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Abstract—Physical activity is strongly linked with mental and 

physical health in the elderly population and accurate monitoring 

of activities of daily living (ADLs) can help improve quality of life 

and well-being.  

This study presents and validates an inertial sensors-based 

physical activity classification system developed with older adults 

as the target population. The dataset was collected in free living 

conditions without placing constraints on the way and order of 

performing ADLs. Four sensor locations (chest, lower back, wrist, 

and thigh) were explored to obtain the optimal number and 

combination of sensors by finding the best tradeoff between the 

system’s performance and wearability. Several feature selection 

techniques were implemented on the feature set obtained from 

acceleration and angular velocity signals to classify four major 

ADLs (sitting, standing, walking, and lying). Support vector 

machine was used for the classification of the ADLs.  

The findings show the potential of different solutions (single-

sensor or multi-sensor) to correctly classify the ADLs of older 

people in free living conditions. Considering a minimal set-up of a 

single sensor, the sensor worn at the L5 achieved the best 

performance. A two-sensor solution (L5 + thigh) achieved a better 

performance with respect to a single-sensor solution. On the other 

hand, considering more than two sensors did not provide further 

improvements. Finally, we evaluated the computational cost of 

different solutions and it was shown that a feature selection step 

can reduce the computational cost of the system and increase the 

system performance in most cases. This can be helpful for real-

time applications. 

Index Terms—Physical activity classification, elderly people, 

free living conditions, inertial sensors, feature selection. 

I. INTRODUCTION 

HYSICAL activity has a strong influence on physical and 

mental health. Physical inactivity in older adults (above 65 

years) is associated with a higher risk of falling, mobility 

disorders, low muscle strength and loss of independence [1]. An 

active lifestyle can minimize the development of many 

disabling conditions and chronic diseases [2] and can help to 

achieve healthy ageing and well-being. A report by the World 

Health Organization (WHO) shows that physically active older 

adults possess a higher level of muscular fitness and functional 

health, a lower risk of falling and better cognitive function [3]. 

WHO recommends older people to perform moderate-to-
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intense physical activity for at least 30 minutes, five times per 

week in bouts no shorter than 10 minutes to achieve health 

benefits [3]. Hence, profiling activities of daily living (ADLs) 

over an extended time period can provide better knowledge 

about active and sedentary periods in order to improve quality 

of life. 

Monitoring ADLs has achieved major advancements in 

recent years due to the technological progressions in wearable 

devices in terms of processing power, battery life, 

miniaturization, and cost effectiveness. A substantial amount of 

work has been done during the past years to classify the ADLs 

using inertial sensors (accelerometers and, in some cases, 

gyroscopes) [4-16]. However, most of the existing systems are 

developed and validated on datasets acquired from young adults 

[4, 7, 8, 10, 12, 13, 15-20] and few systems have included older 

adults in their development process [6, 11, 21-23]. Rosario et al 

[11] trained the PAC system on younger adults and tested it on 

the older adults in the laboratory based conditions. Their 

findings showed that the performance of the system decreased 

significantly when trained on younger adults and tested on older 

adults as compared to system’s performance when trained and 

tested on older adults. From this, we can infer that younger 

adults based trained system are not able to effectively classify 

the ADLs. Furthermore, the scope of the physical activity 

classification (PAC) systems developed in the literatures is 

often limited to laboratory-based environments and very little 

is known about the validity of such systems in free-living 

conditions [24]. The ADLs performed in controlled laboratory 

environments are supervised and predefined while, in real-life 

conditions, ADLs are of course performed in an unsupervised 

and more natural way.  

Our earlier work [25] focused on this issue by highlighting 

the gaps and limitations imposed by free living conditions on 

existing PAC systems which have been developed in 

laboratory-based environments. To provide an unbiased and 

fair comparison we worked to have full control over the nature 

of the dataset (set of ADLs, studied population), sampling 

frequency, window size and cross validation procedure. Our 

findings suggested that the performance of laboratory-based 

systems is degraded when exposed to real-life conditions, 

emphasizing the need to design and develop PAC systems that 
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are natively fed by real-life data [25]. 

Therefore, the current study is in continuity with earlier 

works to propose a PAC system that can classify the ADLs of 

older adults in free-living conditions. The main objectives of 

this work are as follows. 

1. To develop an inertial sensors-based PAC system 

trained and tested in free-living conditions for elderly 

people;  

2. To analyze the impact of feature selection on system 

performance (F-measure and computational 

complexity); 

3. To analyze multi-sensor versus single-sensor 

solutions, in order to highlight the optimal number of 

sensors that can achieve an acceptable level of 

performance. 

The rest of the article is organized as follows. Section II 

describes the dataset and processing steps used for the 

development of the PAC system. In section III, results are 

presented with a detailed discussion on the findings. Finally, 

section IV concludes the study. 

II. MATERIALS AND METHODS 

A. Data Collection in Free Living Conditions 

The dataset used in this study is a subset of a larger dataset 

collected by the Department of Neuromedicine and Movement 

Science, Faculty of Medicine and Health Sciences at the 

Norwegian University of Science and Technology (NTNU) 

under the ADAPT project (A Personalized Fall Risk 

Assessment System for promoting independent living). The 

ADAPT dataset was collected in free-living conditions, where 

the subjects were free to perform ADLs in an unsupervised way. 

The ways of performing activities were natural and 

unstructured. A total of 20 older adults (76.4 ± 5.6 years) 

participated in the protocol, performing a variety of ADLs.  The 

subjects were instrumented in the lab and then they went home 

afterwards to perform the ADLs in free-living conditions. 

Performing the free-living protocol at home environment 

obtains more natural pattern and distributions of ADLs.  

Subjects were instructed to do their usual ADLs in a natural 

way, but in addition include defined activities as a part of free-

living protocol (see Table A1) without any instruction or 

supervision on how to perform them. Therefore, they could 

choose whether to perform these tasks (Table A1) or not and 

chose how and when they wished to perform the activities.  

