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ABSTRACT

In this paper we introduce a reliable, fully automated and fast algorithm to detect extended

extragalactic radio sources (cluster of galaxies, filaments) in existing and forthcoming surveys

(like LOFAR and SKA). The proposed solution is based on the adoption of a Deep Learning

approach, more specifically a Convolutional Neural Network, that proved to perform out-

standingly in the processing, recognition and classification of images. The challenge, in the

case of radio interferometric data, is the presence of noise and the lack of a sufficiently large

number of labelled images for the training. We have specifically addressed these problems and

the resulting software, COSMODEEP, proved to be an accurate, efficient and effective solution

for detecting very faint sources in the simulated radio images. We present the comparison

with standard source finding techniques, and discuss advantages and limitations of our new

approach.

Key words: methods: numerical – galaxies: clusters: general – intergalactic medium – large-

scale structure of Universe.

1 IN T RO D U C T I O N

The challenge facing astronomers in the upcoming decade is not

only scientific, but also technological. A flurry of complex data

will be delivered by new telescopes such as SKA, LSST or CTA,

and this will be difficult to manage with traditional approaches.

Data will have to be stored in dedicated facilities, providing the

necessary capacity at the highest performance. Corresponding data

processing will have to be performed local to the data, exploiting

available high-performance computing resources. Data reduction

and imaging software tools will have to be adapted, if not completely

re-designed, in order to efficiently run at scale. Fully automated

pipelines will be a compelling requirement for effective software

stacks as the richness and complexity of incoming data will inhibit

human interaction and supervision.

In this work, we focus on radio imaging of extended and low sur-

face brightness emission from the cosmic web (e.g. Brown 2011),

which may become feasible thanks to the expected 10-fold improve-

ment in instrument sensitivity. Such large-scale diffuse and faint

emission is mostly associated with the extended distribution of syn-

chrotron emitting electrons in the largest structures of the Universe,

i.e. the gas structure around galaxy clusters and filaments. This is

expected to appear as an elongated low surface brightness and flat

spectrum radio emission [i.e. α ∼ 1, with α being the spectral index,

linked to the source flux density S according to S(ν)∝ν−α] tracing

⋆ E-mail: cgheller@cscs.ch

structure formation shocks in cluster outskirts and around cosmic

filaments (e.g. Vazza et al. 2015). Detecting this diffuse emission

will be particularly important as it is expected to carry unique in-

formation on the origin of extragalactic magnetic fields (e.g. Vazza

et al. 2017).

However, identifying the faint radio signal from cosmic filaments

will be particularly challenging owing to the difficulty in detecting

their gas component in any other wavelength, as well as due to

the very large angular scale they typically probe (several degrees),

which makes them increasingly more elusive at high radio frequen-

cies. In addition, radio images obtained through interferometric

observations are affected by several instrumental and environmen-

tal effects, which may increase the image noise well above the

expected thermal noise threshold (e.g. radio interferometric inter-

ferences from the ground and from the sky, unstable ionospheric

conditions, deconvolution artefacts). As some of these effects are

direction-dependent and vary across the field of view, the final noise

in the image is often non-uniform and of similar level to the signal

from the real sources.

Our goal here is to develop a source finder tool tailored to detect

faint and extended sources, with an accuracy comparable to that of

the most sophisticated software available, for instance PYBDSF (see

Section 5), a recent PYTHON-based tool designed for LOFAR, which

is to our knowledge the most used in the field. We also require our

tool to be flexible and easily extensible enough to handle different

kinds of problems, for instance the analysis of multi-dimensional

data, like radio data cubes. Furthermore, it has to run efficiently on

large supercomputing systems, exploiting, in particular, parallelism

C© 2018 The Author(s)
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3750 C. Gheller, F. Vazza and A. Bonafede

and accelerators, managing problems of ‘any’ size at high perfor-

mance. Finally, it has to be fully automated, requiring no human

intervention or control, and based on portable components, in order

to be usable on any computing architecture.

In order to develop such data-processing methodology, we have

explored the potential of Machine Learning, a branch of Artificial

Intelligence already successfully used in astronomy (for a review

see Ball & Brunner 2009; Kremer et al. 2017, and for recent ap-

plications see Barchi et al. 2017; Beck et al. 2018; Lucie-Smith

et al. 2018; Rodriguez et al. 2018, Sullivan, Iliev & Dixon 2018

). Among the various Machine Learning approaches, we have fo-

cused on Deep Learning, which provides outstanding performance

for tasks relating to computer vision, text analysis, fragmentation,

speech recognition (Lecun et al. 1998, Krizhevsky, Sutskever &

Hinton 2012; Simonyan & Zisserman 2014; Szegedy et al. 2015;

He et al. 2016; Garcia-Garcia et al. 2017), among others. Deep

Learning has become increasingly popular in the last decade thanks

to two concurrent factors: the availability of enough computing

power to cope with complex, multi-layered neural networks, and

the availability of enough data to perform the training. Recently, it

has also been adopted in applications in astronomy and cosmology

(see e.g. Aniyan & Thorat 2017; Gieseke et al. 2017; Nieto et al.

2017; Mahabal et al. 2017; Schmelzle et al. 2017; Abraham et al.

2018; Connor & van Leeuwen 2018; Hassan et al. 2018; Herbel

et al. 2018; Lukic et al. 2018; Parks et al. 2018).

Out of the existing Deep Learning approaches, we have focused

this work on Convolutional Neural Networks (CNN), which have

proved to be both efficient and accurate in classifying images. The

main advantages of CNNs are their high accuracy, their high com-

putational performance and their suitability for a broad spectrum

of applications. Training, involving basic linear algebra local op-

erations, can be performed effectively on accelerated architectures

exploiting, for instance, GPUs. The network can be efficiently de-

composed to run on distributed, multi-processor systems (Shi &

Chu 2017). Once trained, classification is a simple and fast task,

and accuracy can range close to 100 per cent depending on the

model, the task and the data set. Furthermore, by changing a few

parameters and the input data, the same model can be trained for

completely different tasks. Drawbacks are represented by the lack

of flexibility of a trained model, a network being designed and

trained on a specific kind of data input (e.g. 2000 × 2000 pixel

grey-scale images), and the need for large, labelled training sets.

