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Abstract

We introduce a family of piecewise-exponential functions that have the Hermite interpolation property. Our design is
motivated by the search for an effective scheme for the joint interpolation of points and associated tangents on a curve
with the ability to perfectly reproduce ellipses. We prove that the proposed Hermite functions form a Riesz basis and
that they reproduce prescribed exponential polynomials. We present a method based on Green’s functions to unravel
their multi-resolution and approximation-theoretic properties. Finally, we derive the corresponding vector and scalar
subdivision schemes, which lend themselves to a fast implementation. The proposed vector scheme is interpolatory
and level-dependent, but its asymptotic behaviour is the same as the classical cubic Hermite spline algorithm. The
same convergence properties—i.e., fourth order of approximation—are hence ensured.

Keywords: Cardinal Hermite exponential splines; Hermite interpolation; Ellipse-reproduction; Subdivision

1. Introduction

Cubic Hermite splines are piecewise-cubic polynomial functions that are parametrized in terms of the value of
the function and its derivative at the end point of each polynomial segment. By construction, the resulting spline is
continuous with continuous first-order derivative. Cubic Hermite splines are used extensively in computer graphics
and geometric modelling to represent curves as well as motion trajectories that pass through specified anchor points
with prescribed tangents [12]. This is typically achieved by fitting a separate Hermite spline interpolant for each
coordinate variable.

Cubic Hermite splines have a number of attractive computational features. The basis functions are interpolating
with a fourth-order approximation and their support is minimal. They satisfy multiresolution properties, which is the
key to the specification of subdivision schemes [21] and the construction of multi-wavelet bases [8, 24]. They are
also closely linked to the Bézier curves, which provide an equivalent mode of representation. Their only limitation
is that they require many control points to accurately reproduce elementary shapes such as circles and ellipses. This
is why we investigate in this paper a variation of the classical Hermite scheme that is specifically geared towards the
reproduction of elliptical shapes. These exponential Hermite splines are ideally suited for outlining roundish objects
in images with few control points (see [27] for an application of this model to the segmentation of biomedical images).
Our main point in this work will be to show that we are able to achieve perfect ellipse reproduction while retaining all
the attractive properties of the cubic Hermite splines modulo some proper adjustment of the underlying computational
machinery. The extended Hermite functions that we shall specify are piecewise exponential polynomials with pieces

Email addresses: costanza.conti@unifi.it (Costanza Conti), lucia.romani@unimib.it (Lucia Romani),
Michael.Unser@epfl.ch (Michael Unser)



in E4 := 〈1, x, eiω0 x, e−iω0 x〉, ω0 ∈ [0, π], joining C1-continuously at the integer knots. Hence they belong to the class
of trigonometric splines. This points towards a connection with other exponential spline basis functions investigated
in the literature (see, e.g., [9, 15, 16, 17, 18, 19] and references quoted therein), although we are not aware of any
prior work that specifically addresses the problem of ellipse reproduction nor covers the theoretical results that we are
reporting here.
The paper is organised as follows. In Section 2, we motivate our design while spelling out the conditions that the
basis functions must satisfy. We then derive the two Hermite functions (φ1,ω0 , φ2,ω0 ) that fulfil our requirements in
Section 3; these are the generators for the space S 1

E4
(Z), which is made up of functions that are piecewise exponential

polynomials with (double) knots on the integers. In Section 4, we make the connection with exponential splines
explicit by expressing the generators in terms of the Green’s functions of the differential operators L1,ω0 := d4

dx4 +ω2
0

d2

dx2

and L2,ω0 := d3

dx3 + ω2
0

d
dx (whose corresponding E-spline spaces are denoted as S E4 (Z) and S E3 (Z)). In Section 5, we

prove that the integer translates form a Riesz basis by analyzing the corresponding Gramian matrix. Section 6 is
devoted to the characterisation of the Hermite representation on hZ, while Section 7 focuses on the investigation of
its multi-resolution properties and the derivation of the corresponding subdivision scheme. In Section 8, we show that
our exponential Hermite splines, in direct analogy with their polynomial counterpart, admit a Bézier representation
that involves an exponential generalization of the classical Bernstein polynomials. Finally, in Section 9, we exploit
the Bézier connection to derive the exponential version of the four point scalar subdivision scheme for the classical
Hermite splines [26].

2. Motivation for the construction

An active contour (a.k.a. snake) is a computational tool for detecting and outlining objects in digital images. Its
central component is a closed parametric curve that evolves spatially towards the contour of a target by minimizing a
suitable energy functional [20]. The most commonly-used curve models rely on B-spline basis functions [1].

Since roundish objects are common place in biological imaging (in particular, fluorescence microscopy), it is
of interest to develop a parametric framework that is specifically tailored to this type of shape while retaining the
flexibility of splines and the ability to reparametrize by increasing the number of control points. A first solution to
this problem was proposed by Delgado et al. who developed an “active cells” framework that is based on cardinal
exponential B-splines [10]. The present research was motivated by the desire to refine this model by providing
additional control over the tangents of the curve. This led us to the definition of a new parametric model that has the
ability to perfectly reproducing ellipses while offering full tangential control as well as easy manipulation via the use
of M control points and Bézier handles. By introducing Bézier handles, one also gains in flexibility; for instance, one
can induce a sharp break via a proper adjustment of the tangent vector (see Figure 1). The corresponding parametric
representation is

r(t) =
∑
n∈Z

(
r(n)φ1(t − n) + r′(n)φ2(t − n)

)
(1)

where the closed curve r(t) =
(
x(t), y(t)

)
and its tangent r′(t) =

( dx(t)
dt ,

dy(t)
dt

)
are assumed to be M-periodic. Practically,

this means that the underlying curve is uniquely specified by its shape parameters {r(n), r′(n)}M−1
n=0 which can be

translated graphically into a set of control points with tangential handles (see Figure 1).
The fundamental property of this kind of Hermite representation is that the generating functions φ1, φ2 and their

derivatives φ′1, φ
′
2 satisfy the joint interpolation conditions

φ1(n) = δn,0, φ′2(n) = δn,0, φ′1(n) = 0, φ2(n) = 0

for all n ∈ Z (see Figure 2).
The shape space associated with (1) is the collection of all possible curves that can be generated by varying the

control parameters {r(n), r′(n)}M−1
n=0 . Our three design requirements on the specification of this shape space are as

follows:

1. the representation should be unambiguous and stable with respect to the variation of the shape parameters;

2
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Figure 1: Examples of parametric curves r(t) represented in the Hermite basis. The shape parameters are the control points represented by crosses
and the tangent handles (arrows) that control the derivative of each of the coordinate variable with respect to t. The first illustrates the ellipse-
reproduction capability of our extended model, while the second demonstrates the production of a cusp by decreasing the magnitude of its tangent
vector to zero.

