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Quantifying the Impact of Variability and
Heterogeneity on the Energy Efficiency for a
Next-Generation Ultra-Green Supercomputer

Francesco Fraternali, Andrea Bartolini, Carlo Cavazzoni, Luca Benini, Fellow, IEEE

Abstract—Supercomputers, nowadays, aggregate a large number of nodes featuring the same nominal HW components (eg. proces-

sors and GPGPUS). In real-life machines, the chips populating each node are subject to a wide range of variability sources, related

to performance and temperature operating points (i.e. ACPI p-states) as well as process variations and die binning. Eurora is a fully

operational supercomputer prototype that topped July 2013 Green500 and it represents a unique ’living lab’ for next-generation ultra-

green supercomputers. In this paper we evaluate and quantify the impact of variability on Eurora’s energy-performance tradeoffs under

a wide range of workloads intensity. Our experiments demonstrate that variability comes from hardware component mismatches as well

as from the interplay between run-time energy management and workload variations. Thus, variability has a significant impact on energy

efficiency even at the moderate scale of the Eurora machine, thereby substantiating the critical importance of variability management in

future green supercomputers.

Index Terms—Green500, High-Performance Computing, Hardware Variability, Energy-Efficient Software Design, Energy-Aware

Computing, Green Supercomputer, Heterogeneous Supercomputer, Dynamic Resource Management, Hardware Accelerator, DVFS.

✦

1 INTRODUCTION

WHILE integrated computing architectures are facing
Power/Thermal/Utilization walls that are limiting

the performance benefits of technology scaling, the demand
for more powerful supercomputers continues to increase.
TOP500 rankings in the last twenty years show an ex-
ponential growth of peak performance that is predicted
to enter the ExaFLOPS (1018) at the latest by 2023 [2].
Today’s most powerful supercomputer, TaihuLight, reaches
93.01 PetaFLOPS with 15.37 MW of power dissipation
whitout event considering the cooling infrastructure. This
data shows that exascale supercomputers cannot be built
by simply expanding the number of processing nodes and
leveraging technology scaling, as power demand would
increase unsustainably (hundreds of MW of power). Ac-
cording to [4], an acceptable value for an Exascale super-
computer is 20 MW. To reach this target, current supercom-
puter systems must achieve an energy efficiency “quantum
leap”, pushing towards a goal of 50 GFLOPS/W. With the
aim to push supercomputers to improve energy efficiency,
the Green500 list ranks Top500 supercomputers by their
energy efficiency [3]. In contrast with TOP500, the Green500
list looks into an energy efficiency metric, the GFLOPS
per Watt (GOPS/W), for computers “big enough” to be
considered supercomputer-class, i.e. passing the threshold
of being part of Top500. From the Green500 perspective,
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the current fastest supercomputer (TaihuLight) delivers only
6.05 GFLOPS/W. It is clear that the design of future exascale
machines must take energy efficiency as a primary design
goal and address the challenges coming from power bounds
in direct manner, not just as an afterthought. Variability is
one of the key challenges that must be addressed when
designing a green supercomputer. This is especially true
because energy efficiency boosters like voltage scaling and
aggressive power management have a quite dramatic im-
pact on variability [5], [7]. Process variation is the deviation
of transistor parameters from their nominal design val-
ues, which is caused by both systematic (e.g., lithographic
inconsistencies) and random effects (e.g., varying dopant
concentrations) [25]. Variation effects have been proven to
worsen with the process scaling [7]. After silicon fabrication,
providers use speed binning [6] to cluster in the same
product family devices that share similar performance and
silicon quality and to sell them with the same nominal
speed. Even if this mitigates the end-user product variabil-
ity, in a supercomputer that includes thousands of CPUs of
the same bin the effect of process variability can become
relevant. In addition to process variability, the same device
can operate at different frequency and voltage levels (DVFS,
ACPI states) [9]. The Linux operating system does this
by mean of SW governors. The default one is called “on-
demand” and it adapts the frequency to the CPU load [10].
In Intel machine this governor is called “intel pstate” and
has a similar behavior. Even more than with just advanced
fabrication technologies, green supercomputers will achieve
high energy-efficiency (GFLOPS/Watts) at the architectural
level, by exploiting HW heterogeneity as they embeds in
the computing node parallel accelerators. Looking at the
top 20 most energy efficient supercomputers according to
the June 2016 green500 list, it can be observed that 19 over
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20 supercomputers use a heterogeneous design composed
by a data-parallel accelerator (NVIDIA GPU, AMD Firepro,
PEZY-SCnp), while one (TaihuLight) embeds as processing
core a custom designed many-core CPU based on RISC
cores. In addition HW accelerators have the capability of
changing operating state to trade-off performance with
power. This opens interesting design points when a hybrid
workload runs on heterogeneous HW. More than 86% of
TOP500 supercomputers are based on a scalable architecture
where a ”node” is replicated many times and in almost
90% of today’s supercomputers the node embeds x86 CPUs.
Moreover 80% of nodes use Intel Xeon E5 series (36.8%
SandyBridge, 15.2% IvyBridge and 28% Haswell) compo-
nents. Almost the entire TOP500 supercomputers (94.4%)
use Linux O.S. Finally supercomputers run a wide variety
of workloads and scientific computational kernels and thus
are affected by software variability which can impact the
overall energy-performance trade-off.
The Eurora Supercomputer prototype, developed by Eu-
rotech and Cineca [16] has ranked first in the Green500
list in July 2013, achieving 3.2 GFLOPS/W on the Linpack
Benchmark with a peak power consumption of 30.7 KW,
and improving by almost 30% the performance of previ-
ous green supercomputers. Eurora has been supported by
PRACE 2IP project [20] and it serves as testbed for next
generation Tier-0 systems. Its energy efficiency performance
is achieved by adopting a heterogeneous architecture and a
direct liquid cooling system that enables hot water cooling,
that is suitable for hot water recycling and free-cooling
solutions [18]. For its characteristics Eurora is a perfect vehi-
cle for testing and characterizing next-generation “greener”
supercomputers. As the majority of Supercomputers, Eurora
nodes embeds NVIDIA Kepler GPUs and Intel Xeon Phi
accelerators, uses Intel Xeon processors with linux O.S.

1.1 Contributions

In this paper we analyze the impact of different variation
sources (HW and SW) on Eurora in terms of performance
and energy metrics. We show that the whole system has
significant optimizations margins and that optimization has
a sizable impact at the scale of the entire supercomputer.
The main contributions of the paper are:

• We measured up to 15% of energy variation among
nodes at the same operating condition and under
the same workload. This amount of variability is
measured on a relatively small system with just 32
nodes, and thus is expected to increases in larger
systems and more advanced technology nodes.