The former obviously represents a serious concern in Astronomy

due to the heterogeneity of the data products that can be deliv-

ered by different instruments, as well as due to the highly spe-

cialized format and resolution of output images from different

telescopes.

The main challenge, however, is represented by the availability

of sufficiently big data sets with pre-classified (labelled) images

that can be used for the training. Tens of thousands of labelled

images should be accessible in order to effectively train the network.

Currently, few surveys of extragalactic objects have a large enough

data set of labelled images, which makes any application of Deep

Learning challenging. We have specifically addressed this problem

by creating Àmock’ observations, starting from the results produced

by cosmological numerical simulations (see Section 3). This allows

us to generate enough images to train the network. Having the full

control of the training images, we had the capability to develop a

labelling algorithm able to classify and label images without human

supervision.

The CNN-based algorithm we present in this paper, called COS-

MODEEP, represents the first step towards a fully automated software

pipeline able to face the challenges posed by big, complex radio

data. COSMODEEP can not only train the CNN and classify images,

but also takes care of the preprocessing and labelling of the images

used for the training. Hence it provides all the tools to develop an

effective classification algorithm built on the top of a Deep Learning

model.

The paper is organized as follows. The details of the COSMODEEP

CNN are presented in Section 2. Section 3 focuses on the training

data and how images are generated, labelled, and processed, in order

to feed the CNN. Section 4 describes the tuning of the parameters

of the CNN, the accuracy of the algorithm and its performance. The

main results are presented in Section 5, with conclusions drawn in

Section 6.

2 TH E COSMODEEP C O N VO L U T I O NA L

N E U R A L N E T WO R K

Deep Learning builds on the top of neural networks, trying to exploit

the inherent structure of the data. Deep Learning algorithms can take

advantage of the spatial correlations of pixels in images, as in the

case of CNNs, which are among the most successful techniques for

image classification. We have adopted the CNN architecture for the

implementation of COSMODEEP.

A CNN uses three basic ideas: local receptive fields, shared

weights, and pooling. These are combined in a multi-layer archi-

tecture whose complexity (’depth’) depends on the problem and on

the desired accuracy. The first and the last layers are called input

and output layers. All the others are called hidden layers. The CNN

network designed for COSMODEEP is shown in Fig. 1.

Once input images are loaded in the input layer, each of them is

scanned using a local receptive field, which is a small window (e.g.

3 × 3 or 5 × 5 pixels, in this paper the former is used) moving across

all pixels in the image and calculating the activation function. In

the case of our algorithm, this is a ReLU (Rectified Linear Units)

function, which is one of the most successful choices of activation

functions for Deep Learning (although several others are possible).

It is defined as:

σi,j = max

(

0, bi,j +

M
∑

l=1

M
∑

m=1

wl,mai+l−h,j+m−h

)

(1)

where M is the size of the window, h = (M − 1)/2, ai, j are the

pixels, wl, m are the weights of the network and bi, j are the biases.

For every pixel in the image we have the same set of shared M

× M weights plus one additional shared bias. Weights and biases

are randomly initialized. The resulting σ i, j compose the so-called

feature map at the first hidden layer. Multiple feature maps can

be calculated starting from different random initializations of the

weights. This leads to a so-called convolutional layer. Convolutional

layers are intended to identify the main features of objects contained

in the image, and are usually followed by pooling layers. Pooling

layers take each feature map output from the convolutional layer

and calculate a new condensed feature map. It is common practice

to use max pooling or average pooling, returning the maximum or

the average value in a 2 × 2 input region. The resulting map has

half size in each dimension. Pooling is separately applied to each

single feature map. It is intended to get rid of the exact positional

information of the identified features, focusing on the feature itself,

wherever it is placed in the image.

Convolution and pooling are repeated taking the pooled feature

maps at layer N-1 as an input, and producing a new lower reso-

lution set of feature maps at layer N. The information extracted

MNRAS 480, 3749–3761 (2018)
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Deep learning detection of radio sources 3751

Figure 1. The COSMODEEP CNN architecture, accounting from one input, five hidden and one output layers.

from the images is progressively refined until the final hidden layer.

This is usually a fully connected layer that combines and corre-

lates the information refined in the previous layers. At the end,

the output layer produces the final answer, which is compared to

the correct answer known a priori. Correct answers are part of an

image set classified through a labelling procedure performed inde-

pendently from the CNN (our labelling methodology is described in

Section 3.3.). The comparison allows estimating the error through

a cost function. This error is minimized through an optimization

process called training of the network. Optimization is achieved by

calculating corrections to the weights moving along the gradient of

the cost function, down towards a minimum value. Such an approach

is called gradient descent. Once corrections have been calculated,

they are back-propagated to all the layers of the network, correcting

the weights up to the first hidden layer. Back propagation is not

performed after each single image, but after a randomly selected

sub-set of N training images has been processed and corresponding

corrections accumulated. This sub-set of N images is called a mini-

batch, and an optimal setting of N can accelerate the convergence

of the algorithm towards the minimization of the error.

Gradient descent is an iterative process encompassing all the pos-

sible mini-batches in the data set. At each iteration the estimated

corrections are weighted by the learning rate parameter. The learn-

ing rate controls how much the weights of the network are adjusted

for each mini-batch, influencing the convergence and the accuracy

of the algorithm. Small values of the learning rate tend to give more

accurate results but lead to slow convergence. Excessively large

values may lead to inaccurate results or even divergence.

In order to improve the training, the full training data set can be

used many times. A single pass through the entire data set is called

an epoch. Each single image is processed by the CNN a number

of times equal to the number of epochs during the training, as part

of different mini-batches. The optimal number of epochs has to be

sufficiently large to extract all the information from the training set,

but not too large to slow down the training process or to lead to

overfitting (i.e. the CNN starts ’learning’ even from the noise).

