
27 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Enrico Gallinucci, M.G. (2018). Interactive Multidimensional Modeling of Linked Data for Exploratory OLAP.
INFORMATION SYSTEMS, 77, 86-104 [10.1016/j.is.2018.06.004].

Published Version:

Interactive Multidimensional Modeling of Linked Data for Exploratory OLAP

Published:
DOI: http://doi.org/10.1016/j.is.2018.06.004

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/635879 since: 2019-09-17

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.is.2018.06.004
https://hdl.handle.net/11585/635879

Interactive Multidimensional Modeling of
Linked Data for Exploratory OLAPI

Enrico Gallinuccia, Matteo Golfarellia, Stefano Rizzia,∗, Alberto Abellób,
Oscar Romerob

aDISI – University of Bologna and CINI – Rome, Italy
bESSI – Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract

Exploratory OLAP aims at coupling the precision and detail of corporate data
with the information wealth of LOD. While some techniques to create, publish,
and query RDF cubes are already available, little has been said about how to
contextualize these cubes with situational data in an on-demand fashion. In
this paper we describe an approach, called iMOLD, that enables non-technical
users to enrich an RDF cube with multidimensional knowledge by discovering
aggregation hierarchies in LOD. This is done through a user-guided process
that recognizes in the LOD the recurring modeling patterns that express roll-
up relationships between RDF concepts, then translates these patterns into
aggregation hierarchies to enrich the RDF cube. Two families of aggregation
patterns are identified, based on associations and generalization respectively,
and the algorithms for recognizing them are described. To evaluate iMOLD in
terms of efficiency and effectiveness we compare it with a related approach in
the literature, we propose a case study based on DBpedia, and we discuss the
results of a test made with real users.

Keywords: Multidimensional modeling, Data warehouse design, Linked data,
Exploratory OLAP

1. Introduction and Motivation

The goal of business intelligence (BI) is to transform operational data into
information and knowledge to be used for decision making. To this end, data

IThis work was partly supported by the EU-funded project TOREADOR (contract n.
H2020-688797).

II c©2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 li-
cense http://creativecommons.org/licenses/by-nc-nd/4.0/. DOI: https://doi.org/10.

1016/j.is.2018.06.004.
∗Corresponding author
Email addresses: enrico.gallinucci2@unibo.it (Enrico Gallinucci),

matteo.golfarelli@unibo.it (Matteo Golfarelli), stefano.rizzi@unibo.it (Stefano Rizzi),
aabello@essi.upc.edu (Alberto Abelló), oromero@essi.upc.edu (Oscar Romero)

1

are periodically extracted, cleaned, transformed, and fed into a repository called
data warehouse (DW), where they are stored in the form of multidimensional
cubes to be analyzed by decision makers using OLAP (On-Line Analytical Pro-
cessing) front-ends. Though BI techniques have been enormously accelerating
and improving the decision making process for almost two decades, companies
face today a highly dynamic environment which requires including external fac-
tors (e.g., market or socioeconomic data) in the decision-making process. So,
while traditional OLAP is based on stationary data (i.e., reliable data owned by
the company itself), the recent years are witnessing a push towards enriching
the DW with external situational data [1] in an on-demand fashion. Situational
data are retrieved from outside the borders of the corporate information system
and may not be fully reliable; they are used to contextualize stationary data and
their lifespan is typically short and out of the company control. Unfortunately,
traditional DW methods and techniques have been proved to be inappropri-
ate when dealing with situational data and several visionary papers underline
the need to develop original architectures and approaches to support this new
scenario [2, 3, 4, 5].

When accessing situational data and integrating them in the decision-making
process, knowing the data semantics is important; semantic web technologies,
and ontologies in particular, are strong candidates to this end. In this direction,
a new approach called exploratory OLAP [6] has recently emerged to describe
the convergence of OLAP and the semantic web. Inspired by the Linked Open
Data (LOD) initiative [7], exploratory OLAP advocates for publishing, shar-
ing, and linking semantic multidimensional data to enable cross-domain OLAP
analyses. This approach is beneficial to smart users (e.g., data scientists) who
have a basic knowledge of multidimensional modeling and a strong skill on the
application domain, and whose goal is to write ad hoc queries on situational
data in a self-service fashion, i.e., without resorting to the help of IT people.

Two main challenges lie behind this approach. On the one hand, the se-
mantic web relies on RDF for publishing, sharing and linking data; thus, the
user needs to explore RDF repositories and build her own cubes by means of
SPARQL, the de facto standard to express RDF queries. On the other hand, to
support correct aggregations during OLAP analyses, these RDF cubes must be
well-formed from the multidimensional point of view [8]. Both issues require a
high degree of specialization, so enriching OLAP analyses with situational data
is still hardly possible for non-technical users.

To address these challenges, exploratory OLAP adopts a publish-enrich-
query paradigm:

1. Publish. This stage entails publishing and sharing RDF cubes, either
starting from a corporate DW or from available RDF data sets. Several
state-of-the-art efforts support this stage. A cornerstone in this direction
is QB4OLAP [9], an RDF vocabulary to publish and share multidimen-
sional data. QB4OLAP is an extension of the standard vocabulary for
RDF cubes (QB) that enables OLAP analyses (otherwise impossible with

2

QB alone). On top of that, several approaches provide means to generate
RDF cubes from non-semantic sources (e.g., [10, 11]). In particular, the
QB2OLAPem tool enriches available QB-compliant RDF data sets with
QB4OLAP constructs [8]. Alternatively, expert users may directly gener-
ate QB4OLAP-compliant RDF cubes [10].

2. Enrich. In order to provide 5-stars quality open data (www.w3.org/
DesignIssues/LinkedData.html), RDF cubes must be linked to other
RDF data sets that contextualize the data (mainly by means of synonym
or subsumption axioms) and facilitate exploring and cross-referencing data
among different sources. Automatic link generation has already been iden-
tified as a crucial step for the success of LOD, given its time-consuming
and error-prone nature [7]; nevertheless, current approaches pay little at-
tention to linking, which still needs to be done manually.

3. Query. Once RDF cubes have been published and enriched, they should
be queried in an OLAP fashion. Recent works have developed OLAP-like
languages on top of SPARQL (e.g., CQL), so that a non-technical user
can query RDF cubes by applying high-level multidimensional operations
such as roll-up and drill-down [12, 13].

The approach we propose in this paper, named iMOLD (Interactive
Multidimensional Modeling of Linked Data), addresses the enrich stage of ex-
ploratory OLAP. Its goal is to contextualize a QB4OLAP-compliant RDF cube
with situational multidimensional knowledge by discovering aggregation hierar-
chies in LOD. This is done in an interactive way, by first letting the user explore
LOD in the light of her view of the business, and then recognizing structural
patterns (called aggregation patterns from now on) that correspond to potential
hierarchies.

While some existing ontology construction approaches address the problem
of building hierarchies, they do not focus on multidimensional aggregation hi-
erarchies and rather follow linguistic or statistical approaches [14, 15, 16], so
the resulting hierarchies do not fulfill the three summarization conditions es-
tablished by the state-of-the-art literature [17]. So, to our knowledge, no other
approach supports the automation of the enrich stage. The original contribu-
tions of this work can be summarized as follows:

1. We propose an approach for enriching QB4OLAP-compliant RDF cubes
with aggregation hierarchies discovered in LOD through a user-guided
process.

2. We identify five aggregation patterns commonly found in ontologies.

3. We provide algorithms for recognizing these patterns in LOD and trans-
lating them into hierarchies.

3

The paper outline is as follows. After providing in Section 2 the necessary
background on multidimensional modeling and LOD modeling, Section 3 gives
an overview of the iMOLD approach. Section 4 presents the different aggrega-
tion patterns, while Section 5 describes in detail the core techniques we use to
recognize these patterns in LOD and translate them into hierarchies. Section 6
proposes a case study for iMOLD, presents the results of an evaluation test
involving real users, discusses the approach efficiency, and compares it with a
related approach in the literature. Finally, Section 7 summarizes the related
work and Section 8 concludes the paper.

2. Background

2.1. Linked Data Modeling

The LOD initiative was envisioned by Tim Berners-Lee as “published data
that can be machine-readable, its meaning is explicitly defined, it is linked to
other external data sets and can be linked to from other external data sets”
[18]. In LOD, Universal Resource Identifiers (URIs) are used as names for
available resources (note the universal scope of URIs as identifiers) and the
HTTP protocol should be used to dereference URIs so that people can locate
and look up those names.

The formalism used to describe and link resources is the Resource Descrip-
tion Framework language (RDF), a W3C recommendation. The basic RDF
block is the triple, a binary relationship between a subject and an object; i.e.,
<subject predicate object>. The subject and the predicate must be resources
(i.e., identified by a URI), whereas the object can be either a resource or a literal
(i.e., a constant value such a string or an integer).

A set of RDF triples form an RDF graph; it is usual to refer to RDF
graphs as ontologies. RDF Schema (RDFS), a W3C recommendation, was
introduced to express basic constraints on RDF triples. By means of the
RDFS core classes (namely rdfs:Resource, rdfs:Class, rdfs:Literal, rdf:Property, and
rdf:Statement) and of some predefined properties, one can distinguish between
instances and classes (by using the rdf:type property), express property and class
taxonomies by means of inclusion statements (by means of rdfs:subClassOf and
rdfs:subPropertyOf), and type properties by specifying the allowed classes at its
domain and range (by means of rdfs:domain and rdfs:range). The W3C recom-
mends using the SPARQL Protocol and RDF Query Language to query RDF
ontologies. Typically, RDF published graphs are exposed by means of (publicly
available) SPARQL endpoints.

2.2. Multidimensional Modeling

The multidimensional model is the core of DW and OLAP applications. It
is close to the way of thinking of data analyzers, who are used to spreadsheets;
thus, it helps them understand data by smoothly supporting typical business
analyses and enabling complex queries to be formulated with small effort even
by non-IT users. Intuitively, the multidimensional model represents data under

4

the metaphor of a cube whose cells correspond to events that occurred in the
business domain. Each event is quantified by a set of measures; each axis of the
cube corresponds to a relevant dimension for analysis, typically associated to a
hierarchy of levels that further describe its potential aggregation. Our specific
goal in this work is to discover aggregation hierarchies in LOD and model them.
In the following, we introduce the basic concepts we will use to this end.

Definition 1 (Hierarchy). An aggregation hierarchy (or, briefly, a hierar-
chy) is a directed tree of levels rooted in a dimension. Each arc models a
roll-up relationship u = (l,m, l′) between two levels, a child l and a parent l′,
and has semantics m.1 Each level has a domain made by a set of members.
The roll-up relationship u abstracts a many-to-one part-of relationship on the
members of l and l′, such that each member of l is part of exactly one member
of l′.

Following the reusability principle, in this work we use the QB4OLAP [9] vo-
cabulary (namespace qb4o, purl.org/olap#) to annotate the hierarchies iden-
tified on RDF data. Although many datasets published in the LOD adopt
the RDF Data Cube Vocabulary (QB, www.w3.org/TR/vocab-data-cube), the
latter lacks in providing the constructs needed to enable OLAP analyses [9].
QB4OLAP does this by extending QB with additional resources; in particular, it
allows structuring the cube dimensions in hierarchies and levels, relate measures
with aggregation functions, and represent observations at different aggregation
levels, enabling roll-up and drill-down operations over RDF-based data. As a re-
sult, QB4OLAP captures all the multidimensional modeling features presented
in Definition 1. More specifically, QB4OLAP represents a hierarchy level as an
instance of class qb4o:LevelProperty. A roll-up relationship between two levels
is represented through an instance of class qb4o:HierarchyStep, which is linked
to the two corresponding qb4o:LevelPropertys by means of the qb4o:parentLevel
and qb4o:childLevel properties. Finally, the multiplicities of roll-up relationships
are specified through the qb4o:Cardinality class.

Example 1. Consider the sample hierarchy in Figure 1. Levels are shown as
white circles; for instance, Species rolls-up to (i.e., is a child of) Family. Mem-
bers are shown as black circles; for instance, Canid and Felid (member instances
of Family) are part of member Mammal (member instance of Class). In the
QB4OLAP representation of this hierarchy (Figure 2), level Species is rep-
resented by object imold-ex:Species, instance of qb4o:LevelProperty; the three
roll-up relationships (namely imold-ex:aBelongsToS, imold-ex:sBelongsToF, and
imold-ex:fBelongsToC) are instances of qb4o:HierarchyStep and have many-to-
one multiplicity. This specific hierarchy will be used throughout the paper as a

1Considering also the semantics m in the definition of roll-up relationship is necessary to
cope with the case in which the same two levels are involved in two different relationships
(e.g., persons can roll-up to cities according to two different semantics, namely lives in and
was born in).

