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ABSTRACT 

Hybrid systems have great potential for a wide range of applications in chemistry, 

physics and materials science. Conjugation of a biosystem to a molecular material can 

tune the properties of the components or make new ones arise. As a workhorse, here 

we take C60@lysozyme hybrid. We show that lysozyme recognizes and disperses 

fullerene in water. AFM, Cryo-TEM and high resolution X-ray powder diffraction 

show that the C60 dispersion is monomolecular. The adduct is biocompatible, stable in 

physiological and technologically-relevant environments, and easily storable. 
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Hybridization with lysozyme preserves the electrochemical properties of C60. EPR 

spin-trapping experiments show that the C60@lysozyme hybrid produces ROS 

following both the type I and type II mechanisms. Due to the shielding effect of the 

protein, the adduct generates significant amounts of 
1
O2 also in aqueous solution. In 

the case of the type I mechanism, the protein residues provide the electron and the 

hybrid does not require addition of external electron donors. The preparation and the 

properties of C60@lysozyme are general and can be expected to be similar in other 

C60@protein systems. It is envisaged that the properties of the C60@protein hybrids 

will pave the way for a host of applications in nanomedicine, nanotechnology, and 

photocatalysis. 
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INTRODUCTION 

C60 retains a privileged status in the carbon family and continues to stimulate the 

development of new platforms for producing advanced materials.  Versatile 

technological applications of fullerenes have been proposed and are in continuous 

development in different fields that cover lubricants, superconductors, sensors, solar 

cells, pharmaceutical scaffold, contrast agents, therapeutic agents in cancer therapy, 

and, in general, new applications for nanotechnology
1-11 

and nanomedicine.
4,12-17

 

The insolubility of fullerene in a physiological environment and the formation of 

fullerene aggregates, also in organic solvents, hampers its exploitation.
18

 The 

photophysical and photochemical properties of C60 depend strictly on the nature of the 

fullerene dispersion and a strict control of the dispersion is truly necessary for 

technological applications.
19,20

 

Different approaches have been used to increase the dispersion of fullerenes, each 

with its own drawbacks:  

i) Mechanical dispersion-stabilization of C60,
21

 either through ultrasonication
22

 or by 

solvent-exchange methods.
23

 These mechano-physical approaches generate only 

metastable dispersions of fullerenes, that eventually re-aggregate. These harsh 

treatments may determine uncontrolled modifications of the chemical surface of C60.
24

  

ii) Synthesis of water-soluble fullerene derivatives by chemical functionalization with 

hydrophilic groups of pristine fullerene.
4,25,26

 The chemical functionalization of the 

fullerene shows limitations due to fact that soft derivatization processes maintain the 

tendency of these amphiphilic C60 derivatives to aggregate,
27

 while multiple 

functionalization leads to the alterations of the unique structure of fullerene  and has a 
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negative influence on its peculiar properties; thus, restricting the potential for 

applications.  

iii) Use of dispersants such as surfactants, block copolymers, amphiphilic polymers, 

micelles and liposomes.
28,29

 The use of dispersants is effective and a large quantity of 

C60 can be dispersed also in water. The resulting solutions are characterized by 

polydispersion of fullerene aggregates of different sizes, because the fullerenes may 

exist in the form of both small aggregates solubilized within the hydrophobic core of 

the nanostructures formed by the dispersants and large aggregates stabilized by 

surface adsorption of the dispersants.
28,29

  

iv) Dispersion of C60 by suitable carriers endowed with hydrophobic cores, such as 

cyclodextrins, calixarenes, and other macrocyclic receptors or molecular 

tweezers.
30-32 

The supramolecular approach is the most effective way to obtain 

monodispersed pristine fullerenes. Subsequent aggregation of the inclusion 

complexes
33

 is common and for some biological application the fullerene host may be 

toxic. 