A successful Deep Learning network design results from an ap-

propriate combination of the various layers. COSMODEEP implements

the CNN model shown in Fig. 1, consisting of five hidden layers,

two convolutional layers with 32 and 64 features maps, respectively,

two pooling layers adopting a max pool algorithm and a fully con-

nected 1024 neurons layer. This rather simple model, accounting for

about 700 000 parameters (weights plus biases, their number being

independent of the size of the input images), is effective for our

purpose. The software has been developed using the TensorFlow

toolkit (Abadi et al. 2015) (version currently used: 1.2.1), provid-

ing the basic CNN building blocks. TensorFlow deploys a PYTHON

API, which has been used for fast and effective prototyping, while

the library functions are developed using the C++ programming

language for performance purposes. The library efficiently exploits

GPUs and provides a distributed interface supporting multi-CPU

architectures.

3 TH E I M AG E SE T

Data represent the ’fuel’ of any Deep Learning engine. The avail-

ability of a sufficiently large, labelled training data set is one of

the most critical aspects in the adoption of a Deep Learning based

approach. In the case of data coming from radio observation, suf-

ficiently big data sets are not available, hence we need to generate

training data from scratch exploiting the results of numerical simu-

lations (usually training requires thousands or tens of thousands of

images). These results are processed in order to calculate emission

at the wavelengths of interest. They are then projected in order to

get two-dimensional sky views and further combined with noise and

artefacts to mimic actual observations. Finally, the resulting images

are automatically labelled. The full procedure is described in the

following sections.

3.1 Image generation

The images created for training need to have size and complexity

similar to those expected from real radio observations. As a test case

we considered here the case of a survey made with the Australian

telescope ASKAP, the pathfinder of the Square Kilometer Array.1

ASKAP consists of 36 antennas, each 12 m in diameter, with a

typical observing frequency of 1.4 GHz, wide field of view, large

spectral bandwidth, extremely fast survey speed, and excellent u-

v coverage (Johnston et al. 2008). First scientific results obtained

with the ’BETA’ ASKAP configuration based on six antennas have

already been presented (Serra et al. 2015; Heywood et al. 2016).

We used as a reference a suite of large cosmological simulations

of extragalactic magnetic fields, obtained using the cosmological

1https://www.atnf.csiro.au/projects/askap/index.html

MNRAS 480, 3749–3761 (2018)
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3752 C. Gheller, F. Vazza and A. Bonafede

Figure 2. Progression of our sky model for a 16 × 16 deg2 area, as a function of the maximum redshift of integration: z = 0.04 (first panel), z = 0.2 (second)

and z = 0.5 (third). The top row shows the projected gas density while the second row shows the total radio emission, at the frequency of ASKAP.

code Enzo (Bryan et al. 2014) as in Vazza et al. (2014, 2017) and

Gheller et al. (2016). Our simulations evolved a uniform primor-

dial seed field of B0 = 1 nG (comoving) from high redshift (zin ≥

40, the specific figure is dependent on the simulation) in different

physical volumes of 2003, 1003 and 503 Mpc3, in each case with

a total number of cells and dark matter particles of 24003. This

model of extragalactic magnetic fields is on the optimistic side, as

the assumed initial seed field is at the level of existing upper limits

of primordial fields derived from the analysis of the Cosmic Mi-

crowave Background (Planck Collaboration et al. 2016), and based

on our previous studies on the subject it yields a non-negligible

chance of detecting the tip of the iceberg of the magnetic cosmic

web (Vazza et al. 2015, 2017).

To compute the level of radio emission from cosmic shocks at

each redshift, we assume that shocks can accelerate relativistic parti-

cles producing continuum and polarized radio emission (e.g. Brown

2011). We rely on the synchrotron emission model by Hoeft &

Brüggen (2007), which requires the jump condition of each cell

undergoing shocks (computed from the simulation), the local value

of the magnetic field and the electron acceleration efficiency as a

function of Mach number (which is calibrated on shocks internal to

galaxy clusters, as in Vazza et al. 2015).

The cosmological model adopted in our simulations has the

following parameters: �� = 0.692, �M = 0.308, �b = 0.0478,

H = 67.8 km s−1 and σ 8 = 0.815. The volumes are resolved with

different cell sizes (83.3, 41.65 and 20.82 kpc, respectively), which

is motivated by the fact that our final mock observation is obtained

by stacking together the different volumes along the line of sight

(with the larger volumes/lower resolution runs being placed at larger

distance), which approximately yields a constant angular resolution

for all simulations at the corresponding redshifts (∼25−35 arcsec).

While this is the intrinsic angular resolution of our simulation (given

the starting redshift of the cone integration), we further resampled

our images down to an ≈10 arcsec angular resolution for the full

ASKAP array configuration.

A detailed description of the procedure adopted to generate mock

radio lightcones is given in Vazza et al. (2015). To briefly summa-

rize, we create long rectangular volumes covering 16◦ × 16◦ in

the sky, i.e. of the order of 9 independent ASKAP fields of view.

Based on Vazza et al. (2015), we do not expect to detect a sig-

nificant amount of radio emission from the cosmic web beyond

z ≥ 0.5, hence we limit our analysis to the cosmic volume in

the range 0.04 ≤ z ≤ 0.52 (corresponding to a comoving radial

distance of ≈1.892 Gpc). This volume is assembled by stacking

many simulated boxes along the line of sight, starting with a few

replicas of our most resolved (50 Mpc)3 box, and then adding sev-

eral replicas of the (100 Mpc)3 and of the (200 Mpc)3 volumes.