5

Animal

Species

Family

Mammal

Cat Dog

Pluto Snoopy Duchess

Class

Felid Canid

Lion

Simba

level
member
roll-up/part-of
relationship

LEGEND

Figure 1: An example of multidimensional modeling: levels and roll-up relationships (left),
members and part-of relationships (right)

qb4o:Cardinality

q
b
4
o
:

p
a
re
n
tLe

v
e
l

qb4o:

cardinality

qb4o:LevelProperty

q
b
4
o
:

ch
ild

Le
v
e
l

qb4o:HierarchyStep

imold-ex:Class imold-ex:Family imold-ex:Species imold-ex:Animal

imold-ex:

fBelongsToC

imold-ex:

sBelongsToF

imold-ex:

aBelongsToS

qb4o:ManyToOne

qb4o:

cardinality

q
b
4
o
:

ch
ild

Le
v
e
l

q
b
4
o
:

ch
ild

Le
v
e
l

q
b
4
o
:

ch
ild

Le
v
e
l

q
b
4
o
:

p
a
re
n
tLe

v
e
l

q
b
4
o
:

p
a
re
n
tLe

v
e
l

q
b
4
o
:

p
a
re
n
tLe

v
e
l

LEGEND

rdf:Property

class

instance

rdf:type

Figure 2: The QB4OLAP representation of the hierarchy of Figure 1

working example; in particular, we will show how it can be discovered by the
user by exploring LOD to enrich any RDF cube that stores observations about
animals.

In the literature, hierarchy discovery is typically done at design-time in the
context of supply-driven design (i.e., mainly based on the schema of the source
data [19]) and consider well-structured data sources described, for instance, by
Entity/Relationship diagrams and relational schemata; there, hierarchies can
be identified by simply following functional dependencies (FDs) at the schema
level, like in [20]. Our scenario poses further challenges: (i) Most importantly,
the traditional concept of OLAP aggregation hierarchy must be adapted to
LOD. As discussed in [8, 21], out of the three necessary summarizability con-
ditions presented in [17], disjointness and completeness should be reformulated.
Firstly, due to recurrent data quality issues in LOD, the traditional search of
FDs must be replaced by quasi-FDs, i.e., iMOLD must also consider as true the
FDs that hold for most of the data. Secondly, since LOD follows an open-world
assumption, completeness is only guaranteed for the instances in the LOD data
set. Note that both assumptions are sound with previous work in the OLAP
field discussing that, for large data sets, constraints holding in the data can be
assumed to conceptually hold for the domain [22]. (ii) The modeling heterogene-
ity of LOD and the impossibility of describing the multiplicity of properties in
the RDFS vocabulary make hierarchy discovery more complex since quasi-FDs
must be identified at the instance level. (iii) iMOLD must operate at querying
time rather than at design time. (iv) iMOLD yields a mixed approach, be-

6

cause it combines access to data —typical of supply-driven design— with user
interaction —typical of demand-driven design (i.e., mainly based on the user
requirements).

3. Approach Overview

The basic idea of iMOLD is to enrich an RDF cube through a user-guided
process that explores an External Ontology (EO) and discovers hierarchies from
the LOD stored there, to connect them to the cube dimensions. This is done
by recognizing in the EO the recurring modeling patterns that express roll-up
relationships between RDF concepts and translating them into hierarchies, to
be stored locally within an Internal Ontology (IO). Overall, iMOLD takes in
input a QB4OLAP-compliant RDF cube and an EO, and returns in output a
QB4OLAP-compliant RDF cube whose dimensions have been extended with
multidimensional hierarchies to enable more effective OLAP analyses.

From a functional point of view, the user locates a concept of interest in a
selected EO (e.g., the concept of city on DBpedia), then she uses it as a starting
point to build her hierarchies. The enriching scenario can be subdivided into
two iterative phases. In the acquisition phase, if the concept of interest is not
already present in the IO or it is not satisfactorily modeled (either because it
is outdated or misaligned with the user’s current requirements), the user can
search for aggregation patterns in the EOs, build her own hierarchies by select-
ing the concepts of interest, provide appropriate names to levels, and add the
results to the IO. The techniques we propose to address this phase are described
in detail and experimentally evaluated in the remainder of the paper. In the
integration phase, the levels of the newly-created hierarchies are populated
with members (extracted from the EO through SPARQL queries) and linked to
the RDF cube by identifying the inter-member mappings between the hierarchy
levels and the cube dimensions. To identify these mappings we use a similar-
ity function based on the Levenshtein distance between the member names;
however, as various research communities have investigated this issue over the
years, more sophisticated solutions could be found by checking the literature
about record linkage [23], entity identification [24], approximate joins [25] and
ontology/schema matching [26, 27]. Eventually, the matching couples identified
are linked by means of the owl:sameAs property.

A key feature of LOD is that of creating connections between different on-
tologies. In an ontology, this connection is provided by pointing to objects
of a different ontology with their original URIs. An example is the triple
<dbpedia:Barcelona rdf:type yago:City108524735>, specified in DBPedia, which
reuses a class defined in YAGO, therefore providing a link between the two
ontologies. In iMOLD, the connectivity of LOD is exploited to enable users to
jump from the currently explored EO to a different one whenever, by recognizing
an aggregation pattern, a concept with a different namespace is reached. This
transition can be seamlessly made by launching the next searches for patterns
on the SPARQL endpoints of both ontologies and then merging the results;

7

sm4am:

byUser

sm4am:

byUser

rdfs:Class

rdf:Property

imold:

correspondsTo

qb4o:Cardinality

q
b
4
o
:

p
a
re
n
tLe

v
e
l

qb4o:

cardinality

qb4o:LevelProperty imold:LevelPreference

imold:RollupPreference

imold:User

imold:isRollup

PreferenceOf

imold:isLevel

PreferenceOf

imold:property

Metadata

imold:class

Metadata

 INTERNAL ONTOLOGY (IO)EXTERNAL
ONTOLOGIES
(EOs)

q
b
4
o
:

ch
ild

Le
v
e
l

imold:as

MembersHas

SubClassesOf

qb4o:HierarchyStep

imold-ex:Family imold-ex:Species

imold-ex:

sBelongsToF

qb4o:ManyToOne

qb4o:

cardinality

q
b
4
o
:

ch
ild

Le
v
e
l

q
b
4
o
:

p
a
re
n
tLe

v
e
l

ex:Family ex:Species

ex:sBelongsToF

imold:

correspondsTo

imold:I2M

rd
fs:ra

n
g
e

rd
fs:d

o
m
a
in

ex:Canid ex:Dog

ex:sBelongsToF

Multidimensional
Knowledge (MK)

Users’
Knowledge (UK) INTERNAL ONTOLOGY (IO)EXTERNAL ONTOLOGY

(EO)

imold:as

MembersHas

InstancesOf

qb4o:Cardinality

q
b
4
o
:

p
a
re
n
tLe

v
e
l

qb4o:

cardinality

qb4o:LevelProperty

q
b
4
o
:

ch
ild

Le
v
e
l

qb4o:HierarchyStep

Figure 3: The Internal Ontology and an instance for the example in Figure 1 (a property at the
class level is represented as an arc linking the domain class to the range class, which implies
the correct definition of the property by means of the rdfs:domain and rdfs:range properties)

however, for the sake of simplicity, in this paper we will restrict to consider a
single endpoint.

The remainder of this section is focused on the IO, which is the container of
the multidimensional knowledge discovered by the users through the exploration
of the EOs; specifically, for each hierarchy it models its levels, its roll-up rela-
tionships (with their multiplicity), and the mappings of these concepts into the
EO. The structure of the IO relies on the existing vocabularies that already pro-
pose a solution in these contexts. However, the mere reuse of these vocabularies
is not sufficient, as we need to extend the original vocabularies with custom
classes and properties. To this end, we define two new namespaces, imold (big.
csr.unibo.it/imold#) and imold-ex (big.csr.unibo.it/imold-ex#), to cre-
ate additional classes and properties that are either domain-independent or
domain-dependent, respectively.

More specifically, as mentioned in Section 2.2, we reuse QB4OLAP to rep-
resent hierarchies. The mapping of levels and roll-up relationships into the EO
(i.e., the identification of the original classes and properties from which these
concepts are extracted) is made through four custom properties, imold:I2M,
imold:L2M, imold:S2M and imold:correspondsTo, which materialize the link be-
tween the IO and the EO (see Figure 3). Noticeably, imold:I2M, imold:L2M, and
imold:S2M are used to retrieve the members of each level when hierarchies are
populated with data (further details on how these properties are used are given
in Section 5). A complete glossary for the classes and properties used in the IO
is included in Table 11 in the Appendix.

Example 2. Figure 3 shows an instance of the IO and EO for our animal
hierarchy. The ex namespace used here refers to the EO being explored. For
instance, level imold-ex:Species in the IO is related to the corresponding class
of the EO, ex:Species, via property imold:I2M, thus expressing the fact that the
members of level Species are the instances of ex:Species (e.g., ex:Dog). Sim-

8

Table 1: Hierarchy-related concepts and their representations within the different aggregation
patterns

Concept Patt. (A1) Patt. (A2) Patt. (A3) Patt. (G1) Patt. (G2)
Parent Level Class Class Datatype/Class Powertype Powertype
Roll-up rel. Assoc. — — — —
Child Level Class Class Class/Datatype Class Powertype
Parent member Instance Instance Literal/Instance Class Class
Part-of rel. Assoc. Assoc. Assoc. Instantiation General.
Child member Instance Instance Instance/Literal Instance Class

ilarly, the imold-ex:sBelongsToF roll-up relationship in the IO is related to the
ex:sBelongsToF property in the EO.

4. Aggregation Patterns in Ontologies

Our approach to discover hierarchies consists in recognizing aggregation pat-
terns in RDF data. Table 1 summarizes the five patterns that can give rise to
roll-up relationships; each cell shows how each hierarchy-related concept (as de-
fined in Section 2) is mapped into an RDF construct. In particular, those five
patterns imply the creation of three types of mappings between level members
and RDF concepts:

• Instances-to-members (I2M): the members of a level correspond to the
instances of the RDF class(es) that correspond to that level; this is the
case for both levels in (A1) and (A2), for one of the levels in (A3), and
for the child level in (G1).

• Literals-to-members (L2M): the members of a level correspond to literals,
whose datatype corresponds to that level; this is the case for one of the
levels in (A3).

• Subclasses-to-members (S2M): the members of a level correspond to the
subclasses of one or more classes; this is the case for the parent level in
(G1) and for both levels in (G2).

As briefly mentioned in Section 3, these mappings are coded in RDF by con-
necting each level l in the IO to one or more classes or datatypes in the EO,
which allows for retrieving the members of that level when hierarchies are pop-
ulated with data. More specifically, (i) for I2M mappings, l is linked to the
class(es) whose instances are members of l using property imold:I2M property
(e.g., imold-ex:Family in Figure 3); (ii) for L2M mappings, l is linked to the
datatype(s) whose literals are members of l using property imold:L2M property;
(iii) for S2M mappings, l is linked to the class(es) whose subclasses are members
of l using property imold:S2M.

In the following patterns are described in more detail, using Figure 4 as a
general reference and the sample hierarchy depicted in Figure 1 as an example.

9

ex:ParentMember	

ex:ParentLevel	

ex:ChildMember	

ex:ChildLevel	

ex:has	

ex:has	

ex:ParentMember	

ex:ChildMember	

ex:ParentMember	

ex:ParentLevel	

ex:ChildMember	

ex:ChildLevel	

ex:has	
	

ex:ParentMember	

rdf:String	

ex:ChildMember	

ex:ChildLevel	

ex:has	
	

ex:ChildLevel	

ex:ParentMember	

ex:ChildMember	

ChildLevel

ParentLevel ParentMember

ChildMember

(A1)

(A2)

(A3)

(G1)

(G2)

level
member
roll-up/part-of
relationship

LEGEND

instance

class

rdf:type
rdf:Property
rdfs:subClassOf

Figure 4: RDF aggregation patterns (top) and their multidimensional translation (bottom)

4.1. Association-Based Patterns

In these patterns, the roll-up relationships entailed by hierarchies are mod-
eled as associations, which in RDF are represented using properties. Specifically,
as exemplified in Figure 4, this can be done in three ways:

(A1) Pattern (A1) corresponds to two classes related by an RDF property (e.g.,
ex:Family and ex:Class related by ex:fBelongsToC in Figure 5.a). Two I2M
mappings are here determined: the two classes are mapped into hierar-
chy levels connected by a roll-up relationship, and the class instances are
mapped into level members.

(A2) Pattern (A2) allows the RDF property not to exist at the level of classes
but only of instances (e.g., between ex:Animal and ex:Species in Figure 5.a).
This pattern arises because of the incompleteness of LOD; indeed, in cross-
domain ontologies, associations are rarely defined at the model level, i.e.,
through rdfs:domain and rdfs:range properties. As in (A1), two I2M map-
pings are determined.

