
25 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Charge carrier dynamics and visible light photocatalysis in vanadium-doped TiO2nanoparticles / Rossi,
Giacomo; Pasquini, Luca*; Catone, Daniele; Piccioni, Alberto; Patelli, Nicola; Paladini, Alessandra; Molinari,
Alessandra; Caramori, Stefano; O'Keeffe, Patrick; Boscherini, Federico. - In: APPLIED CATALYSIS. B,
ENVIRONMENTAL. - ISSN 0926-3373. - STAMPA. - 237:(2018), pp. 603-612.
[10.1016/j.apcatb.2018.06.011]

Published Version:

Charge carrier dynamics and visible light photocatalysis in vanadium-doped TiO2nanoparticles

Published:
DOI: http://doi.org/10.1016/j.apcatb.2018.06.011

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/641782 since: 2018-10-03

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.apcatb.2018.06.011
https://hdl.handle.net/11585/641782


 
1 

 

 

 

This is the final peer-reviewed accepted manuscript of:   

G. Rossi, L. Pasquini, D. Catone, A. Piccioni, N. Patelli, A. Paladini, S. Caramori, A. 

Molinari, P. O'Keeffe, and F.Boscherini, Charge carrier dynamics and visible light 

photocatalysis in vanadium-doped TiO2 nanoparticles, Applied Catalysis B: 

Environmental 237, 603 – 612 (2018). DOI: 10.1016/j.apcatb.2018.06.011. 

The final published version is available online at: 

http://dx.doi.org/10.1016%2Fj.apcatb.2018.06.011 

 

 

 

© 2018. This manuscript version is made available under the Creative Commons Attribution-
NonCommercial-NoDerivs (CC BY-NC-ND) License 4.0 International  
(http://creativecommons.org/licenses/by-nc-nd/4.0/) 

  

http://dx.doi.org/10.1016%2Fj.apcatb.2018.06.011
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
2 

Charge carrier dynamics and visible light photocatalysis in vanadium-doped TiO2 nanoparticles 

 

Giacomo Rossi,1 Luca Pasquini,1,§ Daniele Catone,2 Alberto Piccioni,1 Nicola Patelli,1 Alessandra Paladini,3 

Alessandra Molinari,4 Stefano Caramori,4 Patrick O’ Keeffe,3 Federico Boscherini1 

1 - Department of Physics and Astronomy, Alma Mater Studiorum Università di Bologna, V. C. Berti-Pichat 

6/2, 40127 Bologna, Italy 

2 - CNR-ISM, Division of Ultrafast Processes in Materials (FLASHit), Area  della Ricerca di Roma Tor  Vergata, 

Via  del Fosso del Cavaliere 100, Rome, Italy 

3 - CNR-ISM, Division of Ultrafast Processes in Materials (FLASHit), Area  della Ricerca di Roma 1, 

Monterotondo Scalo, Italy 

4 – Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 

Ferrara, Italy 

§ corresponding author: luca.pasquini@unibo.it 

Abstract: Vanadium-doped TiO2 nanoparticles (V-TiO2 NPs) with a V/Ti ratio of 3.0 at. % were prepared by 

gas-phase condensation and subsequent oxidation at elevated temperature. Both photocatalytic activity for 

-NO2 reduction and photoelectrochemical water splitting were induced by V-doping in the visible spectral 

range > 450 nm, where undoped TiO2 NPs are completely inactive. The photocatalytic properties were 

correlated with the ultrafast dynamics of the photoexcited charge carriers studied by femtosecond transient 

absorption (TA) spectroscopy with three different excitation wavelengths, i.e. e = 330, 400, and 530 nm. 

Only in V-doped NPs, the photoexcitation of electrons into the conduction band by sub-bandgap irradiation 

(e = 530 nm) was detected by TA spectroscopy. This observation was associated with electronic transitions 

from an intra-gap level localized on V4+ cations. The photoexcited electrons subsequently relaxed, with 

characteristic times of 200-500 ps depending on e, into Ti-related surface traps that possessed suitable 

energy to promote -NO2 reduction. The photoexcited holes migrated to long-lived surface traps with 

sufficient overpotential for the oxidization of both 2-propanol and water. On the basis of TA spectroscopy 

and photocurrent measurements, the position of the dopant-induced intra-gap level was estimated as 2.2 

eV below the conduction band minimum.  

Keywords: Photocatalysis; TiO2; transient absorption spectroscopy; NO2 reduction; vanadium doping. 

1. Introduction 

TiO2 is one of the most studied wide band gap oxide semiconductors due to its photocatalytic properties, 

opening the way to various applications such as hydrogen production from water and environmental cleaning 

(air and water) [1–5]. However, because of its wide band gap (3.0 eV for rutile and 3.2 eV for anatase [4]), 

only a small fraction of the solar spectrum, i.e. UV light (3-5% of total), can be used for photocatalytic 

processes.  

A widely investigated strategy to shift the optical absorption of TiO2 towards the visible region is doping with 
ionic species [6]. However, the enhanced optical absorption does not always correspond to a photocatalytic 
activity in a previously inactive spectral range. In fact, absorption from intra-gap states may not generate 
sufficiently strong oxidants for the desired reaction. This means that the absorption spectrum of a 
photocatalyst does not necessarily match its photocatalytic activity spectrum. A clear mechanistic view of 
the dopant role in photocatalysis is far from being established. The dopants in TiO2 can be classified into: 1) 
nonmetal dopants (C,N,F,S) [7–9] and 2) metal dopants, especially 3d transition metals and noble metals (Pt, 
Cu) [10–12]. Metal dopants can influence TiO2 photocatalysis by three principal mechanisms: i) improvement 
of the electron-hole separation (beneficial) by selective trapping, usually at low doping concentration (< 1 
at.%) [6,13]; ii) reduction of carriers lifetime (detrimental) due to the dopant that acts as a recombination 
center [2,14], and iii) enhancement of optical absorption in the visible range.  
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The first two mechanisms are not expected to modify the spectral range of photoactivity. In this work, we 

address in particular the third mechanism and aim at achieving both optical absorption and photocatalytic 

activity in a visible spectral range (> 450 nm) where pure TiO2 is completely inactive. We investigate 

undoped TiO2 nanoparticles (NPs) and vanadium-doped TiO2 (V-TiO2) NPs. V-doping is known to induce an 

absorption red-shift and has been reported to improve the photocatalytic degradation of water pollutants 

under solar irradiation [15–19]. Several studies have shown that V induces electronic states within the band 

gap of TiO2. Umebayashi et al. [20] found by ab – initio calculations that V generates a narrow band of partially 

filled levels about 0.7 eV below the conduction band minimum (CBM) of TiO2. This estimate was confirmed 

by Patel et al. [16], whereas Osorio-Guillén et al. calculated a deeper level at 1.36 eV below the CBM [21]. At 

present, it is not clear whether the photocatalytic activity extends into a spectral region inaccessible to pure 

