4.1 for details), we
also recall (see e.g. Amendola 2004) that in the Newtonian limit,
used for the N-body implementations, the evolution equation for
CDM density perturbations, equations (10) and (11) imply:

δ̈c + 2H

(
1 − β

φ̇

H
√

6

)
δ̇c − κ2

2
ρc

(
1 + 4

3
β2

)
δc = 0, (14)

since comoving and Newtonian density contrasts are equal, i.e.
+c ≈ δc, and we ignore derivatives of scalar field perturbations.
The coupling terms in equation (14) are: βφ̇, which represents an
extra friction arising as a consequence of momentum conservation,
and 4β2/3, which is responsible for the fifth force acting on CDM
perturbations.

2.2 Primordial non-Gaussianity

Local-type non-Gaussianity in the primordial curvature perturba-
tions, that maximizes the bispectrum in the squeezed shape, is
parametrized by

* = *G + f loc
NL

(
*2

G − ⟨*2
G⟩
)
, (15)

where *G is the Gaussian gravitational field and f loc
NL is the PNG

parameter. Single-field inflation models predict a very small value
of f loc

NL (Maldacena 2003), but multifield models can generate large
non-Gaussianity in squeezed configurations (Moroi & Takahashi
2001; Lyth & Wands 2002).

On large scales, PNG enhances the large peaks of matter pertur-
bations (Matarrese, Verde & Jimenez 2000; LoVerde et al. 2008;
Matarrese & Verde 2008). This introduces a scale-dependent signal
in the bias between the virial collapsed objects at high peaks and the
underlying traced matter. By measuring the cross halo-matter power
spectrum Pmh in N-body simulations with local-type non-Gaussian
initial conditions, many authors have confirmed that the large-scale
bias is scale dependent (see e.g. Dalal et al. 2008; Pillepich et al.
2010):

Phm(k, z) = [bG(z) + +b(k, z)] Pmm(k, z), (16)

where Pmm is the matter auto-power spectrum, bG is the Gaussian
bias and

+b(k, z) = 3fNL
[
bG(z) − 1

] δcrit -m

Dc(z)T (k)
H 2

0

k2
, (17)

with δcrit being the critical overdensity for halo collapse, T(k) the
transfer function, and Dc the linear dark matter growth factor which
is normalized to a in the matter dominated era. On very large scales,
T → 1 and so +b∝fNLk−2. Since we only consider local-type PNG
in the current analysis, for simplicity we drop the loc superscript
from our notation.
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Table 1. The cosmological parameters used in
this paper, consistent with the WMAP7 CMB
data best fit (Komatsu et al. 2011).

Parameter Value

h 0.703
-b 0.0451
-m 0.2711
-DE 0.729

As 2.42 × 10−9

ns 0.966

Since IDE introduces a scale dependence in the matter growth
factor and non-negligible DE perturbations in the Poisson equa-
tion (9), the scale-dependent PNG bias for IDE models becomes

+b(k, z) = 3fNL
[
bG(z) − 1

] δcrit -m

Dc(k, z)
[
1 + µ(k, z)

]
T (k)

H 2
0

k2
, (18)

where the effect of IDE appears in the scale dependence of Dc and
in the factor

µ = ρ̇φ

ρ̇c

[
1 −

(
ρ̇φ

ρ̇c

)]−1 1
Dφ

, (19)

where Dφ ≡ +φ /+φ(z = ∞) is the DE growth factor and µ depends
on the coupling parameter β though the background equations (1)
and (2). We can notice that on very large scales, Dc(k, z) behaves as
∼k−2.

3 LIN EAR HA LO POWER SPECTRUM

In this section, we will illustrate the degeneracy between IDE and
PNG by computing the halo power spectrum on linear scales for
both models and for their combination.

The halo power spectrum is given in general by

Ph(k, z) = [bG(z) + +b(k, z)]2 Pm(k, z). (20)

In order to compute this we first numerically solve equations (10)
and (11) for the growth factors Di, and then calculate the matter
power spectrum Pm(k, z) using (Ade et al. 2016d):

Pm(k, z) = A2
s

(
k

kp

)ns

T 2(k)
[

Dc(k, z)
Dc(k, 0)

]2

, (21)

where ns is the spectral index, As is the spectral amplitude, and
kp is the pivot scale. We use CAMB (Lewis, Challinor & Lasenby
2000) to compute the transfer function T(k). We then apply the
bias relation, equation (18), to the matter power spectrum as given
in equation (20).2 We adopt the cosmological parameters given in
Table 1.