(A3) Pattern (A3) occurs when there is no class modeling the parent (child)
level but only a datatype, so its members correspond to literals rather
than to instances (i.e., it has an L2M mapping instead of an I2M one). In
this case, the name of the parent (child) level must be either provided by
the user or derived from the name of the property.

We recall from Section 2.2 that roll-up relationships have many-to-one mul-
tiplicity. Since multiplicities are not explicitly represented in RDF, when an
association-based pattern is recognized we have to sample the instances (e.g.,
by counting how many instances of ex:Class are related to each instance of
ex:Family): if the average cardinality of the association between the domain
and the range is close to one on the side of the range, then the pattern indeed
corresponds to a roll-up relationship. Of course, this requires to assume that,

10

ex:Canid	 ex:Mammal	

ex:Family	 ex:Class	

ex:fBelongsToC	

ex:fBelongsToC	

ex:Felid	 ex:fBe
longs

ToC	

ex:Dog	

ex:Species	

ex:sBelongsToF	

ex:sBelongsToF	

ex:Cat	

ex:Lion	

ex:Snoopy	

ex:Animal	

ex:aBelongsToS	

ex:Pluto	 ex:aB
elong

sToS	

ex:Duchess	

ex:Simba	

Animal

Species

Family

Mammal

Cat Dog

Pluto Snoopy Duchess

Class

Felid Canid

Lion

Simba

(a)

ex:Animal	

ex:Felid	

ex:Cat	

ex:Mammal	

ex:Canid	

ex:Dog	 ex:Lion	

ex:Snoopy	

ex:Pluto	

ex:Duchess	 ex:Simba	

Animal

Species

Family

Mammal

Cat Dog

Pluto Snoopy Duchess

Class

Felid Canid

Lion

Simba

(b)

ex:Animal	

ex:Felid	

ex:Cat	

ex:Mammal	

ex:Canid	

ex:Dog	 ex:Lion	

ex:Snoopy	

ex:Pluto	

ex:Duchess	 ex:Simba	

Animal

Species

Family

Mammal

Cat Dog

Pluto Snoopy Duchess

Class

Felid Canid

Lion

Simba

ex:Felid	 ex:Canid	

ex:Dog	

ex:Species	

ex:Cat	

ex:Lion	

ex:Snoopy	

ex:Animal	

ex1:aBelongsToS	

ex1:aBelongsToS	

ex:Pluto	
ex:Duchess	

ex:Simba	

ex:Mammal	

Animal

Species

Family

Class Mammal

Cat Dog

Pluto Snoopy Duchess

Felid Canid

Lion

Simba

(c)

Figure 5: The hierarchy in Figure 1 modeled in RDF using associations (a), generalizations
(b), and a mix of the two (c); in thick dashed lines, the correspondence between names of
ontology concepts and names of hierarchy levels

though EOs may be incomplete and not fully correct, their data are statistically
representative.

Finally, we observe that the association may have been modeled in one direc-
tion or the other. For instance, the association between ex:Family and ex:Class in
Figure 5.a could also have been modeled with the RDF property ex:hasFamily,
where ex:Class is the domain and ex:Family is the range, as depicted in Fig-
ure 6. For this reason, the child and parent roles can be inverted with regard
to those shown in Figure 4. Even in this case, the roll-up relationships can
be correctly derived by checking the average cardinality of the association as
mentioned above to find that there is a one-to-many (rather than many-to-one)
association between the domain and the range.

11

ex:Canid	 ex:Mammal	

ex:Family	 ex:Class	

ex:hasFamily	

ex:hasFamily	

ex:Felid	 ex:ha
sFam

ily	

Figure 6: Alternative RDF representation for the association between ex:Family and ex:Class

4.2. Generalization-Based Patterns

The second group of patterns is based on generalization. Generalizations
express an is a semantics that induces a subsumption between sets of instances
of related classes —for instance, in Figure 5.b, ex:Felid generalizes ex:Cat and
ex:Lion since the set of mammals instances of ex:Felid is superset of the set of
mammals instances of ex:Cat and ex:Lion, and the same holds for ex:Canid and
ex:Dog. But then, mammals can be grouped into felids and canids, or into cats,
lions, and dogs, and the former grouping is coarser than the latter, which in
OLAP terms translates to a part-of relationship between members Cat + Lion
and Felid on the one hand, between Dog and Canid on the other. This suggests
that there is roll-up relationship between two different levels, whose members
correspond to classes. To find the names for these levels we recall that, from
a conceptual point of view, generalizations can be grouped depending on the
criteria used, which in the UML terminology is called a powertype. A powertype
is a metaclass2 whose instances are subclasses of a given class; for instance, the
specialization of class Person into subclasses Male and Female has powertype
Gender, i.e., a metaclass with Male and Female as instances. In our example,
the two powertypes involved are Species and Family, and give their names to the
child and parent levels, respectively.

More specifically:

(G1) Pattern (G1) corresponds to two classes related by an rdfs:subClassOf
property. Here the superclass and its instances are mapped into the child
level and into its members, respectively, through an I2M mapping; the
powertype and the subclasses are mapped into the parent level and into
its members, respectively, through an S2M mapping. For instance, as de-
picted in Figure 5.b, class ex:Animal is transitively specialized into ex:Dog,
ex:Cat, and ex:Lion based on powertype Species. Therefore, these three
subclasses (i.e, subsets) give rise to three parent members of level Species,
and their instances (ex:Snoopy, ex:Pluto, etc.) to child members of level
Animal.

(G2) In pattern (G2) child members correspond to classes rather than to in-
stances in the LOD. This may happen because of incompleteness or be-
cause of a different level of abstraction chosen by the ontology designer.
In this case, the different classes corresponding to child members (e.g.,

2A metaclass is a class whose instances are classes.

12

ex:Animal	

ex:Felid	

ex:Mammal	

ex:Canid	

ex:Dog	 ex:Lion	

ex:Snoopy	

ex:Pluto	

ex:Duchess	 ex:Simba	

Animal

Species

Family

Mammal

Cat Dog

Pluto Snoopy Duchess

Class

Felid Canid

Lion

Simba

ex:Domes=c	

ex:Cat	

Domestication
Wild Domestic

ex:Wild	

Figure 7: Double specialization for classes ex:Dog, ex:Cat, and ex:Lion

ex:Canid and ex:Felid in Figure 5.b) would be generalized into a superclass
(e.g., ex:Mammal) that would be the corresponding parent member, while
both the parent and child levels (ex:Class and ex:Family, respectively) cor-
respond to powertypes — i.e., two S2M mappings would be determined.

Powertypes are not made explicit in RDF. In principle, they could be explic-
itly represented at the metalevel, i.e., using metaclasses (e.g., class ex:Dog could
be an instance of metaclass ex:Species). However, this type of metamodeling
is extremely rare in LOD; for instance, at the time of writing, DBpedia has
no metaclasses, while in YAGO only 5 classes are instances of (very generic)
metaclasses (e.g., class rdfs:Property is an instance of metaclass rdfs:Resource).
So, the user has to provide names for the levels corresponding to powertypes
upon recognizing a generalization-based pattern. Remarkably, differently from
association-based pattern, generalization-based ones do not require data to be
queried, nor do they rely on probabilistic assumptions like those made for asso-
ciation multiplicities.

We finally note that, in case of an overlapping powertype (i.e., individuals
are instances of more than one subclass and subsets are not disjoint), a many-
to-many relationship arises; since in multidimensional modeling only many-to-
one relationships are normally considered (assumption]2 in Section 4), we will
not consider this case. Besides, there is also a possibility of having a multiple
specialization (i.e., the same class can be a specialization of several superclasses),
which can be interpreted as multiple many-to-one relationships with different
semantics thus generating a branch in the hierarchy. For instance, Figure 7
shows how the generalization of ex:Dog, ex:Cat, and ex:Lion into ex:Domestic
and ex:Wild leads to creating a branch towards level Domestication.

5. Acquisition

In this section, the core phase of iMOLD is described in detail; its goal
is to discover hierarchies by recognizing aggregation patterns on an EO and
translating them into hierarchies in the IO. We recall that, in the exploratory
OLAP paradigm, each user may be interested in different portions of data (i.e.,

13

in different hierarchies). Thus, a full automation would be undesirable; iMOLD
supports and speeds up the discovery process, but the user drives it by selecting
relevant concepts at each step. Every recognition is based on a starting class c
and on a direction dir:

• Class c is the entry point for pattern recognition, and is chosen by the
user within the EO as a class of her interest for the current session. This
class corresponds to a hierarchy level l, so it is mapped into the IO by
creating an instance imold-ex:c of qb4o:LevelProperty; imold-ex:c is linked
to c either via property imold:I2M (if its mapping is I2M, e.g., Species in
Figure 3.b) or via property imold:S2M (if its mapping is S2M).

• Direction dir can be either outbound or inbound ; given c and dir, we
recognize the patterns by exploring the triples where c (or its instances)
is either the subject (dir = ’outbound’) or the object (dir = ’inbound’).
Noticeably, any relationship a between subject s and object o is equally
recognized and modeled in the IO either by starting from s and moving
to o in the outbound direction, or by starting from o and moving to s in
the inbound direction.

The recognition process is done in a breadth-first fashion, i.e., c is com-
pletely analyzed in its relationships with other classes or datatypes; the roll-up
relationships selected by the user lead to new classes, from which the user can
iteratively perform new searches. No recursive recognition is triggered to keep
the system performance in line with the real-time requirement typical of OLAP
applications; though it may happen that the user selects one exploration di-
rection that leads her to miss some potentially interesting concept lying ahead
in a different direction, iMOLD incorporates the possibility of “backtracking”
along the exploration path to take some previously neglected paths, so there is
no preclusion to a nearly-exhaustive exploration —it is actually up to the user.
While Sections 5.1 and 5.2 show, respectively, how a single association-based or
generalization-based pattern can be recognized, Section 5.3 explains how pat-
terns can be repeatedly recognized and chained by describing an iteration of
acquisition.

5.1. Recognition of Association-Based Patterns

The goal of these patterns is to determine whether a property p involving c
can be mapped into a roll-up relationship, where the domain and range of p are
mapped into a child and a parent level (or vice versa) in the hierarchy.

Definition 2 (Association). An association is a triple a = (d, p, r) where p is
a property, d is a class that represents the domain of p, and r is either a class or
a datatype that represents the range of p. Association a is characterized by its
right cardinality rightCard(a), i.e., the average number of distinct instances of
r linked to each instance of d through p, and by its left cardinality leftCard(a),
i.e., the average number of distinct instances of d linked to each instance of r
through p. Given a = (d, p, r), we denote with a−1 its inverse, a−1 = (r, p, d).

14

Algorithm 1 Recognize Association-Based Patterns
Input pt: a pattern (either A1, A2, or A3), EO: an external ontology, IO: the internal ontology,

c: a starting class, dir: a direction (either ’outbound’ or ’inbound’), maxCard and multTol:
the search parameters

Output R: a set of roll-up relationships
1: if card(c) ≤ maxCard then . Random offset for query q
2: offset← 0
3: else
4: offset← Random(0, card(c)−maxCard)

5: R← ∅ . Initialize R
6: q ← Query(c, dir, pt,maxCard, offset) . Create q...
7: A← Execute(EO, q)and execute it against EO
8: for each a ∈ A do . Find the roll-up relationships in A
9: if rightCard(a) ≤ multTol then . If a is many-to-one...

10: R← R ∪ {a}add it to R
11: else if leftCard(a) ≤ multTol) then . If a is one-to-many...

12: R← R ∪ {a−1}add its inverse to R

13: UpdateIO(IO,R) . Update IO with the roll-up relationships in R
14: return R

An association a is a roll-up relationship if its multiplicity is either many-
to-one or one-to-many; in particular, a corresponds to a roll-up relationship
u = a if its multiplicity is many-to-one, to a roll-up relationship u = a−1 if its
multiplicity is one-to-many. As already mentioned, since the RDFS vocabulary
does not provide means to describe the multiplicity of a property, the only
way to determine the multiplicity of a is through a statistical analysis at the
instance level, which means inspecting the relationships in which the instances
of d and r are involved. To decrease the complexity of the search, at the price of
introducing some uncertainty, we adopt a (user-defined) parameter maxCard
(default 1000) that acts as an upper bound to the number of instances of d (r)
to be sampled. Besides, to cope with possible errors in the EO, we let the user
specify a tolerance multTol (default 1.1) to determine whether an association
can be considered as many-to-one or one-to-many.