Many proteins are known to interact with fullerenes.
34-66 

Few are the studies that aim 

to exploit the protein-C60 recognition process for technological application. When 

proteins were used to disperse fullerene in water, they were simply used in lieu of 

surfactant molecules,
67,68 

leading to fullerene aggregates of various sizes.
67,68

 We 

recently proposed an innovative approach, using a protein, namely lysozyme, to 

disperse with a 1:1 stoichiometry C60.
36,44

  The recognition is well-defined and the 

fullerene binds selectively in the protein substrate binding pocket.
36,44

 Lysozyme, as 

many proteins, follows, as a supramolecular host, the set of rules defined by Martin 

and Perez
69,70

 to recognize efficiently carbon nanomaterials
36,71 

which entail i) the 

presence of a nonpolar cavity, featuring aromatic recognizing units (Trp residues), of 
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the appropriate size to fit the fullerene cage; ii) a recognition process based on 

concave-convex complementarity; iii) a high degree of pre-organization of the host 

(due to the 3D structure of the protein) that lowers the entropic cost for guest binding.  

 

RESULTS AND DISCUSSION  

C60@lysozyme hybrids were prepared in an Eppendorf by adding C60 powder in a 

solution of lysozyme. The Eppendorf was ultrasonicated and after centrifugation and 

collection of the supernatant, a brown solution was obtained. UV-vis spectrum of the 

solution (Figure 1) clearly demonstrates the presence of fullerene in water, in 

particular notice the diagnostic band at 341 nm. This dispersion system is more 

efficient that the commonly used -cyclodextrin, that represents the most popular way 

to disperse C60 in water (Figure 1). The absorbance at 341 nm for C60@lysozyme 

(0.515) is 1.76 higher than C60 dispersed with -cyclodextrin (0.293). 

 

Figure 1. UV-visible spectra of C60@lysozyme hybrids (red line) and C60@2-

cyclodextrin (black line).  

 

AFM Imaging of C60@Lysozyme hybrids. NMR experiments have already shown 

the formation of a 1:1 stoichiometric adduct between lysozyme and the fullerene.
36

 A 
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direct measure of the dispersion of the C60@lysozyme hybrid is provided by atomic 

force microscopy (AFM). In Figure 2a the C60@lysozyme hybrids appear 

monomoleculary dispersed over a mica surface. Height distribution analysis (Figure 

2b) of the AFM images is consistent with that of a singly adsorbed C60@lysozyme 

monodispersed and confirms the lack of presence of C60@lysozyme aggregates, or 

nC60 aggregates dispersed by the protein.  

 

Figure 2. a) AFM image of C60@lysozyme, top view (500 nm x 500 nm), scale bar 

100 nm; b) Height distribution analysis of the AFM images.  

 

To eliminate possible surface-effects due to adsorption of proteins on a surface, cryo-

TEM experiments were carried out on the C60@lysozyme solution. Cryo-TEM images 

allowed direct visualization of the dispersion state in solution of the C60@lysozyme 

hybrids (Figure 3a).
72

 The particle size distribution (Figure 3b) shows that the 

C60@lysozyme are monodispersed and there is no presence of nC60 aggregates. These 

aggregates were previously observed when proteins or other surfactants were used as 

dispersants. They showed faceted, high-contrast particles, characteristic of crystalline 

aggregates.
68,69,73

 

Furthermore, when fullerene aggregates (nC60) are present in solution, X-ray 
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diffraction patterns show peaks that evidence the presence of crystalline aggregates of 

fullerene.
74,75

 The high resolution X-ray powder diffraction pattern of a freeze-dried 

C60@lysozyme solution does not show any diffraction peak (Figure 3c).  

 

Figure 3. a) Cryo-TEM image of C60@lysozyme solution, scale bar 20 nm; b) 

Particle size distribution of the C60@lysozyme; c) High resolution X-ray powder 

diffraction of C60 (blue line), lysozyme (red line) and C60@lysozyme (green line).  

 

These data confirm the absence of C60 crystalline aggregates in solution, the ability of 

lysozyme to disperse monomolecularly C60 and more importantly provide a route for 

the storage of monodispersed fullerene by lyophilization. In fact, re-dissolution of the 

lyophilized powder gives back a solution with the same characteristic of the starting 
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C60@lysozyme solution. 

Stability of C60@lysozyme hybrids. The analysis of the stability of C60@lysozyme 

at different pH’s shows that the solution is stable up to the isoelectric point of 

lysozyme (pH 10.7), where aggregation occurs (Figure 4a).   

 

Figure 4. C60@lysozyme: a) Absorbance vs pH; b) zeta potential at different NaCl 

concentrations. 