2. the shape space should be closed with respect to affine transformations;
3. the shape space should include all ellipses.

The first point is taken care of by making sure that the basis functions form a Riesz basis (see Section 5). We
conclude this introductory section by providing the conditions on the basis functions that are imposed by the two
latter requirements.

2.1. Affine invariance

Consider the affine transformation s(t) = Ar(t)+b of the curve r(t) in the 2-D plane. We would like this new curve
to be representable in the Hermite basis as

Ar(t) + b =
∑
n∈Z

(
(Ar(n) + b)︸        ︷︷        ︸

s(n)

φ1(t − n) + Ar′(n)︸ ︷︷ ︸
s′(n)

φ2(t − n)
)
,

which is possible if and only if φ1 satisfies the partition of unity property∑
n∈Z

φ1(t − n) = 1.

2.2. Reproduction of ellipses

The specificity of our design is the ability to reproduce ellipses, as illustrated in Figure 1. Since the representation
is affine invariant, it is sufficient to be able to encode the unit circle, which translates into the two complementary
conditions

cos(ω0t) =
∑
n∈Z

(
cos(ω0n)φ1(t − n) − ω0 sin(ω0n)φ2(t − n)

)
sin(ω0t) =

∑
n∈Z

(
sin(ω0n)φ1(t − n) + ω0 cos(ω0n)φ2(t − n)

)
with ω0 = 2π

N ∈ [0, π].
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3. Cardinal Hermite exponential splines

In analogy with the classical cubic solution, we shall determine our extended Hermite functions φ1,ω0 (x) and
φ2,ω0 (x) by first focusing on the unit interval x ∈ [0, 1] and imposing the four required boundary conditions in each
case; i.e.,

φ1,ω0 (0) = 1, φ′1,ω0
(0) = 0, φ′1,ω0

(1) = 0, φ1,ω0 (1) = 0

and
φ2,ω0 (0) = 0, φ′2,ω0

(0) = 1, φ′2,ω0
(1) = 0, φ′2,ω0

(1) = 0.

The existence of such functions is guaranteed if we consider a common four-dimensional solution space of Tcheby-
chev polynomials. Because of our reproduction requirements, we already know that the solution space should con-
tain the functions {1, cos(ω0x), sin(ω0x)}. The last functional degree of freedom is taken care of by imposing that
the two generators, which are supported in [−1, 1], should be real-valued, symmetric or anti-symmetric and re-
stricted to the class of exponential polynomials in order to yield bona fide splines. This fixes the solution space
to E4 = 〈1, eiω0 x, e−iω0 x, x〉 and makes the construction of our trigonometric splines unique.

The functions φ1,ω0 and φ2,ω0 that fulfill these constraints then constitute the generators for the space of cardinal
Hermite exponential splines which is denoted by S 1

E4
(Z). They are given by

φ1,ω0 (x) =

{
g1,ω0 (x), for x ≥ 0
g1,ω0 (−x), for x < 0 , φ2,ω0 (x) =

{
g2,ω0 (x), for x ≥ 0
−g2,ω0 (−x), for x < 0 (2)

where
g j,ω0 (x) :=

(
a j(ω0) + b j(ω0)x + c j(ω0)eiω0 x + d j(ω0)e−iω0 x

)
χ[0,1], j = 1, 2 (3)

with the combination coefficients given by

a1(ω0) := iω0+1+eiω0 (iω0−1)
q(ω0) , b1(ω0) := − iω0(eiω0 +1)

q(ω0) , c1(ω0) := 1
q(ω0) , d1(ω0) := − eiω0

q(ω0) ,

a2(ω0) := p(ω0)
iω0(eiω0−1)q(ω0) , b2(ω0) := − eiω0−1

q(ω0) , c2(ω0) := eiω0−iω0−1
iω0(eiω0−1)q(ω0) , d2(ω0) := − eiω0 (eiω0 (iω0−1)+1)

iω0(eiω0−1)q(ω0) ,

and
p(ω0) := e2iω0 (iω0 − 1) + iω0 + 1, q(ω0) := eiω0 (iω0 − 2) + iω0 + 2. (4)

Since a j(ω0), b j(ω0), j = 1, 2 are both real as well as c j(ω0)eiω0 x + d j(ω0)e−iω0 x, j = 1, 2, both functions in (3) are
real-valued. Indeed substitution of the above coefficients in (3) provides

g1,ω0 (x) =
(
1 − sin(ω0/2)

s(ω0) +
ω0 cos(ω0/2)

s(ω0) x +
sin(ω0/2−ω0 x)

s(ω0)

)
χ[0,1],

g2,ω0 (x) =

(
sin(ω0)−ω0 cos(ω0)

ω0 u(ω0) +
sin(ω0/2)

s(ω0) x − ω2
0 cos(ω0/2) cos(ω0(1−x))+sin(ω0/2)

(
sin(ω0 x)u(ω0)−cos(ω0 x)v(ω0)

)
2ω0 sin(ω0/2)s(ω0) t(ω0)

)
χ[0,1],

(5)

where
s(ω0) := 2 sin(ω0/2) − ω0 cos(ω0/2), t(ω0) := 2 sin(ω0/2) + ω0 cos(ω0/2), (6)

and
u(ω0) := ω0 sin(ω0) − 2(1 − cos(ω0)), v(ω0) := 2 sin(ω0) + ω0(1 − cos(ω0)). (7)