In computing the growth rate of CDM density perturbations we
consider both the case where large-scale perturbations in the DE
scalar field are properly taken into account (+φ ̸= 0) and the case
where such perturbations are artificially set to zero (+φ = 0). The
latter case, while being not fully consistent, allows us to match
the approximations adopted in the numerical treatment that we will
discuss below and to obtain a more direct correspondence between
the PNG and IDE parameters that are expected to provide a strong
degeneracy in the non-linear regime under such approximations. In
Fig. 1, we show the ratio of the linear halo power spectrum to the
fiducial !CDM model at z = 0 for the cases given in Table 2.

2For the Gaussian bias, we use the ansatz bG =
√

1 + z.

These values of fNL are obtained by minimizing the residual
1 − Ph/P

!CDM
h for the combined model, i.e. they correspond to the

values of maximum degeneracy for a DE–CDM coupling parameter
β = 0.05 for the cases +φ ̸= 0 and +φ = 0. Clearly, the k−2 signal,
assuming +φ = 0, is larger and therefore the amount of PNG to
be degenerate with it is bigger. Therefore, for these combinations
of parameters, as clearly seen in Fig. 1, IDE and PNG are strongly
degenerate with each other, in the sense that their combination is
indistinguishable from the fiducial !CDM case.3

Although these derived values of fNL are at least one order of mag-
nitude larger than currently allowed by observational constraints, we
will continue to use these values as a toy example of the IDE–PNG
degeneracy. Realistic values for |fNL| with the standard assumption
of a scale-independent amplitude of PNG would have too weak ef-
fects on non-linear structure formation to significantly influence the
observational features for any non-negligible coupling parameter
β. On the other hand, scale-dependent PNG (see e.g. Liguori et al.
2010; Renaux-Petel 2015), where fNL(k) evolves with wavenumber
k, may still provide an effective fNL = O(102) at scales relevant
for non-linear structure formation, while remaining consistent with
current bounds around the Planck pivot scale k = 0.05h−1Mpc.

In order to model the mimicking degeneracy relation between
β and fNL that is illustrated in Fig. 1, we repeat the procedure of
minimizing the residual 1 − Ph/P

!CDM
h for a wide range of the

parameters β and fNL, for both perturbed and non-perturbed DE
cases. We find that relation

fNL = ζ β−γ , (22)

where ζ and γ are constants, provides a good fit, with exponent
γ ≈1.8. This is shown in Fig. 2, where the numerical results are
overplotted with the fitting function equation (22) for perturbed and
non-perturbed DE cases. Note that the degeneracy slope γ increases
if we assume non-perturbed dark energy.

4 D E G E N E R AC Y O N N O N - L I N E A R SC A L E S

It is well known that IDE and PNG separately imprint characteris-
tic features in the non-linear regime of structure formation, which
can be tested through different observational probes. For example,
IDE affects the high-mass tail of the halo mass function (HMF) by
enhancing the abundance of haloes (Cui et al. 2012), while PNG
impacts the number of massive CDM haloes, suppressing (increas-
ing) it for negative (positive) fNL (see e.g. Grossi et al. 2009; Wagner
et al. 2010). It is therefore plausible that some form of degeneracy
may appear also at these non-linear scales, and in particular that
the combination of IDE with a negative value of fNL for PNG may
result in a HMF hardly distinguishable from the reference !CDM
case at all masses.

IDE also shows distinctive features on other observational probes,
including higher order correlation functions and non-linear bias, in
a similar way to PNG (Desjacques, Seljak & Iliev 2009; Wagner &
Verde 2012; Moresco et al. 2014). IDE further affects the structural
properties of CDM haloes and voids (Baldi 2011b, 2014; Pollina
et al. 2016, 2017; Giocoli et al. 2013), and PNG is also expected
to show significant effects on these probes (Abel, Hahn & Kaehler
2012; Neyrinck & Yang 2013; Sutter et al. 2014).

3We chose β > 0 and fNL < 0 because the same degeneracy does not apply
for negative β in the Newtonian approximation, since the coupling enters
also as a β2 term in equation (14). This means that for β < 0 and fNL > 0,
we do not expect a degeneracy in the non-linear regime.
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Figure 1. The ratio of the linear halo power spectrum to the standard !CDM case for the models (I–VI) given in Table 2 at z = 0, assuming perturbed DE
(left-hand panel) and non-perturbed DE (right-hand panel).

Table 2. Different values of β and fNL parameters used in this paper.

β fNL DE

I 0.05 0.0 +φ ̸= 0
II 0.05 0.0 +φ = 0
III 0.0 −151.51 +φ ̸= 0
IV 0.0 −166.66 +φ = 0
V 0.05 −151.51 +φ ̸= 0
VI 0.05 −166.66 +φ = 0

Figure 2. The β–fNL mimicking degeneracy relation at redshift z = 0,
overplotted with the fitting function defined in equation (22), for the fitted
values of γ .