 

The C60@lysozyme adduct is stable also at different saline concentrations, up to 

physiological concentration (Figure 4b), while usually C60 dispersed by -

cyclodextrins or nC60 rapidly precipitates when NaCl is added.
23

 This mean that the 

C60 solubility is governed entirely by the protein. The solutions of C60@lysozyme 

remain stable for months in water.  The formation of monodispersions and stability of 
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C60@lysozyme, in water and in saline solutions, open the way for technological 

applications able to exploit the chemical-physics properties of C60 in physiological 

and technological relevant environments.  

 

Electrochemical  characterization of C60@lysozyme hybrids 

In Figure 5a the cyclic voltammetry recorded for the C60@lysozyme hybrids and for 

lysozyme are shown.  

 

Figure 5. a) Cyclic voltammograms of C60@lysozyme hybrids (bold line) and pristine 

lysozime (dashed line), scan rate 5 mV/s. b) C60@lysozyme reduction peak baselines 

subtracted scan rate 5 mV/s (gray line), 20mV/s (blue line). A glassy carbon was used 

as working electrode in 10 mM NaCl aqueous solution, the potentials are reported 

towards SCE reference electrode. 
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C60@lysozyme shows a reduction peak at -0.49 V vs SCE and an oxidation peak at -

0.24 V vs SCE. No peaks were observed in the same potential window for the pristine 

lysozyme. The peak-peak separation is 250 mV in accordance with a slow charge 

transfer probably due to the hindrance of the C60 charge transfer to the electrode 

caused by the protein. In Figure 5b, the reduction peaks of C60@lysozyme, subtracted 

for the baseline recorded at 5 and 20 mV/s, are reported. The potential of the 

reduction peak is around -0.5 V vs SCE. This potential is more negative than the one 

recorded for C60 in organic solvent, a behavior that is due to the partial charge transfer 

of the amino acids constituting the binding site to the C60 moiety. We already showed 

that two tryptophan residues tightly interact with the C60 cage in the binding site
36

 and 

that they establish a charge transfer process toward C60.
36

    

C60 presents six possible reduction waves, anyway they are only rarely observed in 

ultra-dry solvents, typically 2-3 quasi-reversible reduction waves are observed in 

organic solvents. Here, we report for the first time the electrochemical behaviour of a 

C60@protein complex monodispersed in water, which retain the first reduction wave 

of C60. This process appears to be irreversible in the investigated conditions. The 

voltammetric study confirms that the first reduction of C60 is observable even when 

the carbon cage is confined in the protein binding pocket. In turn, modification of the 

pocket may tune C60 redox potential.  Since fullerenes are ideal electron mediators, 

C60@protein hybrids can lead to new applications of C60 in electrochemical catalytic 

systems or in biosensing.
10-12 

 

 

Photoinduced reactive oxygen species (ROS) generation by C60@lysozyme 

hybrids 
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C60 shows a significant visible light-induced generation of ROS, that can be exploited 

in photodynamic therapy
76-87 

or photocatalysis.
88-91

 However, the use of C60 molecules 

in water still presents important restrictions in its application due to both the 

dependency of C60 properties on the physiological environment and the related 

aggregation phenomena
92

 and C60 poor solubility.
18

 Aggregation is a well-known 

factor that deactivates the electronically excited states of photosensitizers, drastically 

decreasing the long-lived triplet excited state lifetime, and consequently reducing the 

ROS production efficiency.
19,20,92,93

 When fullerene aggregates are present, 
3
C60

*
 is 

rapidly quenched by the surrounding C60 or by other 
3
C60

*
.
20

 In addition, aggregation 

reduces the active surface area of C60 in contact with oxygen molecules for ROS 

production. The possibility to use C60@lysozyme may overcome the current 

limitations. 

Two different pathways can be identified for the production of ROS upon light 

absorption by C60. In the simpler pathway (also known as type II energy transfer), the 

singlet excited state of C60, initially formed, is converted to the long lived triplet state 

through intersystem crossing with a quantum yield close to unity. 
3
C60 can be 

efficiently quenched by molecular oxygen (
3
O2) to generate large amounts of singlet 

oxygen (
1
O2). In the more complex pathway (also known as type I electron transfer), 

3
C60 in the presence of electron donors gives the C60 radical anion that can readily 

transfer the electron to molecular oxygen forming the superoxide anion radical (O2


) 

or hydroxyl radical
 
(

OH). EPR measurements with the use of a spin trap can be used 

to verify the presence of the two pathways. 