We first compute the radio emission in the comoving reference

frame of each box, and then apply redshift corrections (e.g. cos-

mological dimming as a function of redshift), assuming the red-

shift corresponding to the box centre for each box. Building the

redshift cone, the projected pixel size is adjusted with a cubic in-

terpolation, while the presence of artefacts due to the periodicity of

structures along the line of sight is minimized by applying random

2We notice that our lower limit on the integration redshift 0.04 is motivated

because even if there surely are cosmic structures between us z = 0.04, at

the frequency of ASKAP this part of the diffuse emission from the shocked

cosmic web gets mostly filtered because of the missing baselines. Due to

the vastly larger data set we need to analyse here, in this work we do

not explicitly perform the removal of missing baselines from our mock

observations, unlike in previous work (Vazza et al. 2015). Therefore, we

limit by construction our analysis to structures that are located at a large

enough redshift to be properly sampled by ASKAP. For simplicity, we also

do not consider the radio artefacts that typically arise as a result of the

’cleaning’ procedure of real images (e.g. Grobler et al. 2014).

MNRAS 480, 3749–3761 (2018)
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Deep learning detection of radio sources 3753

Figure 3. A full 2000x2000 pixel Sky image tiled and labelled: label 0 corresponds to a tile without signal (according to our criteria), while label 1 corresponds

to a tile with some signal.

rotations to each box. An example of our final result is shown in

Fig. 2.

Massive haloes (≥1012 M·) can be identified by running a

spherical-overdensity-based halo finder at each different redshift,

allowing to disentangle the fraction of the radio emission coming

from the cosmic web from that coming from galaxy clusters. More

details on the procedure to create the mock images can be found in

Vazza et al. (2015).

We generated a final set of 1000 independent sky model images

by applying random rotations to each of the different redshift slices

used to produce our lightcones. The maximum spatial resolution

achieved in our most resolved box (≈20 kpc) corresponds to an

angular resolution of ≈0.8 kpc at z = 0.04, i.e. 25 arcsec per pixel.

In order to match the ASKAP angular resolution (10 arcsec), sky

models have been re-sampled to a 2.5 higher resolution. Further-

more, realistic noise has been added at the scale of ∼3 arcsec,

in order to adequately sample the FWHM of the restoring beam,

further re-sampling the sky model at ∼8.3 times higher resolution

and then convolving it with a Gaussian profile with a FWHM of

10 arcsec to emulate a cleaned ASKAP observation. The assumed

noise level is chosen so that σrms = σASKAP ≈ 10 µJy beam−1 =

0.88 × 10−7 Jy arcsec−2.

In summary, the described procedure was used to generate 6000 ×

6000 pixel images, from which smaller 2000 × 2000 pixel sub-

sets (corresponding to an ASKAP field of view) have been ex-

tracted. These images are indicated as Sky images and represent

the data set used for the labelling procedure described in Sec-

tion 3.3. Adding the noise to the Sky images, the cleaned im-

MNRAS 480, 3749–3761 (2018)
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3754 C. Gheller, F. Vazza and A. Bonafede

ages are obtained. This data are indicated as Noise images. The

Noise data set is used for the training of the CNN and to test its

performance.

3.2 Tiling

The 2000 × 2000 pixel images comprise a wide field of view, with

tens or even hundreds of potentially interesting objects to detect. In

order to identify each single object and its position in the image we

have implemented a tiling-based procedure that divides each image

in small square tiles. The tiles become the actual training data set of

the CNN and each single tile is classified as containing some signal

or not. The mosaic of the tiles with signal defines the positions in

the sky to observe for radio emitting objects. In order to have a

precise localization of the objects, the tile size has to be the smallest

possible. However, tiles cannot be so small that objects cannot be

identified along with their shape and geometric information (i.e.

objects should not fill the entire tile). After some experimentation,

effective linear tile sizes resulted to be between 40 and 80 pixels.

The smallest size, 40 pixels, has been adopted in order to get the

highest spatial precision. The result of the tiling procedure is shown

in Fig. 3, where the mesh composed by the tiles is overlaid on one

of the Sky images.

3.3 Labelling

Labelling is the process of classifying the content of an image so

that it can be used to train the Deep Learning model. The labels

are assumed to provide the correct values and are used to validate

results of the CNN analysis. In our case, images are divided into

tiles and each tile has to be defined as containing some radio signal

or not. Labelling has, of course, to be performed independently

from the Deep Learning network we are training. It is common

practice to perform labelling by means of human classification, or

using so-called ’bootstrap’ procedures which are semi-automated

and still require human supervision. This can be an overwhelming

task (especially when hundreds of thousands of images have to be

classified), prone to errors and subjectivity, in particular when the

target is not a well-defined object and noise can blur the content of

the image.

In order to properly label our radio catalogue we exploited the Sky

images, which are free from noise contamination. A tile containing

meaningful signals is positively labelled if the number of pixels

emitting above a given flux threshold, Fth, is larger than Npix. We set

Fth = α 10−7 Jy arcsec−2. For α = 1, Fth is of the order of the typical

signal-to-noise ratio (SN) considering the (conservative) expected

thermal noise level of continuum ASKAP observations for a 10

arcsec beam (see Section 3.1). Reducing the value of α below 1, we

include increasingly fainter sources in the analysis. The parameter

Npix sets the minimum size of an object to be labelled as a source;

this allows tuning the training of the CNN to identify signals of that

size or bigger and excluding point-like sources or objects too small

to have meaningful geometric information for the CNN to work

with.

The result of the labelling procedure with α = 1 and Npix = 40 is

presented in Fig. 4, where we show a zoom into one of the 2000 ×

2000 Sky images. Tiles labelled as ’0’ have no signal, while those

labelled as ’1’ contain radio sources.

Once the parameters Fth and Npix are set, the labelling process is

completely automated. The labels are then used in the training and

testing phases where tiles are extracted from the Noise data set, clas-

Figure 4. A zoom into a 2000 × 2000 tiled and labelled Sky image. Label

0 corresponds to a tile without signal, while label 1 corresponds to a tile

with some signal.

sified by the CNN, and the results compared to the corresponding

labels.