The pseudocode for recognizing association-based patterns is shown in Al-
gorithm 1. We start by randomly generating an offset, aimed at inducing some
randomness in the selection of the sample from the instances of c (lines 1—4);
to this end, we count the number of instances of c, card(c), using a simple
SPARQL query. Then, a SPARQL query q is generated by function Query
(line 6); given a starting class c and an offset, q returns a set A of associations
involving c in direction dir, together with the left and right cardinality of each
association a ∈ A. The specific form of q depends on the pattern pt and on the
search parameters; for instance, this is the query generated for pattern (A1) in
the outbound direction (see Table 12 in the Appendix for an explanation of the
variables):

SELECT ?p ?class (?nProp/?nO AS ?rightCard) (?nProp/?nS AS ?leftCard) ?nO ?nS
WHERE
{ SELECT ?p ?class (COUNT(*) AS ?nProp) (COUNT(DISTINCT(?o)) AS ?nO)

(COUNT(DISTINCT(?s)) AS ?nS)
WHERE
{ ?p rdfs:domain ?c . . Step 1: retrieve the properties of c

?p rdfs:range ?class .
?s a ?c . . Step 2: retrieve the property instances

15

?s ?p ?o .
?o a ?class

}
GROUP BY ?p ?class . Step 3: group the property instances to get the list of associations

}

The query for pattern (A2) does not work at the class level, and adds a check
on the maximum number of instances of c to avoid overloading the endpoint:

SELECT ?p ?class (?nProp/?nO AS ?rightCard) (?nProp/?nS AS ?leftCard) ?nO ?nS
WHERE
{ SELECT ?p ?class (COUNT(*) AS ?nProp) (COUNT(DISTINCT(?o)) AS ?nO)

(COUNT(DISTINCT(?s)) AS ?nS)
WHERE
{ { SELECT ?s . Step 1: select instances of c

WHERE
{ ?s a ?c .
}

LIMIT ?maxCard
OFFSET ?offset

} .
?s ?p ?o . . Step 2: retrieve the properties of each s
?o a ?class . . Step 3: retrieve the classification of each o

}
GROUP BY ?p ?class . Step 4: group the property instances to get the list of associations

}

When pattern (A3) is recognized (i.e., when literals are inspected), at Step 3
the class of ?o, ?class, is replaced by its datatype, str(datatype(?o)). Note that
this pattern can only be applied in the outbound direction, because literals can
only be objects in RDF triples.

Function Execute (line 7) submits q to the SPARQL endpoint of the EO.
In the lines from 8 to 12, the associations in A are filtered according to their
multiplicities and added to R. Threshold multTol is applied to left and right
cardinalities to determine if each association a can be considered as either many-
to-one or one-to-many (lines 9 and 11). Then, all roll-up relationships in R are
added to the IO using procedure UpdateIO (line 13). The mapping of each
u = (l, p, l′) into the IO is carried out as follows:

• l and l′ are mapped into two instances of qb4o:LevelProperty; the members
of l and l′ correspond to the instances of the domain and range of p, so
a connection with the corresponding classes in the EO is established via
property imold:I2M (or imold:L2M in case of a literal);

• property p is mapped into an instance of qb4o:HierarchyStep, properly
linked to the two corresponding qb4o:LevelPropertys, and also linked to its
counterpart on the EO by means of the imold:correspondsTo property;

Example 3. Consider again the portion of EO depicted in Figure 5.a, and let
ex:Species be the starting class. If pattern (A1) is selected and the outbound
direction is taken, a set A of associations is returned (line 7 of Algorithm 1)
including a = (ex:Species, ex:sBelongsToF, ex:Family). Then the cardinalities of
these associations are checked; let rightCard(a) be lower than the tolerance
multTol, so a is found to be a roll-up relationship and is added to the IO together

16

with level Species. Now, ex:Family may be picked by the users to further extend
the hierarchy, leading to discover the roll-up relationship to level Class. On
the other hand, if the inbound direction were taken selecting pattern (A2), the
association a′ = (ex:Animal, ex:aBelongsToS, ex:Species) would be discovered and
found to be a roll-up relationship as well.

5.2. Recognition of Generalization-Based Patterns

Generalization-based patterns are cheaper to recognize than association-
based ones because (i) no query at the instance level is required and (ii) the only
inter-class link that must be considered is rdfs:subClassOf. On the other hand,
their interpretation is less intuitive, because the transformations applied to con-
cepts move them along the instantiation-classification dimension. Whereas dis-
tinct classes always correspond to distinct levels in association-based patterns,
in generalization-based ones distinct subclasses that belong to the same su-
perclass can be grouped together to become members of a single level, which
corresponds to the powertype of the subclasses. Furthermore, differently from
association-based patterns, generalization-based ones always require additional
information from the user to give names to powertypes.

Definition 3 (Generalization). A generalization is an association g =
(d, p, r) where d and r are the subclass and the superclass, respectively, and
p = rdfs:subClassOf. We denote with PT (g) the (user-provided) powertype to
which g belongs.

Consistently with our acquisition approach, the generalizations g involving a
given class c are detected by navigating the rdfs:subClassOf properties according
to direction dir: the superclasses of c are found by bounding d to c and taking
dir = ’outbound’, while the subclasses of c are found by bounding r to c and
taking dir = ’inbound’. In both cases, an interaction with the user is necessary
to filter out non-relevant generalizations; more specifically:

• A class c may be specialized according to different powertypes. Since
powertypes are normally not modeled in RDF, when operating in the
inbound direction the user must manually select the subclasses of c that
belong to the powertype of interest and provide its name.

• Multiple specialization is allowed in RDF. Thus, when operating in the
outbound direction, the user must manually select one or more super-
classes of interest when searching for generalizations of c.

To create multi-level hierarchies, generalizations must be iteratively navi-
gated. This can be done adopting either (i) a top-down strategy, where a general
concept is selected first and the inbound direction is followed to iteratively find
its subclasses; or (ii) a bottom-up strategy, where a detailed concept is selected
first and the outbound direction is followed to iteratively find its superclasses;
or (iii) a mix of these two. In any case, the identification of a powertype leads
to creating a new level in the IO.

17

Algorithm 2 Recognize Generalization-Based Patterns
Input EO: an external ontology, IO: the internal ontology, c: a starting class, dir: a direction

(either ’outbound’ or ’inbound’), H: a hierarchy including a level lc corresponding to c
Output R: a set of roll-up relationships
1: R← ∅ . Initialize R
2: q ← Query(c, dir) . Create q...
3: S ← Execute(EO, q)and execute it against EO
4: for each s ∈ S do . Find the roll-up relationships corresponding to S
5: if dir =’inbound’ then . Moving top-down: s is a subclass of c
6: g = (s, rdfs:subClassOf, c)
7: if H only includes level lc then . First iteration
8: R← {(lc, subClassOf, PT (g))}
9: else . Other iterations

10: R← {(lc, subClassOf, PT (g)), (PT (g), subClassOf, Par(lc))}
11: else . Moving bottom-up: s is a superclass of c
12: g = (c, rdfs:subClassOf, s)
13: R← {(lc, subClassOf, PT (s))}
14: UpdateIO(IO,R,H, dir) . Update IO with the roll-up relationships in R
15: return R

The pseudocode for recognizing generalization-based patterns —working for
both the top-down and bottom-up strategies— is shown in Algorithm 2. The
first operation (line 2) is the generation of a SPARQL query q that returns the
set S of either the superclasses or the subclasses of c, according to direction dir.
For instance, the query generated for dir = ’inbound’ is as follows:

SELECT DISTINCT ?type
WHERE
{ . Retrieve the subclasses of c

?type rdfs:subClassOf ?c .
}

Note that the EO may possibly include transitive generalizations (e.g., class
ex:Canid in Figure 5.b could be explicitly declared as a subclass of both ex:Mammal
and ex:Animal). Though this is not shown above for simplicity, the actual query
detects transitive rdf:subClassOf properties and excludes them.

Then, function Execute (line 3) submits q to the SPARQL endpoint of the
EO. While mapping each class of S into a generalization g is trivial because it
simply depends on the direction dir (lines 6 and 12), mapping each g into a
roll-up relationship in R and then into the IO via procedure UpdateIO is more
complex, as the way the mapping is done also depends on the current state of
the hierarchy, H. To explain how this is done, for simplicity we restrict to the
case in which pattern (G1) is recognized, i.e., the members of the bottom level
of the hierarchy to be built correspond to instances (the mapping process for
pattern (G2) is similar); specifically, we refer to the portion of EO depicted in
Figure 5.b. We start by describing the process for the top-down strategy (dir =
’inbound’, lines 5—10), leaning on Figure 8.

0. Before the first iteration, the user has selected the starting class c (ex:Animal
in Figure 8.a) which has been mapped by UpdateIO into a level of the IO
(i.e., an instance of qb4o:LevelProperty) as already described.

18

imold-ex:Animalex:Animal
imold:I2M

imold-ex:Classex:Animal
imold:S2M

ex:Mammal... imold-ex:Animal

imold-ex:subClassOf1

qb4o:parentLevel

qb4o:childLevelimold:I2M

imold-ex:Classex:Animal
imold:S2M

ex:Mammal... imold-ex:Family

imold-ex:subClassOf1

qb4o:parentLevel

qb4o:childLevelimold:S2M

ex:Canid... imold-ex:Animal
qb4o:childLevelimold:I2M

imold-ex:subClassOf2

qb4o:parentLevel

imold-ex:Classex:Animal
imold:S2M

ex:Mammal... imold-ex:Family

imold-ex:subClassOf1

qb4o:parentLevel

qb4o:childLevelimold:S2M

ex:Canid... imold-ex:Species
qb4o:childLevelimold:S2M

imold-ex:subClassOf2

qb4o:parentLevel

ex:Dog... imold-ex:Animal
qb4o:childLevelimold:I2M

imold-ex:subClassOf3

qb4o:parentLevel

a)

b)

c)

d)

IOEO

imold:Classex:Animal
imold:refersToSubClassesOf

imold:Type

imold:hs4

qb4o:parentLevel

qb4o:childLevel
imold:refersToSubClassesOf

ex:Canine

ex:Domestic

_Animal

imold:Species

qb4o:childLevel

imold:refersToSubClassesOf

imold:hs2

qb4o:parentLevel

ex:Dog imold:Animal
qb4o:childLevelimold:refersToInstancesOf

imold:hs1

qb4o:parentLevel
imold:hs3

qb4o:parentLevel

qb4o:childLevel

Species

Animal

Family

Class

Family

Animal

Class

Class

Animal

Animal

Figure 8: Top-down strategy for recognizing generalization-based patterns; the link between
the instances in the IO and their classes (i.e., qb4o:LevelProperty and qb4o:HierarchyStep) is
omitted for simplicity

1. At the first iteration (line 7), pattern (G1) is recognized and the sub-
classes of c are found (e.g., ex:Mammal in Figure 8.b). For each powertype
gs declared by the user, a new level lgs (Class in the example) is created
by UpdateIO as an instance of qb4o:LevelProperty and the correspond-
ing subclasses are mapped into the IO as members of lgs via property
imold:S2M. Moreover, the imold:I2M property of the level lc correspond-
ing to c is pushed down to the subclasses of c (in the example, from
ex:Animal to ex:Mammal and its siblings), to denote that the members of
lc are currently represented by all the instances of these subclasses. Fi-
nally, a new roll-up relationship from lc to lgs is created as an instance of
qb4o:HierarchyStep.

2. At each following iteration (line 9), let Par(lc) be the parent of lc in H. For
instance, taking Figure 8.c, let now c correspond to ex:Canid, which implies
that lc and Par(lc) correspond to imold-ex:Animal and imold-ex:Family,
respectively. Even in this case, after the subclasses of c have been found
(e.g., ex:Dog), a new level l is created by UpdateIO for each powertype
declared by the user (e.g., Species). However, since the new level must
be inserted in the hierarchy between lc and Par(lc), the existing roll-up
relationship from lc to Par(lc) is replaced by two roll-up relationships, one
from lc to lgs and one from lgs to Par(lc).

19

Table 2: Patterns that can be recognized depending on the mapping type of c
Mapping type Patt. (A1) Patt. (A2) Patt. (A3) Patt. (G1) Patt. (G2)

L2M 7 7 7 7 7
S2M 7 7 7 inbound/drill-down 3
I2M 3 3 outbound roll-up 7

Note that, when a top-down strategy is followed to discover a hierarchy H,
the domain of H (meant as the domain of the finest level in H) progressively
gets more selective as new levels are explored. For instance, in the example
of Figure 8, from all animals it shrinks to all canids. So, if all animals are
actually relevant to the user, she has to explore all the other subclasses (by
explicitly navigating through reptiles, birds, etc.). This is because Algorithm 2
adopts a “lazy”, class-wise approach, i.e., it maps into the IO (as members) only
the classes that are explicitly selected by the user. Remarkably, the algorithm
can be easily modified to implement a more “eager”, level-wise approach where
exploration is implicitly carried out by levels. For instance, at the iteration
depicted in Figure 8.c, this means enabling the user to select the subclasses of
interest not only from the subclasses of ex:Canid, but even from those of ex:Felid
and all the other families.

