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Semi-automatic spline fitting of planar curvilinear
profiles in digital images using the Hough transform

Costanza Contia, Lucia Romanib, Daniela Schenoneb,∗

aDipartimento di Ingegneria Industriale, Università di Firenze,
Viale Morgagni, 40/44 - 50134 Firenze, Italy

bDipartimento di Matematica e Applicazioni, Università di Milano-Bicocca,
Via R. Cozzi 55 - 20125 Milano, Italy

Abstract

We develop a novel method for the recognition of curvilinear profiles in digital
images. The proposed method, semi-automatic for both closed and open planar
profiles, essentially consists of a preprocessing step exploiting an edge detection
algorithm, and a main step involving the Hough transform technique. In the
preprocessing step, a Canny edge detection algorithm is applied in order to ob-
tain a reduced point set describing the profile curve to be reconstructed. Also,
to identify in the profile possible sharp points like cusps, we additionally use
an algorithm to find the approximated tangent vector of every edge point. In
the subsequent main step, we then use a piecewisely defined Hough transform
to locally recognize from the point set a low-degree piecewise polynomial curve.
The final outcome of the algorithm is thus a spline curve approximating the
underlined profile image. The output curve consists of polynomial pieces con-
nected G1 continuously, except in correspondence of the identified cusps, where
the order of continuity is only C0, as expected. To illustrate effectiveness and
efficiency of the new profile detection technique we present several numerical
results dealing with detection of open and closed profiles in images of different
type, i.e., medical and photographic images.

Keywords: Hough Transform, Profile recognition, Spline fitting,
G1-continuity, Cusps

1. Introduction

The Hough transform is a well-established and robust technique used in im-
age analysis and digital image processing to recognize shapes in images with
noisy backgrounds (see [12] and references quoted therein). The Hough trans-
form was introduced in 1962 as a computational tool to detect straight lines in
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images [9]. Later, in 1972, it was extended to detect also circles and ellipses
[8]. Other more recent applications of the Hough transform technique for a
faster detection of circles in images and for the complete detection of segments
of lines with particular regard to their width, can be found in [10] and [18],
respectively. A successive development of the feature detection procedure via
the Hough transform was the introduction of the generalized Hough transform,
aimed at extracting from images more complicated shapes that cannot be rep-
resented analytically in 2D space [3]. The idea behind the generalized Hough
transform is that an arbitrary, non-analytic (but fixed) shape can be detected us-
ing the principle of template matching, namely by means of a predefined look-up
table of a prototypal shape. More recently, exploiting algebraic geometry ar-
guments, the Hough transform definition has been further extended to include
also special classes of curves whose algebraic forms are known, but are signifi-
cantly more complicated than straight lines or conics [1, 4, 5, 11]. Specifically,
irreducible algebraic plane curves like elliptic curves, curves with 3 convexities,
Wassenaar curves, conchoids of Slüse and piriform curves have been considered
and the standard line and conic detection algorithm has been extended to the
detection of such curves. To provide an efficient procedure for describing a real
profile as a collection of different algebraic pieces from the same family, a pixel–
continuous piecewise Hough transform has been recently introduced [15]. The
main drawbacks of this method are that it is not automated, as it needs to know
in advance a family of curves that can reasonably approximate the shape to be
recognized, and the output curve is not continuous, but only pixel–continuous.

Prompted by the mentioned drawbacks, in this paper we develop a new tech-
nique for the semi-automated recognition of both closed and open curvilinear
profiles in 2D digital images, that requires as input neither a family of prede-
fined curves nor a predefined look-up table of a prototypal shape. Our method
retains one of the main benefits of the Hough transform, i.e., the robustness
with respect to background noise. Differently from the previously developed
algorithm, our procedure approximates the sought profile with a G1 continuous
spline curve, eventually containing C0 junctions where cusps occur.

The organization of the paper is as follows. In Section 2 we introduce some
basic definitions and results about the Hough transform for straight lines and
algebraic curves. In Section 3, the core of our paper, we present the general idea
behind the new spline-based profile recognition method via piecewise Hough
transform. In Section 4 we get more into details and provide a sketch of our
algorithm. To test the validity of the suggested approach, in Section 5 we present
several application examples dealing with the recognition of profiles coming
from images of different type. Two of them are slice images from computer
tomography (CT) scans, with or without noise, while two other application
examples deal with photographic images, with or without noise. Finally, in the
last section we draw conclusions.
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2. The Hough Transform for lines and algebraic curves recognition

We first introduce the essential terminology and notation that is used through-
out this paper. Then we present some known definitions and results about the
Hough transform technique for straight lines and algebraic curves (for more
details we refer the reader to [4, 8, 11, 13, 14, 15]).