This implies that the mimicking degeneracy which we have found
at linear scales for the halo power spectrum may persist (fully or
partly) in some small-scale non-linear observables, while it may be
broken by others. In the following, we test the linear degeneracy
relation, defined in equation (22), on non-linear scales by analysing
a suite of cosmological N-body simulations that include IDE and
PNG, both separately and in a combined way. To this end, we will
consider various non-linear probes, starting from the non-linear

matter power spectrum and the halo-matter bias to the statistical
and structural properties of CDM haloes and voids.

4.1 N-body simulations

In order to consistently account for the effects of IDE in the non-
linear regime, we made use of a modified version of the parallel
TREEPM N-body code GADGET (Springel 2005) that incorporates
all the specific features of the coupling between DE and CDM, i.e.
modified background expansion, CDM particle mass time variation,
the extra friction, and the fifth force acting on CDM particles (see
Baldi et al. 2010, for a detailed description of the modified N-body
algorithm). The simulations follow the evolution of 10243 CDM
particles within a periodic cosmological box of 1 h−1 Gpc per side,
for all the cosmological parameters given in Table 1, with a mass
resolution at z = 0 of 5.84 × 1010 M⊙ h−1 and softening length
ϵ = 24.42 h−1 kpc. Our numerical implementation of IDE assumes
that DE perturbations are negligible in relation to structure for-
mation processes compared to the dominant effects of background
evolution, extra friction, and fifth force. This is a valid approxi-
mation on sub-horizon scales; it becomes less accurate at scales
comparable with the cosmic horizon, but this is beyond the fun-
damental mode of our 1 h−1 Gpc boxes. For this reason, we have
chosen to consider the same approximation (i.e. +φ = 0) to select
our combination of values for the parameters β and fNL, so as to
ensure consistency between the degeneracy relation displayed in
Fig. 2 and the outcomes of our N-body simulations at small scales.

In order to generate the initial conditions for N-body simulation of
all models considered in this paper, we slightly modified the publicly
available code 2LPTic (Scoccimarro et al. 2012). The algorithm
implements non-Gaussian initial conditions with external Hubble
and growth functions consistent with IDE modifications.

The non-Gaussian initial conditions are generated for local-type
PNG with an extra non-Gaussian term according to equation (15),
where *G is a random realization of a Gaussian field with the
primordial power spectrum P (k) ∝ kns−1. Then, the linear density
field δc is obtained from the non-Gaussian potential * through the

MNRAS 481, 2933–2945 (2018)



2938 M. Hashim et al.

Figure 3. The non-linear matter power spectrum with IDE, PNG, and their combination, relative to the reference !CDM spectrum, at z = 0 (left-hand panel)
and z = 1 (right-hand panel). The dotted black curve shows the superposition spectra (IDE-only + PNG-only). The black dashed vertical lines show the Nyqvist
frequency and half of it.

Poisson equation:

δc = 2
3

k2

H 2
0

Dc(z)
-c

T (k)*, (23)

where the transfer function T(k) is computed using CAMB (Lewis
et al. 2000) for the fiducial !CDM cosmology. We assume the
transfer function is not affected by the late-time interaction (Baldi
et al. 2010; Baldi 2012b). The growth function Dc for all models is
normalized at zCMB ≈1100 to directly compare the impact of IDE
on the structure growth in the period between zCMB and the present
time. For PNG, we set fNL = −165.0 as the value corresponding
to the interaction rate β = 0.05 on linear scales (with +φ = 0), as
determined by equation (22).

Particle positions are then displaced from a homogeneous glass
distribution (Baugh, Gaztanaga & Efstathiou 1995) using the
Zel’dovich approximation (Zeldovich 1970) according to the dis-
placement field δc at the initial redshift zi = 49. In order to compute
particle initial velocities, we used the relation v(k, z)∝f(z)δ(k, z),
where the growth rate function f(z) ≡ −dln Dc/dln (1 + z) is derived
for each model by solving equations (14) for the growth function.
For the IDE–PNG combined model, we apply the growth function
of IDE after transforming the initial Gaussian potential to the non-
Gaussian form according to equation (15). In order to minimize the
sampling variance, we used the same initial random seed for all the
simulations.

5 RESULTS

In this section, we present the main results of our numerical simula-
tions of IDE, PNG, and the combined IDE–PNG extensions rescaled
with respect to the fiducial !CDM model. We focus mainly on the
non-linear matter power spectrum, the halo-matter bias and the sta-
tistical and structural properties of CDM haloes and voids.