• In real supercomputer applications we measure 27%
energy saving w.r.t. the default turbo mode for the
CPUs devices and 26% energy saving in the GPUs
accelerators w.r.t. the maximum running frequency.

• We quantify that optimal voltage and frequency op-
erating point selection (VFS) can lead to an energy
saving ranging between 18% and 50% by using the
only CPUs devices and a further 17% energy saving
by extending the optimal VFS selection to the GPUs
accelerators. These results point out that the vast
majority of workloads achieve significantly higher
energy efficiency when they do not run at peak

performance. Hence, new management strategies for
allocating machine resources to workload are needed
for energy-constrained supercomputers at the ex-
pense of pure performance.

• We measure a further improvement up to 6% in the
energy efficiency by applying the optimal VFS on
both CPUs and GPUs on hybrid workloads. Hence,
we further show that to reduce the energy of the
system the highest CPUs and GPUs speed are not
the best option and only an application dependent
operating point configuration for both GPUs and
GPUs gives the best energy efficiency.

1.2 Related Work

In the last decade, variability has been widely studied in
computer-architecture, VLSI and EDA fields on the hard-
ware and software viewpoints. Authors in [29], review the
literature for reliability and process-variation aware VLSI
design to find that the design of reliable circuits with unre-
liable components is a significant challenge that is likely to
remain relevant for all circuit designs from now on. Other
industrial players like TI and IBM adopts reliability-aware
design methodologies at various stages of the design pro-
cess [48]. Authors in [28] show that in order to account for
parameter variations during the design phase, the designers
will endure an average of 11% increase in area. On the
software side, process variation has also been deeply inves-
tigated and several countermeasures and approaches have
been studied and implemented. As an example, authors
in [8], [11] show that operating system can be designed
to take advantage of process variation to differentiate the
peak performance of processing elements while ensuring
the same target lifetime of the device.
In addition, Paterna et al. propose an ILP formulation to
minimize the energy consumption of a multimedia multi-
core platform affected by variability [12], [13]. Sharing the
same assumption Rudi et al. introduced an ILP formula-
tion which can couple thermal prediction with hardware
heterogeneity to optimize the overall system performance
under thermal constraints [23]. The techniques presented
in [32] rely on the characterization of the power consump-
tion measured by B. Balaji et al in [38] that uses detailed
power measurements to show the part to part variability
for a variety of representative single-threaded and multi-
threaded application workloads. Balaji utilizes six Core
i5-540M laptop processors and the Linux userspace CPU
governor to control four out of a total of ten available
frequencies 1.2Ghz (lowest),1.73Ghz, 2.13Ghz and 2.63Ghz
(highest). In the results, they measured processor power
variation of 7-17% depending on configuration and applica-
tion between identical processors at the same frequency of
operation. [38] shows that commercial multiprocessors are
affected by process variability and it is not clear how this
will impact the final performance and energy efficiency of
a large scale HPC system which integrates a large number
of them. Indeed, the exascale system [2] will likely contain
hundreds of thousands of nodes and billion-way parallelism
and authors in [36], [37] are pointing out the importance of
variability modeling for large scale clusters. In particular,
they find that inter-node variability in homogeneous clus-
ters leads to different models and for high-fidelity cluster
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power models, the choice of model predictors will vary from
node to node. Indeed, by simply multiplying the power
prediction of a single node with the number of nodes in
a cluster, it could yield to a worst-case dynamic range errors
up to 150%. Increasing system size bring a complementary
challenge on power and energy availability and costs, with
projected systems expected to consume tens of mega-watts
of power [40]. To overcome this problem, Torsten et al.
discuss in [39] existing node power variations in two real
HPC homogeneous systems. They introduce three energy-
saving techniques and quantifies possible savings for each
technique. Energy saving results are based on simulation
and in the best theoretical case a combined savings of the
two best practical techniques show an energy saving of just
0.5%.
Hence, to address the mentioned power and energy effi-
ciency problem, authors in [33] and [34] exploit the varia-
tions in manufacturing processes that cause the transistors
on each chip to differ resulting in many-core chips being
inherently heterogeneous. In-fact, due to process variations,
frequency and power consumption profiles of cores can
span a wide range and this make optimal scheduling of
applications under a power budget computationally diffi-
cult. In particular, authors in [33] propose an integer linear
programming (ILP) based approach for selecting optimal
configuration of a chip showing savings in energy con-
sumption on an average of 26% and 10.7% for two HPC
mini-applications. Analogously, [34] proposes a scheduling
framework using ILP, which enables efficient scheduling
based on the application, the properties of the chip, and
power and performance constraints. Results show that their
framework finds configurations that are up to 2.5 times
faster than the ones obtained from simple heuristics. Both
the mentioned works are based on the use of Sniper Multi-
core Simulator [49] for simulating chips with heterogeneity.
Validations of the Sniper simulator [49] against real hard-
ware show average absolute errors within 25% for a variety
of multi-threaded workloads. All these works are based on
simulation results. A detailed assessment of the impact of
variability on power and energy in a real large-scale high-
performance computing (HPC) system is currently missing
in the open literature. In recent times, the new dominat-
ing trend in energy-efficient HPC is toward heterogeneous
architectures coupling processors with accelerators (typi-
cally GP-GPUs). The importance of heterogeneity at the
architectural level is claimed by [35] that stresses the need
for architectures that can tolerate application variability
without performance loss in a Warehouse-Scale Computer
(WSC). Presenting a detailed micro-architectural analysis of
live data-center jobs, measured on more than 20,000 Google
machines over a three year period, and comprising thou-
sands of different applications, [35] found common low-
level functions (datacenter tax), which show potential for
specialized hardware in a future server SoC and making
heterogeneous architectures also beneficial in the server
domain.

To the authors’ knowledge the work presented in this
paper is the first open study on the impact of variability and
heterogeneity on the energy efficiency of a full-scale green
supercomputer. Typically, manufacturers are the only owner
of such information and it is non-trivial to find variability
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Figure 1. Eurora architecture

investigation even on single devices. A similar attempt has
been pursued by the author in [45], but the variability has
been quantified only on general-purpose CPUs and hence,
it is missing the accelerators part to include the whole
supercomputer.

In the remainder of the paper, Section 2 presents an
overview of the Eurora Platform, Section 3 provides a tax-
onomy of the variation sources in a supercomputer system
and Section 4 shows the workloads and tests for our charac-
terization. Finally, Section 5 shows the results obtained and
the conclusions and future work are reported in Section 6.