Let K be either R or C. For a positive integer n, we denote by AnK the
n-dimensional affine space over K. For an n-tuple Λ = (Λ1, . . . ,Λn) of in-
determinates we denote by K[Λ;X,Y ] the polynomial ring over K with in-
determinates Λ, X, Y , and by F (Λ;X,Y ) a polynomial in K[Λ;X,Y ]. Let
λ = (λ1, . . . , λn) ∈ Kn be a point of AnK , and let P ∈ A2

K be a point of coordi-
nates (xP , yP ) in K2. Then we define the polynomial fλ(X,Y ) as F (λ;X,Y ),
that is the polynomial F (Λ;X,Y ) specialized in λ. Conversely the polynomial
F (Λ;xP , yP ) in K[Λ] is F (Λ;X,Y ) specialized in (xP , yP ).

Since an algebraic curve C in A2
K is defined as the zero locus of a polynomial

f in K[X,Y ], a parameter dependent family of algebraic curves can be described
by the polynomials fλ ∈ K[Λ;X,Y ] as

F = {Cλ : fλ(X,Y ) = 0 | λ ∈ U}, with U ⊂ Kn an open set.

We continue by denoting by I the digital image which contains the profile
that we want to recognize, and by F the family of curves that we plan on using.
We call the affine space A2

K , onto which I and the curves of the family F are
represented, the image space. Conversely, the affine space whose dimension is
the number of free parameters in F , is called the parameter space.

We next recall the definition of Hough transform of a point Q with respect
to a line L, based on the point–line duality notion.

Definition 1. Let Q = (xQ, yQ) be a point in A2
K and let

L =
{
`a,b : Y − aX − b = 0 | (a, b) ∈ K2

}
,

be a family of straight lines in the affine plane A2
K(X,Y ). The Hough transform

of Q with respect to L is the line yQ − AxQ − B = 0 lying in the parameter
plane A2

K(A,B), namely ΓQ(L) = {yQ −AxQ −B = 0}.

Thanks to algebraic geometry arguments, the Hough transform definition
can be extended to include also special classes of curves that retain the one-to-
one correspondence between curve (Cλ) and parameters (λ) that is proper of the
families of lines [4, 11]. Specifically, let us consider a polynomial F (Λ;X,Y ) ∈
K[Λ;X,Y ]. Suppose now that F has degree d in the indeterminates X,Y . Then
F (Λ;X,Y ) can be written as

F (Λ;X,Y ) =
∑

i,j≥0,i+j≤d

gi,j(Λ)XiY j , gi,j ∈ K[Λ].

Denoting by F the family of algebraic plane curves of the same degree d, the
Hough transform of a point with respect to F is defined as follows.
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Definition 2. Let P = (xP , yP ) be a point in A2
K and let F be the family of

algebraic irreducible plane curves of the same degree d given by

F = {Cλ : fλ(X,Y ) = 0 | λ ∈ U}, with U ⊂ Kn an open set.

The zero locus ΓP (F) of the polynomial F (Λ;xP , yP ),

ΓP (F) = {F (Λ;xP , yP ) = 0}, (1)

is called the Hough transform of the point P with respect to the family F of
algebraic curves. ΓP (F) is a hypersurface in AnK .

From the previous definition we easily see that

P ∈ Cλ ⇐⇒ fλ(xP , yP ) = F (λ;xP , yP ) = 0 ⇐⇒ λ ∈ ΓP (F). (2)

Moreover, as a direct consequence of (2) we conclude that (see Figure 1)

λ∈
⋂
P∈Cλ

ΓP (F).

We emphasize that, not for every family of irreducible algebraic curves there
is a one-to-one correspondence between a curve of the family and a point in
the parameter space. If this correspondence exists, the family F is called HT-
regular. However, if a family F of algebraic curves is not HT-regular, we can
always consider an open subset U of U such that F|U is HT-regular [4].

x

y B

A

Ca,b

P3

P2P1

Q P1
P2

P3

Q
(a,b)

DUALITY

Figure 1: Duality-type correspondence between the image space (left) and the parameter
space (right): each point Pi of the curve Ca,b in the image space is transformed into a curve
ΓPi

in the parameter space, in such a way that all curves ΓPi
meet at one point. This point

(a, b) identifies the original curve to be detected. If F is HT-regular, then all ΓPi
meet at one

and only one point.

The Hough transform technique is mainly used for the detection of para-
metric shapes in images. To reduce the number of points for which one has
to compute it, the Hough transform is usually applied after preprocessing the
original image by an edge detector like, e.g., Canny edge detection algorithm
[7]. The preprocessing step also eliminates the degree of freedom represented
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by the grey level in the image (in fact, this is out of the game of the recognition
task). To apply the Hough transform, a discretization of the parameter space
is required, which possibly exploits bounds on the parameter values computed
by using either the cartesian or the parametric form of the curve in the image
space. Once the parameter space is discretized in cells, an accumulator func-
tion is defined on it. The value of the accumulator function in a cell of the
discretized space corresponds to the number of times the Hough transforms of
selected points of interest reach that cell. The parameter values characterizing
the curve to be detected in the image space correspond to the parameter values
identifying the cell where the accumulator function reaches its maximum.

For further details on the standard profile recognition algorithm based on
the Hough transform, we refer the reader to [3, 4, 12] and references therein.