TiO2. Answering this question is one of the purposes of the present paper. 

Time-resolved pump-probe optical spectroscopy is a key tool to elucidate the charge carrier dynamics that 

underlie photocatalysis. Several investigations were performed on undoped TiO2 using ultrabandgap 

excitation (𝜆𝑒 ≈ 330 – 360 nm) [22–32]. Photoexcitation leads to the almost instantaneous formation of free 

charge carriers, some of which are rapidly trapped near surface sites. The spectroscopic signature of free and 

trapped carriers has been studied by transient absorption (TA) spectroscopy by Yoshihara et al. [26] who 

showed that the response is composed of three positive features ascribed to trapped holes (TH), trapped 

electrons (TE) and free electrons in the conduction band (FE). From an atomistic point of view, hole trapping 

is due to the formation of O−or O3
− according to O2− + h+ → O− or O2− + O2 + h+ → O3

− [32–34], while 

electron trapping is due to the Ti4+ + e− → Ti3+  process [35]. The rise time of signals related to the three 

mentioned components allows to explore the trapping dynamics  of the respective charge carriers. The 

trapping time constants associated with the electron signals reported in the literature are relatively similar: 

 180 fs according to Skinner et al. [36],  260 fs (Yang and Tamai [27]) and  170 fs (Tamaki et al. [28]). 

However, since the TE and FE signals are superimposed, it is not clear how to associate these times to the 

different physical processes. There is less consensus on the hole trapping times: Yang and Tamai quote a 

value < 50 fs while Tamaki et al. estimate it to be 220 fs. After their initial formation, the trapped and free 

carriers decay by various processes on the timescale of 10 – 100s of ps or more, depending on the carrier 

density and the specific system investigated. The time decay of the spectral features is related to the 

dynamics of the charge carriers.  

Ultrafast spectroscopy was also applied to track photoexcited charge carriers in doped TiO2 [37–42]. Ikeda et 

al observed a second-order kinetics due to electron-hole recombination, the rate constant of which increases 

with increasing dopant concentration [42]. Similarly, in TiO2 – M – TiO2 multilayer films (M = Co or W) Sun et 

al. [37] showed that doping does not change the wavelength dependence of the TA spectra but that it induces 

a faster decay of the spectral features.  

Studies of the local structure of V dopants in TiO2 provide the essential prerequisite for an understanding of 

the optical properties and of the charge carrier dynamics. We have recently published X-ray Absorption Fine 

Structure (XAFS) studies which demonstrate that V always occupies a substitutional site in V-TiO2 NPs [43] 

and in V-TiO2 thin films [44] irrespective of whether they have mainly anatase or rutile structure. By exploiting 

the chemical sensitivity of XAFS, we have also performed a differential illumination High Energy Resolution 

Fluorescence Detected (HERFD) – X-ray Absorption Near Edge Structure (XANES) experiment on V-TiO2 NPs 

[45]. This experiment demonstrated that visible light (𝜆 = 532 nm) absorption is mainly due to electron 

transfer from V dopant sites to Ti defective ones. By means of a quantitative analysis, a long electron lifetime 

in the defective sites of 0.8 ms was estimated. This work followed our previous study of plasmon–induced 

hot electron transfer in Au-TiO2 nanostructures [46]. In the context of X-ray spectroscopic investigations we 

note that electron transfer to defective Ti sites in undoped or dye-sensitized TiO2 NPs has been demonstrated 

by time resolved methods on the 100 ps time scale by Rittmann Frank et al. [47] and more recently on the 

100 fs time scale by Obara et al. [48]. 
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In this paper, we employ TA spectroscopy with sub 100 fs time resolution to study electron and hole dynamics 

after photoexcitation at three different wavelengths (𝜆𝑒 = 330, 400, 530 nm). We correlate the peculiar TA 

features of undoped and V-doped TiO2 NPs to their photoactivity at different excitation wavelengths. We will 

show that V-doped TiO2 NPs exhibit a clear photoactivity, both for nitro group reduction and for 

photoelectrochemical water splitting, in the visible spectral range (𝜆 > 450 nm) where undoped TiO2 is 

completely inactive. 

2. Experimental 

TiO2 and V-TiO2 NPs were grown via gas phase condensation. The evaporation material was either pure Ti in 

powder form or a Ti-V powder mixture. Thermal evaporation was carried out in a ultra-high vacuum chamber 

filled with 266 Pa of He. The NPs, which nucleated by condensation of the supersaturated metal vapors, were 

collected via thermophoresis on a rotating steel cylinder cooled by liquid nitrogen. After the evaporation, 

pure O2 was admitted into the chamber up to a final pressure of 2.6 kPa, yielding oxidized dark-gray NPs with 

an amorphous structure. After annealing at 400 °C in air for 6 hours, the undoped NPs turned white, while 

the V-doped NPs appeared yellowish. X-ray powder diffraction (XRD) and transmission electron microscopy 

(TEM) showed that complete crystallization took place [45]. The X-ray powder diffraction patterns (Figure S1 

of the supplemental material) indicated that TiO2 and V-TiO2 NPs had a similar phase composition with about 

75 wt% rutile, 15 wt% anatase, and 5 wt% brookite. These TiO2 polymorphs were finely mixed at the 

nanoscale level as shown by high-resolution TEM [45]. The average size of the NPs was 12 ± 1 nm according 

to TEM analysis. The V/Ti ratio estimated by energy dispersive X-ray spectroscopy in a scanning electron 

microscope was 3.0 ± 0.5 at. %. Further information about the deposition procedure can be found in previous 

publications [43,45]. 