2 EURORA

The Eurora system consists of a half-rack containing 8
stacked chassis, each of them designed to host 8 node
cards and 16 expansion cards (see Fig. 1). The node card
is the basic element of the system and consists of 2 Intel
Xeon E5 series (SandyBridge) processors and 2 expansion
cards configured to host an accelerator module. One half
of the nodes use E5-2658 processors including 8 cores with
2.1 GHz clock speed (Max Turbo Frequency 2.8 GHz), 20 MB
caches, and 95 W maximum TDP. The rest of the nodes
use E5-2687W processors including 8 cores with 3.1 GHz
clock speed (Max Turbo Frequency 3.8 GHz), 20 MB caches,
and 150 W maximum TDP. The accelerator modules can be
Nvidia Tesla (Kepler) with up to 24 GB of GDR5 RAM and
up to 2 TFlop peak DP and 250 W TDP, or, alternatively,
Intel MIC KNC with up to 16 GB of GDR5 RAM and up to
1.4 TFlop peak DP and 245 W TDP.
Each node of Eurora runs a SMP CentOS Linux distribution
version 6.3. The kernel is configured with NOHZ function
disabled, hyper threading HW support disabled and on-
demand power governor [10]. The linux governor allows
users with specific rights to change at run-time the clock
frequency of each CPU by writing the target frequency value
in the /sys/dev. The clock frequency of GPUs can be scaled
at run-time too by mean of specific APIs of the NVIDIA
driver. This mechanism can be exploited to precisely control
the frequency of the studied system and it has been used to
perform the analysis as described in the following sections.
Eurora interfaces with the world through a dedicated login
node, physically positioned outside the Eurora rack. This
node executes the batch job dispatcher (PBS) [46] and con-
nects to the same shared file system directly accessible from
all the computing nodes. In this paper, we encapsulated our
tests in PBS jobs so that we can exploit the job dispatcher
features to exclusively test all the nodes of Eurora while
running in a production environment. We remark that all
these settings are quite commonplace for high-performance
supercomputers.
Eurora features an integrated and low-overhead monitoring
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Figure 2. Relevant Variability Sources in Supercomputers

system made-up by a set of software daemons and parsing
scripts. The SW daemons run periodically (every 5 seconds)
on each node to collect traces of the processing elements
(CPUs, GPUs, Xeon Phy) activity by mean of HW perfor-
mance counters. For each core, the monitoring system gath-
ers values from the Performance Monitoring Unit1 as well as
the core temperature sensors, and the time-step counter. In
addition, for each CPU it gathers the monitoring counters
(power unit, core energy, DRAM energy, package energy)
present in the Intel Running Average Power Limit (RAPL)
interface. The parsing scripts process off-line the raw log of
the performance counters to generate performance metrics
(CPI, Load, Temperature, Power, etc.) and relate them with
the job running on the node.

3 VARIABILITY IN SUPERCOMPUTERS

In this Section we classify variability sources that impact
supercomputer performance (i.e. power, execution time,
energy). We classify the variability sources from the user-
perspective (desired vs. undesired) and from their nature
(hardware vs. software) as shown in Figure 2.

Desired Hardware Variability
The use of different hardware components (e.g. CPU, GPU)
and different operating points (e.g. clock frequency) pro-
duces different and user-expected performance. Hence, we
label both the heterogeneity in the processing elements and
in between the ACPI performance states as desired hardware
variability. Eurora nodes, similarly to others, are built using
different computational units including HW accelerators
and different series of the same CPU family (speed binning).
In particular, as mentioned in Section 2, Eurora is composed
by 32 nodes that use Intel Xeon E5-2658 with 2 Intel Xeon
Phi 5120D, while the remaining 32 nodes that use Intel Xeon
E5-2687 with 2 Nvidia Tesla K20s GPU. Furthermore, both
the aforementioned CPUs and GPUs devices are capable of
scaling their own voltage and frequency by means of O.S.
governors and driver.These knobs can be also used by the
system admin and by the final user to modulate the energy-
performance trade-off. In the Eurora system, the nominal
2.1GHz CPUs can scale their frequencies from 1.2GHz to
2.1GHz with 100MHz step. Instead, the nominal 3.1GHz
CPUs can scale their frequencies from 1.2GHz to 3.1GHz
with 200MHz step. With regard of CPUs, if the fastest

1. i.e. UnHalted Core Cycles, Instructions Retired and UnHalted
Reference Cycles

state is selected, then the turbo mode is enabled and the
HW can overclock the frequency if this is thermally and
power sustainable [15]. To scale the frequency of the GPUs
accelerators, both the memory and the graphics clocks can
be controlled. In particular, the frequency of the memory
clock can be configured to 2600MHz and 324MHz while the
graphic clock can range between 758MHz and 324MHz in
6 steps (758, 705, 666, 640, 614 and 324MHz). The graphic
clock can be configured to the lower value only if the lower
level of the memory clock is selected as well.

Undesired Hardware Variability
By executing the same benchmark on the same family
hardware-nodes, the presence of undesired hardware vari-
ability determines different performance for each node.
Hence, this class groups all the variability sources that
come from non-idealities in chip technology, fabrication and
operation. Due to process variation, ambient conditions and
manufacturing variability, different instances of the same
nominal device operate at different PVT points and ambient
conditions. This may lead to observe different power and
temperature values for different devices (CPUs and GPUs)
of the same family while executing the same workload at
the same operating point.

Desired Software Variability
This class accounts for the fact that different applications
execute different type and number of operations and have
a different usage of resources. This may reflect in a variable
performance and energy consumption and different sensi-
tivity to hardware variability sources.

Undesired Software Variability
This class accounts for all the software fluctuations that
introduce variations in energy and performance of the same
code that runs on the same node multiple times. Those
variation sources include the operating system interference,
external interrupts, the effect of shared resources contention,
etc.

Next Section 4 proposes a methodology for quantifying
the impact of the presented variability sources. Section 5
measures their impact on the CPUs and accelerators of the
Eurora supercomputer.

4 VARIABILITY EXPLORATION METHODOLOGY

We propose a methodology for evaluating and quantifying
the impact of the above mentioned variability sources. Our
methodology is based on a combination of scripts, real ap-
plications and synthetic benchmarks which target different
variability sources. When dealing with undesired variability
sources (the HW and SW) it is necessary to adopt well
controlled benchmarks. Indeed supercomputer applications
are characterized by the composition of several computa-
tional kernels, complex communication patterns and I/O
accesses which may hide the targeted variability. Hence,
in our methodology we introduce on purpose ”synthetic
benchmarks” for two reasons: (i) to measure Hardware and
Software Undesired Variability; (ii) to measure the corner
cases of desired Hardware and Software variability. In our
framework this is done with two synthetic benchmarks, a
CPU bound and a Memory Bound one.