Note that φ1,ω0 and φ2,ω0 are exponential polynomials in E4 in each interval [n, n + 1) for n = −1, 0 (and by extension
for any n ∈ Z) and that they are differentiable (with continuous derivatives) at the knots x = n.
It is clear that any linear combinations of the integer shifts of these functions is a piecewise exponential polynomial
made of pieces in E4 joining C1-continuously at the integers. Such functions can also be interpreted as exponential
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Figure 2: The generators φ1,ω0 and φ2,ω0 of E4 Hermite splines with ω0 = 3/4π. The two functions and their derivatives are vanishing at the
integers with the exception of φ1,ω0 (0) = 1 and φ′2,ω0

(0) = 1 (interpolation conditions). Their support size is two.

splines with double knots on the integers, the effect of a double knot being to reduce the ordinary degree of continuity
of the classical cardinal exponential splines by one [14]. It follows that the space S 1

E4
(Z) can be written as

S 1
E4

(Z) =

s(x) =
∑
n∈Z

aT [n]φω0
(x − n) : a ∈ `2×1

2 (Z)

 , with φω0
:= (φ1,ω0 , φ2,ω0 )T . (8)

Due to the Hermite interpolation condition, the expansion coefficients in (8) coincide with the samples of the function
and its first derivative on the integer grid; that is, a[n] =

(
s(n), s′(n)

)T .

4. Connection with standard exponential splines and reproduction properties

Our way of establishing the link with standard exponential splines is to compute the Fourier transforms of the
Hermite exponential spline generators with the convention that f̂ (ω) =

∫
R f (x)e−iωx dx. This yields

φ̂ω0
(ω) =

[
φ̂1,ω0 (ω)
φ̂2,ω0 (ω)

]
=


c1

0(ω0)+c1
1(ω0)ω

ω2(ω2−ω2
0)

c2
0(ω0)+c2

1(ω0)ω
ω2(ω2−ω2

0)

 , (9)

where, for p(ω0), q(ω0) as in (4), we have

c1
0(ω0) := −iω3

0(eiω0 +1)
q(ω0) (2 − (e−iω + eiω)), c1

1(ω0) := −iω2
0(eiω0−1)
q(ω0) (eiω − e−iω),

c2
0(ω0) := −ω2

0(eiω0−1)
q(ω0) (eiω − e−iω), c2

1(ω0) := −ω0
q(ω0)(1−eiω0 )

(
2p(ω0) − (1 + 2iω0eiω0 − e2iω0 )(e−iω + eiω)

)
.

Next, we rewrite (9) in matrix-vector form as

φ̂ω0
(ω) = R̂(eiω) ρ̂ω0

(ω), (10)

with

ρ̂ω0
(ω) :=

[
ρ̂1,ω0 (ω)
ρ̂2,ω0 (ω)

]
=

 1
ω2(ω2−ω2

0)
i

ω(ω2−ω2
0)

 , (11)

and

R̂(eiω) :=
iω0

q(ω0)

 −ω2
0(eiω0 + 1)

(
2 − (e−iω + eiω)

)
iω0(eiω0 − 1)(eiω − e−iω)

iω0(eiω0 − 1)(eiω − e−iω) 2p(ω0)−(1+2iω0eiω0−e2iω0 )(e−iω+eiω)
1−eiω0

 (12)

=
1

s(ω0)

 ω
3
0 cos(ω0/2)

(
2 − (e−iω + eiω)

)
ω2

0 sin(ω0/2)(eiω − e−iω)

ω2
0 sin(ω0/2)(eiω − e−iω) 2ω0

(
ω0 cos(ω0)−sin(ω0)

)
−ω0

(
ω0−sin(ω0)

)
(e−iω+eiω)

2 sin(ω0/2)

 ,
5



where expressions of p(ω0), q(ω0) and s(ω0) are given in (4) and (6), respectively. The aim here is to reveal the linear
relation between the generators φω0

= (φ1,ω0 , φ2,ω0 )T and ρω0
= (ρ1,ω0 , ρ2,ω0 )T . The latter are the Green’s functions of

the differential operators L1,ω0 := d4

dx4 + ω2
0

d2

dx2 , L2,ω0 := d3

dx3 + ω2
0

d
dx defining S E4 (Z) and S E3 (Z), respectively. The

explicit expression of these Green’s functions is given by

ρ1,ω0 (x) = F −1

 1
ω2(ω2 − ω2

0)

 =
ω0x − sin(ω0x)

2ω0
3 sgn(x), (13)

ρ2,ω0 (x) =
d
dx
ρ1,ω0 (x) =

1 − cos(ω0x)
2ω0

2 sgn(x). (14)

By inverting the 2 × 2 Fourier matrix R̂(eiω) in (12), we find that

ρ̂ω0
(ω) =

(
R̂(eiω)

)−1
φ̂ω0

(ω). (15)

Since
(
R̂(eiω)

)−1
=: P̂(eiω) has entries that are ratios of trigonometric polynomials, its discrete-time inverse Fourier

transform is well-defined and guaranteed to yield a unique sequence of matrices

P[n] =
1

2π

∫ +π

−π

P̂(eiω) eiωn dω

of slow growth. Hence, we conclude that

ρω0
(x) =

∑
n∈Z

P[n]φω0
(x − n), (16)

which proves that the Green’s functions ρ1,ω0 and ρ2,ω0 (as well as their integer shifts) can be perfectly reproduced by
{φω0

(· − n)}n∈Z. The specific form of (16) then follows from the interpolation property of the generators; that is, from
the relation

s(x) =
∑
n∈Z

(
s(n)φ1,ω0 (x − n) + s′(n)φ2,ω0 (x − n)

)
, (17)

which is valid for any function in S 1
E4

(Z). In particular, we have that

ρ1,ω0 (x) =
∑
n∈Z

(
ω0n − sin(ω0n)

2ω0
3 sgn(n)φ1,ω0 (x − n) +

1 − cos(ω0n)
2ω0

2 sgn(n)φ2,ω0 (x − n)
)
, (18)

and

ρ2,ω0 (x) =
∑
n∈Z

(
1 − cos(ω0n)

2ω0
2 sgn(n)φ1,ω0 (x − n) +

sin(ω0n)
2ω0

sgn(n)φ2,ω0 (x − n)
)
. (19)

In order to establish a link between order-four Hermite exponential splines and order-four exponential B-splines
(see [28] for the definition and detailed investigation of exponential B-splines), we consider a discretization on Z
of the differential operators L1,ω0 and L2,ω0 based on the following recursive definition of what we call the discrete
annihilation operator. The basic principle here is to specify the shortest possible sequence of weights that annihilates
the components (typically sinusoids) that are in the null space of those operators.