To conclude this section, we briefly exemplify the process for the bottom-up
strategy (dir = ’outbound’, lines 11—13). Let c be the starting class, s one
of its superclasses, and gs its powertype. Differently from the top-down case,
here the hierarchy domain progressively enlarges as new levels are discovered,
so when the roll-up relationship from lc to lgs is added, lc must be renamed to
s. Let for instance ex:Dog be the starting class c, initially represented in the
IO with a level lc named Dog as depicted in Figure 9. If ex:Canid is selected in
the EO as a relevant superclass of ex:Dog, with powertype Species, a new level
named Species is created, lc is renamed to Canid, and a new roll-up relationship
from Canid to Species is added.

5.3. Chaining Patterns

Association- and generalization-based patterns cover different but coexist-
ing aspects of an EO. This means that, starting from any class in the EO, both
kinds of patterns can be recognized to detect (and map to the IO) roll-up rela-
tionships. However, because of the different types of mappings they use between
classes and levels (I2M, L2M, or S2M), a mix of association- and generalization-
based patterns is feasible only under specific conditions. So let c be a class
or datatype in the EO that has been mapped into a level of the IO during a
previous acquisition iteration; Table 2 shows which patterns involving c can be
further recognized depending on the mapping type previously used for c. The
rationale is that the same level in the IO can only have one mapping to the EO.
Thus, based on the kinds of mappings each pattern generates at the parent and
child levels, the following situations can arise:

• L2M mappings do not enable any further pattern to be recognized. This
is because literals are not identified by URIs, but they are simple values

20

imold:Dogex:Dog
imold:asMembersHasInstancesOf

imold:Speciesex:Canid
imold:asMembersHasSubClassesOf

ex:Dog imold:Canid

imold:subClassOf1

qb4o:parentLevel

qb4o:childLevelimold:asMembersHasInstancesOf

a)

b)

MKEO

imold-ex:Dogex:Dog
imold:I2M

imold-ex:Speciesex:Canid
imold:S2M

ex:Dog imold-ex:Canid

imold-ex:subClassOf1

qb4o:parentLevel

qb4o:childLevelimold:I2M

imold-ex:Familyex:Mammal
imold:S2M

ex:Canid imold-ex:Species

imold-ex:subClassOf2

qb4o:parentLevel

qb4o:childLevelimold:S2M

ex:Dog imold-ex:Mammal
qb4o:childLevelimold:I2M

imold-ex:subClassOf1

qb4o:parentLevel

imold-ex:Classex:Animal
imold:S2M

ex:Mammal imold-ex:Family

imold-ex:subClassOf3

qb4o:parentLevel

qb4o:childLevelimold:S2M

ex:Canid imold-ex:Species
qb4o:childLevelimold:S2M

imold-ex:subClassOf2

qb4o:parentLevel

ex:Dog imold-ex:Animal
qb4o:childLevelimold:I2M

imold-ex:subClassOf1

qb4o:parentLevel

a)

b)

c)

d)

IOEO

Species

Animal

Family

Class

Species

Mammal

Family

Species

Canid

Dog

Figure 9: Bottom-up strategy for recognizing generalization-based patterns

used for descriptive purposes (e.g., the label of an instance, or the age
of a person) and their semantics depends on the property that references
them.

• S2M mappings are used by generalization patterns only, thus they are
incompatible with association-based ones. Also, notice that (G1) can be
recognized only in the inbound direction to detect a finer level of aggre-
gation (i.e., a drill-down); this is because (G1) requires the S2M level (c)
to be the parent level, while the mapping of the child level has type I2M.

• I2M mappings are the only ones that enable the further recognition of
patterns of both kinds. In particular, all association-based patterns can
be recognized (with the exception of (A3) in the inbound direction for the
aforementioned reasons), while (G1) is enabled only to detect a coarser
level. Again, this is because (G1) requires the I2M level to be the child
level, while the mapping of the parent level is S2M.

A procedural view of a single iteration of acquisition is provided in Algorithm
3. As already said, the patterns enabled depend on the mapping type of c (lines
2 and 5); pattern recognition that in Table 2 are not allowed return an empty
set. As S2M mappings are used by generalization-based patterns only, further
recognitions simply trigger Algorithm 2. The real mixing takes place starting
from I2M mappings (lines 6—11). The execution of Algorithms 1 and 2 in

21

Algorithm 3 Acquisition Iteration
Input pt: a pattern (either A1, A2, or A3), EO: an external ontology, IO: the internal ontology,

c: a starting class, dir: a direction (either ’outbound’ or ’inbound’); H: a hierarchy including
a level lc corresponding to c; maxCard and multTol: the search parameters

Output R: a set of roll-up relationships
1: R← ∅ . Initialize R
2: if mappingType(c) =’S2M’ then
3: if (pt =’G1’ and dir =’inbound’) or (pt =’G2’) then
4: R← RecognizeGeneralizationBasedPatterns(EO, IO, c, dir,H)

5: else if mappingType(c) =’I2M’ then
6: if (pt =’A1’) or (pt =’A2’) or (pt =’A3’ and dir =’outbound’) then
7: R← RecognizeAssociationBasedPatterns(pt, EO, IO, c, dir,maxCard,multTol)
8: else if pt =’G1’ then
9: R← RecognizeGeneralizationBasedPatterns(EO, IO, c, dir,H)

10: if lc is in an association-based hierarchy and dir =’inbound’ then
11: PushDownAssociation(c, R)

12: return R

the allowed situations creates no particular issues (lines 7 and 9), while some
further note is useful to explain what happens when the hierarchy has been
detected by recognizing association-based patterns and is extended with (G1)
in the ’inbound’ direction (line 10). As explained in Section 5.2 with reference
to the top-down strategy, pattern (G1) applies a transformation on lc, as its
members become the instances of the subclasses of c instead of the instances of
c (i.e., the I2M mapping from c is pushed down to its subclasses). Thus, for
the final hierarchy to be consistent, the associations involving c that represent
roll-up relationships must also be pushed down to its subclasses; this is done by
function PushDownAssociation (line 11). In practice, for the sake of simplicity
we assume that if a = (d, p, r) is a roll-up relationships, then a′ = (d′, p, r) is
still a roll-up relationship where d′ is a subclass of d (the same for r). To ensure
the correctness of this operation, however, the detection of association-based
patterns should be repeated on the subclasses of d (or r) to verify that the
roll-up relationships still hold on at least one of them.

Example 4. Figure 10 shows an example for the three possible scenarios of pat-
tern chaining. The first scenario is the most complex one, in which the hierarchy
has been detected through association-based patterns (Figure 10.a1) and is then
extended by recognizing (G1) in the ’inbound’ direction (Figure 10.a2) from one
of the classes —in this case from ex:Animal. Consistently with the top-down
strategy (Figures 8.a and 8.b), a roll-up relationship from Animal to Class is
added. Also, notice that the ex:domestication association is not considered any-
more from ex:Animal to ex:Domestication but from the subclasses of ex:Animal
to ex:Domestication. In the second scenario, the hierarchy has been detected
through association-based patterns (Figure 10.b1) and is extended by recogniz-
ing (G1) in the ’outbound’ direction from ex:Dog (Figure 10.b2). In the third
scenario, the existing hierarchy has been detected through generalization-based
patterns (Figure 10.c1) and is extended by recognizing (A2) in the ’outbound’
direction from ex:Mammal (Figure 10.c2).

22

imold:S2M

imold-ex:

Domestication

ex:

Domestication

imold:I2M

ex:Animal imold-ex:Animal

imold-ex:

domestication

qb4o:parentLevel

qb4o:childLevel
imold:I2M

imold-ex:

Domestication

ex:

Domestication

imold:I2M

ex:Animal

imold-ex:Class

imold-ex:

domestication

qb4o:parentLevel

qb4o:childLevel

ex:Mammal... imold-ex:Animal

qb4o:childLevel

imold:I2M

imold-ex:

subClassOf1

qb4o:parentLevel

a1)

a2)

Class

Animal

Domestication

Domestication

Animal

ex:domestication

ex:domestication

imold:S2M

imold-ex:

Domestication

ex:

Domestication

imold:I2M

ex:Dog imold-ex:Dog

imold-ex:

domestication

qb4o:parentLevel

qb4o:childLevelimold:I2M

imold-ex:

Domestication

ex:

Domestication

imold:I2M

ex:Canid

imold-ex:Species

imold-ex:

domestication

qb4o:parentLevel

qb4o:childLevel

ex:Dog imold-ex:Canid

qb4o:childLevel

imold:I2M

imold-ex:

subClassOf1

qb4o:parentLevel

b1)

b2)

Species

Canid

Domestication

Domestication

Dog

ex:domestication

ex:domestication

imold:S2M

imold-ex:Classex:Animal
imold:S2M

ex:Mammal imold-ex:Animal

imold-ex:

subClassOf1

qb4o:parentLevel

qb4o:childLevelimold:I2M

imold-ex:

Domestication

ex:

Domestication

imold:I2M

ex:Animal

imold-ex:Class

imold-ex:

domestication

qb4o:parentLevel

qb4o:childLevel

ex:Mammal... imold-ex:Animal

qb4o:childLevel

imold:I2M

imold-ex:

subClassOf1

qb4o:parentLevel

c1)

c2)

Class

Animal

Domestication

Class

Animal

ex:domestication

...

IOEO

IOEO

IOEO

Figure 10: Examples of combined recognition of association- and generalization-based patterns

5.4. User Experience

Implementing the acquisition phase of iMOLD poses one more important
challenge, that is, how to provide a clean and simple user interface that hides
to some extent the complexity of the pattern recognition process to let the user
focus on the discovery of hierarchies. We preliminarily note that the variety,
volume, and veracity aspects of public ontologies make a complete automation
of the acquisition process unfeasible, due to the inherent difficulties in reliably
inferring the quality and relevance of the data explored and to the huge size of
the exploration space. Additionally, there is a large degree of subjectivity in
judging both the quality and the relevance of ontological data, so these eval-
uations may change from user to user, and some concepts (e.g., powertypes)
must be explicitly provided by the user. As a result, we claim that the data
exploration process must be necessarily supervised by the user to ensure the
effectiveness of acquisition.

23

Acquisition builds on two basic operations:

• Select a concept of interest: with this operation, the user locates a
starting class in a selected EO to enable the subsequent recognition of
patterns. In practice, the user simply has to provide a search string and
the ontology to query; then the system queries the SPARQL endpoint and
retrieves a list of matching classes. The matching classes are shown to the
user, ranked by decreasing cardinalities (i.e., number of instances). As
the user selects one starting class, her selection is stored in the IO as a
hierarchy level.

• Recognize a pattern: this operation aims at discovering a hierarchy in-
volving the starting class c. Once the user has selected one specific pattern
to be recognized, the SPARQL endpoint of the EO is queried to find new
roll-up relationship and update the IO accordingly. The system shows
the list of candidate relationships, ranked by their support.3 Then the
user selects one relationship u, so that she can iteratively trigger pattern
recognition using the range of u as the starting class.

Note that, in principle, aggregation patterns could be made transparent to users
by applying in sequence the recognition algorithms for all five patterns and in
both directions. While this is surely feasible from a technical point of view, we
claim that the resulting user experience would be made ineffective and unsatis-
factory by the huge number of resulting candidate relationships.

To increase the effectiveness and the inclusiveness of the user experience,
iMOLD proposes two alternative (and freely interchangeable) interaction ap-
proaches, both supporting the basic operations described above but tailored on
users with different background and expertise. Both approaches are supported
by the combined view shown in the background window of Figure 11, which
includes two panels: an ontological panel where the user has a picture of the
classes and properties of the EO (represented with black dots and labeled arcs,
respectively), and a multidimensional panel where the user sees how classes and
properties translate to a hierarchy using a graphical notation inspired by the
Dimensional Fact Model [28] (levels and roll-up relationships are represented
with white dots and directed arcs, respectively).

• The ontology-driven experience is oriented to users who have good famil-
iarity with ontologies and semantic web. Here the focus is set on the EO,
a low-level view of the IO is provided, and a more intense user interaction
is required. The user has a strict control over the acquisition phase; she
can precisely specify the aggregation patterns to recognize and finely tune
the search parameters (i.e., maxCard and multTol) to refine the search
based on her preferences. By clicking on a class in the ontological panel,

3Let u be a roll-up relationship and c be the level of u corresponding to the starting class;
the support supp(u, c) of u in c is the percentage of instances of c that are involved in u.

24

Figure 11: The user interface of iMOLD: in the background, the ontological (left) and the
multidimensional (rigth) panel; in the foreground, the wizard for ontology-driven pattern
recognition

a wizard for pattern recognition is launched (see the foreground window
in Figure 11).