• SYNT CPU: this synthetic benchmark is composed
by a number of threads equal to the number of cores.
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Each thread is bound to a specific core with thread
affinity to avoid migrations. Each thread consists
of a loop where an ALU operation is executed on
a circular buffer. At each iteration, a read-write to
an entry of circular buffer is executed that moves
with an incremental step of one cache line. In this
particular case, we used 237 iterations and a buffer
dimension of 4KB per core, that fits the L1 cache
emulating a CPU bound application (the L1 size
for both the Intel Xeon E5-Series is 64KB). In fact,
by doing that, the SYNT CPU is capable of hitting
always in the L1 cache.

• SYNT Mem: this benchmark is similar to the SYNT
CPU but it uses a circular buffer of 4MB per thread
and 233 iterations. Both the Intel Xeon E5-Series used
for our tests, present a L3 shared cache of 20 MB. As
each thread has its own circular buffer, the overall
memory footprint (32MB) exceeds the L3 size. This
is sufficient to let each memory access miss in the
L1, L2, L3 cache and hit in the DRAM, emulating a
strongly memory bound task execution.

• SYNT GPU: this synthetic benchmark allows to simu-
late a worst-case scenarios for the GPUs devices [22].
This program forks one process for each GPU. Each
GPU process allocates 90% of the free GPU memory,
initializes 2 random 1024*1024 matrices, and con-
tinuously performs efficient CUBLAS matrix-matrix
multiplication routines on them and finally stores
the result across the allocated memory. Both floats
and doubles are tested. In this way, the GPUs are
100% busy while the CPUs remain in idle. Using this
benchmark we can simulate a strong GPUs bound
task execution.

Furthermore, in our methodology we use ”real bench-
marks” to evaluate the effect of desired hardware and soft-
ware variability in practical applications. When dealing with
Desired Hardware Variability, real benchmarks gives us a
realistic and practical evaluation of the metrics involved,
unveiling the behavior of a real application in the range
marked by the synthetic benchmarks. In our methodology
we choose Quantum Espresso (QE)2. QE is a Computational
Material Science community code, publicly available and
it is one of the currently ”hot applications” for high-end
supercomputers3. QE main computational kernels include
dense parallel linear algebra and 3D parallel FFT, which
are both relevant in many HPC applications. Hence, QE is
a good candidate to evaluate HPC architectures, and it is
included in many benchmark suites [19].

• QE-Al2O3: QE main computational kernels include
dense parallel linear algebra and 3D parallel FFT,
which are both relevant in many HPC applica-
tions. We configure QE to calculate the electronic
structure of the Al2O3 in 3K points. The code is
parallelized with 16 threads and we configure the

2. Quantum ESPRESSO is an initiative of the DEMOCRITOS National
Simulation Center (Trieste) and of its partners, in collaboration with
the CINECA National Supercomputing Center in Bologna, the Ecole
Polytechnique Federale de Lausanne, Princeton University, and the
Massachusetts Institute of Technology.

3. www.quantum-espresso.org

GOMP CPU AFFINITY to use all the available cores
within one node.

• QE-SiO2: This Quantum Espresso benchmark allows
to calculate the band structure of the Silicon along
the main symmetry. We use QE-SiO2 as it contains
a larger linear algebras that the Al2O3 and this can
be better exploited by the QE GPU version which
mostly accelerates the linear algebra but not the FFT
[21]. By using this benchmark in the GPU and CPU,
we are able to compare the performance of the QE-
SiO2 using only the CPUs and both the GPUs and
CPUs devices. As in previous benchmarks, the code
is parallelized with 16 threads and we configure the
GOMP CPU AFFINITY to use all the available cores
within one node.

• QE GPU: the aim of this benchmark is to exploit the
capabilities of the NVIDIA GPU graphics cards. The
QE GPU uses the Quantum ESPRESSO SiO2 suite
[21] to exploit new hybrid CPU+GPU high perfor-
mance computing systems. In this way, we are able
to compare the performance of the same benchmark
QE-SiO2 using only the CPUs and both the GPUs
and CPUs devices.

Desired HW Variability Methodology Calculation:
In addition to the QE CPU and GPU versions, to quantify
this variability source, we have designed a PBS script that
first scales equally the frequencies for all the cores of the
node in which is running and then executes (with N equal
to five in our experiments) the same benchmark. At the
beginning and at the end of each benchmark run, we save
the initial time and the end time. The script iterates these
operations for all the available DVFS states and for all the
benchmarks considered. The script is then executed in all
the nodes of Eurora. Off-line the log information are used
to navigate the traces generated by the Eurora monitoring
framework (Section 2). To verify the Desired HW Variability,
we ran both the synthetic benchmarks and the real applica-
tions.

Desired SW Variability Methodology Calculation:
By using the synthetic and real benchmarks we are able to
precisely define the number and kind of operations executed
for each single test. In this way, we test the Desired Software
Variability by monitoring the different usage of resources
by different software on each test executed. The use of the
systematic benchmarks allow to verify the extreme corner
case usage of the Eurora machine.

Undesired HW Variability Methodology Calculation:
Again, the use of the synthetic benchmarks produce sta-
ble results allowing to separate the different variability-
components. Hence, to calculate the Undesired HW variabil-
ity we run for 5 times the synthetic benchmarks on the all
available nodes while changing the clock frequency for each
run. The average of the 5 runs at each nodes gives a good
understanding of the energy efficiency of the given node.
The difference between all the nodes are then calculated
allowing to extract the only Undesired Hardware Variability
Component.

Undesired SW Variability Methodology Calculation:
To quantify this variability source we executed 5 times
on the same node and for all the nodes the synthetic
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benchmarks. In this way, we are able to precisely evaluate
the energy consumed on each node and monitor the only
variations in the nodes due to software fluctuations and
noise.
It is important to mention that we restricted our analysis to
the GPU accelerators only due to the hw limitations of the
Intel Xeon Phi accelerators in scaling the clock frequency.
We leave the analysis of the Intel Xeon Phi accelerator to
future works. Considering these benchmarks and tests, in
Section 5, we quantify the impact of all variability sources
defined in Section 3 in terms of energy/performance.

5 EXPERIMENTAL RESULTS

This Section presents the results of our analysis which
quantifies the effects of different sources of variability in
the Eurora Supercomputer. In particular, we are going to
present the results obtained for the general purpose pro-
cessing and GPU accelerator units.