5.1 The non-linear matter power spectrum

We computed the non-linear matter power spectrum for each sim-
ulation by calculating the density field using a Cloud-in-Cell mass

assignment on a cubic grid with the same resolution as the Particle
Mesh grid used for the integration of the N-body system (i.e. 10243).
According to this procedure, the non-linear matter power spectrum
is determined up to the Nyquist scale, kNy = πN/L ∼3.2h Mpc−1.
We truncate the resulting power spectrum at the k-mode where the
shot noise is below 20 per cent of the measured power. From the
simulated power spectra, we can estimate the effects of IDE, PNG
and, for the first time, the joint effects of IDE and PNG, on linear
and non-linear scales at different redshifts.

In Fig. 3, we display the ratio of the non-linear matter power
spectrum for IDE, PNG and their combination, to that of the stan-
dard cosmological model, at z = 0 and z = 1. The plots show the
following features.

IDE with Gaussian initial conditions (dashed green curve with
solid diamonds) – shows the expected scale-dependent power en-
hancement at non-linear ranges due to the combined effects of
the fifth force and of the extra friction associated with the DE–
CDM interaction. Also, since we normalize the power spectrum
at the redshift of the CMB, the normalization at linear scales
(σ!CDM

8 = 0.809) is increased by about 5 per cent relative to the
standard model (i.e. σ IDE

8 = 0.825), due to the higher linear growth
rate in the IDE case (Baldi 2011a); this is consistent with previ-
ous works (see e.g. Baldi 2011b). At higher redshift (right panel)
the non-linear power spectrum enhancement due to the IDE fifth
force is slightly reduced, with the peak ratio shifted towards smaller
scales.

Non-Gaussian initial conditions in !CDM (dashed blue curve
with solid squares) – shows the expected suppression of power at
small scales, relative to the standard !CDM case. The deviation is
larger at higher redshifts and the minimum shifts towards smaller
scales, in agreement with predictions from the halo model presented
in Fedeli & Moscardini (2010).

IDE and PNG combined (dashed red curve with solid triangles)
– the ratio no longer shows any significant scale dependence down
to ranges corresponding to the location of the peak/minimum in
the ratio for the two separate models. The difference in the power
normalization at linear scales associated with the enhanced growth
rate in IDE remains unchanged. This seems to indicate a mimicking
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Figure 4. As in Fig. 3, for the halo-matter bias. Clearly, IDE shows no sign of scale-dependence on large scales.

degeneracy between IDE and PNG in the matter power spectrum
on non-linear scales while there is no degeneracy on linear scales.
Remarkably, the figure shows that there is a non-linear mimicking
degeneracy for the same combination of parameters that produce
mimicking degeneracy in the halo power spectrum at much larger
scales, as described by equation (22) and Fig. 2.

In the figures we have also overplotted, for comparison, a black
dotted curve representing a simple superposition of the two ef-
fects, i.e. the PNG-only (blue squares) deviation times the IDE-
only (green diamonds) deviation. The very good agreement of this
simple prediction with the actual power measured from the com-
bined IDE–PNG simulation seems to indicate that the two effects
acting on structure formation are decoupled – which suggests that
full combined N-body simulations may be unnecessary in order to
compute the combined power spectrum for other combinations of
β and fNL.

5.2 Halo-matter bias

Following the standard hierarchical clustering scenario of structure
formation, haloes and galaxies are biased tracers of the underlying
matter distribution. In this section, we compute the linear bias be-
tween haloes and the underlying dark matter density field, as the
ratio between the halo–CDM cross power spectrum and the auto
power spectrum in Fourier space:

bhm(k) = Phm(k)
Pmm(k)

. (24)

(We suppress the z-dependence for simplicity.) This bias estimator
is used to avoid shot-noise (Smith, Scoccimarro & Sheth 2007;
Baldauf et al. 2010, 2013; Hamaus et al. 2010), and we follow the
approach of Villaescusa-Navarro et al. (2014) for the computation
of the two power spectra.

In Fig. 4, we show the ratio of the halo-matter bias for the IDE,
PNG, and IDE–PNG models, relative to the fiducial !CDM model.
As expected, PNG introduces a clear scale-dependence at large
scales. On the contrary, the bias in the IDE model appears to have
a slightly lower normalization than !CDM though retaining the
same evolution with scale as the standard scenario. This differ-
ent behaviour is most visible at higher redshifts, as shown in the

right-hand panel of Fig. 4, where the scale-dependence of the PNG
simulation is stronger. On non-linear scales, both PNG and IDE
show a maximum deviation relative to the reference model but in
opposite directions, with the amplitudes of the peak/minimum in-
creasing and their position moving towards smaller scales at higher
redshifts. These outcomes are all consistent with the previous lit-
erature (Matarrese & Verde 2008; Desjacques et al. 2009; Marulli,
Baldi & Moscardini 2012; Moresco et al. 2014) and qualitatively
show how the halo bias is affected at similar scales for both IDE
and PNG.