Diffuse reflectance (DR) spectra were collected by a Perkin Elmer Lambda 45 double beam 

spectrophotometer equipped with an RSA-PE-20 integrating accessory (Labsphere). The samples were 

measured as solid mixtures in a matrix of ground NaCl. Prior to measurement, a blank of pure NaCl was 

recorded as a reference. The UV-vis absorbance, reported in Figure S2 of the supplementary material, were 

obtained by applying the Kubelka-Munk function to DR spectra. 

In order to prepare suitable samples for the TA measurements, the NPs were suspended in a 70/30 bi-distilled 

water/acetic acid solution with overall concentration of 1 mg NPs/1 ml solution. The obtained stable 

suspension was deposited on UV transparent quartz substrates via drop casting. The thickness of the samples 

was increased until an optical density (OD) of 1.0 at 𝜆 = 400 nm was achieved.  

Ultrafast TA spectroscopy measurements in the pump (𝜆𝑒) and probe (𝜆𝑝) scheme were performed with a 

laser system consisting of a chirped pulse amplifier seeded by a Ti:Sa oscillator. The pump pulses were 

produced either by frequency doubling of the 800 nm fundamental (400 nm) or by using the output of an 

optical parametric amplifier (330 and 530 nm). The white light probe (350 - 800 nm), on the other hand, was 

generated in a commercial TA spectrometer (FemtoFrame II, IB Photonics) employing a split beam 

configuration in which 50 % of the white light passes through the sample while the remainder is used as a 

reference to account for pulse to pulse fluctuations in the white light generation. The pump pulse is loosely 

focused (circular spot of diameter = 500 m) onto the sample with an energy density from 350 J/cm2 to 7 

mJ/cm2; unless otherwise noted the energy density employed was 1.8 mJ/cm2. The spot diameter of the 

probe pulse is much smaller (approx. 150 m) and its delay time with respect to the pump pulse is scanned 

in time by varying the length of its optical path. The instrument response function was measured to be 

approximately 80 fs. All measurements were performed in air at room temperature. Further details of the 

set-up can be found in previous publications [49,50].  

The photocatalytic activity of the NPs exposed to visible light irradiation was tested by monitoring the 

reduction of the NO2 group in 4- nitrobenzaldehyde (NO2-C6H4-CHO). To this purpose, a fixed amount (10 mg) 

of NPs was suspended in 3 mL of a 9x10-5 M solution of NO2-C6H4-CHO in a CH3CN/C3H8O (4/1) mixture. The 

suspension was degassed by bubbling N2 for 20 minutes. Afterwards it was irradiated by a LOT-Oriel solar 
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simulator, equipped with both an AM1.5G filter and a cut-off filter > 450 nm. At desired time intervals, the 

irradiation was stopped and after centrifugation the absorbance values of the liquid phase at 264 nm and at 

312 nm were recorded by a Jasco V570 spectrophotometer. Control experiments were carried out keeping 

the samples in the dark for the required period. Moreover, a solution (3 mL) of a CH3CN/C3H8O (4/1) mixture 

containing NO2-C6H4-CHO (9x10-5 M) was irradiated in the absence of photocatalyst.  

Incident photon-to-current conversion efficiency (IPCE) spectra were measured in KOH (0.1 M, pH=13) under 

a bias potential of 0.5 V vs saturated calomel electrode (SCE). For the realization of the photoanodes, 10 mg 

of NPs were dispersed in 0.2 ml of a 1/1 distilled water/acetylacetone solution. The resulting paste was 

uniformly distributed by sliding a glass rod onto a glass substrate coated by a 100 nm thick layer of indium 

tin oxide (ITO glass). The ITO sheet resistance was 20 /square. The ITO glass was previously treated with an 

acidic solution to make its surface more hydrophilic and to avoid the presence of areas uncoated by the NPs. 

Finally, the photoanodes were annealed at 400°C in air for 2 hours. The final thickness of the NPs layer on 

ITO was 1 m. The photoanodic current was recorded from 350 to 500 nm with 5 nm steps using a PGSTAT204 

electrochemical workstation. The PGSTAT204 output signal, proportional to the photoanodic current, was 

fed into a lock-in amplifier and the incident light was chopped at 2 Hz. The incident monochromatic irradiance 

was measured with a calibrated pyroelectric sensor. IPCE was calculated according to:  IPCE(%) = 1.24 ·

103  𝐽𝜆 (μA cm−2) [𝜆(nm) ∙ 𝑃𝜆(W m−2)]⁄ , where  𝐽𝜆 and 𝑃𝜆 are the photocurrent density and incident 

radiant power density at wavelength .  

3. Results and Discussion 

3.1 Transient absorption spectroscopy: ultrabandgap (330 nm) excitation 

We start by reporting and discussing measurements performed with ultrabandgap excitation, 𝜆𝑒 = 330 nm. 

The TA spectra for undoped and V-doped NPs are reported in Figure 1 as a function of the probe wavelength 

(𝜆𝑝) for selected time delays in the range 𝑡 = 0.2 – 250 ps after the pump pulse. The same data are reported 

in 2 dimensions as a function of (𝜆𝑝, 𝑡) in Figure S3 of the supplemental material. The presence of two bands 

centered at approximately 400 nm and 730 nm is apparent. The two samples have spectral features as a 

function of 𝜆𝑝 which are similar to each other and to the literature results on undoped TiO2 [26], implying 

that V-doping does not significantly alter the state of photoexcited carriers; a significantly better spectral 

resolution of the present spectra compared to literature results should be pointed out.  