5.1 Desired Hardware and Software Variability:

Next paragraph compares the standard operation (i.e turbo
mode) of the two classes of nodes (with 2.1GHz CPUs
and with 3.1GHz CPUs) while in the second paragraph we
conduct a similar analysis for the accelerators units.

5.1.1 General Purpose Processing Units

To evaluate the impact of desired software and hardware
variability on the energy/performance metrics for the dif-
ferent benchmarks, we report in Figure 3 the execution time,
power and energy for the two classes of nodes (with 2.1GHz
CPUs and with 3.1GHz CPUs) at the different DVFS states.
Each dot in the figures reports the average among all the
nodes of the same class and among the five runs of the same
benchmark. Looking at the graphs we can clearly notice that
in all the plots the 2.1GHz nodes lay on top of the 3.1GHz for
all the frequency settings. From the same figure we can see,
as expected, that by lowering the frequencies all the four
different benchmarks decrease their power and increase
their execution time. The energy instead is not monotonic
and behaves differently for the four cases.

Table 1 quantifies for the four benchmarks the en-
ergy/performance improvements when the nodes operates
at the optimal frequency for the energy consumption w.r.t
standard operating conditions (i.e. turbo mode). For the
SYNT CPU, QE-Al2O3 and QE-SiO2 the minimum energy
consumption happens at around 2.0GHz, while the SYNT
MEM has minimum energy at the lower frequency. Choos-
ing the optimal frequency for minimum energy leads to
energy savings up to 18% for SYNT CPU and savings of
the 50% for the SYNT MEM benchmark. QE-Al2O3 instead
saves the 27% while QE-SiO2 saves the 21%. Furthermore,
from Table 1 we can notice that both the two QE benchmarks
show a behavior similar to the CPU bound benchmark
(SYNT CPU) and that not only the application matters for
the power and energy consumption but also the data-set
that need to be executed since this could lead to a difference
up to 10% in terms of energy saving between the two QE
benchmarks. Indeed from Figure 6 we can see that the
speed-up due to frequency increase in QE-Al2O3 saturates
before QE-SiO2.

Nodes Optimal [MHz] Ex Time [%] Energy [%]

Frequency Overhead Saving

Benchmark SYNT CPU
2.1GHz 1900 -11 +2

3.1GHz 2000 -70 +18

Benchmark SYNT Mem
2.1GHz 1200 -18 +18

3.1GHz 1200 -23 +50

Benchmark QE Al2O3

2.1GHz 1700 -20 +3

3.1GHz 1800 -65 +27

Benchmark QE-SiO2

2.1GHz 1800 -18 +3

3.1GHz 1800 -79 +21

Table 1
Energy Optimization Margin

To understand why this energy efficiency trade-offs hap-
pens we modeled the power and execution time of Figure
3a,b) with a regression fit. In particular, the regression model
for the power (1) calculates a polynomial curve based on the
input data and returns a matrix describing the curve. The
equation used to model the execution time is shown in (2):

Power = a ∗ x2
+ b ∗ x+ c (1)

ExectionTime = d/x+ e (2)

where: x is the clock frequency; a,b and c are the coeffi-
cients that corresponds to each polynomial value of x while;
d and e are the coefficient used to model the execution time.
After extracting the curves for both power and execution
time of Figure 3a,b) we multiplied the two models to extract
the analytical energy curve. By exploiting iterative methods
we were then able to find the analytical energy minimum
reported in Table 2. Hence, in this way we are capable to
analytically extract the frequency that minimize the energy
for each benchmark.

Nodes Optimal [MHz] a b c

Frequency d e f

Benchmark SYNT CPU
2.1GHz 2000 1.238064e-05 0.005529 48.008

970544.5528 -2.703800959

3.1GHz 2000 01.87949E-05 -0.02 70.429

969715 -1.713393

Benchmark SYNT Mem
2.1GHz 1200 7.756455e-06 0.0219 61.626

228131 326.095

3.1GHz 1200 1.536898e-05 -0.00775 87.093

170744.5744 365.2372204

Benchmark QE Al2O3

2.1GHz 1700 1.263489e-05 0.006741 47.916

827629 65.632

3.1GHz 1800 1.765919e-05 -0.0147 67.95

826059 74.215

Benchmark QE SiO2

2.1GHz 1800 1.75475E-05 -0.0056 59.31

869489 26.970

3.1GHz 1800 1.381937e-05 0.00864 48.59

871497 27.89

Table 2
Energy Minimum by Analytical Model

Looking at Table 2 it becomes clear why the energy
minimum of the benchmarks are located in certain positions
for each benchmark. The reason must be found on the value
of the coefficient d that indicates the slope of the execution
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Figure 3. 3.1GHz nodes vs 2.1GHz nodes - Mean Ex Time, Power, Energy

time while varying the clock frequency. In-fact, from the
Figure 3b) we can notice that the power trend is very similar
and linear for the different benchmarks. On the contrary, the
slope of duration’s is changing. Hence, from our regression
models we expect that the energy minimum is going to
move based on the duration’s slope. This intuition is con-
firmed by the results reported in Table 2: the lower value of
d for the benchmark SYNT Mem compared to the value of
d for the SYNT CPU determines a lower energy minimum
for the SYNT Mem benchmark. Interesting, the SYNT CPU
and SYNT Mem have respectively the higher and the lower
slopes while the Al2O3 and QE SiO2 stand in the middle of
the two corner cases.
From the analysis of these results it becomes clear that
the vast majority of workloads achieve significantly higher
energy efficiency when they do not run at peak perfor-
mance. Hence, for energy-constrained supercomputers new
management strategies for allocating machine resources to
workload can be conceived that reward energy efficiency
with respect to pure performance.
Figure 4 shows in details the breakdown of the power
consumption for all the main components of the General
Purpose Processing Units for the CPU benchmarks varying
the frequency of the system. From the analysis of the Figure,
it appears obvious that the power consumption of the mem-
ory of the SYNT Mem benchmark is drastically higher (22%
Power Dram) when compared with the power consumed
by the SYNT CPU benchmark (7% Power Dram). In this
graph we represent with Power TOT the sum of the power
consumed by the package (Power Pkg) and the power
consumed by the memory of the nodes (Power Dram).
It is interesting to notice that for all the benchmarks consid-
ered the power consumption of the node when operating at
the optimal frequency is around 100 watts, which is 3x less
than the TDP. This suggests that designing supercomputers
which operate at the most energy-efficient point does not
only reduces the power bill but also eases the thermal design
which in the case of Eurora would have been downsized up
to a factor of 3x. This has the potential to reduce cooling
infrastructure cost and enabling simplified and yet more
efficient cooling design.