Definition 1. For ω j ∈ [0, π], j = 0, . . . ,m, the discrete annihilation operator for the frequencies (ω0, · · · , ωm) is
recursively defined as

∆ω0 f (x) := f (x) − eiω0 f (x − 1), ∆(ω0,··· ,ωm) f (x) := ∆ω0

(
∆(ω1,··· ,ωm) f (x)

)
. (20)
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In light of the above definition, a discretization on Z of the differential operators L1,ω0 and L2,ω0 is given by ∆(0,0,ω0,−ω0)
and ∆(0,ω0,−ω0), respectively. Note that ∆(0,0,ω0,−ω0) is exact when applied to functions in E4 and that ∆(0,ω0,−ω0) is exact
when applied to functions in E3 := 〈1, eiω0 x, e−iω0 x〉, ω0 ∈ [0, π].

In accordance with the classical theory of exponential splines, the order-four and order-three normalized exponential
B-splines are defined as follows, with a normalization factor that ensures the partition of unity [2].

Definition 2. The normalized order-four exponential B-spline basis for S E4 (Z) is defined by

B4,ω0 (x) =

(
ω0

2 sin(ω0/2)

)2

∆(0,0,ω0,−ω0) ρ1,ω0 (x) . (21)

Similarly, the normalized order-three exponential B-spline basis for S E3 (Z) is

B3,ω0 (x) =

(
ω0

2 sin(ω0/2)

)2

∆(0,ω0,−ω0) ρ2,ω0 (x). (22)

With the help of some algebra, we are also able to express B4,ω0 and B3,ω0 in terms of shifts of the generator φω0
. For

instance, we find that

B4,ω0 (x) = γ3
1φ1,ω0 (x − 1) + γ3

2φ1,ω0 (x − 2) + γ3
3φ1,ω0 (x − 3) + µ3

1φ2,ω0 (x − 1) + µ3
2φ2,ω0 (x − 2) + µ3

3φ2,ω0 (x − 3), (23)

where
γ3

1 =
ω0 − sin(ω0)

4ω0 sin2(ω0/2)
, γ3

2 = 1 − 2γ3
1, γ3

3 = γ3
1, µ3

1 =
1
2
, µ3

2 = 0, µ3
3 = −

1
2
.

One can easily verify that B4,ω0 is supported on [0, 4] and that it converges to a cubic B-spline as ω0 → 0.
Similarly, we make use of the Hermite interpolation property (17) to obtain the corresponding expression for the

order-three exponential B-spline for the space S E3 (Z), which is, instead, supported on [0, 3]:

B3,ω0 (x) = γ2
1φ1,ω0 (x − 1) + γ2

2φ1,ω0 (x − 2) + µ2
1φ2,ω0 (x − 1) + µ2

2φ2,ω0 (x − 2), (24)

where
γ2

1 =
1
2
, γ2

2 =
1
2
, µ2

1 =
ω0

2
cot(ω0/2), µ2

2 = −µ2
1.

Since exponential B-splines reproduce functions in E4, the property automatically extends to the space S 1
E4

(Z). Specif-
ically, we have that

xm =
∑
n∈Z

(
nmφ1,ω0 (x − n) + m nm−1φ2,ω0 (x − n)

)
, m = 0, 1, (25)

and
e±iω0 x =

∑
n∈Z

(
e±iω0nφ1,ω0 (x − n) ± iω0 e±iω0nφ2,ω0 (x − n)

)
. (26)

Remark 1. From (25) and (26), we immediately observe that any Hermite interpolant of type (17) is reproducing
the whole space E4 and, in particular, it is ellipse-reproducing. Moreover, we observe that (23) and (24) can be
interpreted as the construction of the shortest superfunction for the space S 1

E4
(Z) [5].

The remarkable property with respect to the theory of exponential splines is that the space S 1
E4

(Z), (which is the sum
of S E4 (Z) and S E3 (Z) as shown below), admits basis functions of size 2 that are shorter than the exponential B-splines
for any of the pure spline constituents. This can be explained via the so-called localisation process. Based on (9) and
(11), we express φ1,ω0 as

φ1,ω0 =
−ω2

0(eiω0 − 1)
q(ω0)

∆0ρ2,ω0 +
iω3

0(eiω0 + 1)
q(ω0)

∆(0,0)ρ1,ω0 =
ω2

0

s(ω0)
(
sin(ω0/2)∆0ρ2,ω0 − ω0 cos(ω0/2)∆(0,0)ρ1,ω0

)
, (27)
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with q(ω0) and s(ω0) in (4) and (6), respectively. While either of the summands in (27) is only partially localized and
still includes a sinusoidal trend, it is the combination of both that results in the cancelation of all residual components.
In a similar way

φ2,ω0 =
ω2

0(1−eiω0 )
q(ω0) ∆0ρ1,ω0 −

iω0
(1−eiω0 )q(ω0)

(
2iω0eiω0∆(ω0,−ω0)ρ2,ω0 (• + 1) + (1 − e2iω0 )∆(0,0)ρ2,ω0 (• + 1)

)
=

ω0
s(ω0)

(
ω0 sin(ω0/2)∆0ρ1,ω0 −

ω0
2 sin(ω0/2) ∆(ω0,−ω0)ρ2,ω0 (• + 1) + cos(ω0/2)∆(0,0)ρ2,ω0 (• + 1)

)
,

(28)

where q(ω0) and s(ω0) are given in (4) and (6), respectively. Thus φ2,ω0 is localized in [−1, 1].

Collecting the previous arguments, we now prove the following result.