• The OLAP-driven experience is targeted to users who have good famil-
iarity with the field of data warehousing and multidimensional modeling.
Here the focus is set on the hierarchy being built, a high-level view of the
IO is provided, and a lower degree of interaction is required. In this case
pattern recognition and search parameters are transparent to the user,
who simply interacts by iteratively selecting, given a level l of interest
on the multidimensional panel, one or more multidimensionally-inspired
operations:

– the search for a parent level of l, which triggers the recognition of
association-based patterns and that of generalization-based ones with
top-down strategy;

25

– the search for a child level of l, which triggers the recognition of
association-based patterns;

– the extension of the domain of l, which triggers the recognition of
generalization-based patterns: with bottom-up strategy first, to find
the parent levels of l (i.e., the superclasses of the class corresponding
to l), and then with top-down strategy to find new members for l and
its parent levels (i.e., the subclasses of the superclasses previously
found).

6. Case Studies and Evaluation

To demonstrate the potential of our approach, in this section we provide an
extensive discussion comprising case studies and evaluations in terms of effec-
tiveness and efficiency. Section 6.1 presents a first case study in which a fictional
user discovers a hierarchy, one step at a time, by exploring a small portion of
DBpedia. Section 6.2 presents a second case study aimed at demonstrating an
end-to-end solution, where a dimension of a real-world RDF cube is extended
with new levels which are then used to formulate OLAP queries on the extended
cube. In Section 6.3 we propose a more quantitative evaluation by discussing
the results of some tests made with real users. Then we discuss the performance
of iMOLD in Section 6.4, and finally we compare it with a related approach in
the literature in Section 6.5.

To evaluate iMOLD we chose to focus on the so-called cross-domain on-
tologies, as their chaotic status makes it harder for both humans and machines
to efficiently extract structured and coherent knowledge. While the generic
theme of this kind of ontologies opens to a broad set of examples in different
domains, some degree of uncertainty and incorrectness appears in the data. In-
deed, differently from small and confined ontologies that are typically developed
in-house and provide a reliable representation of the area of interest, big and
cross-domain ontologies are more inclined to errors and imprecisions, especially
if they are built through a collaborative effort across the web. In particular, we
focus the case study on DBpedia, one of the best-known public ontologies avail-
able on the web, which is also compliant with the LOD principles and covers a
wide range of domains.

The prototype we built (see Figure 11) is implemented as a web application
(available at semantic.csr.unibo.it/imold) and fully supports the user ex-
perience described in Section 5.4; also, a guide to replicate the case studies is
available. The back-end functionalities are implemented in Java; in particular,
we extensively rely on the Jena Library, as it provides solid APIs for the com-
munication with remote SPARQL endpoints and for in-memory manipulation
of a local ontology. As to the IO, we currently store it within a simple RDF
file; however, the migration to a triplestore is planned in future evolutions of
the prototype. We used Javascript to implement the user interface and adopted
the D3 library for the graphical visualization of the IO.

26

6.1. Case Study: Recognizing Patterns

We consider a social BI scenario in which a fictional user has collected reviews
about museums in an RDF cube and, to be better analyze them, is interested
in discovering a hierarchy rooted in museums. The goal is to aggregate the
set of available observations (i.e., the mentions of a museum within the text of
reviews) to obtain aggregate data (e.g., a measure of popularity as the total
number of mentions, or a measure of appreciation as the average sentiment
expressed by the reviewers). The most obvious candidate as a starting concept
is class dbo:Museum, which currently hosts 5341 instances. A few simple queries
on dbo:Museum show that the distinct properties that make use of its instances
as either domain or range in the triple are 120 and 131, respectively, for a total of
344687 instances. Although not impressive, these numbers prove that a manual
approach to identify the properties that map into roll-up relationships would be
at least wearying, if not unfeasible.

Table 3: Detecting the parents of Museum
p (property/semantics) r (range/parent) supp(a, d) supp(a, r)
dbo:location dbo:City 40.9% 1.4%
dbo:location dbo:Country 40.6% 4.8%
dbo:location yago:MemberStatesOfTheUnitedNations 32.6% 36.6%
dbo:location dbo:Settlement 32.5% 36.6%
dbo:location yago:MemberStatesOfNATO 18.6% 85.2%
dbo:location yago:CountriesBorderingTheAtlanticOcean 17.3% 38.6%
dbp:location yago:English-speakingCountriesAndTerritories 17.0% 21.8%
dbp:visitors xsd:integer 14.9% —
dbp:type yago:WikicatArtMuseumsAndGalleries 11.6% 5.88%
dbp:type yago:WikicatArtMuseumsAndGalleries 10.0% 5.88%

To begin the exploration of the EO following the ontology-driven experience,
we assume that the user clicks on the dbo:Museum class on the ontological panel
and activates the recognition of association-based patterns in the outbound
direction to find the parents of level Museum. The results of the recognition of
association-based patterns are shown in Table 3, where each row corresponds
to a many-to-one association a = (d, p, r) with domain d = dbo:Museum and
range r, i.e., to a roll-up relationship with semantics p from Museum to r;
supp(a, d) is the percentage of instances of dbo:Museum for which a is present,
while supp(a, r) is the percentage of instances of r for which a is present.

Among the roll-up relationships where r is a class (i.e., those discovered
with patterns (A1) and (A2)), the most relevant property is dbo:location, which
provides the geographical position of each museum. Interestingly, this prop-
erty links to instances that belong to different classes (see rows 1–7 of Ta-
ble 3); this is due to multiple classification, which is widely used in DBpedia.
The iMOLD interface helps the user in this case by orienting her towards the
classes with most references (i.e., higher support). As to the associations where
r is a literal (i.e., those discovered with pattern (A3)), property dbp:visitors
(which indicates the number of visitors of the museums) could be interesting
for analysis. For the sake of the example, we assume that the user selects

27

(dbo:Museum, dbo:location, dbo:City). The following recognition of association-
based patterns from dbo:City leads to finding new associations, among which
the most relevant is (dbo:City, dbo:location, dbo:Country). Assuming that this
one is selected, a 3-level linear hierarchy is eventually built: Museum, City and
Country.

Table 4: Extending the domain of level Museum
r (superclass/new name of level) d′ (sibling class/member for new level) card(d′)
dbo:Building dbo:Castle 1389

dbo:HistoricBuilding 8413
dbo:Hospital 3019
dbo:Hotel 1285
dbo:Library 1005
dbo:Prison 952
dbo:ReligiousBuilding 4349
dbo:Restaurant 1158
dbo:ShoppingMall 2597
dbo:Skyscraper 4

Back to our social BI scenario, we now assume that the user wants to broaden
its scope from museums only to other places of interests that are subject to
reviews, such as hotels and restaurants. In the context of the OLAP-driven
experience, she can click on the Museum level of the multidimensional panel and
activate the operation to extend the domain of that level. As a consequence,
the generalizations g = (d, p, r) with domain d = dbo:Museum and property
p = rdfs:subClassOf are explored to find the superclasses r of dbo:Museum, then
for each r its other subclasses d′ are explored to find candidate new members
for level Museum. The results are shown in Table 4. Class dbo:Museum has
only one superclass, dbo:Building. The user can now select the siblings that
relate the most to her area of interest (e.g., dbo:Hotel and dbo:Restaurant) and
provide the name of the powertype (in this case, Type could be an option). As
a result, the hierarchy is changed by (i) renaming level Museum into Building,
whose members are now the union of the instances of dbo:Museum, dbo:Hotel,
and dbo:Restaurant; and (ii) adding level Type as a parent of Building, with
members Museum, Hotel, and Restaurant.

Table 5: Extending the domain of level Type
r (superclass/new name of level) d′ (sibling class/member for new level) card(d′)
dbo:ArchitecturalStructure dbo:AmusementParkAttraction 499

dbo:Infrastructure 87966
dbo:MilitaryStructure 4371
dbo:SportFacility 9120
dbo:Tower 1868
dbo:Tunnel 82
dbo:Venue 5157

The domain extension operation can be iteratively activated to explore a
larger part of the EO. For instance, extending level Type leads to searching for
the siblings of dbo:Building; the results are shown in Table 5. If dbo:Amusement-
ParkAttraction and dbo:Venue are selected as relevant concepts and the new

28

Figure 12: The WBLD cube loaded in iMOLD; on the right, the black circle represents the
set of observations, while the grey ones are levels not linked to the EO

powertype is named Category, the hierarchy is further extended by (i) renaming
Building into ArchitecturalStructure and adding new members (i.e., the instances
of dbo:AmusementParkAttraction and dbo:Venue); and (ii) adding level Category
as a parent of Type, with members Building, AmusementParkAttraction, and
Venue. The final shape of the hierarchy is the one shown in Figure 11.

6.2. Case Study: End-to-End Solution

While in the previous section we have shown how patterns can be recognized
in an EO to build a hierarchy, here we demonstrate how iMOLD can be used
within an end-to-end solution to effectively enrich a real-world RDF cube, and
how the resulting enriched cube can then be queried.

We rely on the open data published by the World Bank financial institution
(http://www.worldbank.org), which supports developing countries through
loans for strategic projects. The World Bank Linked Data (WBLD, http:

//worldbank.270a.info) translates some of these open data to RDF using
the QB vocabulary. In particular, we use the CM.MKT.LCAP.CD cube, which
provides the market capitalization in US dollars per country and year (https:
//data.worldbank.org/indicator/CM.MKT.LCAP.CD), also linking each coun-
try to its counterpart on DBpedia. A previous work shows how this cube can be
translated from QB to QB4OLAP using the QB2OLAPem tool [8]. An excerpt
of the cube is shown in the Appendix.

Figure 12 shows the WBLD cube loaded in iMOLD. In the multidimensional
panel, the black dot represents the set of observations (i.e., market capitaliza-
tions), which are identified by three dimensions: refPeriod (i.e., years), refArea
(i.e., countries) and indicator (a dimension with a single member, “CM.MKT.LCAP.CD”,
useful when multiple cubes representing different indicators are joined together);
the refArea can be rolled up to either income-level, region, or lending-type, whose
members are codes defined by the World Bank. Since refArea is the only level
for which a mapping to DBpedia is provided, every other level is colored in grey;

29

indeed, the ontological panel displays only the Country class, which is the one
referenced by refArea.

From here, the user can start enriching the cube by searching patterns on
the country level. For instance, the recognition of association-based patterns
from dbo:Country in the outbound direction finds a roll-up relationship with
dbo:Currency, which can be added as a new level in the IO.

Now the IO can be exploited to formulate queries on the enriched cube.
To this end, in [29] the authors show how OLAP queries can be formulated in
SPARQL by relying on the QB4OLAP vocabulary. In our case, however, we
must keep in mind that the IO extends the cube only from the intensional point
view (i.e., level Currency is created, but its members are not imported from the
EO). Thus, two solutions are possibile: (i) download members from the IO and
add them to the cube; and (ii) formulate a federated SPARQL query, which
allows to simultaneously query the local store and a remote endpoint. While
the first solution yields the best results in terms of performance and consistency
(in that the results are not susceptible to the EO being updated over time), it
introduces scalability issues and an implementation effort. So here we opt for
the second solution, which allows to query the enriched cube on-the-fly. For
instance, a query that calculates the average market capitalization by Currency
and refPeriod can be formulated as follows:

PREFIX qb: <http://purl.org/linked-data/cube#>
PREFIX qb4o: <http://purl.org/qb4olap/cubes#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT ?currencyEO ?yearIO (AVG(?marketCap) as ?ag1)
WHERE {

?o a qb:Observation . . Step 1: retrieve observations and local level members
?o qb:dataSet <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> ;

<http://purl.org/linked-data/sdmx/2009/measure#obsValue> ?marketCap ;
<http://purl.org/linked-data/sdmx/2009/dimension#refArea> ?yearIO ;
<http://purl.org/linked-data/sdmx/2009/dimension#refPeriod> ?countryIO .

?countryIO owl:sameAs ?countryEO . . Step 2: retrieve remote level members
SERVICE <http://dbpedia.org/sparql> {

?countryEO dbo:currency ?currencyEO .
?currencyEO a dbo:Currency

} .
}

GROUP BY ?currencyEO ?yearIO

where the SERVICE clause extends the results obtained in Step 1 by navigating
RDF concepts on the remote endpoint. The execution time of this query is 10
seconds, mainly due to the navigation from the RDF concepts in the cube to
the ones on the SPARQL endpoint of DBpedia4. A sample of the query results
is shown in Table 6.

4The performance of federated queries is highly dependent on the amount of data that
jumps between endpoints. The query shown presents an intuitive formulation, but it can
be optimized by reversing Step 1 and 2, thus moving the SERVICE before the retrieval of
observations. The execution time already refers to the optimized version of the query.

30

Table 6: Samples of average market capitalizations by Currency and refPeriod obtained with a
federated SPARQL query on the enriched WBLD cube; the “gov-uk” namespace abbreviates
http://reference.data.gov.uk/id/year/.