4 PA R A M E T E R S TU N I N G A N D

P E R F O R M A N C E

The accuracy of our CNN model has to be properly estimated in

order to avoid misinterpretation of the results and incorrect conclu-

sions. Accuracy, in the simplest case, can be defined as the ratio

between the number of images correctly classified and the total

number of images used in the test. In our case, such estimate is

misleading since the number of tiles with no signal can be one or

even two orders of magnitude bigger than that of tiles with signal

(see Figs 3 or 4). This definition of accuracy means that simply

classifying tiles with no signal would give a very high accuracy

regardless of how the tiles with signal are classified. Therefore, we

have defined the following accuracy metrics:

As = Nsc/(Ns + Nvw), Wv = Nvc/Nv, Ws = Nsc/Ns, (2)

where As gives the fraction of correctly classified signals (Nsc) over

the sum of the total number of tiles that have signal (Ns) plus the

number of tiles classified as signal but actually are noise (Nvw).

This gives the probability that a tile classified as signal is an actual

signal. In other words, it gives the probability that a real signal will

be detected by pointing the radio telescope to the region of sky

contained by a tile classified as signal. The parameters Wv and Ws

measure the relative accuracy for each of the two classes, i.e. the

ratio between the number of correctly classified tiles in a class and

the total number of tiles belonging to that class. The parameter Nvc

is the number of tiles with no signal that are correctly classified.

Overall, the three parameters describe the accuracy of the CNN,

and ideally As = 1, Wv = 1, Ws = 1.

We have run a number of tests investigating the influence of sev-

eral parameters on the training of the model, namely the learning

rate (η), the batch size (Nb) and the number epochs (Ne), all de-

fined in Section 2. For the labelling we have set the parameter α,

MNRAS 480, 3749–3761 (2018)
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Figure 5. Accuracy parameters As (top panel), Wv and Ws (dia-

monds and triangles, respectively, bottom panel) in tests with different

combinations of learning rate, batch size and number of epochs

(η, Nb, Ne). The three parameters can take the following values: η =

[10−6, 5 × 10−6, 10−5, 3 × 10−5, 5 × 10−5, 7 × 10−5, 10−4, 5 × 10−4, 10−3],

Nb = [15, 30, 50, 64, 100], Ne = [10, 20, 50, 100]. Each combination (η, Nb,

Ne) is characterized by a different TestID (an integer number between 1

and 180). Colours (in logarithmic scale) represent the parameter η.

introduced in Section 3.3, equal to 1. This means that the minimum

signal we consider is at the same level of the noise. Furthermore,

two different values for Npix have been tested: Npix1 = 40, which

focuses on extended sources, and Npix2 = 9, which corresponds to

the size of the local receptive field of the CNN, setting the resolution

of the method.

All the tests have been performed on an Intel Xeon E5-2690

’Haswell’ CPU running at 2.60GHz (12 cores, 64GB RAM)

equipped with NVIDIA Tesla P100 with 16GB HBM2 memory,

which is effectively exploited by COSMODEEP through TensorFlow.

The computing environment is part of the Piz Daint supercomputer,

available at the Swiss National Supercomputing Center in Lugano

(operated by ETH Zurich). The size of the input data set is about

6.5 GB, mostly used as training set and a small fraction dedicated

to testing and validation.

The following workflow is implemented for the training and test-

ing of the CNN:

(i) Sky and Noise images are read from files stored on disc;

(ii) negative pixels are set to a small floor value (typically 10−11

Jy arcsec−2), and the logarithm of each pixel is calculated in order

to reduce the dynamical range of the emissivity, which typically

spans 10 orders of magnitude (10−11 to 10−2 Jy arcsec−2), avoiding

issues related to floating point precision;

(iii) the results are normalized so that each image has values

between 0 and 1;

(iv) images are divided into tiles;

(v) using the Sky tiles, each tile is labelled according to the

procedure described in Section 3.3;

(vi) tiles are serialized to feed the CNN;

(vii) tiles are offloaded to the GPU (in chunks, in order to avoid

GPU memory overflows) and there processed by the CNN for the

training;

(viii) the trained network is finally tested and its accuracy calcu-

lated.

The resulting accuracy for the case Npix1 is presented in Fig. 5.

The top panel shows As as obtained for the different combinations

of η, Nb and Ne. Colours highlight the dependence on the learning

rate. In a number of cases, the accuracy is above 0.9. The highest

values for As are obtained by setting the learning rate bigger than

10−5. However, for η > 5 × 10−4 accuracy drops and convergence is

not reached. For η < 10−6 the convergence is slow. The mini-batch

size progressively grows with the TestID, starting from Nb = 15 for

TestID <20, up to Nb = 100 for 160 ≤ TestID <180, stepping up

every 20 TestIDs. Its influence can be seen in the overall trend of the

accuracy to slightly increase when shifting towards higher TestIDs,

from left to right (to higher mini-batch sizes). Accuracy is also

improved by increasing the number of epochs. We have performed

tests using four different numbers of epochs (Ne = 15, 20, 50, 100).

The accuracy of the method grows at larger Ne, as can be seen from

the tendency of the accuracy of matching coloured (i.e. η) point

data to have higher As moving toward larger values of TestID. This

continues until the mini-batch size is updated to a new value, when

As drops. The same behaviour is shown in the bottom panel of the

figure for the parameters Ws and Wv , although most of data points

are close to unity and the trend is less recognizable. Tests with the

highest values of η (yellow and red points) have low accuracy and

do not present any trend varying both the number of epochs and the

mini-batch size, showing that their accuracy cannot be improved by

tuning the two parameters.

The bottom panel of Fig. 5, which shows the relative accuracy

parameters Ws and Wv , confirms the results discussed above. In

most cases COSMODEEP is capable of successfully classifying more

than 99 per cent of both regions with signals and empty regions.

When decreasing the pixel threshold to Npix2 pixels (not shown),

objects at the limit of the resolution of the method are included,

leading to a slightly lower accuracy. The overall trends, however,

are the same as in the Npix1 case.