As recently reviewed by Schneider et al. [2], several TA studies on TiO2 invariably assigned TA bands centered 

at 400-500 nm to trapped holes (TH) on the NPs surface and TA bands centered at 600-800 nm to trapped 

electrons (TE), also on the NPs surface. A certain spread in the energies of spectral features is present in the 

literature, and depends on the nature of the sample and its environment. The presence of a monotonically 

increasing background superposed to these bands was ascribed to intra-band transitions of free electrons 

(FE) photo-excited in the conduction band [26,28]. On these grounds, we can confidently attribute the band 

centered at 390-400 nm to the filling of trapped holes (TH), and that centered at about 730 nm to the 

excitation of TE. The contribution of the background FE signal increases approximately as 𝜆𝑝
1.7 [26]. A reliable 

determination and subtraction of the FE signal requires an infrared probe, i.e. 𝜆𝑝 = 1500 − 2500 nm, which 

was not available in our set up. Since the separation of TE and FE signals was not possible in the present data 

set, in the following we will refer to the TA signal between 600 nm and 800 nm as simply due to electrons E 

(E = TE + FE).  
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Figure 1: TA spectra of undoped (top) and V-doped (bottom) TiO2 NPs with 𝜆𝑒 = 330 nm at different delay 

times. 

Figure 1 shows that the only spectral difference introduced by doping is a small shift of the TH peak to higher 

wavelengths, from  390 nm to  400 nm. This could be due to a small doping – induced shift of the TH states. 

In Figure 2 we compare the time traces of the two samples at 𝜆𝑝 = 730 nm, which represents the E signal 

arising from both trapped and free electrons. The rise time of this signal (for both samples) is comparable to 

the instrumental resolution ( 80 fs). This fast rise cannot be due to diffusion of electrons from the bulk to 

surface traps. In fact, an estimate of the diffusion time can be obtained from: 

𝜏𝑑𝑖𝑓𝑓 =
𝑟2

𝜋2𝐷
 (1) 

in which 𝑟 is the NP radius and 𝐷 the diffusion coefficient, which for electrons in TiO2 is 𝐷𝑒 = 1 × 10−6 𝑚2/𝑠 

[51]. Since the average NPs diameter is 12 nm, the expected value for the diffusion time is 10 ps, much 

longer than observed. We conclude that, in the first few ps after excitation, only a small fraction of electrons, 

i.e. those photo-excited in near-surface sites, can migrate to and remain trapped at the surface. Therefore, 

the E signal at 𝜆𝑝 = 730 nm in the first few ps is mostly due to FE. The initial OD values for the TiO2 and V-

TiO2 NPs are similar (50mOD), indicating that the initial concentration of photo-excited electrons is not 

affected by doping, which is reasonable in the case of ultrabandgap excitation. The decay (Figure 2) appears 
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significantly faster in V-TiO2 NPs. We performed a fit of the time traces with a sum of a function for second 

order kinetics [30], which describes the fast decay in the first tens of ps, and a slow exponential decay: 

𝐴(𝑡) =
𝐴2𝑛𝑑

(𝑘𝐶𝑡 + 1)
+ 𝐴𝑒𝑥𝑝𝑒−𝑡/𝜏𝑒 (2) 

where the fit parameter kC represents the second-order rate constant k times the initial concentration C of 

electrons. We obtained very good fits for both samples, as shown in Figure 2.  

 

Figure 2: Comparison of the E signal time traces (at p=730 nm) for undoped (top) and V-doped (bottom) 

TiO2 NPs extracted from the data in Figure 1 (e= 330 nm). The best fits according to Equation 2 are displayed 

as red solid lines. The inset reports the same data over the extended 25-525 ps time interval. 

The numerical results of the fits are summarized in Table I. The higher kC value in V-TiO2 NPs that reflects 

the faster decay of the E signal is in very good agreement with the dependence of the rate constant on the 

doping level reported by Ikeda et al. [42]. The exponential decay with time constant 𝜏𝑒, needed to model the 

time traces at 𝑡> 100 ps, has an amplitude 𝐴𝑒𝑥𝑝 much smaller than the amplitude 𝐴2𝑛𝑑  of the second-order 

kinetics.  
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Table I: Best-fit parameters for the time traces of E (𝜆𝑝 = 730 nm) after excitation at different wavelengths 

𝜆𝑒 according to Equation (2): amplitude 𝐴2𝑛𝑑 and rate-concentration product 𝑘𝐶 of fast second-order decay, 

amplitude 𝐴𝑒𝑥𝑝 and characteristic time 𝜏𝑒 of slow exponential decay. For 𝜆𝑒 = 330 nm, we also report the 

characteristic times 𝜏ℎ1 and 𝜏ℎ2 of the exponential decay of the trapped hole signal (𝜆𝑝 = 400 nm) observed 

in V-TiO2 NPs. In the case 𝜆𝑒 = 530 nm, the E signal was present only in V-TiO2 NPs. Estimated errors are 

reported in brackets in units of the last digit. 

𝝀𝒆(nm) Parameter TiO2 NPs V-TiO2 NPs 

330 

𝐴2𝑛𝑑 (mOD) 49.6 (5) 58.8 (3) 

𝑘𝐶 (ps-1) 0.56 (2) 1.80 (2) 

𝐴𝑒𝑥𝑝 (mOD) 3.5 (3) 1.6 (1) 

𝜏𝑒 (ps) 210 (30) 220 (30) 

𝜏ℎ1 (ps) no decay within 500 ps 36 (7) 

𝜏ℎ2 (ps) no decay within 500 ps 1030 (150) 

400 

𝐴2𝑛𝑑 (mOD) 5.1 (1) 34.8 (3) 

𝑘𝐶 (ps-1) 0.239 (16) 1.22 (4) 

𝐴𝑒𝑥𝑝 (mOD) 1.7 (1) 3.9 (2) 

𝜏𝑒 (ps) 360 (50) 320 (30) 

530 

𝐴2𝑛𝑑 (mOD) 

TA spectra non observed 

1.0 (1) 

𝑘𝐶 (ps-1) 0.8 (2) 

𝐴𝑒𝑥𝑝 (mOD) 0.91 (5) 

𝜏𝑒 (ps) 480 (90) 

 

The time traces of the TH band are presented in Figure 3. The rise time of the TH signal was estimated by 

fitting the data to a step function convoluted with a Gaussian function that simulates the instrumental 

resolution (Figure S5). We obtained the same rise time of 230 +/- 90 fs for TiO2 NPs and 230 +/- 30 fs for V-

TiO2 NPs, which is compatible with the data of Tamaki et al. [28]. This time interval is very similar to the 

diffusion time of holes from the bulk to the surface of the NPs, as estimated from Equation 1 using 𝐷ℎ = 4 ⋅

10−5 m2/s [51], that is 250 fs. This is a further confirmation that this transient signal is due to TH. As already 

remarked for the E signal, the initial value of the TH signal is similar in TiO2 and V-TiO2 NPs, suggesting that 

the dopant atoms do not significantly alter the diffusion and trapping of holes on this short time scale. 