Proposition 1. The exponential spline space S 1
E4

(Z) can be written as S 1
E4

(Z) = S E4 (Z) + S E3 (Z).

Proof: We simply observe that a cardinal exponential spline for the space S E4 (Z) (see, e.g, [23] or [28]) admits a
unique expansion of the type

s(x) =
∑
n∈Z

a[n]ρ1,ω0 (x − n) ⇔ L1,ω0 s(x) =
∑
n∈Z

a[n]δ(x − n),

where a[n] is a sequence of slow growth. The same holds for the space S E3 (Z) and the Green’s function ρ2,ω0 associated
with the differential operator L2,ω0 . This, in view of (18) and (19), implies that S E4 (Z) + S E3 (Z) ⊂ S 1

E4
(Z). On the

other hand from (27) and (28) we see that any function in S 1
E4

(Z) is also in S E4 (Z) + S E3 (Z), so completing the proof.
�

5. Riesz basis property

In this section we show that the system of integer translates of the Hermite exponential spline expansion in (8) is
stable. Indeed we prove that, for the vector function φω0

= (φ1,ω0 , φ2,ω0 )T , there exist two constants 0 < α ≤ β < +∞

such that
α‖a‖`2 ≤ ‖

∑
n∈Z

aT [n]φω0
(· − n)‖L2 ≤ β‖a‖`2 , with a ∈ `2×1

2 (Z).

The result is stated in the following theorem.

Theorem 1. The system of (vector) functions {φω0
(· − n), n ∈ Z}, φω0

= (φ1,ω0 , φ2,ω0 )T with φ j,ω0 , j = 1, 2 as in (2),
forms a Riesz basis.

Proof: We start by computing the Hermitian Fourier Gram matrix of the basis, which is given by

Ĝ(eiω, ω0) =
∑
k∈Z
φ̂ω0

(ω + 2πk) φ̂ω0
(ω + 2πk)H

=


∑
n∈Z
〈φ1,ω0 , φ1,ω0 (· − n)〉 e−iωn

∑
n∈Z
〈φ1,ω0 , φ2,ω0 (· − n)〉 e−iωn∑

n∈Z
〈φ2,ω0 , φ1,ω0 (· − n)〉 e−iωn

∑
n∈Z
〈φ2,ω0 , φ2,ω0 (· − n)〉 e−iωn


=

[
a(ω0)(e−iω + eiω) + b(ω0) c(ω0)(e−iω − eiω),

c(ω0)(eiω − e−iω) d(ω0)(e−iω + eiω) + e(ω0)

]

=

[
2a(ω0) cos(ω) + b(ω0) −2c(ω0)i sin(ω),

2c(ω0)i sin(ω) 2d(ω0) cos(ω) + e(ω0)

]
,
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where

a(ω0) :=
ω0(ω2

0 − 18) cos(ω0) − 6(ω2
0 − 5) sin(ω0) + ω0(ω2

0 − 12)
12ω0(s(ω0))2 ,

b(ω0) :=
ω0(ω2

0 + 3) cos(ω0) − 3(ω2
0 + 5) sin(ω0) + ω0(ω2

0 + 12)
3ω0(s(ω0))2 ,

c(ω0) :=
5ω0(ω2

0 + 3) cos(ω0/2) + ω0(ω2
0 − 15) cos(3ω0/2) − 72 sin(ω0/2) − 6(ω2

0 − 4) sin(3ω0/2)

24ω2
0 sin(ω0/2)(s(ω0))2

,

d(ω0) :=
6(7ω2

0 + 6) sin(ω0) + 6(ω2
0 − 3) sin(2ω0) − ω0

(
2(7ω2

0 − 30) cos(ω0) + (ω2
0 − 12) cos(2ω0) + 3(ω2

0 + 24)
)

48ω3
0 sin2(ω0/2)(s(ω0))2

,

e(ω0) :=
−12(2ω2

0 + 3) sin(ω0) − 3(5ω2
0 − 6) sin(2ω0) + 2ω0

(
2(ω2

0 + 9) cos(ω0) + (ω2
0 − 18) cos(2ω0) + 6ω2

0

)
24ω3

0 sin2(ω0/2)(s(ω0))2
,

are real functions, ω0 ∈ [0, π] and s(ω0) is defined as in (6). We continue by observing that the Gram matrix Ĝ(eiω, ω0)
is symmetric and 2π-periodic and that the Riesz basis requirement is equivalent to (see [13])

+∞ > β2 = max
ω∈[0,π]

λmax(eiω, ω0) ≥ min
ω∈[0,π]

λmin(eiω, ω0) = α2 > 0, (29)

where λmax(eiω, ω0) and λmin(eiω, ω0) denote the maximum and minimum eigenvalues of Ĝ(eiω, ω0) at frequency ω,
respectively. To prove (29), we start by computing the trace of Ĝ(eiω, ω0) (which is a real-valued function that equals
the sum of the two eigenvalues) as

tr
(
Ĝ(eiω, ω0)

)
= 2(a(ω0) + d(ω0)) cos(ω) + b(ω0) + e(ω0).

Since both a(ω0) + d(ω0) and b(ω0) + e(ω0) are bounded real numbers, tr
(
Ĝ(eiω, ω0)

)
is bounded from above, and

hence β < +∞. Moreover, since both b(ω0) − 2a(ω0) and e(ω0) − 2d(ω0) are real positive numbers, we can write

tr
(
Ĝ(eiω, (ω0))

)
= 2(a(ω0) + d(ω0)) cos(ω) + b(ω0) + e(ω0) > (b(ω0) − 2a(ω0)) + (e(ω0) − 2d(ω0)) > 0;

i.e., the trace is also positive, which means that β is bounded from below. In order to prove the existence of α > 0
such that (29) is true, it suffices to compute det

(
Ĝ(eiω, ω0)

)
(which is the product of the eigenvalues) and verify that it

is positive and bounded away from 0. The computation of the determinant yields

det
(
Ĝ(eiω, ω0)

)
=

(
2a(ω0) cos(ω) + b(ω0)

)(
2d(ω0) cos(ω) + e(ω0)

)
− 4 sin2(ω)(c(ω0))2

= A(ω0) cos(2ω) + B(ω0) cos(ω) + C(ω0) ,

with

A(ω0) = 2
(
a(ω0)d(ω0)+(c(ω0))2

)
, B(ω0) = 2

(
a(ω0)e(ω0)+b(ω0)d(ω0)

)
, C(ω0) = 2

(
a(ω0)d(ω0)−(c(ω0))2

)
+b(ω0)e(ω0).