1
O2 production was detected by EPR using 2,2,6,6-tetramethyl-4-piperidone (4-oxo-

TEMP) as a probe. Actually, 4-oxo-TEMP reacts with 
1
O2 to afford 4-oxo-TEMPO 

nitroxide radical (see Figure 6a) that can be detected by EPR. The measurements were 



 13 

carried out by irradiating with visible light the aqueous solution containing lysozyme, 

C60@lysozyme, and C60@2-cyclodextrin. All solutions were prepared at the same 

fullerene concentration (identified by same intensity of absorption at 341 nm).  When 

lysozyme and C60@2-cyclodextrin were irradiated up to 15 minutes in the presence 

of 4-oxo-TEMP no significant increase of the signal due to 4-oxo-TEMPO was 

detected by EPR. On the contrary, the specific signals of 4-oxo-TEMPO significantly 

increases when C60@lysozyme is photoirradiated for 15 min (see Figure 6b). This 

result suggests that a significant amount of 
1
O2 is generated in the aqueous solution 

during irradiation of C60@lysozyme and that the protein environment strongly reduces 

the quenching of the singlet oxygen by water molecules.  

 

Figure 6. a) Reaction scheme for the generation of 4-oxo-TEMPO by the reaction of 

1
O2 with 4-oxo-TEMP; b) X-band EPR spectra of 4-oxo-TEMPO formed in aqueous 

solution of C60@lisozyme complex at different irradiation times. 
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The pathway for ROS generation was also investigated by using EPR with 5,5-

dimethyl-1-pyrroline-N-oxide (DMPO) as a spin-trapping reagent. The generation of 

.
OH was detected through an EPR signal corresponding to DMPO-OH, formed by the 

reaction of 
.
OH with DMPO (figure 7a).   

 

Figure 7. a) Reaction scheme for the generation of DMPO-OH by the reaction of 
.
OH 

with DEMPO; b) X-band EPR spectra of DMPO-OH formed in aqueous solution of 

C60@lisozyme complex at different irradiation times; c) X-band EPR spectra of 

DMPO-OH at time 0 and after 15 minutes of photoirradiation for C60@2-

cyclodextrin, lysozyme and C60@lysozyme. 

 

Figure 7b shows clearly the specific signals of DMPO-OH (aN=aH=14.75 G), which 

was produced upon irradiation by the reaction of DMPO with the radical oxygen 

species generated by C60@lysozyme. During the initial minutes of irradiation, the 

spectrum shows also the presence of an alkyl adduct to DMPO (aN = 15.80 G, aH = 
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22.52 G). Extension of irradiation, however, leads to a significant decrease in the 

intensity of this signal.  

With C60@2-cyclodextrin or lysozyme the amount of radical oxygen species 

generated by irradiation of the aqueous solution was significantly smaller, as 

indicated by the very weak EPR signal recorded in these conditions (figure 7c). 

Importantly, in the case of the type I mechanism, measurements involving C60 need 

the addition of a sacrificial electron donor, as for example NADH or triethylamine. 

C60@lysozyme hybrid, however, does not need any external electron donors because 

the protein residues do this work.  This means that the type I mechanism is self-

activated in the C60@lysozyme hybrid, due to the presence of the protein itself. 

The high performances of C60@lysozyme in the visible light-induced generation of 

ROS in water suggest the potential use of this hybrid as an agent for photodynamic 

therapy.
76-87

 Photogenerated singlet oxygen can be used also in synthetic organic 

chemistry.  Even though singlet oxygen is a short-lived metastable excited state of 

molecular oxygen, it is a practical reagent for compound oxidation and can form 

carbon-oxygen and heteroatom-oxygen bonds.
88-91

 

 