However, the influence of V-doping on the temporal dependence of the TH signal is more remarkable than 

for the E signal. In fact, while in TiO2 NPs the TH signal remains almost constant up to 500 ps, in V-TiO2 NPs it 

decays to 50% of the initial value in ~300 ps (Figure 3a). The TH time trace was fitted to a sum of two 

exponentials with characteristic times 𝜏ℎ1 = 36 ± 7 ps and 𝜏ℎ2 = 1030 ± 150 ps, as shown in Figure 3a and 

reported in Table I.  



 
9 

 

Figure 3: (a) TH signal time traces for undoped (blue squares) and V-doped (green triangles) TiO2 NPs 

extracted from the data in Figure 1 (e = 330 nm). The red solid line is the best fit of the V-TiO2 NPs with a 

sum of two exponentials with characteristic times 𝜏ℎ1 and 𝜏ℎ2. (b) Comparison between the TH (filled 

squares) and E (empty squares) time traces for undoped TiO2 NPs following photoexcitation at 330 nm. The 

red solid line displays the best fit for the E time trace according to Equation 2. (c) Same as (b) for V-TiO2 NPs. 

For the best fit parameters, see Table I. 

The two widely separated time scales observed for the E signal reflect profoundly different decay 

mechanisms. The fast decay with second-order kinetics hints at electron-hole recombination, which is 

expected under our conditions of strong excitation (1.8 mJ/cm2). The fluence-dependent study reported in 

Figure S6 supports this interpretation by showing that the decay slows down with decreasing pulse energy. 

This is in agreement with results of Tamaki et al. that observed second-order decay of the E signal within 100 

ps after ultrabandgap irradiation under strong excitation conditions [30]. One may wonder which kind of 

holes take part in this process. In fact, Figure 3b,c clearly shows that over the first 10 ps, where the E signal 

drops by ~80% and ~90% for TiO2 and V-TiO2, respectively, the TH signal is nearly constant in TiO2 NPs and 

decreases by only ~15% in V-TiO2 NPs. Therefore, the surface-trapped holes seem not to be involved (TiO2) 

or only marginally involved (V-TiO2) in the recombination. This observation leads us to suggest that the 
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electrons recombine mainly with holes that do not contribute a clearly identifiable TA signal within our 

explored wavelength range. These may be shallowly trapped holes or free holes that remain in the NPs due 

to saturation of the surface hole traps under strong excitation.  

The slower exponential decay with characteristic time 𝜏𝑒 in the 100s of ps range (see Table I) was also 

observed by Tamaki et al. in the weak excitation limit [28]. They demonstrated that this dynamics reflects 

the relaxation of free electrons and shallowly trapped electrons to deep traps that do not contribute to the 

TA spectrum because of a very small optical absorption cross section. We can therefore subdivide the 

dynamics of charge carriers generated by strong ultrabandgap excitation into the following processes:  

1) Holes migration and trapping on the surface of the NPs takes place in ~230 fs and leads to saturation 

of surface hole traps.  

2) Recombination of free and shallowly trapped electrons with holes, mainly those that are not surface-

trapped, starts immediately after excitation and proceeds with second-order kinetics over a few tens 

of ps.  

3) When only surface-trapped holes remain, the dynamics of residual electrons becomes similar to the 

one observed under weak excitation conditions: relaxation into deep traps with time 𝜏𝑒~220 ps is 

the dominant mechanism. This process yields an efficient electron-hole separation and explains the 

long-lived TH signal, in agreement with literature results in absence of hole scavengers [2,26,28,32].  

Electron scavenging by oxygen is not expected to influence the dynamics on such a short time scale. In fact, 

the reaction of electrons with oxygen takes place on a much longer time interval, which ranges from 100 ns 

for surface-trapped electrons to several ms for bulk electrons [2,4,26].  

The influence of V-doping on the aforementioned charge carrier dynamic after ultrabandgap irradiation can 

be summarized as follows: 

i) V-doping affects neither the initial concentration of photo-excited carriers nor the migration and 

trapping of holes in ~230 fs on the surface of the NPs; 

ii) V-doping accelerates by a factor of ~3 (see parameter kC in Table I) the second-order recombination 

kinetics that characterizes the fast decay of the E signal; 

iii) V-doping does not significantly alter the relaxation time of free or shallowly trapped electrons to 

deeper traps (see parameter 𝜏𝑒 in Table I). 

iv) V-doping reduces the lifetime of surface-trapped holes, the population of which decays according to 

a double exponential law in V-TiO2 NPs. We suggest that the short time 𝜏ℎ1 = 36 ps characterizes 

the recombination with free electrons -still available in this time interval- whereas the long time 

𝜏ℎ2 = 1030 ps can be ascribed to slower recombination with the deeply trapped electrons 

mentioned in iii).  