3. A spline-based profile recognition technique via piecewise Hough
transform

The new method we are going to present in this paper is based on the
observation that the existing profile detection algorithms based on the Hough
transform suffer from the following drawbacks:

• they cannot detect unknown shapes since they all require as input either
a family of curves that can approximate the profile or a template for its
shape (i.e., a predefined look-up table);

• a preprocessing step is needed to orient the image, or at least two more
free parameters are needed to consider the right orientation.

On the contrary, our method does not require knowledge of the shape of the
underlined searched profile, be it described by a look–up table as in [3], or by
a family of algebraic curves as in [4]. Our idea to recognize profiles in images
consists in combining splines (i.e., piecewise polynomial functions) with Hough
transform. The Hough transform is in fact applied piecewisely i.e., exploiting
only a specific subset of the point set identifying the whole profile. Indeed, we
apply the Hough transform technique to subsets of the original dataset with
respect to families of curves passing through a point of the last recognized curve
piece. The process stops when a given percentage of points is recognized. If the
profile to be recognized is closed, then one extra step is needed to connect the
first and last curve pieces. Since, in general, the use of piecewise curves of low
degree is preferred, we will confine ourselves to consider polynomial pieces of
degree between 3 and 6. This choice is also supported by the observation that
such degrees allow us to establish a good compromise between the number of
curve pieces and the accuracy of the final fitting.

A detailed description of the novel profile recognition procedure is presented
in the following subsections. We start by discussing the variations of our method
with respect to the standard HT approach. We then continue by illustrating
the pre-processing step aimed at reducing the number of points of which one
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Figure 2: Four hundred curves of the family FY = {Ca,b,c : Y = aX3 + bX2 + cX | (a, b, c) ∈
R3} with randomly chosen coefficients (a, b, c) ∈ [−1, 1]3 (left). Four hundred curves of the
family FY = {Ca,b,c : Y = aX3 + bX2 + cX | (a, b, c) ∈ R3} with randomly chosen coefficients
(a, b, c) ∈ [−10, 10]3 (center). Two hundred curves of the family FY = {Ca,b,c : Y = aX3 +
bX2 + cX | (a, b, c) ∈ R3} with randomly chosen coefficients (a, b, c) ∈ [−1, 1]3 in dark gray,
and two hundred curves of the family FX = {Ca,b,c : X = aY 3 + bY 2 + cY | (a, b, c) ∈ R3}
with randomly chosen coefficients (a, b, c) ∈ [−1, 1]3 in light gray (right).

has to compute the Hough transform and also at identifying the presence of
cusps in the reconstructed profile. Next, we describe the strategy to construct
the piecewisely defined profile and, at last, we discuss how the free parameters
are set.

3.1. Variations with respect to the standard HT approach

The families of algebraic curves that we use for the piecewise recognition of
the profile have the general form

Fd,X = {Cdλ : X = λdY
d + . . .+ λ1Y + λ0}, 3 ≤ d ≤ 6,

or
Fd,Y = {Cdµ : Y = µdX

d + . . .+ µ1X + µ0}, 3 ≤ d ≤ 6.

Some of the parameters of the two families of curves (λi, i = 0, ..., d for Fd,X and
µi, i = 0, ..., d for Fd,Y ) are fixed by some analytical conditions for each piece of
the curve. We remark that we consider two families of curves, rather than just
one, to overcome an intrinsic limit of the standard Hough transform consisting
in the discretization of a limited region of the parameter space. Therefore the
choice of two families allow for a wider variety of possible curves. This fact
is highlighted in Figure 2. While the first two pictures show empty regions
corresponding to the selection of a single family of curves (independently of the
size of the discretized domain of variation of the parameters), the third shows
the advantage of selecting two families of curves.

Instead of using the standard Hough transform technique, in our method
we give to each point a particular weight. Precisely, in the accumulator matrix
the weight of each point P in the set of points whose distance from a fixed
point P ∗ is less than ε1 (hereinafter denoted by UP∗,ε1) is chosen to be inversely
proportional to the squared euclidean distance between P and P ∗. In this way,
the points closer to the point P ∗ are privileged. To be more precise, the weight
associated to each point P with respect to the starting point P ∗ of the curve is

ωP∗(P ) =
1

dist(P ∗, P )2
, (3)
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where dist is the distance function defined as

dist : (Pk, Pj) 7−→
»

(xPk
− xPj

)2 + (yPk
− yPj

)2.

In the standard Hough transform technique, each Hough transform, passing
through a cell in the discretization of the parameter space, contributes to the
corresponding entry of the accumulator matrix by adding 1. On the other hand,
for the point-distance weighted Hough transform, given a starting point P ∗, the
Hough transform of a point P of the dataset contributes to the entries of the
accumulator matrix by adding ωP∗(P ). The resulting HT method is therefore
called point-distance weighted Hough transform.