5.1.2 GPU Accelerators

In the second test we have conducted the same analysis
of the previous paragraph, on the nodes equipped with
the General Purpose accelerators (GPUs). Table 3 shows

the different energy/performance metrics in executing the
two benchmarks for GPUs (SYNT GPU and QE GPU). The
second and third rows of the table are used to compare the
performance of the same SW benchmark (QESiO2) while
using different HW components: the only CPUs and the
CPUs+GPUs processors. The values are averaged among
five repetitions of the same workload. Whereas table 3
reports for QESiO2 the performance and power for both
the case with CPU + GPU and CPU and GPU idle, for
SYNT GPU we report only the case with CPU + GPU as
the benchmark is designed for work with the GPU.

Nodes Power Ex Time Energy
Nodes [W] [s] [KJ]

Benchmark SYNT GPU
3.1GHz 439 175 76.5

+GPU 103+336(GPU)

Benchmark QE CPU (SiO2)(GPU idle)
3.1GHz 271 590 160

+GPU idle 244+27(GPU)

Benchmark QE GPU (SiO2) (CPU at 3.1GHz)
3.1GHz 306 (+13%) 502 156

+GPU 202+104(GPU) (-15%) (-3%)

Table 3
Desired Hardware Variability Results GPU

From Table 3 we can notice that the use of the GPUs
devices strongly influences the performance and energy of
the benchmark execution. In-fact, even if the use of the
GPUs increase the power consumption, there is an impor-
tant reduction of the execution time up to 15% that bring
the energy consumption to decrease up to 6% with respect
to the execution of the same benchmark with the only CPUs
device. It is important to remember that the QE-SiO2 is a
real benchmark for which only the 30% of the workload
is managed by the GPUs accelerators. This means that the
QE GPU benchmark is mostly CPU bound and thus a more
GPU friendly code or a better coding can results in larger
speed-ups and energy savings. This can also be noticed
by the comparisons with the SYNT GPUbenchmark for
which the GPUs consumes up to 336Watts which is 3x more
than the power consumption of the GPU for the QE-SiO2

benchmark. Overall, it is important to notice that the energy
efficiency is increased by GPUs even if their utilization
is partial. From our results we can notice that a 30% of
utilization of the GPU is an empirical safe-threshold which
programmers should aim for, to achieve energy-savings in
GPU’s accelerated code. Higher utilization increases the
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Figure 4. 3.1GHz nodes vs 2.1GHz nodes - Mean Power for the main components of the CPU nodes.

energy-gain introduced by the GPU usage.

In Figure 5 we further analyze the performance and
power trade-offs of the GPU nodes by reporting for the
SYNT GPU benchmark its execution time, power and en-
ergy breakdown while vary the frequency selection. Indeed,
also the GPU can scale its own clock frequency indepen-
dently to the CPU clock one. From Figure 5a we can notice
that the execution time increases super-linearly as the GPU’s
clock frequency reduces. The node power consumption de-
creases significantly for the SYNT GPU benchmark, since the
GPU computation and power dominates the entire budget.
When we look at the energy we notice that it decreases
when the GPU clock frequency is decreasing as well, but the
energy minimum is not at the minimum frequency point,
but at an intermediate one. This suggests that the optimal
frequency selection has not a trivial solution also for GPU
accelerators.

To analytically understand where and why the optimal
frequency selection happens we modeled the total power
and execution time of Figure 5a,b) with a regression fit. As
for the CPU Section, the regression model for the power
and the execution time are reported in (1) and (2). After
extracting the two models, we multiplied them to extract
the analytical energy curve. Then, by exploiting iterative
methods we were able to analytically find the frequency
that minimize the energy for each benchmark (Table 4).
Looking at Table 4 it becomes clear why the SYNT GPU
has a higher frequency optimum compared to the QE GPU
benchmark. Again, the reason must be found on the value
of the coefficient d that indicates the slope of the execution
time while varying the clock frequency. In-fact, the slope of
the duration equation is different for the two benchmarks:
Figure 6a) shows that the duration’s slope of the SYNT GPU
is higher compared to the one of the QE GPU benchmark
(Figure 7a)) that instead is almost flat. Hence, from our
regression models we expect that the energy minimum
is going to move based on the duration’s slope. This is
confirmed by the results reported in Table 4: the lower
value of d for the benchmark QE GPU compared to the
value of d for the SYNT GPU determines a lower energy
minimum for the QE GPU benchmark.

To evaluate the impact of DVFS states on the energy
performance metrics of the two GPUs benchmarks, we
report in Figure 6 and Figure 7 the execution time, power
and energy consumption of the SYNT GPU and QE GPU
benchmark at different DVFS states. In addition to changing

the GPUs frequency, we repeated the same test varying also
the frequency of the CPUs device. In this way, we were able
to explore an hybrid CPU+GPU DVFS configuration and
evaluate its impact on the energy-performance trade-off. In
particular, in addition to the GPUs DVFS, we run different
tests changing the frequency of the CPUs to 1200, 2000, 3100
and 3100+turbo(3101) MHz. With the values selected we can
explore all the DVFS CPU’s range including the turbo boost
modality. Each dot in the figures reports the average value
among all the nodes which embeds GPUs and among five
runs for the mentioned CPUs and GPUs frequency.

Optimal [MHz] a b c

Frequency d e f

Benchmark SYNT GPU
614 0.0003243 0.3086208 66.33

274139 -223.73

Benchmark QE CPU
324 -0.0003142 0.48 119.12

30298 451.99

Table 4
Energy Minimum by Analytical Model

Looking at the graphs we can clearly notice that by
changing the CPUs and GPUs frequency we have different
behaviors in the execution time, power and energy con-
sumption due to the different nature of the two presented
benchmarks. In particular, the SYNT GPU is a GPU bound
benchmark and the frequency variation of the CPUs is not
altering its execution time as we can see from Figure 6a.
Instead, from Figure 6b we can see that the power is affected
by the CPUs frequency and by decreasing the CPUs speed
we significantly reduce the overall power and total energy
consumption (Figure 6c). It results that the minimum CPU’s
frequency leads to the minimum overall power and energy
consumption. If we look at the GPU frequency we can
notice instead that even if the benchmark is GPU centric the
maximum energy efficiency is not achieved at the maximum
frequency nor at the minimum one. The optimal frequency
is obtained with minimum CPU frequency and intermediate
GPU frequency. To the best of authors knowledge, this is
the first work in showing the evidence that consensus in the
DVFS policy for the accelerator and host processor can lead
to significantly higher energy saving with respect to state-
of-the-art accelerator agnostic power management policies.
Hence, from the analysis of these results we clearly notice
that it is possible to achieve significantly higher energy
efficiency by not running the SYNT GPU benchmark at peak
performance.
Figure 7 shows the results of the same analysis applied to
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Figure 5. 3.1GHz+GPU nodes - Mean Ex Time, Power, Energy for all the components of the GPU nodes.