Predetermined categories of ADLs were; sitting (48.1%), 

standing (22.2%), walking (14.2%), transitions (5.1%), 

shuffling (4.7%), leaning (2.32%), lying (1.3%), ascending 

stairs (0.87%), descending stairs (0.65), picking (0.56%), 

kneeling (0.02). The values inside the parenthesis shows the 

percentage distribution of the respected ADL in the dataset. The 

total length of recording were 28.7 hours for the 20 subjects 

[26]. Data from the wrist sensor was missing for four subjects 

due to technical issues during recording, and these subjects 

were excluded from analysis. Consequently, the analyses have 

been performed on the remaining 16 subjects. The ADLs 

analyzed in this particular study were; sitting, standing, walking 

and lying, and the detailed summary of these ADLs is provided 

in Table I. Various parameters were computed i.e. quantity 

(how many times a single ADL occurred in all subjects), mean 

(average duration of each ADL in sec), STD (standard deviation 

of each ADL in sec), min (minimum bout duration of each ADL 

in sec) and max (maximum bout duration of each ADL in sec). 

The mean length of the analyzed data was 1.5 hours per subject. 

A total of nine inertial sensors were part of the ADAPT project 

[26] and a subset of these sensors were used in our analysis: 

chest (C), wrist (W), lower back (L5), and thigh (T) as shown 

in Fig. 1. The detailed description of the sensors used for data 

analysis is presented in Table II.  The synchronization between 

the sensors and the camera unit (GoPro worn on the chest, 

pointing downwards) was accomplished by performing a series 

 
Fig. 1.  Sensors’ placements used in the free-living protocol 

TABLE I 

CHARACTERISTICS OF THE TOTAL DATASET OF ADLS ANALYZED FROM THE 

FREE-LIVING CONDITIONS (N=16) 

ADLs 
Total 

(s) 
Quantity 

(s) 

mean 

bout 

(s) 

STD 
(s) 

Min. 

bout 

(s) 

Max. 

bout 

(s) 

sitting 48425.80 497 97.44 200.74 0.04 2075.64 

standing 23462.72 4304 5.45 12.27 0.03 388.52 

walking 14771.81 2617 5.64 8.75 0.28 139.56 

lying 1280.32 12 106.69 154.02 3.48 583.84 

 
TABLE II 

DESCRIPTION OF THE SENSORS USED FOR DATA ANALYSIS [26] 

Device uSense Shimmer3 

Location Thigh, L5, Chest Non-dominant Wrist 

Size 67 × 42 × 10 (mm) 51 × 34 × 14 (mm) 

Weight 36 g 23.6 g 

Sampling frequency 100 Hz 200 Hz 

Battery Life  72 h 4.6 days @ 1 kHz  

Sensor 

3D accelerometer, 

gyroscope and 
magnetometer 

3D accelerometer, 

gyroscope and 
magnetometer 

Measurement range 
±2 g, ±250_/s, 

±1200 _T 

±8 g, ±1000_/s, 

±1900 µT 

Company/ 
Institution 

University of 
Bologna, Italy 

Shimmer, DCU Alpha, 
Dublin 11, Ireland 
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of static and dynamic movements of the sensors in view of the 

camera unit, before attaching the sensors to the subjects. These 

movements were evident in the root-sum-of-squares of 

acceleration signal and in the video recording. By associating 

these movements, the synchronization between the camera and 

sensors was achieved. The wrist sensor from Shimmer was 

down sampled to 100 Hz to keep the same frequency for all 

sensing units. The detailed description of the ADAPT dataset is 

presented in the study protocol by Bourke et al. [26].  

B. Ground Truth for ADLs 

The ground truth information was captured using the video 

recordings of GoPro camera unit (Fig. 1). The original sampling 

frequency (25Hz) of the camera was up-sampled to 100 Hz to 

maintain the uniformity in the sampling frequencies of all 

sensors. Furthermore, a majority voting scheme was 

implemented to assign the window labels, i.e. if a window of 5 

s (500 samples) contains 400 samples of standing and 100 

samples of walking then the assigned label to this window 

would be standing [11]. The video recordings were annotated 

by five raters, which were instructed about the marking 

procedures and activity definitions. The overall agreement of 

video labelling assessed with Cohen’s kappa was 90.05%. The 

inter-rater reliability statistics are provided in Table A2. 

It should be noted that there were spurious bouts in the 

labelled data. For instance, the minimum duration of a walking 

bout was 0.28 s (see Table I). Such short bouts are not clinically 

relevant. However, the impact of these short bouts in the final 

labelling was limited since they provided only small 

percentages in the majority voting i.e., a bout of 0.28 s would 

correspond to less than 6% of a window of 5 seconds.  

C. Features 

Several features were extracted from acceleration and 

angular velocity (Table III) which are described in detail in the 

following subsections. Each of the features listed in Table III 

were computed across a time window of N samples (N=500, i.e. 

5 s of data) with a 50% overlap. The letters 𝑥, 𝑦, and 𝑧 in Table 

III represent the mediolateral, anteroposterior, and vertical 

axes, respectively. However, it is important to note that the 

sensor frame is moving, so the axes of the sensors are 

approximately aligned with this body-centric axes. 

1) Features Extracted from Acceleration 

The mean, variance, and correlation between axes were 

computed from the raw acceleration (Table III; features # 1-9). 

The gravitational acceleration (GA) components were obtained 

by low-pass filtering the signal with a third-order low-pass 

elliptic filter of infinite impulse response with a cutoff 

frequency at 0.25 Hz [27]. The mean of all three GA 

components [8] were used as separate features. The GA 

component was also used to compute the tilt angle [5, 27] from 

the expression below: 

 

tiltangle = acos(𝑧)                                             (1) 

 

where 𝑧 represents the gravitational component along the 

vertical axis computed by taking the mean of N samples, 

resulting into a single value for the tilt angle obtained from each 

window of N samples. 

The bodily motion components of acceleration (BA) were 

extracted by subtracting the raw acceleration from the GA 

component. The BA components were used to extract the signal 

magnitude area (SMA) [27, 28], energy [7], and the magnitude 

vector (MV) [9] from the expressions (2-4) and in Table III 

(features # 10-20): 

 

𝑆𝑀𝐴 =
1

𝑁
∑(|𝑥(𝑖)| + |𝑦(𝑖)| + |𝑧(𝑖)|)

𝑁

𝑖=1

      (2) 

 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑(|𝑥(𝑖)|2

𝑁

𝑖=1

)                                   (3) 

 

where the energy of the signal was computed by the sum of the 

time series samples squared.  