CONCLUSION 

In this paper we demonstrated that lysozyme can be used as a host molecule to 

recognize and disperse fullerene in water. AFM, Cryo-TEM and high resolution X-ray 

powder diffraction showed that the C60 dispersion is monomolecular. The adduct is 

biocompatible, stable in physiological and technologically-relevant environments, and 

easily storable. The electrochemical properties of C60 are preserved in the 

C60@proteins hybrid suggesting new applications in electrochemical catalytic 

systems, biosensing or bioelectronics. EPR spin-trapping experiments showed that the 
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C60@lysozyme hybrid is able to produce a considerable amount of ROS following 

both the type I and type II mechanism. This behavior suggests potential application of 

C60@proteins in photodynamic therapy or in organic synthesis as singlet oxygen 

generator. Considering the use of C60 in nanomedicine, C60@proteins hybrids may be 

also potentially used for sonodynamic therapy, enhanced microwave and radiowave 

induced hyperthermia, photothermal treatment and optoacoustic imaging.  

In addition, the different chemical groups offered by the protein platform allow an 

easy route for the functionalization of the hybrid, without altering the structure and 

properties of fullerene. C60@protein hybrids could be augmented by using 1) targeting 

tags able to improve the cell/bacterial selectivity and promote the uptake of the 

C60@proteins hybrid in cancer or antimicrobial therapy; 2) imaging tags to create an 

innovative, protein based theranostic platform; 3) light-harvesting antennae to extend 

the absorption spectrum of the C60@proteins hybrid further into the red. Furthermore, 

these hybrids could be used to create stable and ordered C60 suprastructures on 

surfaces with potential applications in nanotechnology, ranging from sensors and 

photovoltaic cells to nanostructured devices for advanced electronic applications. 

Proteins other than lysozyme can be exploited in the future to tune the C60 properties
94

 

and to shape a variety of C60 spatial arrangements on surfaces, controlling the C60 

molecular assembly. C60 has not yet exhausted its role as a leading material, because 

its integration in biomolecules will pave the way to new innovative applications. 

 

MATERIALS AND METHODS 

Synthesis of C60@lysozyme and C60@2-cyclodextrin hybrids. 

The adduct of C60@2-cyclodextrin and C60@lysozyme was synthesized as described 

previously.
36

 C60 powder (Sigma-Aldrich, Cat. no. 483036) was used in 2:1 excess 
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with respect to the stoichiometric relationship to 1 mL of a 1 mM solution of 

lysozyme (lysozyme from chicken egg white lyophilized powder, Cat. no. L6876) 

or-cyclodextrin (Sigma-Aldrich, Cat. no. C4892) in Milli-Q water. After sonication 

for 60 min using a probe tip sonicator (Hielscher Ultrasonic Processor UP200St, 

equipped with a sonotrode S26d7, used at 45% of the maximum amplitude) in an ice 

bath, C60 was dispersed in the solution forming a dark brown mixture. A dark-brown 

solution was obtained after centrifugation at 10 600g for 10 min and the supernatant 

was collected. In order to eliminate possible ROS generated during the sonication 

process, the solution has been washed four times with the 3K Amicon Ultra-0.5 

Centrifugal Filter Units, using a volume of 500 mL and spinning at 14 000 g for 20 

minutes, obtaining a concentration factor of 8. After each spin the volume of the 

concentrated solution has been brought back to its original value using Milli-Q water. 

UV-vis absorption spectra were recorded at 25 C° by means of Agilent Cary 60 UV-

Vis Spectrophotometer. Zeta potential measurements were carried out using a 

Malvern Zetasizer Nano ZS. 

AFM measurements. AFM experiments were performed at the SPM@ISMN 

microscopy facility in Bologna. AFM (Digital Instruments, Multimode VIII equipped 

with a Nanoscope V) operated in ScanAsyst mode was used to analyze the dispersion 

state of the proteins. The samples for AFM measurements were prepared by drop 

casting 5 l of C60@lysozyme hybrids solution onto a freshly cleaved mica substrate 

for 10 min then rinsed with milliQ water and dried with a stream of N2. Height 

distribution from AFM  images was calculated using Gwyddion. 