the QE-SiO2 benchmark and shows significantly different
trade-offs. Here the execution time strongly depends on
both the GPUs and CPUs clock frequencies used, confirm-
ing the hybrid nature of the QE GPU benchmark which
contains both GPUs and CPU centric computational phases.
Figure 7a reports the execution time of the benchmark for
the different configurations of the CPU’s and GPU’s clock
frequency. From the same figure we can notice that the
execution time is more sensitive to the CPU clock frequen-
cies underlying a dominant effect of the use of the CPUs
in the QE GPU benchmark. A similar behavior is present
in Figure 7b which shows the power consumption of the
QE GPU benchmark. Also in this case the power increases
mostly as effect of CPU’s frequency variations. Finally in
Figure 7c we can see the effects of the CPU and GPU
frequency variation for the overall energy consumption of
the QE GPU benchmark.
Interestingly, even if this benchmark has a clear dominance
of the CPU load in the power and execution time and
thus is significantly different from the previous SYNT GPU
benchmark, the minimum energy efficiency as well as the
best energy efficiency trade-offs are achieved with an in-
termediate value for the CPUs frequency. As a matter of
fact, also in this case we show that to reduce the energy of
the system the highest CPUs and GPUs speed are not the
best option and only a careful analysis of the benchmark
determines the best choice.

Table 5 quantifies for the two benchmarks the en-
ergy/performance improvements when the GPUs and both
the CPUs+GPUs processors operate at the optimal fre-
quency w.r.t standard operating conditions (i.e. turbo mode
for CPUs and GPUs running at the maximum frequencies).
Numbers in brackets reports the optimal frequency calcu-
lated with the polynomial regression model. By selecting
the optimal GPU frequency while maintaining the standard
CPUs operating mode to achieve the minimum energy
consumption leads to energy savings up to 6% for SYNT
GPU and savings up to 13% for the QE GPU benchmark.
If we consider an holistic DVFS policy which exploits at
the same time the CPU and GPU DVFS capabilities we can
increase the energy savings for the SYNT GPU benchmark
up to 17% and up to 26% for the QE GPU benchmark.

As a matter of fact there is a large opportunity for today’s
and future heterogeneous supercomputer to increase their
energy efficiency by leveraging synergies in between the
CPU and GPU and the accelerator’s power management
policy.

Optimal Ex Time [%] Energy [%]
Frequency [MHz] Overhead Saving

Benchmark SYNT GPU [CPU F MAX - GPU F OPT]
3101CPU+614GPU -21 +6

Benchmark QE-SiO2 GPU [CPU F MAX - GPU F OPT]
3101CPU+324GPU -11 +13

Benchmark SYNT GPU [CPU F OPT - GPU F OPT]
1200CPU+614GPU -23 +17

Benchmark QE GPU [CPU F OPT - GPU F OPT]
2000CPU+324GPU -64 +26

Table 5
Energy Optimization Margin GPU

5.2 Undesired Hardware Variability

Whereas the previous explorations were conducted consid-
ering the average among the different nodes of the same
class HW, in the following analysis we will compare the
energy/performance metrics of single nodes. To improve
the quality results for each node and for each benchmark
we consider average of the five runs.

5.2.1 General Purpose Processing Units

In the following analysis we focus only on the synthetic
benchmarks as they highlight the corner cases and are char-
acterized by lower variability among repetitions (Table 6).
Figure 8 for each node and benchmark (SYNT CPU, SYNT
MEM and IDLE) shows on the x-axis the average total
power consumption and on the y-axis the average core
temperature. From the figure we can notice that both the
CPUs have a similar thermal resistance. This is expected
as they share the same packaging solution and cooling
solution. Furthermore, from the same plot we can notice
two important effects: first, for each benchmark the power-
to-temperature relation is linear. This means that positive
feedback loop in between the absolute temperature and the
materials resistance are negligible in a real setup in the range
of allowed operating temperatures.

Secondly, different benchmarks when consuming a simi-
lar amount of power, have different impact on the core tem-
perature. This can be clearly see by the different slopes for
the different benchmarks plots. This suggests that thermal
management needs to be done based on actual temperature
measurements and cannot be performed based only on the
core power consumption. In addition to that we notice that
nodes of the same class at the same DVFS level shows
significantly different thermal/power behavior. Moreover,
the effects of variability on thermal resistance grows at
higher power consumption. This is also the condition at
which temperature becomes more critical. Furthermore, as
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Figure 6. SYNT GPU: DVFS impact for Execution Time, Power and Energy Consumption
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Figure 8. Average CPU Temperature

it can be expected, even if SYNT MEM has a higher power
consumption than SYNT CPU due to DRAM power its core
temperature is significant lower (≈ 5oC).

Figure 9a and 9b visually quantify the effect of process
variability among Eurora nodes. As highlighted previously,
in Figure 3 the energy consumption has a minimum at a
lower frequency than the maximum one. This is true for all
the nodes. In the same figure we can see that different nodes
show a significant variability on energy consumption that
carries over all DVFS operating points along the different
DVFS values. Figure 9c quantifies the maximum variation
between all nodes of the same class at the different frequen-
cies while executing the same benchmark. We can notice that
the energy variation is totally due to the power variation as
the execution time variation is negligible. Energy variation
can reach almost 9% and its average is a non-negligible 7%.
Figure 10a and 10b show the Eurora Energy map trend for
the memory bound benchmark. Here we can see an outlier
(node57). This node has DRAM clock half of the other nodes

one even if it is nominally the same. This is the reason why
the outlier was not present in Figure 9a and 9b. We re-
moved this node in Figure 10c that quantifies the maximum
variation between all the nodes of the same class at the
different frequencies while executing the same benchmark.
From the plot we can see that memory bound applications
incur in higher variability w.r.t CPU bound ones, with peak
variation of 15% and average of 8%. This can be explained
by higher sensibility to the DRAM variability. It must be
noted that this value are computed on 32 nodes and thus are
expected to increases in larger systems and more advanced
technology nodes.