𝑀𝑉 = √𝑥2 + 𝑦2 + 𝑧2                                     (4) 

where 𝑥,𝑦, 𝑧 in (2-4) are from BA components. The mean, 

variance, and energy were then computed from the MV.  

Note: The sqrt is monotonic and do not add any extra 

information.  Thus, MV was computed without sqrt operation 

to reduce the computational time.    

The jerk signal was derived by low-pass filtering the raw 

acceleration (4th order Butterworth infinite impulse response 

low-pass filter with a cutoff frequency at 20 Hz) and then taking 

the first derivative of acceleration. Features extracted from the 

jerk signal include the mean, variance, correlation between the 

axes, energy, and SMA (Table III; features # 21-33). 

Furthermore, the mean, variance, and energy were also 

computed (Table III: features #: 34-36) from the MV (4) of the 

jerk signal from acceleration.  

2) Features Extracted from Angular Velocity 

The mean, variance, correlation between axes, SMA, and 

energy (Table III; features # 37-49) were extracted from angular 

velocity and jerk signal of angular velocity (Table III; features 

# 53-65). The mean, variance, and energy of the MV from 

angular velocity (Table III; features # 50-52) and MV from the 

jerk signal (Table III, features #: 66-68) were also derived. The 

jerk signal was obtained by low-pass filtering (4th order 

Butterworth low-pass filter with a cutoff frequency at 20 Hz) 

the angular velocity and then taking its second derivative.  

3) Features Extracted from the Sensor Combinations 

Apart from features extracted from signals of a specific 

sensor, there are features derived from sensor combinations (i.e. 

acceleration attenuation constant and correlation across each 

sensor combination). Both of these features were computed by 

filtering the raw acceleration with 4th order Butterworth low-

pass filter with a cutoff frequency at 20 Hz [29]. The ability to 

attenuate the acceleration from the lower body segments (i) to 

the upper body segments (j) was described by the acceleration 

attenuation constant [29]: 

𝐶𝑖𝑗 = (1 −
𝑅𝑀𝑆𝑗

𝑅𝑀𝑆𝑖

) ∗ 100                                        (4) 
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Therefore, a total of 6 sensor combinations 

( 𝐶𝑇𝑊, 𝐶𝑇𝐿,  𝐶𝑇𝐶, 𝐶𝑊𝐿, 𝐶𝑊𝐶, 𝐶𝐿𝐶 ) were formed from the four 

sensor locations (T, W, C and L5) resulting in 18 features (6×3). 

The correlation between each sensor combination was also 

analyzed resulting in 36 features (18 from acceleration, 18 from 

18 from angular velocity) obtained from 6 sensor combinations 

(ρ𝑇𝑊, ρ𝑇𝐿 , ρ𝑇𝐶 , ρ𝑊𝐿 , ρ𝑊𝐶 , ρ𝐿𝐶). These features were 

considered only if a combination of sensors (see Table III) was 

available in the chosen sensor solution. 

 

For example, if the performance of the single sensor on L5 was 

analyzed then none of the across sensor features were 

considered. Then, if the performance of a sensor combination is 

being analyzed (e.g. thigh and L5), then 3 features are obtained 

from attenuation constant and 6 features from correlation (3 

form acceleration, 3 from angular velocity) resulting into 9 

additional features (Table III; features # 69-77). Therefore, the 

total number of features in a sensor combination will be 145 

(i.e. 68 features from the thigh sensor, 68 features from L5 

sensor, 3 features from attenuation constant 𝐶𝑇𝐿, and 6 features 

from correlation ρ𝑇𝐶). Similar comparisons were done for other 

multi-sensor solutions (231 features from three sensors, 326 

features from four sensors).  

D. Class Distribution in the Dataset 

The dataset [26] originally contains eleven ADLs. We 

considered only four ADLs (standing, walking, sitting, and 

lying) for analysis. The choice behind the selection of 4 classes 

is motivated by the fact that these are the most commonly 

performed activities in the elderly population and to keep 

consistency with our previous work [25]. The pie chart in Fig. 

2 shows the percentage distribution of the four ADLs of the 16 

subjects. The values inside the legend show the number of 

instances belonging to each class (an individual instance 

corresponds to 5 s or 500 samples of data).  

 

E. Feature Selection 

The selection of a subset of features is an important step as 

the feature vector may contain redundant features. This 

procedure not only reduces the computational complexity of the 

system but also reduces the feature extraction time and 

classification time of the machine learning algorithm. 

Therefore, in order to eliminate redundant and irrelevant 

features, we implemented and compared the following feature 

selection methods: correlation-based feature selection (CFS), 

fast correlation based filter (FCBF), and ReliefF. 

In CFS, correlation between features and class labels are 

computed along with inter-correlation between features to find 

the redundancy between them. The final feature subset consists 

of features exhibiting high correlation with the classes and very 

low intercorrelation between features. A feature subset is 

determined by computing linear correlation [30]. 

TABLE III 

FEATURES COMPUTED FROM EACH SIGNAL 

Feature # Feature description 

1-3 Mean of acceleration (x, y, z) a 

4-6 Variance of acceleration (x, y, z) 

7-9 Correlation between axes of acceleration (x, y, z) 

10-12 Energy of BA component (x, y, z) 

13 Signal magnitude area (SMA) of BA component  

14 
Tilt angle obtained from GA component in vertical 
direction 

15-17 Mean of GA components (x, y, z) 

18 Mean of MV of BA component 

19 Variance of MV of BA component 

20 Energy of MV of BA component 

21-23 Mean of jerk signal from acceleration (x, y, z) 

24-26 Variance of jerk signal from acceleration (x, y, z) 

27-29 
Correlation between the axes of jerk signal from 

acceleration (x, y, z) 

30-32 Energy of the jerk signal from acceleration (x, y, z) 

33 SMA of the jerk signal from acceleration 

34 Mean of MV of jerk signal from acceleration 

35 Variance of MV of jerk signal from acceleration 

36 Energy of MV of jerk signal from acceleration 

37-39 Mean of angular velocity (x, y, z) 

40-42 Variance of angular velocity (x, y, z) 

43-45 Correlation between axes of angular velocity (x, y, z) 