Currency (EO) refPeriod (IO) Avg. market cap.
dbr:Euro gov-uk:2012 3.58E+11
dbr:Euro gov-uk:2011 3.14E+11
dbr:Euro gov-uk:2010 3.71E+11
...
dbr:Pound sterling gov-uk:2012 3.02E+12
dbr:Pound sterling gov-uk:2011 2.90E+12
dbr:Pound sterling gov-uk:2010 3.11E+12
...
dbr:United States dollar gov-uk:2012 1.38E+11
dbr:United States dollar gov-uk:2011 1.26E+11
dbr:United States dollar gov-uk:2010 1.38E+11
...

Table 7: Average results of user test for the three tasks (times are expressed in minutes)
Figure SPARQL-based task Ontology-driven task OLAP-driven task
Total time 71.6 26.7 21.8

- Exploration time - 19.6 14.7
- System time - 3.0 3.3
- Browsing time - 4.1 3.8

Num. interactions 11 27 25
Score (1..5) 2.3 3.4 3.1

6.3. User Evaluation

To give a quantitative assessment of the benefits of our approach and com-
pare the effectiveness of the ontology-driven and OLAP-driven scenarios, we
conducted a set of tests with a group of 21 users, mainly PhD and master
students with basic or advanced knowledge of ontologies and multidimensional
modeling. The goal of the tests was to evaluate the execution of the same task
(i.e., discover a hierarchy starting from a concept selected from the DBpedia
ontology) according to the two interaction scenarios of iMOLD.

To prepare the tests, three concepts in different application domains were
chosen (namely banks, museums, and screenwriters), and for each concept a
task was stated using either the multidimensional or the ontological terminology
(e.g., extend the domain of level Museum by discovering a multi-level hierarchy
to include also hotels and other types of architectural constructions, then extend
the hierarchy to aggregate these constructions according to the currencies of the
countries they are located in). Each user was asked to read an instruction sheet
explaining the iMOLD goals, how to operate the interface in both scenarios, and
the five aggregation patterns; then, (s)he was asked to execute two tasks, one
for each interaction scenario, on two randomly-chosen domains. To determine a
testing baseline, we also asked to execute an additional task using plain SPARQL
to the users who had some knowledge of this language; in this case, the users
were relieved from the construction of the hierarchies in the IO and only had to
manually draw the inferred hierarchy.

Table 7 shows the average results obtained for each task. By monitoring the

31

user activities on the prototype, we split the time taken to complete each task
(total time) into three blocks: exploration time (i.e., the time taken by the user
to check the status of the hierarchy and choose the next operator to be applied),
system time (i.e., the time taken by the system to recognize one or more patterns
and provide the list of candidate relationships), and browsing time (i.e., the time
taken by the user to browse these relationships and select one or more of them).
The table also shows the average number of interactions made by each user,
referring to the number of SPARQL queries, of pattern recognitions, and of
multidimensional operations, respectively for SPARQL-based, ontology-driven,
and OLAP-driven tasks. Finally, the hierarchies discovered by each user have
been manually evaluated for correctness and completeness and scored on a scale
from 1 (worst result) to 5 (best result); row score shows the average results.

In SPARQL-based tasks, users have mostly failed in achieving an acceptable
result despite spending a considerable amount of time. The main difficulties
encountered are the design of the queries to recognize association-based patterns
(an activity that took away almost half of the total time) and the interpretation
of generalization-based patterns: although most users built a correct hierarchy
with two levels, no one was able to build a correct hierarchy with three levels.
This is due to the fact that mere query results obviously do not support users
in finding the correct interpretation key.

Conversely, the iMOLD prototype enabled users to adequately complete the
exercise in a short time. Indeed, manually writing the queries requires a lot
more time than simply launching the queries automatically written by iMOLD;
so, in the same time iMOLD users employed to acquire a comprehensive pic-
ture of the ontology, SPARQL users could only catch a very partial glimpse of
it. Users spent less time on OLAP-driven tasks than on ontology-driven ones
(22 minutes against 27), showing that the OLAP-driven experience succeeds in
reducing the amount of work for the user. Interestingly, however, most users de-
clared to feel more comfortable with the ontology-driven experience, especially
when combining patterns was necessary: in fact, the low-level view adopted for
the former experience reduces the potential misinterpretations of the multidi-
mensional translation of the patterns, thus enabling users to better identify the
correct relationships. This is reflected in the results, where the average score for
ontology-driven tasks is slightly better than that of the OLAP-driven ones (3.4
against 3.1); one more clue in this direction comes from the fact that the best
results in the OLAP-driven task came from the users who had already carried
out the ontology-driven one (3.3 against 2.8).

6.4. Performance Evaluation

Table 8 shows the average system and browsing times for each single pattern,
as measured during the user tests (with the parameters for association-based
patterns set to their default values). Patterns (G1) and (G2) are merged into
(G12) since (i) the query to detect generalizations is the same for both pat-
terns, and (ii) from the user’s perspective, the difference between the two is
transparent.

32

Table 8: Average system and decision time for each pattern
Pattern Direction System time Browsing time

(A1) inbound 2 5
(A1) outbound 2 8
(A2) inbound 15 18
(A2) outbound 7 38
(A3) outbound 3 26
(G12) inbound 2 13
(G12) outbound 2 7

Noticeably, there is a clear difference between patterns (A1) and (A2), with
the former taking considerably less time than the latter. The reason is that
pattern (A1) accesses a considerably lower number of properties of the starting
class (only those for which both rdfs:domain and rdfs:range are specified, i.e.,
about 4% of the properties in DBpedia); even the browsing time of pattern
(A1) is lower, due to the lower number of results. Overall, the slower pattern to
be executed is (A2) in the inbound direction. This is expected, because many-
to-one relationships in EOs tend to be expressed from subjects to objects rather
than vice versa (i.e., one-to-many relationships as the one in Figure 6 are less
used); as a result, the number of triples to be considered by the SPARQL query
in the inbound direction is typically higher. On the other hand, pattern (A2)
in the outbound direction turns out to be the one with the highest browsing
time. This is also expected, as this pattern is the one that statistically returns
the highest number of candidate relationships.

Among the parameters for association-based patterns, the only one that
impacts on the system time is maxCard, which limits the number of instances
of the starting class to be accessed (whereas multTol is used to filter out the
obtained associations). Figure 13 shows, for different values of maxCard and
for each pattern (except pattern (A1), which is statistically not significant),
the system times and the number of RDF triples aggregated by the SPARQL
queries with reference to class dbo:City, whose 21k instances are used in about 5
millions of triples). First of all, we observe that the results are consistent with
the previous observation about pattern (A2) being the most expensive one in the
inbound direction; the performance for maxCard = 10000 is not shown because
the SPARQL endpoint is unable to process the huge amount of RDF triples
involving the instances of dbo:City as objects. In general, the time required to
execute the patterns is proportional to the number of RDF triples aggregated
by the respective queries. For this reason, the sampling technique proves to be
quite useful —if not necessary— to obtain the results in a reasonable time. The
obvious drawback, however, is that of obtaining a partial view of the associations
available from the starting class, especially if the value of maxCard is set too
low. Nonetheless, we remark that the performance of patterns mostly depends
on the computational power of the SPARQL endpoint; therefore, a good strategy
for the user would be to first get an overview from a small sample of the data and
eventually request more complete results if this overview is deemed interesting.

33

0

20

40

60

80

100

0 2000 4000 6000 8000 10000
maxCard

Time (sec.)

(A2)-outbound (A2)-inbound (A3)-outbound

0
100000
200000
300000
400000
500000
600000

0 2000 4000 6000 8000 10000
maxCard

aggregated RDF triples

Figure 13: System time and number of RDF triples aggregated for association-based patterns,
with reference to class dbo:City

6.5. Comparative Evaluation

To the best of our knowledge, as discussed in Section 7, most other ap-
proaches in the literature cannot be directly compared with ours since they
either operate on different data formats (e.g., XML), or address different phases
in the exploratory OLAP process (i.e., publish and query). The only exception is
the approach in [30], which we will call NB16, where aggregation hierarchies are
discovered in LOD using a statistical model. In this section we compare NB16
with iMOLD using DBpedia as a test dataset. To carry out a fair comparison,
we operate the following restrictions:

#1 We only compare the two approaches in terms of the results they produce.
Indeed, since NB16 is completely automated and in [30] it is evaluated on
a local dump of the whole EO, while iMOLD requires some user interac-
tion and relies on queries executed against a remote SPARQL endpoint, a
comparison in terms of efficiency would be pointless.

#2 We restrict iMOLD to search for the aggregation patterns that are also
searched by NB16, i.e., (A1), (A2), and (A3) in outbound direction.

#3 We exclude from the results of iMOLD the roll-up relationships involving
concepts that are not part of the core dump of DBpedia (e.g., dbpedia.
org/class/yago/* and www.wikidata.org/entity/*), because these are
not considered by NB16.

Note that, as a relevant consequence of restriction #2, in this test we do not
count the roll-up relationships deriving from the application of generalization-
based patterns (e.g., the one from ArchitecturalStructure to Type in Figure 11),
because they cannot be discovered by NB16.

Our experimental setup consisted in launching NB16 and iMOLD on the
same set of 432 starting classes (with all search parameters in iMOLD set to
their defaults). The results are summarized in Table 9, which shows the number

34

Table 9: Comparison of NB16 [30] and iMOLD on DBpedia
Approach # roll-up relationships % agreement
NB16 4148 31%
iMOLD 19484 7%

Table 10: Some sample relationships found by NB16 and iMOLD with dbo:Agent as start-
ing class; the last two columns indicate from which approach(es) each relationship has been
discovered

p (prop./semantics) r (range/parent) supp(a, d) leftCard(a) rightCard(a) NB16 iMOLD
dbo:nationality dbo:Country 16.6% 253.32 1.04 yes yes
dbo:genre dbo:MusicGenre 3.8% 188.66 2.28 yes no
dbo:careerStation dbo:CareerStation 7.2% 1.00 7.18 yes no
dbo:successor dbo:Governor 0.1% 1.33 1.08 yes no
dbo:currentMember dbo:Agent 9.5% 3.31 1.35 yes no
dbo:careerStation dbo:TimePeriod 7.6% 7.18 1.00 no yes

of roll-up relationships discovered by the two approaches and the percentage
agreement (i.e., how many of the relationships discovered by one approach have
been discovered by the other as well). From a merely quantitative point of view,
it emerges that iMOLD discovers more relationships than NB16. Though this
could be interpreted as a limit of the statistical model, it ultimately depends on
the different goals of the two approaches. Indeed, NB16 aims at returning a set
of RDF cubes (each comprising dimensions, measures, and hierarchies), so the
discovery of hierarchies is just a part of a (fully-automated) process; conversely,
iMOLD is specifically focused on the discovery of hierarchies (because RDF
cubes are previously created during the publish stage of exploratory OLAP).
For the sake of completeness we point out that, if restriction #3 is removed,
iMOLD retrieves around 317000 associations.

Table 9 shows that more than two thirds of the relationships discovered by
NB16 are not discovered by iMOLD. In the following we discuss the reasons for
this, with the support of Table 10 which lists some examples of relationships
detected by the two approaches using dbo:Agent as a starting class.

• In 18% of cases, the reason why a relationship is discovered by NB16 and
not by iMOLD is that it has a very low support, so it is missed by our
sampling algorithm. For instance, this is the case for the relationship
between dbo:Agent and dbo:Governor.

• In 1% of cases (for instance, the relationship between dbo:Agent and
dbo:Agent), the relationship creates a cycle in the hierarchy —which is
intentionally excluded in iMOLD since cyclic hierarchies are seldom used
in multidimensional modeling.

• In 50% of cases, the missing relationships have been discarded by iMOLD
because they have been (correctly) labeled as either one-to-one or many-
to-many. In fact, to estimate the multiplicity of an association a from d

35

to r NB16 heuristically considers the ratio between the cardinality of d
in a and the cardinality of r in a; if this ratio is greater than 1, NB16
labels the association as many-to-one. Of course this heuristics may fail:
for instance, Table 10 shows that each agent is related to an average of
more than two music genres, so clearly the association is many-to-many;
nevertheless, NB16 labels it as many-to-one because the cardinality of
agents (67434) is higher than the one of genres (815). NB16 also extends
this heuristics to three-level hierarchies, which are created whenever a
chain of two associations a = (d, p, r) and a′ = (d′, p′, r′) is found where
r = d′ and the cardinality of d in a is higher than that of r′ in a + a′.
This introduces additional errors, because either a or a′ might have one-
to-many or many-to-many multiplicity. For instance, the association from
dbo:Agent to dbo:CareerStation is one-to-many, but NB16 includes it in a
three-level hierarchy dbo:Agent/dbo:CareerStation/dbo:NumberOfGoals.