Next we construct the lower bound

det
(
Ĝ(eiω, ω0)

)
≥ C(ω0) − |B(ω0)| − |A(ω0)| = C(ω0) + B(ω0) − A(ω0) =: G(ω0).

The final step is to observe that the auxiliary function

G(ω0) =
180ω0 sin(ω0) − 9ω3

0 sin(2ω0) − 4(2ω4
0 − 3ω2

0 − 48) cos(ω0) + (ω4
0 − 24ω2

0 − 3) cos(2ω0) + 7ω4
0 − 78ω2

0 − 189

24ω4
0 sin2(ω0/2)(s(ω0))2

≥ G(0) > 0

is positive and increasing for ω0 ∈ [0, π], which proves existence of the lower Riesz bound. �
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6. Re-scaled Hermite representation

We now specify the Hermite functions with respect to the grid hZ where h > 0 is the sampling step. The corre-
sponding generators φh

ω0
= (φh

1,ω0
, φh

2,ω0
)T are obtained from φ1

ω0
:= φω0

and satisfy{
φh

1,ω0
(x) = φ1,hω0 (x/h)

φh
2,ω0

(x) = h φ2,hω0 (x/h), (30)

where φ j,hω0 , j = 1, 2 are the Hermite cardinal functions in (2) with ω0 replaced by hω0. Note that the second
function is re-normalized to fulfill the Hermite interpolation condition (φh

2,ω0
)′(0) = 1. Likewise, the derivatives

satisfy the scaling relation {
(φh

1,ω0
)′(x) = 1

h (φ1,hω0 )′(x/h)
(φh

2,ω0
)′(x) = (φ2,hω0 )′(x/h). (31)

We then define the Hermite spline space at resolution h as

S 1
E4

(hZ) =

sh(x) =
∑
n∈Z

aT
h [n]φh

ω0
(x − nh) : ah ∈ `

2×1
2 (Z)

 . (32)

The asymptotic behaviour of the re-scaled Hermite functions φh
j,ω0
, j = 1, 2 is investigated in the next proposition.

Proposition 2. The re-scaled Hermite functions φh
j,ω0
, j = 1, 2 satisfy

lim
h→0

φh
1,ω0

(hx) =

{
(−2x + 1)(x + 1)2, for − 1 ≤ x ≤ 0,
(2x + 1)(x − 1)2, for 0 < x ≤ 1,

lim
h→0

1
h
φh

2,ω0
(hx) =

{
x(x + 1)2, for − 1 ≤ x ≤ 0,
x(x − 1)2, for 0 < x ≤ 1.

Proof: In light of (30), the result is obtained simply by taking the limit of (5) as ω0 → 0. �

This result is important because it shows that the re-scaled Hermite functions converge to the cardinal Hermite cubic
splines as h→ 0.

Remark 2. The implication of Proposition 2 is that the asymptotic properties of the exponential Hermite splines are
the same as those of the classical cubic Hermite splines. They are therefore endowed with the same fourth-order of
approximation. This happens to be the order of approximation of the cubic B-splines, which are included in the space
spanned by the Hermite splines as ω0 → 0.

7. Multiresolution properties

To make the multiresolution structure of these spaces apparent, we define the Hermite spline space at resolution h
given in (32) in terms of the Green’s functions ρω0

= (ρ1,ω0 , ρ2,ω0 )T . To this end, we use the convolution relation

φh
ω0

(x) =
∑
k∈Z

Rh[k] ρω0
(x − hk),

which is the time-domain counterpart of (10) when properly rescaled to the grid hZ. This allows us to show that

sh(x) =
∑
n∈Z

bT
h [n] ρω0

(x − nh),

where bT
h [n] =

∑
k∈Z aT

h [n − k] Rh[k] = (aT
h ∗ Rh)[n]. Since the basis functions in this second representation do not

depend on h, we can infer that S 1
E4

(hZ) ⊂ S 1
E4

( h
mZ) for any integer m > 1, simply because the basis functions of the
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coarser space are a (subsampled) subset of ones located on the finer grid. On the side of the Hermite generators, the
corresponding two-scale relation is

φh
ω0

(x) =
∑
n∈Z

Hh→h/m[n]φ
h
m
ω0

(
x − n

h
m

)
, (33)

with refinement mask

Hh→h/m[n] =

 φh
1,ω0

(n h
m ) (φh

1,ω0
)′(n h

m )

φh
2,ω0

(n h
m ) (φh

2,ω0
)′(n h

m )

 =

 φ1,hω0

( n
m
) 1

h (φ1,hω0 )′
( n

m
)

h φ2,hω0

( n
m
)

(φ2,hω0 )′
( n

m
)  ,

which follows from the application of the Hermite interpolation formula with respect to the grid hZ as well as from
(30) and (31).
As an application of this result, we write down the m-ary vector subdivision scheme for computing the function

s(x) =
∑
n∈Z

aT
0 [n]φω0

(x − n),

as well as its first derivative, at any arbitrary fine grid with hJ = 1/mJ starting from its values at the integers.
For readers not familiar with subdivision, we shortly recall that a vector subdivision scheme is an efficient iterative
procedure based on the repeated application of refinement rules transforming, at each iteration, a sequence of vectors
into a denser sequence of vectors. Whenever convergent, they generate vector functions related to the vector data used
to start the iterative procedure (see [11] or [29] for details on subdivision schemes). The present subdivision scheme
turns out to be interpolatory: since each finer sequence contains the coarser one, the initial vector data corresponds
to the samples of the limit function. We refer the reader to [4] and [7] for theoretical results on interpolatory vector
subdivision schemes. Moreover, our vector subdivision scheme is of Hermite-type, with the understanding that the
initial data and the vectors generated at each step represent function values and consecutive derivatives up to a certain
order. Details on interpolatory as well as non-interpolatory Hermite subdivision schemes can be found in [6, 3, 22].
Concretely, the interpolatory Hermite-type subdivision algorithm associated to (33) proceeds recursively for j =