For the combined IDE–PNG scenario, we find that at z = 0
the halo bias retains some scale-dependence on large scales, i.e
k < 0.05 h Mpc−1, while it is nearly scale-independent on scales
0.05 h Mpc−1 <k < 0.5 h Mpc−1. Furthermore, it retains the lower
normalization that characterizes the IDE model at all scales. This
combination of the two effects is more clear at higher redshift, where
we can clearly identify two distinct regions for scale-dependent (k <

0.1 h Mpc−1) and scale-independent (k > 0.1 h Mpc−1) deviations
from the reference model. Also in this case, the simple superpo-
sition of the two separate effects, very accurately reproduces the
behaviour of the combined IDE–PNG simulation, thereby suggest-
ing that the two phenomena act on the biasing of collapsed structures
independently.

Similar to the non-linear matter power spectrum, the halo-matter
bias satisfies the β–fNL degeneracy relation, equation (22), on non-
linear scales, while this is broken at larger scales. We argue that
this may be due to the fact that our N-body implementation of IDE
as discussed above (see also Baldi 2011b), does not account for
the scale-dependent growth function on large scales due to CDM–
DE coupling and the contribution of large-scale DE perturbations
(i.e. it assumes the approximations Dc(k, z) ≃ Dc(z) and +φ = 0).
Therefore, including the effects of large-scale CDM–DE coupling
and DE perturbations should boost in a scale-dependent way the
IDE linear power spectrum and consequently the halo-matter bias
on large scales. This would recover the result of a mimicking de-
generacy at all scales that was obtained from linear perturbation
theory (Sec. 3). A proper verification of this conjecture would re-
quire major modifications to our N-body codes, that go beyond the
scope of the present paper, and we defer an extensive study on this
subject to future works.
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Figure 5. As in Fig. 3, for the halo mass function. The grey region represents the propagated Poissonian error of the number counts of haloes in each bin.

5.3 Statistical and structural properties of CDM haloes

In this section, we test the β–fNL degeneracy relation in the statistical
and structural properties of CDM haloes.

5.3.1 The halo mass function

We identified collapsed haloes in our simulations following a stan-
dard procedure, amounting to a first identification of particle groups
by means of a Friends-of-Friends (FoF) algorithm with linking
length l = 0.2d̄ , where d̄ indicates the mean inter-particle separa-
tion. On top of these FoF haloes we run the SUBFIND algorithm
(Springel et al. 2001) in order to identify gravitationally bound sub-
structures present within each group. The latter procedure allows to
assign to each FoF group the virial mass M200 of its primary sub-
structures, defined as the mass of a spherical region with its centre
on the particle with the halo’s minimum potential enclosing a mean
overdensity equal to 200 times the critical density of the universe.

Given these halo catalogues, we computed the halo mass function
for IDE, PNG, and the combined IDE–PNG models by binning the
halo masses into 13 logarithmically equally spaced mass bins over
the mass range 2.0 × 1012 M⊙ h−1 − 5.0 × 1014 M⊙ h−1. The lower
mass bound is set by the minimum halo mass resolved in the fiducial
!CDM model, composed of at least 20 particles.

In Fig. 5, we show the ratio of the cumulative HMF to the !CDM
model for IDE, PNG, and the combined IDE–PNG models. As
expected, IDE enhances the abundance of large mass haloes with
respect to the standard !CDM case, while PNG shows on the
contrary a suppression of the abundance of haloes in the high-mass
tail, consistent with previous results (Wagner et al. 2010; Cui et al.
2012)

The combined IDE–PNG model shows some level of degeneracy
with the standard !CDM cosmology at z = 0, with the combined
mass function being slightly lower than in the pure IDE case. The
degeneracy becomes more clear, given the larger amplitude of the in-
dividual effects, at higher redshifts (z = 1), where the IDE and PNG
deviations from the reference model reach about 25 − 30 per cent at
the largest masses with abundance suppression by only 5 per cent
in the combined case. Furthermore, the exponential dependence
on halo mass of the deviation with respect to !CDM is also sig-

Figure 6. The subhalo mass function for the cosmologies under investiga-
tion at z = 0. The grey region represents the propagated Poissonian error
of the number counts of subhaloes in each bin and the dotted black line
represents the superposition of IDE and PNG models.

nificantly weakened in the combined model. None the less, as a
mimicking degeneracy is never fully attained, the halo mass func-
tion seems not to follow the degeneracy relation of equation (22),
thereby providing a possible way to disentangle these phenomena.

The simple superposition of IDE and PNG models reasonably
agrees with the combined IDE–PNG simulation except in the low
mass end of the halo mass function at z = 0 (see left-hand panel of
Fig. 5) where some disagreement appears. This presumably could
be related to the poor resolution of small mass haloes thereby arising
due to numerical artefacts associated with the specific halo finder
that we employed.