Clearly, charge carriers prone to recombination in a few tens of ps are of limited relevance to most 

photocatalytic reactions, which require electron-hole separation and long lifetimes. Therefore, the 

connection between the V-doping effects on TA spectra and on photocatalytic properties should mainly 

address the long-lived reactive species. In this respect, item iv) above suggests that V-doping –at least in the 

present concentration- may have a negative effect on UV photocatalysis. This conclusion is supported by IPCE 

measurements presented later on. However, we will later see that V-doping induces photocatalytic activity 

and photoelectrochemical water splitting in a visible range, where pure TiO2 NPs are completely inactive. 
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3.2 Transient absorption spectroscopy: longer wavelength (400 and 530 nm) excitation 

We now describe measurements performed with 𝜆𝑒= 400 nm and 530 nm, at which wavelengths the 

difference between the optical absorbance of TiO2 and V-TiO2 NPs is very significant. With 𝜆𝑒= 400 nm some 

transitions between the tails of the valence and conduction bands in undoped TiO2 are still possible while 

with 𝜆𝑒= 530 nm undoped TiO2 is transparent and thus only features related to V are probed in V-TiO2 NPs.  

 
Figure 4: Transient absorption spectra of TiO2 (top) and V-TiO2 (bottom) NPs samples with 𝜆𝑒 = 400 nm at 

different delay times. 

TA spectra excited with 𝜆𝑒= 400 nm for TiO2 and V-TiO2 NPs are reported as a function of 𝜆𝑝 for selected time 

delays in the range 𝑡 = 0.2 – 500 ps in Figure 4. The same data are displayed in 2 dimensions as a function of 

(𝜆𝑝, 𝑡) in Figure S4 of the supplementary material. At this excitation wavelength, the TH feature is not 

observable since it overlaps with the pump beam, while the remaining part of the spectra are qualitatively 

similar to those observed for ultrabandgap excitation. The main doping-induced difference is clearly the 

initial intensity of the measured transient signal that for V-TiO2 NPs at 𝜆𝑝 = 730 nm is a factor of 5 higher. 

This is consistent with the stronger optical absorbance of V-TiO2 NPs at 400 nm shown in Figure S2. The time 

traces of the E signal of both samples can be fitted well using the model Equation (2) already applied for 
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excitation at 𝜆𝑒= 330 nm. The best fits are shown in Figure 5 and the corresponding parameters are reported 

in Table I. The results corroborate the interpretation of the carrier dynamics proposed for ultrabandgap 

excitation. In fact, we notice that the ratio 𝐴𝑒𝑥𝑝/𝐴2𝑛𝑑 increases at 𝜆𝑒= 400 nm compared to 𝜆𝑒= 330 nm by 

a factor of 4.7 for TiO2 NPs and of 4.0 for V-TiO2 NPs. This indicates that a smaller fraction of electrons is 

involved in fast second-order recombination processes and that the slower exponential relaxation to deep 

traps gains importance. Furthermore, the rates of the second-order kinetics are slower compared to 𝜆𝑒= 330 

nm. Both results are consistent with the lower initial concentration of charge carriers after excitation at 

𝜆𝑒=400 nm, qualitatively represented by the initial value of the E signal. The effects of V-doping on the 

characteristic decay times are similar to the case of ultrabandgap excitation: the second-order kinetics are 

speeded up (see kC parameter in Table I), suggesting that V favors recombination, while the relaxation time 

to deep bulk traps does not change (see parameter 𝜏𝑒 in Table I). The slightly higher 𝜏𝑒 values for both 

samples compared to 𝜆𝑒= 330 nm may indicate that the relaxation time is longer for electrons with lower 

energy. As mentioned above, it was not possible to detect the TH signal. However, it is reasonable to assume 

that a situation similar to the case 𝜆𝑒= 330 nm is at play, i.e. that long-lived surface-trapped holes are present 

and that V-doping favors their recombination.  

 

Figure 5: Comparison of the E signal time traces (at p=730 nm) for undoped (top) and V-doped (bottom) 

TiO2 NPs extracted from the data in Figure 4 (e= 400 nm). The best fits according to Equation 2 are displayed 

as red solid lines. The inset reports the same data over the extended 25-525 ps time interval. 
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For excitation at 𝜆𝑒 = 530 nm it was impossible to measure any TA signal in the TiO2 NPs. However, as shown 

in Figure 6, using 7 mJ/cm2 pulses we were able to observe the time trace of a weak E signal in V-TiO2 NPs. 

The corresponding TA spectra at selected delay times, restricted to 𝜆𝑝 > 600 nm due to overlapping with the 

pump beam and to the very weak intensity, are displayed in Figure S7. The best fit of the E signal according 

to Equation (2) is displayed in Figure 6 and the corresponding parameters are reported in Table I. The 

amplitudes 𝐴2𝑛𝑑 and 𝐴𝑒𝑥𝑝 are rather small and exhibit a similar value of about 1 mOD, in qualitative 

agreement with the previous remark that 𝐴𝑒𝑥𝑝/𝐴2𝑛𝑑 increases with decreasing concentration of photo-

excited electrons. The characteristic relaxation time 𝜏𝑒 =480 ps is slightly longer than after excitation at 𝜆𝑒 = 

400 nm.  

 

Figure 6: Time trace of the E signal (p = 730 nm) and relative best fit obtained with 7 mJ/cm2 and e= 530 

nm pump pulse in V-TiO2 NPs. The inset displays the same data and fit in the extended 25-525 ps interval. 

The final important message is that irradiation of V-TiO2 NPs in the 400 – 530 nm range is capable of 

generating long-lived electrons with relaxation dynamics similar to that observed after irradiation at 330 nm. 

This suggests that photon absorption, also at the low energy of 2.34 eV (530 nm), results in electron excitation 

into the conduction band, followed by shallow trapping and relaxation. Since 2.34 eV is well below the band 

gap of pure TiO2 (3.0 – 3.2 eV), the initial electron state must be an intra-gap state that originates with V-

doping. This also means that upon photon absorption a transition of a substitutional dopant cation from a 

V4+ to a V5+ oxidation state must take place, leaving a hole on the V site. This picture is in full agreement with 

the results of our recent XANES experiment on the same V-TiO2 NPs, in which we observed a blue-shift of the 

V K-edge during laser irradiation at 532 nm [45]. We estimated that the photo-excited V5+ has an extremely 

long lifetime of ~0.8 ms. In the same experiment we highlighted a concomitant red-shift of the Ti K-edge, 

suggesting that the electron remains trapped at a defective Ti state. The high-energy-resolution analysis of 

the XANES lineshape indicated that such Ti traps are mostly localized on the NPs surface.  