Fig. 6 shows the convergence of the training process as a function

of the epoch, for the case Npix1, with different settings of η and Nb.

The set-ups with 5 × 10−5 ≤ η ≤ 10−4 and Nb ≥ 30 (green and

blue curves in the figure) have the fastest convergence towards an

accuracy close to 1. For this specific test the accuracy is calculated

as the ratio between the number of tiles correctly classified and

the total number of tiles used for the test. For η < 5 × 10−5 the

algorithm converges but very slowly, while for η > 10−4 most of

the tests do not converge, the accuracy fluctuates around 0.5 which

corresponds to random classification. Few cases with η ≥ 5 × 10−4

and Nb > 50 converge faster than in all the other cases. However,

their As, Ws and Wv are low, proving that the training is not actually

effective, only tiles without signal being correctly classified. Similar

results are obtained for Npix2.

MNRAS 480, 3749–3761 (2018)
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Figure 6. Convergence of the training process as a function of the number

of epochs, measured by an accuracy parameter defined as the fractional

difference between the tiles correctly classified and the total number of

tiles used for measure. A constant value of the accuracy indicates that the

training cannot improve more. The optimal value for the accuracy is 1, which

indicates that all the images are correctly classified. Colours (in logarithmic

scale) show the dependency from the learning rate η.

In terms of computational requirements, the training takes around

1800–2500 s to complete, the time depending essentially from the

number of epochs. The trained network can be stored in files and

reloaded for later usage for image classification. The CNN net-

work load and setup time is independent of the number of im-

ages to classify, depending only on the size of the network, while

the classification stage scales linearly with the image size. For our

2000 × 2000 pixel images, the estimated classification performance

is 10.4 ± 0.2 images s–1.

5 R ESULTS

The effectiveness of COSMODEEP in detecting faint, diffused radio

sources in noisy images has been analysed on a subset of images,

the test data set, never used for the training. The CNN has been

trained for the two different choices of Npix, indicated as Npix1 (40

pixels) and Npix2 (nine pixels). The parameters listed in Table 1

have been set in order to optimize the performance of the CNN

according to the analysis performed in Section 4. Fig. 7 shows one

of the test images, with tiles labelled as follows: tiles classified as

’1C’ are signals correctly detected by the CNN, ’1F’ indicates tiles

with signal but classified as pure noise (false negatives), tiles with

’0F’ are pure noise tiles classified as signal (false positives). The

remaining tiles, labelled as À0C’, are correctly classified as pure

noise and for clarity their label is not displayed in the image.

In the case Npix1, we get the following accuracy estimates: As =

0.9088 ± 0.0090, Ws = 0.9827 ± 0.0003, Wv = 0.9974 ± 0.0003.

On average our classifier misses around one to two tiles with signal

(40 × 40 pixels) per 2000 × 2000 pixel image (out of a total

number of 2500 tiles), and it misclassifies around six pure noise tiles

per image. The CNN proves to be effective in detecting extended

objects (at least bigger than 40 pixels) missing less than 2 per cent

of them. The accuracy improves for regions without emission, even

if the absolute number of false positives is larger than that of false

negatives. The case Npix2 returns As = 0.8800 ± 0.0062, Ws =

0.9710 ± 0.0062, Ws = 0.9957 ± 0.0003, with, on average, around

two to three tiles misclassified as 1F and around 10 as 0F per image.

The total number of tiles with signal increases from around 600 in

the Npix1 case to around 800 in the Npix2, since smaller objects

are classified as sources by the labelling procedure. Such smaller

objects are also more challenging to recognize, being at the limit

of the resolution of the CNN. This explains the slight decrease of

accuracy in the Npix2 case.

Fig. 8 zooms into three regions extracted from one test image,

in the Npix1 (upper row) and in the Npix2 (lower row) cases. In

the top-left panel, we see a region with a prominent cluster of

galaxies with a clear pattern of shock waves moving outwards from

the cluster centre. In the Npix1 case most of the tiles with signal

are correctly classified (1C) and one false positive is present. The

false positive (tile labelled as 0F) identifies a tile that is actually

part of the cluster, but the number of pixels above Fth is less than

Npix1. Lowering the pixel threshold to Npix2, the same tile results to

be classified as 1C. Therefore, the false positive in the Npix1 case

follows from the labelling procedure, and not from the CNN. In the

top-central panel, a small object is detected, split into three tiles.

In the Npix1 case one of the tiles is again misclassified due to the

labelling method, showing that the CNN can indeed correctly detect

and classify sources below the pixel threshold it has been trained

for. The right panels show the example of a filament connected to a

galaxy cluster, which appears in the bottom-left corner of the image.

The structure, albeit elongated and discontinuous, can be properly

identified by the CNN. A false positive is present in the Npix2 case

and is again a shortcoming of the labelling procedure (i.e. there are

not enough pixels above the flux threshold in the tile), and not an

error of the CNN.

In the top-left panel we can also see how in the Npix1 case, several

tiles contain sources which get labelled as noise, and are not detected

by the CNN. A couple of these tiles are classified as false negative

in the Npix2 case (bottom-left panel). The sources contained in these

tiles are larger than Npix1 pixels but too faint, hence they are labelled

as noise. Accordingly, the CNN is trained to classify those kind of

objects as noise. Reducing the pixel threshold to Npix2, a sufficiently

large number of pixels in both tiles are brighter than Fth, hence they

are labelled as sources. However, the CNN is not able to detect

them as most of the source still emitting below the flux threshold

the CNN has been trained for.