5.3.2 The subhalo mass function

As a further statistic of structure properties at small scales, we
computed – for all our simulated cosmologies – the subhalo mass
function, defined as the number of subhaloes of mass Msub within
a main halo of virial mass M200. In Fig. 6, we display the ratio of
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Figure 7. As in Fig. 3, for the concentration–mass relation.

the subhalo mass function with respect to the measurements in the
!CDM simulation, as a function of the mass ratio Msub/M200. In
order to avoid resolution effects, we consider only subhaloes hosted
by cluster-size haloes, i.e. systems with M200 > 1014M⊙ h−1. We
underline to the reader that the measured subhalo counts in the
!CDM model are characterized by the typical slope of approxi-
mately −1 consistent with different previous findings (Gao et al.
2004; Giocoli et al. 2010; Despali & Vegetti 2017).

As can be seen from the figure, IDE suppresses the abundance
of sub-structures over the whole range of subhalo fractional mass,
even though the effect is small (about 3–5 per cent). On the contrary,
PNG enhances the abundance of subhaloes up to about 4 per cent
(for the highest values of the subhalo fractional mass) over the same
mass range. The combined IDE–PNG case shows again a quite
clear degeneracy, with a suppression never exceeding ≈1 per cent,
marginally consistent with the Poissonian error range of the !CDM
model. The simple superposition of IDE and PNG models is in
reasonable agreement with the combined IDE–PNG simulation.
These results underline that the β–fNL degeneracy relation seems to
remain valid also at the level of CDM halo sub-structures.

5.3.3 Halo concentration

Finally, we conclude our investigation of the combined effects of
IDE and PNG on structural properties of collapsed haloes by com-
puting the average halo concentration as a function of halo mass,
which is usually known as the concentration–mass relation (Zhao
et al. 2009; Giocoli, Tormen & Sheth 2012). In order to compute
the concentrations for the haloes identified in our simulations, we
adopt the NFW formula used in Springel et al. (2008):

δcon = 200
3

c3

ln(1 + c) − c/(1 + c)
= 14.426

(
Vmax

H0rmax

)2

, (25)

where δcon is the characteristic overdensity, c is the halo concentra-
tion, Vmax is the maximum circular velocity of the halo attained at
radius rmax. In Fig. 7, the ratio of the concentration-mass relation of
IDE, PNG, and the combined IDE–PNG models relative to !CDM
is presented at z = 0 (left-hand panel) and z = 1 (right-hand panel).

As expected, IDE haloes are found to be less concentrated with
respect to the fiducial !CDM case, in agreement with results given
in Baldi (2011b). Similarly, PNG with fNL < 0 also suppresses
halo concentrations (the opposite would occur for a positive fNL).
Therefore, for the first time we encounter an observational probe
showing deviations from !CDM pointing in the same direction for
IDE and our negative fNL PNG scenarios.

The combined IDE–PNG simulation, accordingly, shows an even
stronger suppression of the concentration–mass relation relative to
the !CDM model than the two individual models separately. The
effects are less pronounced at higher redshifts, while the trends and
the relative ordering of the various models is preserved. Superpo-
sition of the individual effects of IDE and PNG seems to agree
well with the combined simulation. This however indicates that the
β–fNL degeneracy is broken for the CDM halo concentration–mass
relation, which might then represent another direct way to disen-
tangle the models, when combined with another more degenerate
probe. It is also reasonable to emphasize that this effect is rela-
tively small; only future wide field observational campaigns – like
the future ESA-mission Euclid (Laureijs et al. 2011) – will be able
to collect the large number of galaxy groups and clusters (Sartoris
et al. 2016) necessary for these tests.

5.4 Statistical and structural properties of cosmic voids

In this section, we move our focus to underdense regions of the
universe by testing whether cosmic voids also follow the β–fNL de-
generacy relation. In order to identify cosmic voids in our set of sim-
ulations, we employ the publicly available void finder VIDE (Sutter
et al. 2015), which is based on the ZOBOV algorithm (Neyrinck
2008). The cosmic void identification is mainly done by means of
a Voronoi tessellation scheme that associates a polyhedrical cell
to each particle tracing the CDM density field. Subsequently, cell
volumes are compared in order to identify local density minima, i.e.
cells with a larger Voronoi volume than all their surrounding cells.
A hierarchy of identified voids is then obtained via the watershed
transform algorithm (Platen, van de Weygaert & Jones 2007), by
joining Voronoi cells around a local density minimum. In our anal-
ysis, we consider only voids with a central density that is below
the density of the universe by 20 per cent and a lower density con-
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Figure 8. As in Fig. 6, for the void number function.

trast limit 1.57, corresponding to a probability of voids arising from
Poisson noise below ∼5 per cent, i.e only voids at 2σ confidence
level are considered (Neyrinck 2008).