Irradiation at 400 nm (3.1 eV) represents an intermediate case, in which electronic excitations both from the 

valence band and from intra-gap V-related states are possible. The much higher absorption and TA signal in 

V-TiO2 compared to TiO2, however, suggests that the latter plays the dominant role.  

The relevant question now is whether this picture corresponds to a tangible photocatalytic activity in the 

visible spectral range. We will address this issue in the following section. 

3.3 Visible light photocatalysis and photoelectrochemistry 

Figure 7a displays optical absorption spectra of NO2-C6H4-CHO and of NH2-C6H4-CHO, which show absorption 

maxima at 264 nm and 312 nm respectively. De-aerated suspensions of V-TiO2 NPs containing NO2-C6H4-CHO 

were illuminated with visible light (𝜆 > 450 nm) and the reduction of the nitro group in NO2-C6H4-CHO to 
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NH2-C6H4-CHO was monitored. In order to gain information about the conversion of NO2-C6H4-CHO to NH2-

C6H4-CHO, we tracked the evolution of the A312/A264 ratio with increasing irradiation time. Figure 7b shows 

that this ratio slowly increases during visible light illumination ( > 450 nm) of V-TiO2 NPs. This result is an 

indication that this photocatalyst is able to reduce the nitro group using photoexcited electrons from visible 

absorbing states. From a mechanistic point of view, it has been demonstrated that the protons required to 

form the NH2 group are provided by the dissociative adsorption of sacrificial C3H8O (isopropanol, 2-Pr-OH) on 

the NPs surface and its subsequent oxidation into C3H6O (acetone) [52]. Further details on the mechanism of 

H+ formation are provided in the Supplementary Material. We also remark that, although in a photocatalytic 

process oxidation and reduction reactions take place on the same NP, a perfect synchronization of electron 

and proton transfer is not necessary. In fact, TiO2–based NPs can act as temporary reservoirs of electrons, 

giving rise to electron accumulation in the conduction band followed by trapping in states below the CBM.  

 

 

Figure 7: (a) Absorption spectra of NO2-C6H4-CHO (black) and NH2-C6H4-CHO (blue) (both around 1x10-4 M) 

dissolved in a CH3CN/C3H8O (4/1) solvent mixture. (b) The absorbance ratio as a function of irradiation time 

for V-TiO2 (full circles) and TiO2 (empty circles) NPs. Values of absorbance are taken at the wavelengths of 

the two compounds that correspond to the absorbance maxima shown in (a). 

An important point to note is that the ratio A312/A264 is constant when undoped TiO2 NPs are illuminated by 

visible light under exactly the same photocatalytic conditions (Figure 7b, empty circles). This result indicates 

that undoped TiO2 NPs alone are not able to perform any reduction on NO2-C6H4-CHO under λ> 450 nm 

illumination, confirming that photoactive states introduced by V-doping are mandatory for triggering such 
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photocatalytic reaction. Control experiments in the dark and in the absence of photocatalyst confirm that 

the reaction proceeds only under the simultaneous presence of both V-TiO2 NPs and visible light (Figure S8). 

If the spectral range of the incident light is extended in the UV, e.g. by using a  > 360 nm filter, the 

photocatalytic reduction takes place in few minutes [52] and a significant difference between undoped and 

V-doped TiO2 NPs can no longer be detected.  

Electron paramagnetic resonance (EPR) spin-trapping experiments show that, for both samples, the 

formation of radicals coming from 2-propanol takes place immediately after illumination in the wavelength 

range  > 360 nm (Figure S9). Under these conditions, the photocatalytic behaviour of V-TiO2 is qualitatively 

the same as for undoped TiO2, being dominated by transitions from the valence to the conduction band. 

Differently, under excitation at >450 nm, EPR signals were not detected (Figure S9). While for TiO2 the 

absence of an EPR signal is consistent with the lack of optical absorption in this range, for V-TiO2 it suggests 

that the average concentration of radicals is below the sensitivity limit of a typical EPR spin trapping 

experiment. In fact one can consider that photogenerated radicals are not usually quantitatively trapped and 

that the paramagnetic adduct between radical and spin trap is continuously formed and consumed. This is 

consistent with the long times (hours) necessary to observe the photocatalytic reduction process, which is 

clearly related to the cumulative effect of the radicals.  

The IPCE spectra of photoanodes made with TiO2 and V-TiO2 NPs are reported in Figure 8. The low IPCE values 

for both samples are likely due to the poor ohmic contact achieved with the preparation method. Here we 

are interested in comparing the spectral shapes. Two features allow us to establish a connection with the TA 

spectroscopy results. The first is that V-TiO2 NPs exhibit a higher IPCE in the 𝜆 ≳ 360 nm range. In particular, 

photoelectrochemical water splitting in the 430-480 nm range is still possible with V-TiO2 NPs whereas the 

IPCE of TiO2 NPs is almost zero. A connection with the enhanced optical absorbance (Figure S2) and TA signal 

(Figures 5 and 6) in this wavelength range is straightforward, but the result also brings information on the 

energy level of the V dopant, as discussed later on. The second is that V-TiO2 NPs have lower IPCE in the UV 

range 𝜆 ≲ 350 nm. This may reflect the doping-enhanced recombination of surface trapped holes with 

deeply trapped electrons previously connected with the decay of the TH signal in UV-irradiated V-TiO2 NPs 

(see 𝜏ℎ in Table I). In fact, with decreasing wavelength and increasing extinction coefficient, the incident 

radiation is absorbed closer to the electrolytic solution and farther from the ITO back contact. This means 

that on average the electrons must travel a longer distance across the film, increasing the probability of 

recombination before reaching the ITO layer.  

 

Figure 8: IPCE spectra of photoanodes prepared with TiO2 and V-TiO2 NPs.  
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The IPCE spectra were also measured in the CH3CN/C3H8O (4/1) mixture used for the photocatalytic tests 

with LiClO4 0.1 M as electrolyte. No significant changes were detected compared to the results shown in 

Figure 8 for 0.1 M KOH in water. 