46-48 Energy of angular velocity (x, y, z) 

49 SMA of the angular velocity 

50 Mean of MV of angular velocity 

51 Variance of MV of angular velocity 

52 Energy of MV of angular velocity 

53-55 Mean of jerk signal from angular velocity (x, y, z) 

56-58 Variance of jerk signal from angular velocity (x, y, z) 

59-61 
Correlation between the axes of the jerk signal from 
angular velocity (x, y, z) 

62-64 Energy of jerk signal from angular velocity (x, y, z) 

65 SMA of the jerk signal from angular velocity 

66 Mean of MV of jerk signal from angular velocity 

67 Variance of MV of jerk signal from angular velocity 

68 Energy of MV of jerk signal from angular velocity 

69-71b 
Attenuation constant between sensor combinations of 

acceleration (x, y, z) 

72-74 b 
Correlation between sensor combinations of acceleration 

(x, y, z) 

75-77 b 
Correlation between sensor combinations of angular 
velocity signal (x, y, z) 

a x, y, z shows that all three axes of the signal (can be raw acceleration, BA 

component, angular velocity, jerk etc.) are used to compute the respective 

features.     

 b Features from 69-74 were considered only if a sensor combination was 

analyzed. 

 

 
 

Fig. 2.  Percentage distribution of the four ADLs (sitting, standing, walking, 

and lying) for the16 subjects in the dataset. 
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The FCBF method computes the predominant correlation 

among features and classes, and selects predominant features 

by eliminating redundant features. Predominant correlation 

uses the concept of symmetrical uncertainty to select the feature 

subset. This method effectively handles the feature redundancy 

resulting in fast selection of a small subset of features [31]. 

The third method used for feature selection is ReliefF [32]. 

This algorithm statistically assigns weights to each feature by 

estimating its relevance in terms of how well it can differentiate 

the data points of same and different classes. The features with 

higher weights are more important than others. Since this 

method only ranks the features according to their weights and 

does not select a subset of features, a user-defined threshold is 

necessary to produce the final subset. The threshold in our case 

was calculated by averaging all of the positive weights in the 

feature-ranked list and selecting only the features with weights 

equal to or higher than the average threshold value [14]. 

 

F. Classification and Cross Validation 

A support vector machine (SVM) classifier was implemented 

to analyze the performance of the PAC system using the 

LibSVM library with RBF kernel [33]. To overcome any bias 

in the training process, the leave-one-subject-out cross 

validation procedure was used to split the training and testing 

datasets. In this way, features from all but one subject were used 

in the training process while the remaining subject was tested. 

This process was repeated until all subjects had been tested. The 

effect of class imbalance was compensated by using the 

weighted SVM. The classifier weighting was implemented 

using the process described by Huang et al. [34] by setting the 

weights of the different classes to the inverse ratio of the 

training classes sizes. In this way, the class with largest samples 

size will have the lowest weight and the class with lowest data 

samples will have the highest weight. The weights were 

calculated using the training samples and the calculation was 

repeated for each fold. The training and testing samples were 

normalized using the z-score normalization process. The z-

score parameters (mean, standard deviation) obtained from the 

normalization of the training data were used to normalize the 

testing data. The z-score normalization was followed by the 

feature selection process where the feature selection techniques 

were implemented only using the training data. This process 

was repeated across all the iterations (folds) of the cross-

validation procedure. 

The accuracy measure is not the best metric to evaluate the 

performance in our dataset because of the unbalanced class 

sizes. Thus, F-measure was analyzed and is interchangeably 

used with the term “performance” throughout the remainder of 

this paper. The expressions to compute the performance metrics 

are described in Appendix B.  

The standard error (SE) is also computed for F-measure and 

accuracy across each sensor combination as shown in (5). 

𝑆𝐸 =
SD

√16
                                                     (5) 

where SD is the standard deviation across 16 folds (i.e. the total 

number of subjects analyzed).  

G. Single-Sensor vs Multi-Sensor Solution 

One of the objectives of this study was to identify the optimal 

number of sensors by analyzing the performance of all possible 

sensors combinations. Therefore, performance of 15 sensor 

combinations listed in Table IV were analyzed and compared.  

H. Computational Complexity Analysis 

Computational complexity was also evaluated consisting of 

two measures; 1) feature extraction time - the total time required 

to extract (compute or calculate) the features; and, 2) classifier 

testing time - the total time it takes to test the classifier. This 

process was completed for both categories: the whole feature 

set (without feature selection) and the subsets obtained from all 

feature selection approaches. Our earlier work [25] reported the 

total classification time by computing the classifier training 

time and testing time. However, the current work presents only 

the classifier testing time (excluding the classifier training time) 

as this can give a better idea of how much time is needed by the 

system to classify an instance in real-life conditions. 

All feature selection methods were implemented in 

MATLAB (Release 2014b, The Math Works, Inc., Natick, MA, 

USA) using the feature selection repository [35]. The SVM 

classifier was implemented using the LibSVM library [33] for 

MATLAB. The analysis was performed on a Dell laptop 

(Model # M3800, Intel® Core™ i7-4712HQ, CPU @2.30Gz, 

16GB RAM, 64-bit operating system).  

III. RESULTS AND DISCUSSION 

A. Performance Analysis of Single-Sensor vs Multi Sensor 

Solution Using All Features 

The results obtained from the performance analysis of all 15 

sensor combinations are presented in Table B1 for the F-

measure and for accuracy. The F-measure for all single-sensor 

solutions and the best multi-sensor solutions (with 2, 3, and 4 

sensors) are presented in Fig. 3.  

For every sensing solution, each of the four columns in Fig. 3 

presents the respective performance measure obtained from a 

TABLE IV 

SENSOR COMBINATIONS ANALYZED FOR PERFORMANCE COMPARISON 

Sensor 
Combinations 

Thigh Wrist L5 Chest 

1     

2     

3     

4     

5     

6     

7     

8     

9     

10     

11     

12     

13     

14     

15     
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given feature selection approach (i.e. column 1: All features 

without using any feature selection method, column 2: using 

CFS, column 3: using FCBF, column 4: using ReliefF) and the 

values above each column show the associated standard error, 

as computed in (5).  