5.4.1 Void number function

As a first statistics for cosmic voids, we study their abundance as a
function of the void effective radius Reff, defined as the radius of a
sphere centred on the most underdense particle of a void and having
the same volume as the Voronoi volume of the void:

Vvoid ≡
N∑

i=1

V
p
i = 4

3
πR3

eff . (26)

In Fig. 8 we show the ratio of the void number functions relative
to the ones in the !CDM cosmology for all models under consid-
eration, as a function of the effective radius Reff at z = 0. From the
figure we see that IDE suppresses the number of cosmic voids with
effective radius Reff < 25h−1 Mpc by about 5 per cent relative to
the !CDM case, and correspondingly enhances the abundance of
larger voids by up to 40 per cent. The trend is qualitatively similar,
though quantitatively weaker (up to ranges Reff ≈30Mpc h−1), for
PNG, in agreement with previous results of Kamionkowski, Verde
& Jimenez (2009). However, PNG strongly suppresses void number
function at Reff ≈40Mpc h−1, while IDE enhances it by 40 per cent
at the same scales.

The combined IDE–PNG simulation shows suppression of the
void number function for radii Reff < 25h−1 Mpc, similar to the IDE
case and barely enhances the void abundance at Reff > 25h−1 Mpc
relative to the !CDM case, so that it is indistinguishable within the
!CDM Poisson error range at these radii. As we did for all previous
observables, we also compute the simple superposition of the two
effects, by taking the product of the two separate deviations with
respect to the reference case. For the first time in our analysis, we
see that such a superposition fails to reproduce the results of the
combined simulation at large void effective radii: this follows from
comparing the black dotted curve, representing the analytical super-
position, with the blue squares, showing the combined simulation in
Fig. 8. In this case we notice that the simple superposition of the two
fields tends to be mainly dominated by the IDE not leaving much
contribution to the PNG. This suggest that in the full simulation, in
void regions, a cross-talk term between the two non-standard exten-
sions emerges moving down the void number counts with respect
to the simple superposition.

This suggests that the two phenomena interplay in some way in
shaping the growth of large cosmic voids, and cannot be considered
as fully independent in this regime. In any case, we notice that the
β–fNL degeneracy is fulfilled by the abundance of cosmic voids with
large effective radii (Reff > 25h−1 Mpc), while it does not seem to
apply at smaller void radii.

5.4.2 Void density profiles

To further check the β–fNL degeneracy on cosmic void structural
properties, we computed the average void density profiles for two
different bins of void radius, namely 0 < Reff < 20h−1 Mpc and
20 < Reff < 40h−1 Mpc. We do this by stacking individual den-
sity profiles of 100 randomly selected voids, for each radius bin,
corresponding among the different cosmological simulations. We
display the ratio of the resulting void mean density profiles in Fig. 9
for all considered models, relative to !CDM at z = 0. The grey
area represents the 2σ confidence limit, computed by means of a
bootstrap re-sampling technique.

Again, we compare the observational signature of the individual
IDE and PNG models with their combination. As can be seen from
the plot, cosmic voids in the IDE case tend to have a lower inner
density than their !CDM counterparts. This indicates that cosmic
voids are emptier in the IDE case, fully consistent with previous
results (see e.g. Pollina et al. 2016). Correspondingly, the compen-
sating overdensity around the effective radius Reff is found to be
more prominent than in !CDM. On the other hand, PNG shows
a negligible effect on cosmic void density profiles. It is then not
surprising that the combined IDE–PNG model also shows lower
density profiles in the central regions of the voids. This result also
shows that cosmic voids do not seem to follow the same degeneracy
relation that applies for most of the observables related to properties
of the overdense regions of the universe.

6 D I S C U S S I O N A N D C O N C L U S I O N S

The concept of observational degeneracy in cosmology arises in
several different forms: (1) Parameter Degeneracy represents the
existence of large error correlations between different model param-
eters for specific measurements (Efstathiou & Bond 1999; Crooks
et al. 2003; Tereno et al. 2005; Howlett et al. 2012); (2) Dark De-
generacy reflects the fact that gravitational experiments measure
the energy-momentum tensor of the total dark sector and splitting
into dark energy and dark matter is arbitrary (Kunz 2009; Aviles
& Cervantes-Cota 2011); (3) Mimicking Degeneracy occurs when
cosmological models different from the standard !CDM mimic
some of its specific features, like background expansion and the
growth of matter perturbations (Fay, Nesseris & Perivolaropoulos
2007; Setare & Mohammadipour 2013; Fay 2016).