0, . . . , J − 1 by computing for all n ∈ Z

a j+1[n] =
∑
`∈Z

H j[mn − `] a j[`], (34)

where H j[n] := HT
h j→h j+1

[n] and h j = 1
m j . When m = 2 (dyadic Hermite interpolation), each step involves an upsam-

pling by a factor of two followed by a matrix filtering. The corresponding dyadic filters (or dyadic subdivision masks)
{H j[n], j ≥ 0}, which are non-zero for the entries n = −1, 0, 1 only, are described by the matrix sequences

H j[−1] =


1
2

1−eiω( j+1)
0

2iω( j)
0 (eiω( j+1)

0 +1)
× 1

2 j

iω( j)
0 (eiω( j+1)

0 −1)2

D(ω( j)
0 )

× 2 j iω( j)
0 eiω( j+1)

0 −eiω( j)
0 +1

D(ω( j)
0 )

 =


1
2 −

tan(ω( j)
0 /4)

2ω( j)
0

× h j

2ω( j)
0 sin2(ω( j)

0 /4)

s(ω( j)
0 )

× 1
h j

2 sin(ω( j)
0 /2)−ω( j)

0

2s(ω( j)
0 )

 ,
H j[0] =

(
1 0
0 1

)
, (35)

H j[1] =


1
2 − 1−eiω( j+1)

0

2iω( j)
0 (eiω( j+1)

0 +1)
× 1

2 j

−
iω( j)

0 (eiω( j+1)
0 −1)2

D(ω( j)
0 )

× 2 j iω( j)
0 eiω( j+1)

0 −eiω( j)
0 +1

D(ω( j)
0 )

 =


1
2

tan(ω( j)
0 /4)

2ω( j)
0

× h j

−
2ω( j)

0 sin2(ω( j)
0 /4)

s(ω( j)
0 )

× 1
h j

2 sin(ω( j)
0 /2)−ω( j)

0

2s(ω( j)
0 )

 ,
where

ω
( j)
0 := ω0/2 j = ω0h j, D(ω( j)

0 ) := iω( j)
0 (1 + eiω( j)

0 ) + 2(1 − eiω( j)
0 ), j ≥ 0

and s(ω( j)
0 ) as in (6). The output of the algorithm yields the sequence aT

J [n] =
(
s(n/2J), s′(n/2J)

)
. Note that, as the

refinement masks are resolution-dependent, the scheme can be categorized as being non-stationary.
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Remark 3. The non-stationary j-level subdivision mask in (35) is such that, for D =

(
1 0
0 1

2

)
,

lim
j→∞

D jH j[−1]D− j =

 1
2 − 1

8
3
2 − 1

4

 , lim
j→∞

D jH j[1]D− j =

 1
2

1
8

− 3
2 − 1

4

 ,
i.e., it is asymptotically similar to Merrien’s stationary scheme based on Hermite cubic splines [21].

Remark 4. Like the non-stationary subdivision scheme in [25], equation (34) describes a 2-point Hermite subdivision
scheme reproducing ellipses.

8. Equivalent Bézier representation

The generalized Bernstein basis functions for the space E4 with x ∈ [0, 1] are special instances of exponential B-
splines with multiple knots and they have been investigated by several authors [17, 18]. For the sake of completeness,
we recall their definition and main properties.
In analogy with Bernstein polynomials of degree 3, the four Bernstein basis functions b`,ω0 (x), ` = 0, · · · , 3 of E4
satisfying

i) symmetry: b`,ω0 (x) = b3−`,ω0 (1 − x) for all ` = 0, · · · , 3 and x ∈ [0, 1];
ii) endpoint conditions, listed only for b0,ω0 and b1,ω0 :

b0,ω0 (0) = 1, b0,ω0 (1) = 0, (b0,ω0 )′(1) = (b0,ω0 )
′′

(1) = 0, b1,ω0 (0) = b1,ω0 (1) = 0, (b1,ω0 )′(1) = 0 ;

iii) partition of unity:
3∑
`=0

b`,ω0 (x) = 1 for all x ∈ [0, 1];

iv) non-negativity: b`,ω0 (x) ≥ 0 for all x ∈ [0, 1] and ` = 0, · · · , 3;

are given by

b0,ω0 (x) =
2iω0eiω0

r(ω0) −
2iω0eiω0

r(ω0) x + 1
r(ω0) e

iω0 x − e2iω0

r(ω0) e
−ω0 x

=
ω0

ω0−sin(ω0) (1 − x) − sin(ω0(1−x))
ω0−sin(ω0) ,

b1,ω0 (x) =
(1−eiω0 )p(ω0)

q(ω0)r(ω0) +
iω0(eiω0−1)3

q(ω0)r(ω0) x +
r(ω0)−q(ω0)
q(ω0)r(ω0) eiω0 x +

eiω0 (p(ω0)−q(ω0))
q(ω0)r(ω0) e−iω0 x

=
sin(ω0/2)

s(ω0) −
2ω0 sin3(ω0/2)

s(ω0) (ω0−sin(ω0)) (1 − x) +
(

1
ω0−sin(ω0) +

cos(ω0/2)
s(ω0)

)
sin(ω0(1 − x)) − sin(ω0/2)

s(ω0) cos(ω0(1 − x)),

b2,ω0 (x) =
(1−eiω0 )

q(ω0) +
iω0(1−eiω0 )3

q(ω0)r(ω0) x +
p(ω0)−q(ω0)
q(ω0)r(ω0) eiω0 x +

eiω0 (r(ω0)−q(ω0))
q(ω0)r(ω0) e−iω0 x

=
sin(ω0/2)

s(ω0) −
2ω0 sin3(ω0/2)

s(ω0) (ω0−sin(ω0)) x +
(

1
ω0−sin(ω0) +

cos(ω0/2)
s(ω0)

)
sin(ω0x) − sin(ω0/2)

s(ω0) cos(ω0x),

b3,ω0 (x) =
2iω0eiω0

r(ω0) x + − eiω0

r(ω0) e
iω0 x + eiω0

r(ω0) e
−iω0 x

=
ω0

ω0−sin(ω0) x − sin(ω0 x)
ω0−sin(ω0) ,

(36)
where q(ω0) is given in (4) and r(ω0) := 1 + 2iω0eiω0 − e2iω0 .