3.4 Correlation between charge carrier dynamics and photocatalysis 

The combination of TA spectra and photocatalytic / photoelectrochemical measurements leads to a unified 

picture of the charge carrier dynamics after visible light irradiation and of the dopant energy level in V-TiO2 

NPs, as schematized in Figure 9 and described in the following. 

The photocatalytic reaction shown in Figure 7b, albeit slow, testifies that electrons photoexcited by visible 

light irradiation of V-TiO2 NPs possess suitable energies and lifetimes to reduce the nitro group in solution. 

The TA spectral shape and the E signal relaxation dynamics indicate that visible absorbing electrons are 

photoexcited into the conduction band. At present, we do not know the characteristic time 𝜏𝐼𝑇, over which 

interfacial electron transfer from the V-TiO2 NPs to the solution takes place. If 𝜏𝐼𝑇 ≪ 𝜏𝑒 (see Table I), there is 

no time for the electrons to relax into deep traps and the reaction consumes shallow-trapped electrons. Vice 

versa, if 𝜏𝐼𝑇 ≫ 𝜏𝑒, the electrons relax first into deep traps, and subsequently reduce the molecules in solution. 

Intermediate situations are clearly possible. The red-shift of the Ti K edge under stationary visible-light 

irradiation observed by XANES [45] allows us to assign the deep trapping to Ti𝑠
4+ + 𝑒− → Ti𝑠

3+ at a defective 

surface site Ti𝑠. A previous electrochemical study showed that –NO2 reduction takes place at about 0.5 eV 

below the CBM [52]. Since sub-bandgap visible light cannot promote electronic transitions from the valence 

to the conduction band, the initial electron state must be an intra-gap state associated with V, which is 

incorporated as a substitutional V4+ cation in the lattice of both rutile and anatase [43,44]. There is a 

significant spread in the calculated energy level of the electronic state localized on V4+, which was reported 

between 0.7 eV [16,20] and 1.36 eV [21] below the CBM. However, our results show that it must lie deeper 

than suggested by calculations. In fact, IPCE measurements tell us that the hole ℎ𝑉
+ left on the V site after 

photoexcitation: V4+ + ℎ𝜈 → V5+ + 𝑒𝐶𝐵
− = ℎ𝑉

+ + 𝑒𝐶𝐵
−  has a suitable potential to drive oxygen evolution. 

Taking into account the pH conditions (pH=13) and the known TiO2 band edge positions in aqueous 

environment [53], we conclude that the oxygen evolution potential corresponds to an energy level at 1.5 eV 

below CBM. It is therefore reasonable to assume that the actual quasi-Fermi level of the trapped holes in the 

V-TiO2 NPs is somewhat lower in energy with respect to such value, in order to provide sufficient 

overpotential for oxygen evolution. The optical absorbance spectra provide further information in this 

respect: in fact, Figure S2 shows that absorption extinguishes at 550 nm (2.2 eV), proving that there are 

no absorbing electrons closer than 2.2 eV to the CBM. We may therefore locate the V dopant level at 2.2 

eV below the CBM. Such an estimate is consistent with static absorbance, TA spectroscopy and IPCE 

measurements, and is also in agreement with an early experimental investigation by electron paramagnetic 

resonance, which located the V4+ level at 2.1 eV below the CBM [8]. According to this picture, one would 

expect photoelectrochemical water splitting to be possible also in the 480-550 nm range, where instead 

Figure 8 shows almost zero IPCE. However, the photocurrent may drop below the detection limit due to the 

much weaker excitation in the IPCE setup compared to TA spectroscopy and to the aforementioned ohmic 

losses in the NPs-assembled photoanodes. 

To close the cycle, we suggest that the hole ℎ𝑉
+ on the V site migrates to a trapping site on the NPs surface, 

where it promotes the oxidation of C3H8O to C3H6O, liberating two H+ ions. This reaction provides the protons 

that are needed to form the NH2 group. The net result is thus a transfer of electrons and protons from the 

sacrificial C3H8O to NO2-C6H4-CHO mediated by the V-TiO2 nanoparticle photocatalysts.  
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Figure 9: Schematic representation of the photocatalytic reduction of 4-nitrobenzaldehyde by V-TiO2 NPs 

under visible irradiation. 

4. Conclusions 

This study sheds light on the carrier dynamics, electronic structure and photocatalytic properties of V-doped 

TiO2 NPs compared to undoped ones. The primary findings, achieved thanks to a combination of transient 

absorption spectroscopy and photocatalytic/photoelectrochemical characterization, can be summarized as 

follows: 

i) Under strong excitation at e=330 and 400 nm, a fast electron-hole recombination according to a second-

order kinetics is observed, the recombination rate being higher in V-doped NPs. The electrons that survive 

recombination undergo a slower relaxation into deep traps;  

ii) Valence band holes migrate to and are trapped on the surface over an ultrafast time scale (~230 fs). 

Trapped holes exhibit a long lifetime > 500 ps in undoped NPs, whereas V-doping seems to accelerate their 

recombination with trapped electrons; 

iii) In V-doped NPs only, the photoexcitation of electrons under irradiation at e= 530 nm is observed. We 

associate this peculiar feature of V-doped NPs with an intra-gap state localized on V4+ substitutional cations, 

from which electrons can be photo-excited into the CB by sub-band gap irradiation. We locate this level at 

about 2.2 eV below the CBM; 

iv) The presence of charge carriers photo-excited from visible absorbing states in V-doped NPs corresponds 

to a clear photocatalytic activity in a spectral region where undoped TiO2 NPs are inactive. V-TiO2 NPs are 

able to reduce the nitro group NO2 in 4-nitrobenzaldehyde under visible light irradiation (𝜆 >450 nm), and 

water splitting with V-TiO2 photoanodes is possible up to 𝜆~480 nm.  

Future studies may investigate the dependence of photoactivity on the V-doping level with the aim to 

optimize the competition between positive and negative features induced by doping, i.e. enhanced visible 

light absorption vs accelerated electron-hole recombination.  
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