Cosmic degeneracy of IDE has been investigated in the literature
(Clemson et al. 2012; Väliviita & Palmgren 2015), including the
partial mimicking degeneracy of IDE and MG (Wei & Zhang 2008;
Koyama et al. 2009; Wei et al. 2013). A mimicking degeneracy be-
tween PNG in the power spectrum in the Newtionian approximation,
and the correct general relativistic power spectrum with Gaussian
initial conditions, has been shown by Bruni et al. (2012) and Jeong,
Schmidt & Hirata (2012). Also, parameter degeneracy has been
investigated in the non-Gaussian halo bias by Carbone, Mena &
Verde (2010). Moreover, Abramo & Bertacca (2017) investigated
the degeneracy of large-scale velocity effects on galaxy cluster-
ing with the (local) non-Gaussianity parameter fNL, by simulating
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Figure 9. The ratio of the stacked void density profiles in two different ranges of effective radius Reff = 0−20 (left-hane panel) and Reff = 20−40 (right-hand
panel) to the standard model at z = 0. The grey region represents the 2σ bootstrap standard deviation of 1000 re-sampled profiles.

galaxy surveys and combining the clustering of different types of
tracers of LSS. They studied how large-scale velocity contributions
could be mistaken for the signatures of primordial non-Gaussianity
(see also Raccanelli et al. 2014, 2018).

In this paper – as part of a Cosmic Degeneracies paper series
(Baldi et al. 2014; Baldi & Villaescusa-Navarro 2018) – we have
considered the mimicking degeneracy between IDE and PNG that
was first shown in linear perturbation theory by Hashim et al. (2014).
Since IDE can mimic PNG, the possibility exists that we can choose
IDE and PNG parameters such that the two effects cancel, i.e.
produce standard !CDM behaviour. We confirmed this mimicking
degeneracy in the halo power spectrum on very large scales, i.e. k
" keq, based on purely analytical calculations in the linear regime.
We then fitted the degeneracy relation with a power law, fNL∝β−γ

(depicted in Fig. 2), by minimizing the residual of the halo power
spectrum for the combined IDE–PNG model with respect to the
mimicked !CDM model.

To further investigate and validate the β–fNL degeneracy, equa-
tion (22), at non-linear scales, we employed a suite of specifically
designed N-body simulations including the effects of IDE and PNG,
both separately and combined with each other. In order to increase
the effects under investigation and more easily detect their signa-
tures we chose very large values of the PNG parameter fNL, which
are already ruled out by the most recent CMB observations. Still,
such values could be achieved at the scales tested by our simula-
tions for simple extensions of the PNG model such as e.g. a scale-
dependent fNL. We extracted from our simulations a set of standard
statistics, and we studied their deviations from the reference Gaus-
sian !CDM model. In particular, we did investigate:

– The non-linear matter power spectrum, for which we observed
that the mimicking degeneracy persists, remarkably, on non-linear
scales in the sense that the scale-dependent deviation with respect
the reference !CDM scenario characterizing the two separate mod-
els at non-linear scales disappears in the combined simulation even
though the difference in the linear power normalization due to the
enhanced growth rate in IDE is not removed;

– The halo matter bias, for which we find similarly to the non-
linear power spectrum, that the scale-dependence imprinted by the
two different models at non-linear scales is also strongly sup-
pressed in the combined simulation while on linear scales such

scale-dependent feature is retained and so breaks the observed de-
generacy;

– The halo mass function, which also shows some level of degen-
eracy though not satisfying equation (22) for the degenerate β–fNL

values thus allowing us to disentangle the observed degeneracy;
– The subhalo mass function, also showing mimicking degener-

acy over the whole subhalo mass range availabe in our simulations;
– The halo concentration–mass relation, which we found to be

the first observable to explicitly break the degeneracy as both PNG
and IDE have qualitatively the same impact on halo concentrations,
namely to suppress concentrations at a given mass with respect to
the reference !CDM scenario;

– The void number function showing mimicking degeneracy for
large voids (Reff > 25−30h−1Mpc) while the degeneracy is broken
for smaller void radii;

– and the void density profiles for which, similarly to the case of
the concentration–mass relation, the mimicking degeneracy is also
not observed at all as both individual models predict a lower inner
density of cosmic voids compared to !CDM.

Therefore, we conclude that measurements of CDM halo and cos-
mic void internal structural properties, namely halo concentration–
mass relation and void density profile would allow us basically to
break the degeneracy when combined to any of the other probes
that we investigated in this work.

In principle, this degeneracy creates difficulties in identifying
the simultaneous presence of IDE and PNG, and in accurately con-
straining them separately. However, in practice, the degeneracy only
arises for values of |fNL| that are ruled out by current constraints.
Nevertheless, our investigation has shown which non-linear probes
could be most useful for improving constraints on IDE and PNG.
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