Among all single-sensor solutions, the best performance was 

accomplished by the sensor at the lower back (L5), with an F-

measure of above 80% using the subset selected by CFS (Fig. 

3). Sensors at the chest and the thigh also performed 

considerably well (above 75%) as compared to the sensor on 

the wrist, which performed worst among all single-sensors with 

performance below 60%.  

Comparing the best solutions in Fig. 3, we observed a 

noticeable improvement in the performance of 7.3% from 

single sensor solution (L5) to two-sensor solution (C, L5). 

Furthermore, improvement in the performance is almost 

negligible by increasing number of sensors from two to four. 

These results are relevant as this suggests that a plateau is 

reached at a two-sensor solution, beyond which the 

performance cannot be improved further even by increasing the 

number of sensors. 

B. Comparison with State-of-the-Art Systems 

The performance of three representative systems for PAC  

tested in our earlier work [25] is also presented in Fig. 3 (solid 

lines) to provide a direct comparison with the newly proposed 

system. All the three systems by Bao et al. [17], Cleland et al. 

[7]  and Leutheuser et al. [8] were implemented using the same 

dataset, type of ADLs, windowing approach, and cross 

validation procedure. The performances (F-measure, Fig. 3) 

obtained by these systems are: 83.7% (SE: 1.8%) by Leutheuser 

et al. which uses three sensors (chest, wrist, L5), 83.3% (SE: 

1.4%) by Cleland et al. which uses five sensors (chest, L5, 

wrist, waist, thigh) and 78.4% (SE: 2.8%) by Bao et al. which 

uses three sensors (L5, wrist, thigh). 

The performance of our single-sensor based solution at L5 

was better (increase of 2.4%) than the system by Bao et al. 

Furthermore, its performance is also comparable with the 

systems by Cleland and Leutheuseur with a slight decrease (less 

than 2%) in the performance. Therefore, these findings show 

the potential of using our single-sensor-based solution in real-

life conditions instead of such multi-sensor solution. 

Additionally, the performance of our two-sensor system (T+L5) 

was much better than the state of art systems and still uses less 

number of sensors than these systems (3 or more). 

C. Effect of Feature Selection on System Performance  

Three feature selection methods were implemented on the 

whole feature set and the respective performances obtained 

from each method have been shown in Fig. 3. The number of 

features obtained through all single sensor based systems and 

from the best (in terms of performance) multi-sensor based 

systems are presented in Table V. These results were computed 

across 16 folds and the corresponding mean and standard 

deviation reported for each of the seven systems. The 

highlighted text in Table V corresponds to the best feature 

selection method. The type of features selected by the best 

feature selection method are listed in Appendix (Table B2). 

The performance of the single-sensor systems using L5 or 

chest increased using the CFS method as compared to the 

performance obtained without using feature selection. This 

improvement was larger (7.4%) in chest based PAC system and 

 
 

Fig. 3. F-measure analysis using SVM Classifier with and without feature selection methods across various sensors combinations. 
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smaller (1%) in L5 based PAC system. For wrist and thigh 

based single-sensor systems, the feature subset of ReliefF 

performed better than other feature selection approaches but the 

performance was much lower than the one obtained using all 

feature set. 

On the contrary, the performance using FCBF was the 

poorest within this dataset using single-sensor solutions. This 

might be due to the fact that FCBF is an aggressive method of 

selecting features and selected less features (Table V) as 

compared to other methods and resulted in losing important 

features. These findings are in line with the work in [36], where 

the subset of features chosen by FCBF was smaller than the 

subset chosen by CFS using single-sensor based system.  

For multi-sensors based systems, the feature subset selected 

by ReliefF performed better than the whole feature set (without 

feature selection) for two out of three systems (Fig. 3). The 

improvement in the performance was between 2-3%. The 

performances of all three feature selection approaches were 

quite close to each other in multi-sensors based systems (Fig. 

3). It is worth noting that there is not a single feature selection 

method that performed better, both for single-sensor based 

solutions and multi-sensor solutions.  

In addition to the improvement in performance, a substantial 

decrease in the number of features (above 70%) was observed 

in both systems i.e. single-sensor and multi-sensor. Reduction 

in the feature set is quite important since it is directly related to 

the computational complexity of the system. 

In this study, we focused on filter-based methods to select the 

feature subset by looking at the general characteristics of the 

data, without involving a specific classifier. In this way, the 

selected feature subset will be more generalized and can be used 

to compute and analyze the performance of different classifiers. 

It is possible that other features selection approaches (wrapper 

methods, embedded methods) may lead to different results. 

However, these approaches involve a specific classifier to find 

the feature subset, which may not be useful to compute the 

performances of other classifiers.  

 

D. Computational Complexity of the System 

Computational complexity of the best single-sensor solution 

was analyzed for a subject (all window instances) and a single 

window instance (consisting of 5 s or 500 samples) of the same 

subject. The subject was chosen in such a way that it contained 

enough instances of each class (standing: 449 instances; 

walking: 237 instances; sitting: 1001 instances; lying: 54 

instances; resulting into 1741 instances). Computational costs 

obtained from a single window instance and from all 1741 

instances are shown in Fig. 4 and 5 respectively. Such 

computational costs were estimated as the mean and standard 

deviation of 10 runs in order to account for computer 

performance variability. 

As expected, the feature extraction (computation) time for 

single window instance (Fig. 5 (a)) was low in the selected 

feature subsets compared to the time taken to compute the 

whole feature set.  

 
The total number of features for the L5 sensor for the chosen 

subject are: 68 (no feature selection), 19 (CFS subset), 6 (FCBF 

subset) and 23 (ReliefF subset). Among the three feature 

selection methods, the feature subset selected by FCBF took 

shorter time to extract (compute), a possible reason being the 

smaller subset of features chosen by FCBF than the other two 

TABLE V 
STATISTICS OF THE FEATURES SELECTED BY THE THREE FEATURE SELECTION 

APPROACHES FOR THE SENSOR COMBINATIONS PRESENTED IN FIG.3 

No. Sensors 
CFS 
(mean ± std)* 

FCBF 
(mean ± std) 

ReliefF 
(mean ± std) 

1 W 28.9 ± 1.8 2.8 ± 0.8 22.1 ± 0.3 

2 T 8.7 ± 1.1 5.1±0.9 12.7 ± 0.7 

3 C 21.9 ± 1.5 4.3±0.9 26.3 ± 0.9 

4 L5 17.9 ± 0.7 4.1±1.1 22.6 ± 0.8 

5 T+L5 10.8 ± 0.9 12±1.8 39.8 ± 0.8 

6 T+C+L5 16.8 ± 1.8 17.6±1.8 70.9 ± 1.0 

7 T+C+W+L5 19.9 ± 1.4 21±2.5 104.9 ± 1.2 

*  Mean and standard deviations were obtained from the number of features 

selected by each of the feature selection algorithm across 16 folds. 