3.2. Pre-processing step

Let I be the digital image containing the profile to be recognized. The pre–
processing step starts with the application of a Canny edge detection algorithm
[7] to the image I. All of the pixels identified as discontinuity points by the edge
detection form the so called dataset, hereinafter denoted by D. Afterwards, the
pre-processing step may involve two different stages. The first one consists in the
segmentation of the obtained dataset by identifying 8–connected components
in the image (this stage can be performed by using the MATLAB functions
bwlabel and bwconncomp), and selecting the ones that are part of the profile
we are interested in approximating. The second stage is the application of the
algorithm proposed in [2], which takes as input a point cloud and selects the
internal and external boundary of this dataset. With some images a combination
of both stages is also considered. For example, to choose the dataset relative to
the internal profile of the vertebra (Figures 6 and 11) we consider the connected
components that have points that are part of the internal boundary.
Once the previous stages have been performed, we compute the local discrete
tangent vector for every pixel of D (this computation can be easily performed
by using the MATLAB function regionprops). Then we look for points of the
profile in which there is a sharp change in the tangent vector of the profile. In
case they occur, we keep track of them by defining a new point set called D0.
This will be successively needed by our algorithm to select the junction points
where the recognized curve has to be only C0 and not G1–continuous.

3.3. Piecewise construction of the profile

As already mentioned, the profile constructed by our method is defined piece-
wisely, by applying the Hough transform technique to subsets of the original
dataset with respect to two different families of algebraic curves. The two fam-
ilies of algebraic curves are suitably defined to ensure that the outcome of the
algorithm is a G1 continuous spline curve, eventually containing some sharp
points (cusps). Since the construction of the first spline piece is a bit different
from all the successive ones, we separate the description of the construction in
two corresponding parts. For shortness, in both descriptions we denote by d the
degree of the families of algebraic curves used.
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To construct the first piece of the profile, a starting point P0 has to be
selected (in this regard, see the following Subsection on free parameters setting).
Then, by requiring that the curves of both families pass through the point P0,
one parameter for each family is fixed (i.e., λ0 for Fd,X and µ0 for Fd,Y ). The
explicit conditions on the parameters are specifically

λ0 = xP0
− (λdy

d
P0

+ . . .+ λ1yP0
) and µ0 = yP0

− (µdx
d
P0

+ . . .+ µ1xP0
).

The two families of curves identified by these parameters are denoted as
Fd,X,P0

and Fd,Y,P0
, respectively. The idea to compute the first piece of the

profile curve, is to apply the Hough transform to the subset UP0,ε1 of D, namely
to the set of all points in D whose distance from P0 is less than a fixed number
ε1. We emphasize that the Hough transform technique is applied with respect
to both families Fd,X,P0

and Fd,Y,P0
so that two approximating curves are ob-

tained. The one having the smallest average distance from the approximated
points, is chosen to be the curve which better approximates the portion of the
profile in UP0,ε1 . We refer to this first approximating curve as C1, and we point
out that C1 represents only the profile piece that approximates the points in
UP0,ε1 . The curve piece C1 is considered an acceptable piece of the final profile if
at least d2 +1 points from UP0,ε1 are approximated by C1. A point P in UP0,ε1 is
said to be approximated by C1 if a discrete estimation of the euclidean distance
between P and C1 is less than a fixed number ε2. We remark that we choose
d2+1 as the minimum number of points that has to be approximated in order to
consider a curve piece suitable for the final profile, because the space of bivari-

ate polynomials with degree less than or equal to d has dimension (d+2)(d+1)
2 .

Although our families of curves usually do not have d2 + 1 free parameters, it
is a reasonable bound to be considered [6].

Before starting with the description of the construction of the other pieces
of the profile curve, we need to initialize some variables in terms of the curve
piece C1 defined at first. Precisely, in the construction of the (k + 1)th-piece of
curve, the new starting point Pk of the curve piece Ck+1 is chosen as follows. We
first compute the arclength of the curve Ck, taking Pk−1 as the starting point
in which the arclength is zero. Then we define Pk as the point on Ck with the
greatest arclength. If the curve piece we intend to construct is G1–joined to Ck
in Pk, then we compute the unit tangent vector of Ck in Pk and we call it uk. In
this case the families of curves that we use for the recognition of Ck+1 depend
on both Pk and uk, which means that λ1, λ0, µ1, µ0 are fixed in the following
way:

λ1 =
1

tan(uk)
− (dλdy

d−1
Pk

+ . . .+ 2λ2yPk
), λ0 = xPk

− (λdy
d
Pk

+ . . .+ λ1yPk
),

or

µ1 = tan(uk)− (dµdx
d−1
Pk

+ . . .+ 2µ2xPk
), µ0 = yPk

− (µdx
d
Pk

+ . . .+ µ1xPk
),

where tan(uk) stands for the tangent of the angle between uk and the x-axis.
We thus denote the corresponding new families of curves as Fd,X,Pk,uk

and
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Fd,Y,Pk,uk
. The subset of points to which we apply the Hough transform with

respect to the two families of curves previously computed, is now UPk,ε1 (i.e.,
the set of all points in D whose distance from Pk is less than ε1), excluded
the points that have already been approximated by C1, . . . , Ck−1, Ck. Next we
compute the approximating curve Ck+1 as it was done for C1. If less than d2 + 1
points of the dataset have a distance from the curve Ck+1 that is smaller than
ε2 (namely Ck+1 cannot be considered an acceptable piece of the final profile
curve), then a new starting point, close to the previous one, is chosen on Ck and
the last part of the process here described is repeated. To make sure that our
procedure provides the curve piece Ck+1 in a reasonable number of repetitions,
we limit the number of times that the point Pk can be changed. This limit is
chosen to be the degree of the curve Ck. If this limit is reached, we do an extra
step, in which we choose manually a new point Q0 in the dataset D, closer than
ε1 to Pk, and we join Pk to Q0 as we would do for the last step of a closed
profile.