For later use, we mention that, by symmetry, (b2,ω0 )′(0) = (b3,ω0 )′(0) = 0. Similarly,

(b0,ω0 )′(0) = (b2,ω0 )′(1) = −(b1,ω0 )′(0) = −(b3,ω0 )′(1) =
p(ω0) − r(ω0)

r(ω0)
=
ω0(cos(ω0) − 1)
ω0 − sin(ω0)

.

It is well known that cubic Hermite interpolation can be expressed in terms of cubic Bézier basis functions. To achieve
the same in the present context, let us consider the task of computing b`,ω0 (x), ` = 0, · · · , 3 as specified by (8) for
x ∈ [n, n + 1). Defining t = x − n ∈ [0, 1), we simplify the expansion as

b`,ω0 (n + t) = b`,ω0 (n)φ1,ω0 (t) + (b`,ω0 )′(n)φ2,ω0 (t) + b`,ω0 (n + 1)φ1,ω0 (t − 1) + (b`,ω0 )′(n + 1)φ2,ω0 (t − 1), (37)
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Figure 3: Exponential Bernstein basis functions (left) versus exponential Hermite basis functions (right) for ω0 = 3/4π.

by retaining only the four Hermite basis functions that are non-vanishing within the interval (see Figure 3).
From the endpoint condition (ii), we readily obtain the conversion between the two types of representations as

φ1,ω0 (t)
φ2,ω0 (t)
φ1,ω0 (t − 1)
φ2,ω0 (t − 1)

 =


1 1 0 0
0 r(ω0)

r(ω0)−p(ω0) 0 0
0 0 1 1
0 0 −

r(ω0)
r(ω0)−p(ω0) 0




b0,ω0 (t)
b1,ω0 (t)
b2,ω0 (t)
b3,ω0 (t)

 . (38)

Remark 5. Note that limω0→0
r(ω0)

r(ω0)−p(ω0) = 1
3 . This indicates that the above conversion matrix provides in the limit the

conversion matrix for cubic polynomial Hermite splines, as expected.

9. Link with scalar subdivision

We conclude the paper by showing that the Hermite subdivision scheme discussed in Section 7 can also be converted
into a non-uniform, non-stationary scalar subdivision scheme for exponential B-splines with double knots spanning
S 1
E4

(Z). This is the (new) exponential counterpart of the subdivision scheme for cubic B-splines with double knots
considered in [26]. Based on the conversion between Hermite and Bézier functions for E4 given by (38), we see that,
for j ≥ 0, in the interval [ `

2 j ,
`+1
2 j ], the function

f j[n]φ1,ω0 (x) + d j[n]φ2,ω0 (x) + f j[n + 1]φ1,ω0 (x − 1/2 j) + d j[n + 1]φ2,ω0 (x − 1/2 j) (39)

can be written as
f j[n]b0,ω0 (x) +

(
f j[n] +

r(ω0)
2 j(r(ω0)−p(ω0)) d j[n]

)
b1,ω0 (x)+(

f j[n + 1] − r(ω0)
2 j(r(ω0)−p(ω0)) d j[n + 1]

)
b2,ω0 (x) + f j[n + 1]b3,ω0 (x) ,

or, in a more compact form, as

f j[n]b0,ω0 (x) + p j[2n + 1]b1,ω0 (x) + p j[2n + 2]b2,ω0 (x) + f j[n + 1]b3,ω0 (x) ,

with (
p j[2n]
p j[2n + 1]

)
︸            ︷︷            ︸

p j[n]

=

 1 −
r(ω0)

2 j(r(ω0)−p(ω0))

1 r(ω0)
2 j(r(ω0)−p(ω0))

︸                      ︷︷                      ︸
M j

(
f j[n]
d j[n]

)
︸     ︷︷     ︸

a j[n]

, n ≥ 0 . (40)

At this point, we recall that the dyadic Hermite subdivision scheme with mask (35) and the repeated evaluation of the
local Hermite interpolant at interval mid points (see, for example, [21]) can be explicitly written as

a j+1[2n] := a j[n], a j+1[2n + 1] := H j[1] a j[n] + H j[−1]a j[n + 1] , (41)
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or, in view of (40), as

p j+1[2n] := M j+1 M−1
j p j[n], p j+1[2n + 1] := M j+1 H j[1] M−1

j p j[n] + M j+1 H j[−1] M−1
j p j[n + 1] . (42)

Since at each iteration j, the latter formulas define p j+1[4n], p j+1[4n + 1], p j+1[4n + 2], p j+1[4n + 3], the vector
rules in (42) do identify four scalar rules that we can associate to a non-uniform and non-stationary scalar subdivision
scheme. This is the exponential counterpart of the four-point scheme in [26], whose geometric meaning is shown in
Figure 4.

fj[n + 1]

dj[n + 1]

fj[n− 1]

dj[n]
fj[n]

dj[n− 1]

n−1
2j

n
2j

n+1
2j

n
2j −

hj

2
n
2j +

hj

2

fj+1[2n− 1]

dj+1[2n− 1] dj+1[2n + 1]

fj+1[2n + 1]

n−1
2j

n
2j
− hj

3

n
2j

n
2j
+ hj

3

n+1
2j

pj[2n− 1]
pj[2n]

pj[2n + 1] pj[2n + 2]

pj+1[4n− 1]
pj+1[4n + 2]

pj+1[4n]pj+1[4n + 1]

Figure 4: Geometric interpretation of the subdivision schemes in (41) and (42). Top: at each step the interpolatory vector subdivision scheme (41)
creates a new vector between any two old vectors and retains them. Bottom: at each step the approximating scalar subdivision scheme (42) creates
two new control points between any two old ones and discards them.
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