 
Fig. 4.  Computational complexity analysis of single window instance: a) 

feature extraction time, b) classifier testing.  

 
Fig. 5.  Computational complexity analysis of single subject’s data: a) 
feature extraction time, b) classifier testing time. 
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subsets. Moreover, the feature extraction time taken by the 

subset of CFS was smaller than the time taken by the subset of 

ReliefF. The reason behind this behavior is the lower number 

of features selected by CFS as compared to ReliefF.  

The analysis of classifier testing time shows that the feature 

selection approaches have improved the time consumption by 

taking less time to classify the single instance with respect to 

the whole feature set (Fig. 4 (b), Table B3). Among the three 

feature subsets, the feature subset of FCBF took less time to 

classify the instance than the feature subsets of CFS and 

ReliefF. These results are also coherent showing that larger 

subset of features takes more time to classify the data instance 

as compared to the subset with small number of features.  

The time taken by the PAC system in real-life conditions is 

the sum of the feature extraction time and the classifier testing 

time. Therefore, feature selection can play an important role in 

reducing the time required to classify any window instance. The 

overall behavior of computational complexity analysis of a 

single subject (Fig. 5, Table B4) was quite similar to the one 

obtained from single window instance. Also in this case feature 

selection reduces the computational cost of the system. The 

single subject analysis gives a broader picture of computational 

complexity which can be helpful in building a personalized 

(subject-dependent) PAC system for older adults in real-life 

conditions.  

E. Single-Sensor vs Multi-Sensor Solution, What to Choose?  

 There is no a priori definite rule to select a single sensor or 

multi-sensor solution as it depends on many factors. For 

instance, the aim of a certain PAC system might not be to 

achieve an acceptable level of performance for all classes 

(ADLs) but to obtain high performances for certain ADLs at the 

expense of others. However, it is important to note that 

selection of sensor solutions not only depends on the ADLs of 

interest but also on the environmental conditions. In 

applications intended for home environments or monitoring of 

outdoor activities, wearability (in terms of comfort and number 

of sensors) and battery life can play a different role and raise 

different concerns than in clinical and laboratory-based 

settings.  

To get more insight, let us consider, as an example, the 

performances obtained by three sensing solutions: a) chest, b) 

L5, c) thigh and L5. The respective confusion matrices are 

presented in Table VI along-with F-measure for each case. In 

the first solution, a sensor at the chest successfully classified 

walking and sitting but did not performed well in classifying 

standing and lying (Fig. 6). The true positives of lying class are 

quite high but the large number of false positives (432) has 

reduced the performance. Still, if we are interested in improving 

the classification of the standing and sitting class, the single-

sensor system using L5 is the appropriate choice with an 

additional improvement in the overall performance (80.8%).  

Furthermore, the overall performance and the performance of 

certain classes can be improved by adapting a multi-sensor 

based solution, i.e. combining the thigh and L5 sensors with 

performance of 87.2% and a significant improvement in the 

performance of walking, sitting and standing class (Fig. 6).   

 
The performance of lying was not good both for the single-

sensor based system and the two-sensor based system, 

suggesting that the number of samples in the lying class are 

probably too small for an effective learning by the classifier 

(even though a weighted version was implemented). Further 

improvements could be made by combining the classifier with 

simple algorithms specific to the lying class. For example, to 

 
Fig. 6.  F-measure by class for three sensing solutions: a) Chest, b) L5, c) 
Chest, d) Thigh + L5. Value in parenthesis show the averaged F-measure. 

TABLE VI 

CONFUSION MATRIX USING SVM CLASSIFIER FOR THE SENSORS AT (a) CHEST 
(b) L5 (c) THIGH + L5 

F-measure 
78.4% 

(a) Chest Sensor (CFS subset) 

Predicted Class 

A
c
tu

a
l 

C
la

ss
 classified as  walk  stand sit lie 

walk 5796 519 25 0 

stand 730 7291 1768 0 

sit 110 2421 16534 432 

lie 39 0 26 448 

F-measure 
80.8% 

(b) L5 Sensor (CFS subset) 

Predicted Class 

A
c
tu

a
l 

C
la

ss
 classified as  walk  stand sit lie 

walk 5573 754 13 0 

stand 776 7673 1337 3 

sit 103 1124 18197 73 

lie 0 1 235 277 

F-measure 

87.2% 

(c) Thigh + L5 (ReliefF subset) 

Predicted Class 

A
c
tu

a
l 

C
la

ss
 classified as  walk  stand sit lie 

walk 5688 498 154 0 

stand 421 9151 217 0 

sit 5 2 19470 20 

lie 0 0 256 257 
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avoid misclassifications between the lying and the sitting 

classes, simple algorithms using the chest or L5 sensor and a 

threshold on the tilt angle could further improve performance. 

These findings have shown the potential of using various 

modalities (single-sensor or multi-sensor based solutions) to 

classify the ADLs of elderly people in free-living conditions. 

Certainly, there is not a one-fits-all solution that offers a global 

optimum, regardless specific objectives. Considering the 

comfort level of the user, sensor at the L5 is the best option to 

achieve the highest performance among all single-sensor 

solutions. Moreover, a multi-sensor PAC system may be the 

desired option to obtain better overall performance as well as 

performance by class, while compromising the comfort level of 

user as well as the computational cost of the system.  

It must be noted that the obtained results depend on the 

available data that is used for training the classifiers and the 

ADLs chosen. The dataset analyzed in this study was collected 

in free-living conditions. Participants were unsupervised and 

able to perform their tasks freely thus resulting in unbalanced 

data samples of ADLs, where certain ADLs (lying) were less 

frequent than others (sitting, standing). This unbalanced class 

distribution also creates classification bias when PAC systems 

are developed using machine learning approach (e.g., if there 

are few instances of lying it is difficult for the classifier to learn 

the lying pattern). However, the unbalanced data samples are a 

true reflection of real world conditions where frequency and act 

of performing ADLs cannot be controlled and supervised. 