3.4. Free parameters setting

The outcome of the novel recognition algorithm implementing the described
procedure depends on the choice of the following free parameters:

• A vector d of positive integers, where the kth entry is the degree of the two
families of algebraic curves used for the recognition of the kth polynomial
piece of the sought profile. As specified below, the value of each entry of d
depends on how many constraints we want to impose on each profile piece.
In our procedure the number of constraints is kept as small as possible to
reduce the computational costs of the Hough transforms.

• A real positive value ε1, radius of a 2-dimensional ball centered at the
starting point of the degree-d polynomial piece and containing the points
to which we locally apply the Hough transform technique (Figure 3). The
parameter ε1 has to be at least bigger than d2 + 1 times the length of the
side of a pixel in the image space since we want to approximate at least
d2 + 1 points of the dataset. The upper bound of ε1 is 1/8 of the length
of the shortest edge of the input image.

• A real positive value ε2 providing the biggest acceptable distance between
each point of the dataset and the closest point on the approximating curve,
to consider that point approximated (Figure 3). We choose ε2 as the length
of the side of a pixel in the image space.

• The starting point P0 = (xP0
, yP0

) in D for the piecewise curve to be
constructed. This point needs to be chosen on the profile in an appropriate
way. For example, if in the pre-processing step some points with sharp
orientation variations have been found, they are good candidates for the
starting point P0. In case an appropriate point is not easily found, the
staring point is an input given by the user sufficiently close to the searched
profile. This is what makes the method semi-automatic.
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UP0,ε1

UP1,ε1

Figure 3: Graphical illustration of the meaning of the parameters ε1 and ε2.

Before concluding this section, we would like to detail how d is chosen. To
keep the computational cost of the method low, we use families of curves with
three free parameters only. Keeping the number of free parameters equal to
3 in each curve piece, the degree d of the two families of curves used for the
recognition of every single polynomial piece depends on the smoothness order
we request at the connecting points. Precisely,

• d = 3 (from first to last piece of the profile), if the piecewise curve has to
be globally C0 continuous;

• d = 3 for the first piece and d = 4 for all the following ones, if the piecewise
curve is required to be globally G1 continuous and is open;

• d = 3 for the first piece, d = 4 for all the following ones, if the piecewise
curve is required to be globally G1 continuous, and d = 6 for the last piece
if the curve is closed.

In Figure 4 an example of a closed G1 continuous profile curve is illustrated.
The number of free parameters of the families of curves used for the recognition
is always 3. Thus, the degree is d = 3 for the first polynomial piece of the curve,
given the fact that we only have to interpolate P0. Instead, d = 4 for every other
polynomial piece of curve given the fact that we interpolate both the point Pk
and its unit tangent vector. For the last piece of curve we have d = 6 as we
interpolate both PN , P0 and their corresponding unit tangent vectors.

4. Sketch of the algorithm for the recognition of open and closed
profiles

In this Section we provide the sketch of the recognition algorithm derived
from the method described in Section 3. Either closed or open curves, which
can be either globally G1-continuous or G1-continuous with some C0 junction
points, can be obtained as output.
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Figure 4: Closed profile made of G1-joined polynomial pieces having degree between 3
and 6. The number of free parameters for every piece is equal to 3, but the interpolation
conditions used in their construction are different.

Let P0 be the starting point, D the initial dataset, D0 the points of the
profile in which there is a sharp change of orientation. Moreover let Fd,X and
Fd,Y be the general families used for the recognition of each curve piece. For
referring to specific families of curves passing through the point P we use Fd,X,P
and Fd,Y,P or Fd,X,P,u and Fd,Y,P,u if a unit tangent vector u in P is also fixed.

For every point P and every real number ε1, UP,ε1 is defined as the set of
points of D that lie inside the 2-dimensional ball of center P and radius ε1.

By HT(Fd,UP,ε1) we mean the computation of the Hough Transform of the
points in UP,ε1 with respect to the family Fd.

Sketch of the algorithm.

1. input: D, D0, ε1, ε2, d.

2. if #D0 > 0 do

choose P0 in D0

else

choose P0 in D
end

3. compute UP0,ε1

4. if #UP0,ε1 < (d(1))2 + 1 do

change P0

endif

5. compute CX = HT(Fd(1),X,P0
,UP0,ε1) and CY = HT(Fd(1),Y,P0

,UP0,ε1)

6. call C1 the best approximating curve between CX and CY
7. compute UC1 , i.e., the set of points of D approximated by the curve C1

(in other words find the points of D whose distance from the curve C1 is
smaller than ε2)

8. if #UC1 < (d(1))2 + 1 do

choose another starting point P0 and go to 3.