In order to investigate the influence of Fth in detail, we

have repeated the whole training and testing procedure reduc-

ing the value of the flux threshold progressively to 0.75, 0.5 and

0.1 × 10−7(Jy arcsec−2), trying to detect signals with smaller and

smaller SN. All the other parameters of the CNN are unchanged

(see Table 1)

The results, presented in Table 2, show that for the Npix1 model,

down to Fth = 0.5 × 10−7(Jy arcsec−2), As is bigger than 0.9 and

both the parameters Wv and Ws are close to 1. For Npix2, the accuracy

parameter As is slightly lower, due to the presence of smaller objects

to be detected, but still of the order of 0.9. The Wv parameter is

very close to unity, while Ws is around 0.97. In both cases the

best accuracy is achieved for Fth, opt = 0.75 × 10−7(Jy arcsec−2),

so below the rms noise, with on average around 0.5 and 3 false

negatives and 6 and 7 false positives per image for the Npix1 and

Npix2 cases, respectively. The higher accuracy reached at Fth, opt is

due to the inclusion in the training set of faint sources that at higher

flux thresholds are labelled as noise but that are detectable by the

CNN. The mismatch between labelling and classification leads to

a slightly less efficient training with some loss of accuracy at Fth

= 10−7(Jy arcsec−2). Below Fth, opt the accuracy decreases due to

the presence of smaller and fainter sources, blurred by the noise.

At Fth = 0.1 × 10−7(Jy arcsec−2) accuracy drops, in particular for

MNRAS 480, 3749–3761 (2018)
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Deep learning detection of radio sources 3757

Figure 7. A full 2000 × 2000 pixel image classified by COSMODEEP. Label 1C refers to correctly classified signals, 1F indicates tiles with signal incorrectly

classified as noise (false negatives), 0F indicates tiles with no signal and wrongly classified (false positives). Unlabelled tiles indicate pure noise tiles correctly

classified.

Npix2, with As slightly bigger than 0.8, and, on average, around 60

misclassified tiles per image.

Fig. 9 shows the same regions of Fig. 8 for the case Npix2, but at

Fth, opt (top row) and Fth = 0.1 × 10−7(Jy arcsec−2). At Fth, opt all the

tiles are correctly classified. The false negatives on the bottom-left

panel of Fig. 8 are now correctly classified, since the CNN is trained

to recognize those faint sources. At Fth = 0.1 × 10−7(Jy arcsec−2),

more tiles are labelled as containing signal and classified as 1C. As

expected, a few incorrect classifications appear due to the presence

of extremely faint and small objects the CNN is not able to detect

or the labelling schema neglects.

We compared the results of COSMODEEP with those obtained us-

ing PYBDSF (the PYTHON Blob Detector and Source Finder; see

http://www.astron.nl/citt/pybdsf), which is a PYTHON-based tool to

decompose radio interferometric images into sources. Since PYBDSF

is designed to work on real images, several parameters can be set

by the users to distinguish e.g. regions in the image with differ-

ent noise properties (e.g. different noise due to imaging artefacts

around strong sources). For our purposes, we have run the tool

adopting standard input parameters, setting the noise level to a

constant value of σrms = 10 µJy beam−1. We considered as islands

of signal regions in the image that show at least nine contiguous

MNRAS 480, 3749–3761 (2018)
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3758 C. Gheller, F. Vazza and A. Bonafede

Figure 8. Mosaics of tiles extracted from the full images for Fth = 10−7 (Jy arcsec−2), with different kind of classification. Label 1C refers to correctly

classified signals, 1F indicates false negatives, 0F false positives. Unlabelled tiles indicate pure noise tiles correctly classified. Upper row refers to Npix1, bottom

row to Npix2.

pixels above the assumed flux threshold (to allow a close com-

parison with COSMODEEP), and tested variations in rms noise level

from 0.75 to 3.0. Using the above parameters, we identified islands

with signals of contiguous emission as shown by the green contours

in Fig. 10. In a second step, the algorithm fits a Gaussian profile

to each island, in order to further decompose them into shapelets.

The final result is a catalogue of sources with positions, sizes, and

flux densities of each source. However, this second step is not re-

quired for our purposes, as the islands already identify the regions

in the image where emission above threshold is detected by the

algorithm.

We compare in Fig. 10 the results of COSMODEEP to those of PYPDSF

at different values of Fth, for two ∼2◦ × 1.◦5 fields, featuring several

diffuse emission patches. Sources identified by PYBDSF for different

choices of Fth are given in green contours, while the rectangular

tiles identified by COSMODEEP are marked by the white contours. We

find a tight correspondence between the islands of signal identified

by PyBDSF imposing a threshold of SN ≥ 3.0 and the results of

COSMODEEP for Fth ≥ 0.5 × 10−7Jy arcsec−2 with a lower bound

of nine pixels for the size of structures. Interestingly, lowering the

threshold to Fth ≥ 0.1 × 10−7Jy arcsec−2 and using 40 pixels for the

size of structures allows COSMODEEP to correctly identify a few more

fainter low-surface brightness structures in the sky model, while

lowering the threshold in PyBDSF to SN ≥ 1.5 causes the software

to detect a large number of spurious noise fluctuations, randomly

spread across the field (see right panels in Fig. 10).

While further ad hoc improvement in PyBDSF is surely possible,

this test shows that the two algorithms can give consistent results

on the high SN end of the distribution of sources, while with very

little tuning COSMODEEP can go significantly below the ’standard’

2−3 σ rms level for the detection of real diffuse emission from the

cosmic web. On the other hand, the spatial resolution of COSMODEEP

is limited to the tile size, which prevents us from exactly describing

the shape of these emission regions. Based on the above results,

it seems possible to design a combined approach in future work,

where COSMODEEP and PyBDSF may be applied to large data sets in

two different steps, to better trace the location of diffuse emission

structures at a scale comparable to the restoring beam of observa-

tions.

Finally, we present in Fig. 11 the statistical analysis of the distri-

bution of tiles identified by COSMODEEP, in relation to their projected

distance to galaxy clusters in the field, which we identify in a sep-

Table 2. Accuracy parameters of COSMODEEP for different values Fth, corresponding to models Npix1 and Npix2.