To the best of our knowledge, none of the existing activity 

classification systems developed for older adults using inertial 

sensors have been fully validated in free-living conditions. The 

study outcomes suggest the potential benefits of incorporating 

inertial sensors to monitor the mobility patterns of elderly 

people in home environments, which can be helpful in 

determining quality of life and promoting healthy ageing. 

IV. CONCLUSION 

This study presents a new PAC system that can accurately 

classify the ADLs of elderly people performed in free-living 

conditions. The analysis shows very encouraging results, where 

a single sensor’s overall performance is close to that obtained 

by multiple sensors based state of the art systems, disclosing the 

potential of using a single sensor for activity classification. In 

addition, our proposed two-sensor based system improved the 

system’s performance further while still using less sensors than 

start of the art systems. 

Based on presented results a single sensor-based PAC system 

is highly recommended for real-life conditions when the 

objective is to have a good overall performance. Some classes 

may have lower performance than others, but the system would 

be less computationally complex and more comfortable to wear. 

On the other hand, the multi-sensor solutions may be 

recommended when, e.g. designing a surveillance system for 

fragile older adults, higher performance are desired, even at the 

cost of reducing the wearability of the system.  

The use of feature selection approaches can not only enhance 

the system’s performance but also reduce the computational 

cost of the system, with the payoff of reducing power 

consumption and lengthening battery life in real-life conditions.  

The main limitation of the current study is the small number 

of subjects involved. However, the dataset analyzed is among 

the largest of its kind so far being collected in free-living 

conditions for elderly people and annotated manually with a 

very high frequency of 25Hz (annotation every 0.04 s) [26].  

APPENDIX 

A. Dataset Characteristics 

The Table A1 describes the characteristics of the 

unsupervised free-living protocol. Table A2 represents the 

inter-rater statistics of video labelling procedure. 

 

 

B. Computation of the Performance Metrics 

This section provides the details regarding the computation 

of the performance metrics used in this study. The expressions 

to calculate the accuracy and F-measure are described below: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
× 100                     (𝐴. 1) 

 

𝐹𝑐 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑇𝑃𝑐

2 ∗ 𝑇𝑃𝑐 + 𝐹𝑃𝑐 + 𝐹𝑁𝑐
× 100         (𝐴. 2) 

 

where TP= True Positive, TN = True Negative, FN = False 

Negative, FP = False Positive. The subscript “c” is used with 

TP, TN, etc., to represent the metrics by class. 

TABLE A1 
FREE LIVING UNSUPERVISED AND UNSTRUCTURED TASK BASED 

PROTOCOL [26] 

Free-Living Protocol 

Sit at a table and write a letter/list or read 

Sit on an armchair watch TV/video, or read a magazine 

Sit on a low stool or toilet seat (lid down clothes on, simulation only) 

Lie on a bed, clothes on 

Get in and out of a car or sit on a bed 

Prepare and consume a drink or food while standing 

Set a table for dinner or move from one counter to another many times 
(up to 10) (shuffling) 

Simulate unloading a washing machine for 10 s or prepare a fireplace 

Pick an object off the floor then replace or tie/untie shoe laces 

Ascending/descending stairs or walking up and down an inclined path 

Remove clothes from washing machine and hang on clothes rack or 

remove rubbish from bin and dispose 

Sit and prepare and eat something 

Clean mirror or clean a window 

Wash and dry hands 

Sit at a table and read 

 

TABLE A2 
INTER-RATER RELIABILITY STATISTICS [26] 

Inter-Rater Reliability 

Statistics 
Average Maximum Minimum 

Category agreement (%) 90.05 93.31 87.93 

Cohen’s kappa 0.86 0.91 0.83 

Corrected kappa 0.89 0.93 0.87 

Krippendorff’s alpha 0.86 0.91 0.83 
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For instance, if we are interested in calculating the performance 

metrics for standing class using sensor at L5 (Table V (b)): 

TPc = 7673, FNc = 2116, FPc = 1879, TNc =24471. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
9468 + 5939 + 19494 + 1

36139 (𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙)
× 100 = 96.6% 

 

𝐹𝑐 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 ∗ 7673

2 ∗ 7673 + 1879 + 2116
× 100 = 79.3% 

 

The F-measures and accuracy values obtained from 15 sensor 

combinations are presented in Table B1 with and without 

feature selection approaches. The F-score and accuracy are 

computed from the confusion matrix as presented in Table VI. 

The standard error is computed from the metrics obtained 

through all the 16 folds. 

The number and type of features selected by the best feature 

selection method are listed in Table A2. Table B3 and B4 

present the computational complexity analysis of single 

window instance and single subject, respectively. 

 

 

TABLE B2 

BEST FEATURE SELECTION METHOD FOR THE SENSOR COMBINATIONS 

PRESENTED IN FIG.3 

Sensors Best FS
*

 

(# features) 
Selected Features (as per Table IV) 

W ReliefF (22) 
1, 2, 3, 7, 8, 9, 13,14,15,16,17, 27, 28, 

29, 33,43,44,45,49,59,60,61 

T ReliefF (11) 1, 2, 3, 8, 9, 13, 14, 15, 16, 43, 49 

C CFS
†
 (11) 3, 10, 39, 41, 42, 45, 47, 48, 49, 54, 55 

L5 CFS
†
 (12) 

2, 10, 15, 18, 29, 42, 45, 47, 48, 49, 54, 
55 

T+L5 ReliefF (37) 

1, 2, 3, 7, 8, 9, 13, 14, 15, 16, 17, 18, 43, 

44, 45, 49, 59 (T), 1, 2, 3, 7, 9, 13, 14, 

15 16, 18, 29, 43, 44, 45, 49, 61 (L5),   
73, 75, 76, 77 (T, L5) 

T+C+L5 ReliefF 
†
 

(66) 