9. define Pnew as the arclength-wise most distant point in C1 from P0

10. compute uPnew,C1 , i.e., the unit tangent vector to C1 in Pnew

11. compute D = D \ UC1
12. while #D > 0, do
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12.1. set Pk = Pnew and uk = uPnew,Ck
12.2. compute UPk,ε1

12.3. if #UPk,ε1 < (d(k + 1))2 + 1 do

choose another starting point Pnew on Ck+1

go to 12.1
endif

12.4. compute CX = HT(Fd(k+1),X,Pk,uk
,UPk,ε1) and CY = HT(Fd(k+1),Y,Pk,uk

,UPk,ε1)
12.5. call Ck+1 the best approximating curve between CX and CY
12.6. compute UCk+1

, i.e., the set of points of D approximated by the curve
Ck+1 (in other words find the points of D whose distance from the
curve Ck+1 is smaller than ε2)

12.7. if #UCk+1
< (d(k + 1))2 + 1 do

choose another starting point Pnew on Ck
if #UCk+1

< (d(k + 1))2 + 1 for more than d(k) times do

12.7.1. choose a new point Q0 on the curve, do the extra step for closed
profiles to connect the last Pk with Q0 (see Remark 1)

12.7.2. start again the algorithm with Q0 as the starting point

endif

go to 12.1
endif

12.8. define Pnew as the arclength-wise most distant point in Ck+1 from
Pk

12.9. if G1 recognition do

compute uPnew,Ck+1

endif
12.10. compute D = D \ UCk+1

13. endwhile

Remark 1. In the case of an open profile (see, e.g., Figures 5 and 6 in Subsec-
tion 5.1), the algorithm stops when enough points are considered approximated.
If the profile is closed and has to be G1 continuous at the closure point, then we
need to perform an extra step in which we use the Hough transform technique
with respect to a family of curves which pass through the first and the last
point, and have given unit tangent vectors in those points.

Before concluding the section we would like to remark on the computational
cost of our algorithm. It is a known result that the computational cost of the
standard Hough transform is O(Am−2) [17], where A is the dimension of the
image space and m is the number of parameters of the family of curves. The
computational cost of our algorithm is therefore

2
N∑
k=1

d(k)O(A(k)m(k)−2),

where N is the number of curve pieces (which becomes N + 1 in case of closed
profiles), A(k) the dimension of the image space in the kth step (concerning
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the construction of the kth curve piece), m(k) the number of parameters of the
family of curves in the kth step. The factor two is due to the two families of
curves used in the algorithm, while the factor d(k) is the maximum number of
times that the algorithm can change the starting point Pk before a new one,
Q0, is manually selected.

5. Experimental results

This section is to provide some application examples of our new method
to several real images. We consider CT scans and photographic images, also
with addition of synthetic noise. In the first case, we recognize two piecewise
G1-continuous curves to be associated, respectively, to the external and internal
profiles of a vertebra, and a G1-continuous curve with some C0 junctions, to
be associated to the left/right external profile of a hip. In the second case,
we recognize piecewise continuous curves (again G1-continuous with some C0

junctions) to be associated with the profiles of a hand and a face, also with
addition of synthetic noise. The method is implemented with datasets that, after
a suitable rescaling, are in the region [−4, 4]× [−4, 4] and [−10, 10]× [−10, 10]
of the Cartesian plane for the medical images and for the photographic images,
respectively. Every pixel is 0.0333 units in the Cartesian plane in which the
shape is recognized. The parameter ε1 is chosen in the real interval [0.8, 1.5]
and ε2 is chosen equal to 0.03, that is it approximately coincides with the
number of units that correspond to a pixel in the original image. Moreover,
in case the parameter space used for the recognition is of dimension two, the
region we discretize is [−1, 1]× [−1, 1], with 100×100 cells. In the case of three
parameters, the discretized region of the parameter space is [−1, 1]× [−1, 1]×
[−1, 1], with 40× 40× 40 cells.

5.1. Medical images

For the recognition of the external and internal profile of the vertebra (given
in Figures 5 and 6 top left), the free parameters of the algorithm have been
selected as in Table 1.

Vertebra ext. Vertebra int. Hip left Hip right
ε1 0.8 1.2 1 1
ε2 0.03 0.03 0.03 0.03
d (3, 4, 4, ..., 4) (3, 4, 4, ..., 4) (3, 4, 4, ..., 4, 6) (3, 4, 4, ..., 4, 6)

Table 1: The choice of the free parameters for the medical images in Figures 5, 6, 7, 8, 9, 10.