Cryo-TEM microscopy. Sample vitrification was performed using an automated 

vitrification robot (FEI Vitrobot™ Mark III) for plunging in liquid ethane. TEM Cu 

Quantifoil grids, R2/2 (Quantifoil Micro Tools GmbH) were surface plasma cleaned for 
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40 s using a Cressington 208 carbon coater prior to use. The samples were studied on the 

TU/e Cryo Titan (FEI, http://www.cryotem.nl), equipped with a field emission gun (FEG) 

operating at 300 kV and a post column Gatan energy filter (GIF). Images were recorded 

using a post-GIF 2k x 2k Gatan CCD camera in low dose conditions. Particle diameters 

were measured with the Measure_lengths script from the CMEM toolbox. As spherical 

symmetry was assumed, the diameter was averaged over the ‘length’ and the ‘width’. For 

each image, 6 regions were selected, in which approx. 33 particles were measured. Data 

was analyzed with Origin. The data was binned in bins with sizes set equal to the pixel size 

(0,2814 nm). 

X-ray powder diffraction measurements. High resolution X-ray powder diffraction 

(HRPXRD) measurements were collected with a dedicated high-resolution powder 

diffraction synchrotron beamline (ID22 at the European Synchrotron Radiation 

Facility (ESRF), Grenoble, France) using as wavelength 0.039 nm. The C60@protein 

water dispersions were lyophilized before the HRPXRD measurements. 

Electrochemical  characterization of C60@lysozyme hybrids. 

Instrumentation. The electrochemical measurements were performed using a 

CHI900B bipotentiostat (from CH Instruments Inc. Austin, TX) in a typical three-

electrode configuration cell. A glassy carbon (ø = 1 mm) was used as working 

electrode (WE), a platinum wire as counter electrode (CE) and a saturated calomel 

electrode (SCE) as reference electrode (RE). The working electrode was carefully 

polished before its use by mechanical polishing employing 0.05 mm alumina paste 

and successively cleaned ultrasonically in distilled water for 5 min.  

 Measurement. The solution (PBS 1x) was degassed by bubbling Ar for at least 30 

min before measuring and the cyclic voltammetry was carried out by cycling the 
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potential range from 0.0 to -0.8 V at different scan rate: 5 mV/s– 10mV/s – 20mV/s – 

50mV/s – 100mV/s. 

 

EPR spectroscopy. EPR spectra were recorded at 298 K using an ELEXYS E500 

spectrometer equipped with an NMR gaussmeter for the calibration of the magnetic 

field and a frequency counter for the determination of g-factors that were corrected 

against that of the perylene radical cation in concentrated sulfuric acid (g = 2.002583). 

Light irradiation and EPR measurements were carried out on the sample in a capillary 

tubes (1 mm i.d.). Measurement conditions: modulation amplitude = 1.0 G; 

conversion time = 163.84 ms; time constant = 163.84 ms; modulation frequency 100 

kHz; microwave power = 6.4 mW; microwave frequency 9.375 GHz. 

1
O2 generation by the EPR spin-trapping method. 

1
O2 was detected by EPR using 

2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP, Sigma-Aldrich, Cat. no. 459119) as 

probe. To 0.1 mM C60@lysozyme (40 L) in milliQ water, 0.5 M 4-oxo-TEMP (20 

L), and milliQ water (140 L) were added and mixed well. The mixed solution was 

introduced into a capillary tube, deaerated under nitrogen flux, sealed and placed 

inside an EPR tube. The sample was irradiated by a UV-filtered 500 W high pressure 

mercury lamp and subjected to EPR measurements. The generation of singlet oxygen 

was detected by the three line EPR signal (aN= 16.13 G) corresponding to 4-oxo-

TEMPO, formed by the reaction of 
1
O2 with 4-oxo-TEMP. 

.
OH generation by the EPR spin-trapping method. 

.
OH was detected by EPR using 

5,5-dimethyl-1-pyrroline-N-oxide (DMPO, Sigma-Aldrich, Cat. no. 92688) as a spin-

trapping reagent. To a 0.1 mM C60@lysozyme (40 L) in milliQ water (20 L), 0.1 

mM DMPO (2 L), and milli Q water (180 L) were added and mixed well. The 

mixed solution was introduced into a capillary tube, deaerated under nitrogen flux, 
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sealed and placed inside an EPR tube. The sample was irradiated by a UV-filtered 500 

W high pressure mercury lamp and subjected to EPR measurements. The generation 

of 
.
OH  was detected as five line signal corresponding to DMPO-OH, formed by the 

reaction of 
.
OH with DMPO (aN = aH = 14.75 G).  
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