1, 2, 3, 7, 8, 9, 13, 14, 15, 16, 17, 18, 28, 

43, 44, 45, 49, 59, 61 (T), 2, 3, 9, 13, 15, 
16, 17, 18, 29, 43, 45, 49, 61 (L5), 1, 2, 

3, 9, 13, 14, 15, 16, 17, 18, 29, 43, 44, 

45, 49, 61 (C), 72,73,74 (T, C), 
72,73,74 (T, L), 72,73,74 (C, L), 

75,76,77 (T, C), 75,76,77 (T, L), 

75,76,77 (C, L) 

T+C+W+L5 ReliefF
†
 

(97) 

1, 2, 3, 7, 8, 9, 13, 14, 15, 16, 43, 44,45, 

60, 61 (W), 1, 2, 3, 6, 7, 8, 9, 13, 14, 15, 

16, 17, 18, 28, 29, 33, 41, 43, 44, 45, 47, 

49, 50, 59, 61, 65 (T), 1, 2, 3, 9, 13, 14, 

15, 16, 17, 18, 29, 33, 43, 44, 45, 49, 61 

(C), 1, 2, 3, 7, 9, 13, 14, 15, 16, 17, 18, 
29, 33, 43, 44, 45, 49, 60, 61, (L5)  

73, 74 (W, T), 72,73,74 (T, C), 

72,73,74 (T, L), 72,73,74 (C, L), 
75,76,77 (T, C), 75,76,77 (T, L), 

75,76,77 (C, L) 
*
 shows the best feature selection method based on performance. Values inside 

the parenthesis (Column 2) shows the number of features that were common 

across 16 folds of the respective feature selection method. 
† 

show that the performance of the feature selection method is higher than the 

performance using all feature-set without using feature selection. 

TABLE B3 
COMPUTATIONAL COMPLEXITY ANALYSIS OF SINGLE WINDOW INSTANCE 

Measure  All Features  CFS FCBF ReliefF 

feature 

extraction 
time (msec) 

636.40 

±31.96 

430.90 

±5.44 

368.64 

±15.47 

511.88 

±15.43 

classifier 

testing time 
(msec) 

21.92 

±1.14 

6.15 

±0.19 

2.36 

±0.13 

6.65 

±0.28 

 TABLE B4 
COMPUTATIONAL COMPLEXITY ANALYSIS FOR SINGLE SUBJECT 

Measure All Features  CFS FCBF ReliefF 

feature 

extraction 
time (sec) 

5.54 ±0.18 1.45±0.02 1.13±0.03 2.82±0.12 

classifier 

testing 
time (sec) 

4.98±0.30 1.63±0.12 1.12±0.07 1.88±0.10 

 

TABLE B1 
PERFORMANCE ANALYSIS OF MULTIPLE-SENSOR COMBINATIONS 

  F-measure (SE)
 *

 Accuracy (SE)
 *

 

No. Sensors ALL CFS FCBF ReliefF ALL CFS FCBF ReliefF 

1 T 75.7 (1.5) 68.9 (1.7) 68.4 (1.3) 73.5 (1.5) 92.9 (1.1) 82.7 (2.8) 82.2 (2.8) 91.5 (1.1) 

2 W 58.1 (2.2) 55.1 (2.4) 49.4 (2.1) 56.3(1.5) 75.8 (2.5) 71.2 (3.2) 61.1 (2.3) 75.7 (2.3) 

3 L5 79.8 (2.7) 80.8 (2.1) 63.0 (1.8) 78.7 (3.1) 88.3 (1.1) 87.8 (0.6) 77.7 (1.0) 85.5 (2.3) 

4 C 70.8 (3.3) 78.4 (2.9) 72.6 (2.3) 70.0 (3.6) 81.7 (1.6) 83.2 (1.5) 77.7 (1.6) 79.8 (2.2) 

5 T+W 73.0 (1.5) 69.5 (1.2) 68.7 (0.8) 72.1 (0.4) 93.9 (0.6) 87.8 (2.3) 87.0 (2.2) 94.8 (0.5) 

6 T+L5 88.1 (2.9) 86.7 (2.6) 86.8 (2.6) 87.2 (2.3) 96.8 (0.5) 95.5 (0.7) 95.4 (0.6) 95.6 (1.1) 

7 T+C 83.5 (3.0) 80.1 (2.6) 79.5 (2.5) 81.2 (2.8) 96.0 (0.6) 94.5 (0.7) 94.3 (0.7) 95.6 (0.9) 

8 W+L5 82.3 (2.7) 82.5 (2.2) 73.8 (2.8) 81.3 (3.1) 88.0 (2.6) 88.4 (1.6) 82.2 (1.7) 87.2 (2.7) 

9 W+C 72.8 (3.2) 78.3 (3.1) 74.9 (2.7) 73.5 (2.9) 84.3 (2.0) 84.6 (1.8) 79.8 (1.7) 84.3 (1.8) 

10 L5+C 83.2 (2.5) 80.1 (2.0) 68.4 (3.1) 79.7 (3.7) 89.0 (1.4) 88.2 (1.1) 79.2 (1.6) 86.5 (2.3) 

11 T+W+L5 87.8 (2.6) 81.6 (2.8) 84.3 (2.6) 87.9 (2.3) 96.2 (0.5) 95.3 (0.7) 95.3 (0.6) 96.0 (0.8) 

12 T+W+C 80.6 (2.8) 71.1 (1.1) 73.4 (1.5) 81.8 (2.8) 95.4 (0.6) 92.8 (1.6) 94.1 (0.6) 95.8 (0.7) 

13 T+C+L5 86.8 (2.1) 83.3 (2.8) 86.2 (2.8) 88.6 (1.7) 96.5 (0.5) 95.3 (0.6) 95.3 (0.6) 96.1 (0.7) 

14 W+L5+C 83.2 (2.5) 80.7 (2.1) 75.0 (2.7) 82.2 (2.6) 89.6 (1.6) 89.2 (1.3) 82.6 (1.5) 89.4 (1.5) 

15 T+W+L5+C 85.9 (2.8) 77.3 (2.0) 84.4 (2.7) 88.8 (1.7) 96.1 (0.5) 95.2 (0.6) 95.2 (0.6) 96.4 (0.6) 

*
Accuracy, Standard Error (SE) and F-measure are in percentage, Highlighted rows are the seven combinations presented in Fig. 3. 
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