With these two recognitions some extra remarks are needed. We start with
the case of the external profile. From the dataset obtained by the Canny edge
detection algorithm (Figure 5 top center) we proceed by identifying a sub-set
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of points that are part of the external profile only. This is possible by the help
of the algorithm in [2] capable of recognising the boundary points. The result
is in Figure 5 top right. We then apply our algorithm to the corresponding
rescaled points shown in Figure 5 bottom left. A spline curve made of 19 pieces
(see Figure 5 bottom center) is the recognized profile superposed on the original
image in Figure 5 bottom right. The errors for this recognition are presented in
Table 2.

Vertebra ext. Vertebra int. Hip left Hip right
MAE 0.0234 0.0372 0.0350 0.0427
RMSE 0.0338 0.0431 0.0576 0.0871

Table 2: Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for the spline
profiles obtained from the medical images.

Next, we discuss the case of the internal profile. From the dataset obtained
by the Canny edge detection algorithm (Figure 6 top center) we identify, again
by the algorithm in [2], a sub-set of points that are part of the internal profile
only. Then, we apply the MATLAB function bwlabel to separate the different
connected components obtained with the edge detection (Figure 6 top right).
The final dataset to which we apply our algorithm is obtained by considering the
points of the connected components that are touched by the internal boundary.
The result is in Figure 6 bottom left. A spline curve made of 11 pieces (see
Figure 6 bottom center) is the recognized profile superposed on the original
image in Figure 6 bottom right. The errors for this recognition are presented in
Table 2.

For completeness the results of the application of the algorithm in [2] for both
external and internal profile of the vertebra, are in Figure 11 left-center.

In Figure 7 we present a recognition with background noise, meaning uniformly
distributed noise independent from the profile. The profiles we want to recognize
are again the external and internal profiles of the vertebra in Figure 5 and
Figure 6 top left. In both cases, the ratio between the number of noise points
with respect to the number of points on the profiles is 2 to 1. In Figure 7 left
(top-down) we can see the dataset including the points obtained after applying
the edge detection algorithm and the synthetic noise points. The profiles are
recognized with a spline curve made of 20 and 11 pieces (see Figure 7 center,
top-down). The recognized curves superimposed on the original image are in
Figure 7 right (top-down).

Remark 2. We remark that, the Hough transform technique for algebraic
curves has been already used to recognize profiles of vertebras by using elliptic
curves and Slüse conchoids (see [11, 15, 16]). In both cases, the image needs a
roto-translation as a pre-processing step for the recognition to be effective. In
[15] an iterative pixel-connected version of the Hough transform algorithm is
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presented, but it is still based on the a priori knowledge of a family of poten-
tially approximating algebraic curves. Moreover, in the Example presented in
[15, Sect. 4, Fig. 2], a set of 7 different curves is used, but from [15, Sect. 4,
Fig.2(d)] we can see that the final curve is composed of at least 25 pieces.

Next we consider the recognition of a CT slice of a hip bone. As far as we know,
the recognition of this profile is new in the Hough transform literature. For the
recognition of the left and right external profile of the hip (given in Figures 8
and 9 top left), the free parameters of the algorithm have been selected as in
Table 1. For these two examples the errors for the approximations are again
presented in Table 2.

As for the case of the vertebra, to identify the points of the dataset that are part
of the external profile, we apply the algorithm in [2] (see Figure 11 right). Then
we apply the MATLAB function bwlabel to separate the different connected
components obtained with the edge detection. Further, to identify the two
datasets corresponding to the hip left and hip right images, we proceed with the
recognition of the two connected components that are touched by the external
boundary. A spline curve made of 26 pieces (see Figure 8 bottom center) is the
recognized profile, which is shown superposed on the original image in Figure 8
bottom right. Instead, the spline curve made of 21 pieces (in Figure 9 bottom
center) is the recognized profile shown in Figure 9 bottom right.

In Figure 10 we present a recognition with background noise, meaning uniformly
distributed noise independent from the profile. The profiles we want to recognize
are again the left and right profiles of the hip in Figures 8 and 9 top left. In both
cases, the ratio between the number of noise points with respect to the number
of points on the profiles is 2 to 1. In Figure 10 left (top-down) we can see the
dataset including the points obtained by applying the edge detection algorithm
and the synthetic noise points. The profiles are recognized with a spline curve
made of 28 and 21 pieces, respectively (see Figure 10 center, top-down). The
recognized curves superimposed on the original image are in Figure 10 right
(top and down).

5.2. Photographic images

For the recognition of the external profiles of the hand and the face (given
in Figures 12 and 13), the free parameters of the algorithm have been selected
as in Table 3. In both cases, our algorithm is applied to sub-sets of points pro-
duced by the Canny edge detection algorithm. They are the external connected
components identified by means of the MATLAB function bwlabel. The errors
for these recognitions are presented in Table 4.

The hand profile in Figure 12 top left is recognized with a spline curve made
of 64 pieces visible in Figure 12 bottom center. The errors for this recognition
are presented in Table 4.