5.2.2 GPU Accelerators

In this section we focus only on the synthetic GPU bench-
mark as it is characterized by lower variability among
repetitions (Table 7). Figure 11a and 11b visually quantify
the effect of process variability among the Eurora nodes
equipped with GPUs. As mentioned in the Desired Hard-
ware Variability Section, Figure 6 shows the energy con-
sumption, revealing a minimum that does not match the
maximum frequency available. This happen within all the
nodes running the SYNT GPU benchmark. By the analysis
of Figure 11a and 11b we can see that different nodes show
a significant variability on energy consumption that carries
over all DVFS operating points along the different DVFS
values. Moreover, Figure 11c quantifies the maximum vari-
ation between all nodes at the different frequencies while
executing the same benchmark. These results show that the
energy variation is totally due to a power variation between
the nodes as the execution time variation is always very
low compared to the power variation. Also by using GPUs
device the Energy variation can reach almost 9% and its
average is a non-negligible 6.9%.

Thus our measurements show that, even in today’s tech-
nology, node-to-node variability cannot be neglected and
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according to all technology projections, it will increase as
we move to scaled-down nodes. Hence variability manage-
ments in software (e.g. through proper workload allocation
and scheduling by a variability-aware job dispatcher) will
become a necessity for future Exascale systems.

5.3 Undesired Software Variability

This accounts for the operating system and system interfer-
ences. We evaluated it by launching several times the same
benchmark on the same hardware node.

5.3.1 General Purpose Processors Units

In Table 6 we quantify the percentage of the variability
between five different runs on the same Eurora nodes using
only CPUs.

Nodes Power[%] Ex Time[%] Energy[%]
Benchmark SYNT CPU

2.1GHz 0.23 0.04 0.24

3.1GHz 0.97 2.21 1.77

Benchmark SYNT Mem
2.1GHz 0.41 1.27 1.20

3.1GHz 0.70 1.55 1.36

Benchmark QE-Al2O3

2.1GHz 0.36 0.99 1.05

3.1GHz 1.93 6.40 4.70

Table 6
Software Variability Results

In Table 6 we can notice that synthetic benchmarks
show less SW variability as their computational patterns
are simpler and more regular. QE-Al2O3 shows instead a
significantly higher SW variability up to 5% in terms of
energy consumption. This should be considered as unavoid-
able process noise and managed properly when design-
ing feedback-based energy management techniques using
model-predictive formulations.

5.3.2 GPU Accelerators

In Table 7 we quantify the percentage of variability between
five different runs on the same Eurora nodes equipped
with GPUs accelerators. Similar consideration as for the

CPU - GPU Freq[%] Power[%] Ex Time[%] Energy[%]
Benchmark SYNT GPU [CPU F MAX - GPU F MAX]

3101CPU+758GPU 1.02 0.03 1.02

Benchmark QE GPU [CPU F MAX - GPU F MAX]
3101CPU+758GPU 1.68 1.06 1.31

Benchmark SYNT GPU [CPU F MIN - GPU F MAX]
1200CPU+758GPU 0.75 0.61 1.07

Benchmark QE GPU [CPU F MIN - GPU F MAX]
1200CPU+758GPU 1.13 0.43 1.38

Table 7
Software Variability Results GPU

Table 6 can be noticed looking at Table 7. The QE GPU
benchmark shows higher SW variability almost up to 2%
in terms of power consumption. However, in this case
the SW variability is more similar between the two GPU
benchmarks, showing that the GPUs device are less affected
from undesired software variability.

Summing up, we believe that SW variability should be
a strong driver to derive programming guidelines and APIs
for better controlling it and avoiding its blowup in future
exascale systems.

6 CONCLUSION

As a result of our analysis we derive design guidelines
for future heterogeneous supercomputers based on large
numbers of nodes hosting general purpose processors and
parallel accelerators:

1) General purpose processors: for a given process
technology and processor family, high-speed de-
vices are less energy efficient than the slow ones.
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Figure 11. Energy Map SYNT GPU Results

Moreover, we discover that the majority of work-
loads achieve higher energy efficiency when they
do not run at peak performance. Thus, green super-
computers should either be designed with a small
portion of high clock frequency processors w.r.t low
speed ones to sustain sporadic CPU bound jobs
or use only high-speed processors if peak parallel
performance is at absolute premium, but down-
clocking them for the vast majority of real-life work-
loads.

2) We found out that in real applications, GPUs
can effectively reduce the energy consumption of
the overall benchmark even when partially used.
We empirically found out an energy-efficient safe
threshold for code usage of the GPU of the 30%,
percentage at which the GPU accelerated version of
the code start to gain energy efficiency with respect
to the CPU one.

3) We quantified the impact of combined CPUs and
GPUs dynamic voltage and frequency scaling in real
HPC workload. We discover that there is a large
opportunity for today’s and future heterogeneous
supercomputer to increase their energy-efficiency
by leveraging synergies in between the host’s and
the accelerator’s power management policy.

4) We show that (i) in real scenario for a large
set of workload and power levels the power-to-
temperature relation is linear, suggesting that ther-
mal resistance of the materials involved is not in-
fluenced by the absolute temperature; (ii) different
benchmarks which consume a similar amount of
power have different core temperatures. This sug-
gests that thermal control cannot be performed by
solely monitoring and controlling the power con-
sumption, i.e. thermal control done by mean of
power capping is sub-optimal; (iii) different nom-
inally equal nodes have different package thermal
resistance, and that the impact of thermal resistance
variability grows at higher power consumption.
This leaves opportunities for self-calibrating ther-
mal controllers.

5) In addition to thermal variation there is a significant
node-to-node energy variability, which is totally
induced by a power consumption variability. We
measured an energy variation on the CPUs up to 9%
which increases to the 15% in DRAM centric bench-

marks and the 9% for GPUs centric benchmarks.
This result shows that todays supercomputer can
benefit from system-level variability-aware resource
management solutions. Their impact will become
more relevant in future installations, as variability
is foreseen to worsen as the technology scales.

6) We introduced a specific methodology to quan-
tify variability sources that allowed to measure up
to 5% of variability on the energy consumption
of multiple run of the same real supercomputer
benchmark (QE) on the same node with controlled
operating point. This variation is 3 times larger
than the one present in synthetic benchmarks. This
should be considered as unavoidable process noise
and managed properly when designing feedback-
based energy management techniques using model-
predictive formulations.

As a final remark, we believe that variability monitoring in-
frastructure and closed loop variability management will be
essential tools to build sustainable future supercomputers.
Our future work will focus on building a scalable observa-
tion and control infrastructure for future exascale machines
featuring hundreds of thousands of heterogeneous comput-
ing nodes.
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