Model Fth (Jy arcsec−2) As Ws Wv

Npix1 10−7 0.9088 ± 0.0090 0.9827 ± 0.0003 0.9974 ± 0.0003

0.75 × 10−7 0.9232 ± 0.0046 0.9947 ± 0.0002 0.9972 ± 0.0002

0.5 × 10−7 0.9159 ± 0.0070 0.9958 ± 0.0005 0.9960 ± 0.0004

0.1 × 10−7 0.8934 ± 0.0072 0.9521 ± 0.0005 0.9933 ± 0.0005

Npix2 10−7 0.8800 ± 0.0062 0.9710 ± 0.0062 0.9957 ± 0.0003

0.75 × 10−7 0.9175 ± 0.0051 0.9754 ± 0.0037 0.9969 ± 0.0001

0.5 × 10−7 0.9022 ± 0.0046 0.9797 ± 0.0044 0.9948 ± 0.0001

0.1 × 10−7 0.8181 ± 0.0035 0.8848 ± 0.0023 0.9890 ± 0.0011

MNRAS 480, 3749–3761 (2018)
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Deep learning detection of radio sources 3759

Table 1. Set-up of the CNN models.

Parameter Value

Image size

(pixels)

2000 × 2000

Tile size (pixels) 40 × 40

Npix1 40

Npix1 9

Fth (Jy arcsec−2) 10−7

η 7 × 10−5

Nb 100

Ne 50

arate step with a halo finder (working in three dimensions). We

tentatively consider tiles falling within a < R100 (i.e. the virial ra-

dius) from the centre of a nearby halo as ’cluster emission patches’,

and tiles at ≥ R100 distance as ’cosmic web emission patches’. The

tiles correctly classified by COSMODEEP as containing a structure have

a distribution of pixel luminosities that peaks towards higher values.

A very significant fraction of the structures correctly identified by

COSMODEEP are related to shocked gas outside of the virial volume

of clusters, which confirms that our technique is indeed capable of

locating low surface brightness emission regions in the peripheral

regions of galaxy clusters, which trace accretion shocks and shocks

around filaments.

6 C O N C L U S I O N S

The work presented in this paper shows that a Deep Learning based

methodology based on a CNN approach (COSMODEEP) offers an ef-

fective solution for the fully automated processing pipeline of big

radio data sets, of the order of what is expected from next gener-

ations of surveys with radio telescopes (e.g. ASKAP, MEERKAT,

MWA, LOFAR and the SKA). We explored the case study of ex-

tended cosmological radio sources (such as emission from shocked

gas around galaxy clusters and filaments). COSMODEEP allows us to

detect diffuse radio sources and to localize their position within

large images thanks to a tiling-based procedure. The overall accu-

racy of the method is comparable to that of more standard tools used

in radio astronomy, but it delivers better performance when applied

to the detection of faint objects, with emissivity below the average

rms noise of radio observations. The accuracy has been defined as

the probability that a tile classified as signal contains an actual radio

source. Depending on the specific set-up, accuracy is between 0.88

and 0.92, with only a few tiles misclassified per 2000 × 2000 pixel

(2500 tiles) image. Such values have to be taken as a conservative

lower bound, having proved that part of the observed inaccuracies

are due to the tiling procedure and not to the CNN classifier itself.

The performance of COSMODEEP is not only promising in terms of

accuracy and ability to identify faint diffuse objects, but its com-

putational performance is also encouraging: 2000 × 2000 pixel

images can be processed in less than 0.1 s on a state-of-the-art

GPU, and their size does not represent an issue in terms of memory

thanks to the effective implementation provided by the TensorFlow

framework. The training can be easily managed on the computing

nodes used for testing; the full training on ∼30 000–40 000 tiles re-

quires less than one hour to be completed. Larger data sets, in terms

of both image size and data volume, are potentially manageable

as well, since TensorFlow supports distributed training on parallel

high-performance computing architectures.

An important ’by-product’ of our methodology is a set of mock

radio images generated from cosmological numerical simulations.

The image set is composed of Sky images used for automatic la-

belling, and Noise images derived from the Sky images by adding

random noise in order to create realistic radio observations. The

resulting data set is unique and it can be publicly accessed at http:

//cosmosimfrazza.myfreesites.net/cosmodeep-training-datasets.

In summary, this work led to the following achievements:

Figure 9. Mosaics of tiles extracted from the full images for the case Npix2 at different values of Fth. For the top row Fth = 0.75 × 10−7 (Jy arcsec−2), while

for the bottom row Fth = 10−8 (Jy arcsec−2).
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Figure 10. Close up view of two sample ∼2◦ × 1.◦5 simulated maps, showing our noise-added mock sky model (colours, in units of Jy arcsec−2). For the

same sky model, we show with cyan contours all tiles correctly identified by COSMODEEP using either Npix = 40 and Fth = 0.1 × 10−7 Jy arcsec−2 (left) or Npix

= 9 and Fth = 0.5 × 10−7 Jy arcsec−2 (right). In the same panels, we also show with yellow contours the Àislands of signal’ identified by PyBDSF assuming

either threshold of 1.5 SN or 3.0 SN.

(i) availability of a novel methodology, based on a Deep Learn-

ing CNN approach, to detect diffuse and faint sources in radio

observations, irrespective of their specific size or shape;

(ii) the methodology is competitive in terms of accuracy with

state-of-the-art software adopting more standard approaches;

(iii) the methodology is flexible and extensible to encompass a

broad spectrum of applications and cases and it is scalable to increas-

ingly bigger configurations, supporting high-performance comput-

ing solutions;

(iv) the methodology can classify 2000 × 2000 pixel images ’real

time’ (∼0.1 s image-1) on a state-of-the-art GPU;

(v) public availability of a data set composed by hundreds of

images generated from cosmological numerical simulations mim-

icking real radio observations. The data sets will be progressively

extended in order to include more and more sophisticated images.

The methodology will be further developed in order to be ready

for real observations, addressing in particular ASKAP data as a

test-bed for the even larger challenge posed by the Square Kilome-

ter Array. Development will progressively extend to increasingly

complex and realistic images, e.g. including image processing arte-

facts like secondary radio lobes, remaining point-like sources and

confusion noise.
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