For the recognition of the external profile of the face in Figure 13 top left, the
free parameters of the algorithm have been selected as in Table 3. A spline curve
made of 26 pieces (in evidence in Figure 13 bottom center) is the recognized
profile superposed on the original image in Figure 13 bottom right.
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Figure 5: Recognition of the external profile of a vertebra from a slice of a CT scan. Top: The
original CT slice image of a vertebra (left). Output of the Canny edge detection algorithm
(center). Points of the image belonging to the external profile and selected using the algorithm
in [2], as shown in Figure 11 (left). Bottom: The rescaled dataset points, obtained by edge
detection (left). The recognized G1-connected piecewise curve, with the junction points high-
lighted by small circles (center). The recognized curve superimposed on the original image
(right).

Figure 6: Recognition of the internal profile of a vertebra from a slice of a CT scan. Top: The
original CT slice image of a vertebra (left). Output of the Canny edge detection algorithm
(center). Points of the image belonging to the connected components that are touched by the
internal boundary, obtained from [2] as in Figure 11 (center). Bottom: The rescaled dataset
points, obtained by edge detection (left). The recognized G1-connected piecewise curve, with
the junction points highlighted by small circles (center). The recognized curve superimposed
on the original image (right).
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Figure 7: Recognition of the external and internal profile of a vertebra from a slice of a CT
scan with synthetic noise. The pre–processing steps are not included in this Figure as they are
the same as the ones in Figures 5 and 6. Left column: the rescaled dataset points, obtained
by edge detection, plus the synthetic noise. Center column: the recognized G1-connected
piecewise curves with the junction points highlighted by small circles. Right column: the
recognized curves superimposed on the original image.

Figure 8: Recognition of the left external profile of a hip from a slice of a CT scan. Top: The
original CT slice image of a hip (left). The output of the Canny edge detection algorithm
(center). The connected component relative to the left part of the external profile of the
hip (right). Bottom: The rescaled dataset points, obtained by edge detection (left). The
recognized piecewise curve with the G1-junction points and the subset of C0-junction points
marked in black (center). The recognized curve superimposed on the original image (right).

Finally, in Figure 14 we present a recognition with background noise. The
profiles we want to recognize are the hand in Figure 12 and the face in Figure
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Figure 9: Recognition of the right external profile of a hip from a slice of a CT scan. Top:
The original CT slice image of a hip (left). The output of the Canny edge detection algorithm
(center). The connected component relative to the right part of the external profile of the
hip (right). Bottom: The rescaled dataset points, obtained by edge detection (left). The
recognized piecewise curve with the G1-junction points and the subset of C0-junction points
marked in black (center). The recognized curve superimposed on the original image (right).

Figure 10: Recognition of the left and right external profile of a hip with synthetic noise.
The pre–processing steps are not included in this Figure as they are the same as the ones in
Figures 8 and 9. Left column: the rescaled dataset points, obtained by edge detection, plus
the synthetic noise. Center column: the recognized G1-connected piecewise curve with the
junction points highlighted by small circles. Right column: the recognized curve superimposed
on the original image.

13 top left. In both cases, the ratio between the number of noise points with
respect to the number of points on the profiles is 2 to 1. In Figure 14 left
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Figure 11: Output of the algorithms in [2] for points extracted by the Canny edge detection.
The external boundary of the dataset for the vertebra (left), the internal boundary of the
dataset for the vertebra (center) and the external boundary of the dataset for the hip (right)
are highlighted in green.

Hand Face
ε1 1.5 1.2
ε2 0.03 0.03
d (3, 4, 4, ..., 4) (3, 4, 4, ..., 4)

Table 3: The choice of the free parameters for the photographic images in Figures 12, 13, 14.

Hand Face
MAE 0.0234 0.0372
RMSE 0.0338 0.0431

Table 4: Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for the spline
profiles obtained from the photographic images.

Figure 12: Recognition of the external profile of a hand. Top: The original grayscale pho-
tographic image (left). The image after the application of the Canny edge detection and
of the MATLAB function bwlabel that separates the connected components of the edge de-
tection (center). The connected component we want to approximate (right). Bottom: The
rescaled dataset points (left). The recognized piecewise curve (center). The recognized curve
superimposed on the original image (right).
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Figure 13: Recognition of the external profile of the side profile of a face. Top: The original
grayscale photographic image (left). The image after the application of the Canny edge
detection and of the MATLAB function bwlabel that separates the connected components
of the edge detection (center). The connected component we want to approximate (right).
Bottom: The rescaled dataset points (left). The recognized piecewise curve (center). The
recognized curve superimposed on the original image (right).

(top-down) we can see the dataset including the points obtained after applying
the edge detection algorithm and the synthetic noise points. The profiles are
recognized with a spline curve made of 62 and 29 pieces, respectively (see Figure
14 center, top-down). The recognized curves superimposed on the original image
are in Figure 14 right (top-down).

6. Conclusions and future works

This paper proposes a new method to recognize arbitrary profiles in 2D im-
ages without any previous knowledge of them. Based on the use of a piecewisely
defined Hough Transform, it can provide either a globally G1-continuous spline
or a G1-continuous spline with some C0 junction points. The method is semi-
automatic, very efficient and robust in presence of noise. An interesting topic
of further research is the replacement of the Standard Hough Transform with
the Randomized Hough Transform, which uses a dynamic accumulator.
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