To conclude this comparison, we remark that the effectiveness of iMOLD
is confirmed by the fact that, despite restrictions #2 and #3, 93% of the roll-
up relationships it discovers are not discovered by NB16 (e.g., the one from
dbo:Agent to dbo:TimePeriod).

7. Related Work

There have been several efforts towards automating the discovery of multi-
dimensional schemata from available data. This approach is known as supply-
driven design and consists of exploring the data sources in order to identify
potential aggregation patterns that would allow to arrange data in a multidi-
mensional fashion. [19] provides a comprehensive discussion on different tech-
niques used to identify dimension hierarchies from available data. In all cases,
discovering FDs is the cornerstone to automatically build hierarchies. Typi-
cally, most approaches look for FDs at the schema level, since instance-based
approaches are computationally expensive for real scenarios [22].

Besides traditional approaches assuming the existence of a conceptual repre-
sentation of the domain (e.g., an E/R or UML class diagram) or a well-formed
logical relational database schema, some efforts have focused on less structured
data models such as XML or logics-based formalisms. As mentioned, all of
them focus on FD discovery at the schema level. The most relevant works re-
lated to ours are [31, 32]. [31] identifies FDs from XML schemata represented
as a graph. The graphical representation of the XML schema facilitates finding
the FDs, which is examined in the direction expressed by the arcs and according
to cardinalities included in the dependency graph. Cardinalities are either pro-
vided or inferred from key attributes. Where no cardinality information can be
inferred they shift to an instance-based approach by querying schema-compliant
XML documents. [32] redefines the concept of FD for logics-based formalisms
under open-world assumption. The paper presents new inference algorithms
to identify FDs and, based on them, aggregation hierarchies. However, this
approach works at the schema level (i.e., instances are accessed).

36

Now that a huge amount of data is available in the LOD cloud, providing
techniques for its effective exploration is becoming more and more important.
In this area researchers have focused on providing intuitive and effective tech-
niques for visualizing [33] and navigating [34] LOD, on delivering a high level
and conceptual view of large LOD clouds [35], and on integrating and learning
information from them [36]. In this line, several efforts focused on deploying mul-
tidimensional schemata on LOD to facilitate its exploration and visualization,
according to the cube metaphor, have recently emerged (e.g., [37, 38, 39, 40]).
However, only [30] presents an approach to automate the discovery of dimen-
sion hierarchies on LOD. Similarly to our approach, the authors aim at au-
tomatically discovering multidimensional conceptual patterns (i.e., resembling
a multidimensional star schema) that summarize LOD based on probabilistic
graphical models. They propose the use of the statistics about the instance data
to generate the multidimensional schemata and therefore to identify hierarchies.

Following the visionary ideas behind concepts such as small analytics for
big data [3], fusion cubes [2], drill-beyond [4], or the global cube [5], OLAP
and multidimensional analyses are highlighted as a perfect match for assisting
and supporting the user when exploring the Web of Data. However, there is
still a lack of research to automate the discovery of multidimensional schemata
and enable automatic data exploration/crossing in the LOD setting. As a first
step in this direction, a conceptual framework to perform exploratory OLAP
over LOD has been proposed in [41]; the idea is to derive the multidimensional
schemata from different data sources in order to run OLAP queries on the re-
spective SPARQL endpoints. A key point recognized by the authors is that, due
to the large volume and complexity of public knowledge bases, a user-guided
process for multidimensional schema detection must be implemented. A similar
problem occurs in [8], where, hierarchies are identified by computing FDs from
instances. To avoid the inherent high computational complexity of identifying
FDs from instances [22], the authors start the search from QB data sets where
factual data and dimensional data (without hierarchies) are explicitly available.
We believe iMOLD to be the first significative advance towards this goal. As
already mentioned, iMOLD follows an instance-based approach but it neglects
the problems identified in [22] by avoiding a pure supply-driven approach and
incorporating the user to lead the process (as typically done in demand-driven
approaches). As a consequence, iMOLD can be regarded as a mixed approach
based on aggregation patterns. Unlike [30], we do not follow a probabilistic
approach but one based on data modeling patterns (as typical of software en-
gineering approaches) extracted from instances. Furthermore, by involving the
user to guide the search we reduce the computational complexity of sampling
instances, unlike [41, 8].

Also the areas of ontology matching, which aims at defining mappings among
schema or ontology elements that are semantically related [42], and that of
instance matching, which aims at determining if two resources are the same
real-world entity [43], are related to our work. In particular, [44] presents a
classification of the main techniques used for ontology matching: (i) termino-
logical techniques, based on string matching, e.g., based on Levenstein or edit

37

distance, (ii) structural techniques, which exploit the neighborhood of the con-
cepts to determine their similarity and (iii) semantic techniques, which benefit
from deduction and inference rules [45]. Although the latest yield good re-
sults, they are not that popular due to their computation complexity. Overall,
these areas aim at interlinking concepts and instances, respectively, from two
different ontologies in order to align them. Our approach follows a broader ap-
proach known as ontology construction where matching, mapping and merging
operations are required [14]. More precisely, we benefit from the well-defined
multidimensional constructs and semantics to construct ontological hierarchies
from where to analyze already available factual data. The result of our process is
the construction of a semantically correct hierarchy, whereas ontology/instance
matching can only guarantee the correctness of the matching at hand (and not
that of the whole hierarchy). Thus, iMOLD generates complete and disjoint
hierarchies for LOD, as discussed in Section 2.2. Conversely, other ontology
construction approaches do not focus on multidimensional hierarchies (e.g., [15])
and rather follow linguistic [14] or statistical [16] approaches. In this sense, one
may consider our approach as a domain-specific ontology construction problem
(i.e., finding implicit multidimensional hierarchies) that, to our knowledge, has
not been tackled before.

Finally, as to data quality, several proposals have been made to address
the issues of FD violations (e.g., [46]) and missing values (e.g., [47]), which are
recurrent when data are extracted and integrated from the Web [48]. With LOD
gaining popularity over the last decade, many approaches have focused on the
assessment and management of data quality issues in the world of semantic web.
[49] is a comprehensive survey that discusses the quality measures proposed by
more than 20 papers over a period of ten years; our approach already deals with
measures of accuracy and completeness, but it could be extended to consider
additional qualities of the explored data. An interesting work in this area is
SWIQA [50], a framework to assess a series of quality rules in LOD, including
FDs and missing values; data quality requirements are expressed as SPARQL
query templates based on SPIN (www.w3.org/Submission/spin-sparql/), a
W3C standard to represent SPARQL queries as RDF triples. Another inspiring
web-based tool is ProLOD [51], which profiles a LOD source and provides useful
insights about the available contents and schemata. Both tools, however, carry
out their analyses on a local snapshot of the data, therefore are not directly
applicable to query SPARQL endpoints.

8. Conclusion

In this paper we have presented iMOLD, an approach to discover aggregation
hierarchies at exploration time to integrate the RDF cubes with situational data.
We assume these situational data come in the form of LOD in RDF format,
whose lack of concrete schema presents important challenges. Specifically, we
have identified five different aggregation patterns that go beyond the classical
FD approach for multidimensional design, and also consider the possibility of
defining hierarchies based on taxonomies and combinations of both.

38

Though iMOLD is a significant step towards integrating LOD into RDF
cubes, some relevant aspects still need to be considered. First of all, there
is a possibility that some hidden FDs are present in LOD; for instance, with
reference to our working example, each animal may be associated to its species
and family, but an explicit connection between species and families may be
missing in the source ontology. In this case, using algorithms for instance-
based discovery of approximate FDs (e.g., TANE [52]) would enable hierarchies
to be more accurately reconstructed. One more issue is related to automatic
recognition and management of cycles in source data, which can give rise either
to shared hierarchies (e.g., a building is located in a country and was designed by
an architect who was born in a country, but the two countries may be different)
or to convergences (e.g., a museum is located in a country and is managed by an
institution of the same country). Finally, while the description of the iMOLD
approach we gave is user-independent, to effectively support knowledge reuse
and collaboration in multi-user and multi-session environments the IO should
be extended to include also the metadata that relate each portion of hierarchy
with the users who are currently using it for their session. In this way, while
at each acquisition iteration the IO is updated with all the roll-up relationships
discovered for reuse purposes, during each session a user could create some sort
of “local” hierarchies either by selecting some levels and roll-up relationships
that were previously discovered, or by actively exploring some new areas of the
EOs.

Appendix

The glossary for the IO and the variables used in the SPARQL queries are
shown in Tables 11 and 12, respectively. In the following, an excerpt of the
WBLD cube used in the case study of Section 6.2 is shown in Turtle syntax.

PREFIXES
@prefix qb4o: <http://purl.org/qb4olap/cubes#>.
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix qb: <http://purl.org/linked-data/cube#>.
@prefix ex: <http://example.com/2017/10/03/09/40/11/cube#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix xmlns: <http://www.w3.org/2001/XMLSchema#>.
@prefix imold: <http://big.csr.unibo.it/imold#>.
@prefix dbo: <http://dbpedia.org/ontology/>.

DATASET
<http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> a qb:DataSet .

CUBE
<http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD> qb:structure ex:structure .
ex:structure a qb:DataStructureDefinition ;

qb:component [
qb:measure <http://purl.org/linked-data/sdmx/2009/measure#obsValue>;
qb4o:aggregateFunction qb4o:Sum] ;

qb:component [
qb4o:level <http://worldbank.270a.info/property/indicator>;
qb4o:cardinality qb4o:ManyToOne];

qb:component [
qb4o:level <http://purl.org/linked-data/sdmx/2009/dimension#refArea>;
qb4o:cardinality qb4o:ManyToOne];

39

Table 11: Glossary for the classes and properties in the Internal Ontology
URI Definition
qb4o:LevelProperty Defines a generic level (e.g., Day)

qb4o:HierarchyStep
Defines a roll-up relationship between two instances of
qb4o:LevelProperty

imold:I2M

(rdfs:domain qb4o:LevelProperty; rdfs:range rdfs:Class;
rdfs:subPropertyOf rdfs:seeAlso) Links an instance of
qb4o:LevelProperty to one or more classes in the EO; it
states that the members of the level are the instances of
the linked classes.

imold:L2M

(rdfs:domain qb4o:LevelProperty; rdfs:range rdfs:Datatype;
rdfs:subPropertyOf rdfs:seeAlso) Links an instance of
qb4o:LevelProperty to a datatype in the EO; it states that
the members of the level are the instances of the LOD-
type.

imold:S2M

(rdfs:domain qb4o:LevelProperty; rdfs:range rdfs:Class;
rdfs:subPropertyOf rdfs:seeAlso) Links an instance of
qb4o:LevelProperty to one or more classes in the EO; it
states that the members of the level are the subclasses of
the linked classes

imold:correspondsTo

(rdfs:domain qb4o:HierarchyStep; rdfs:range rdf:Property;
rdfs:subPropertyOf rdfs:seeAlso) Links a qb4o:HierarchyStep
to the corresponding property in the EO; it is also used
to link a qb4o:LevelMember to the corresponding owl:Thing
(either a class or an instance) in the EO

qb:component [
qb4o:level <http://purl.org/linked-data/sdmx/2009/dimension#refPeriod>;
qb4o:cardinality qb4o:ManyToOne].

DIMENSIONS (excerpt)
ex:dimension2 a qb:DimensionProperty;

qb4o:hasHierarchy ex:hierarchy5.
ex:hierarchy5 a qb4o:Hierarchy;

qb4o:hasLevel <http://purl.org/linked-data/sdmx/2009/dimension#refArea>;
qb4o:hasLevel <http://worldbank.270a.info/property/region>;

:hs3 a qb4o:HierarchyStep;
qb4o:inHierarchy ex:hierarchy5;
qb4o:childLevel <http://purl.org/linked-data/sdmx/2009/dimension#refArea>;
qb4o:parentLevel <http://worldbank.270a.info/property/region>;
qb4o:pcCardinality qb4o:ManyToOne.

Dimension levels (excerpt)
<http://purl.org/linked-data/sdmx/2009/dimension#refArea> a qb4o:LevelProperty.
<http://worldbank.270a.info/property/region> a qb4o:LevelProperty;

imold:I2M dbo:Country.

MEASURES (excerpt)
<http://purl.org/linked-data/sdmx/2009/measure#obsValue> a qb:MeasureProperty.

LEVEL MEMBERS (excerpt)
<http://worldbank.270a.info/classification/country/IT> a qb4o:LevelMember;

qb4o:memberOf <http://purl.org/linked-data/sdmx/2009/dimension#refArea>;
skos:broader <http://worldbank.270a.info/classification/income-level/OEC>;
skos:broader <http://worldbank.270a.info/classification/lending-type/LNX>;
skos:broader <http://worldbank.270a.info/classification/region/ECS>;
owl:sameAs <http://dbpedia.org/resource/Italy>.

<http://worldbank.270a.info/classification/region/ECS> a qb4o:LevelMember;
qb4o:memberOf <http://worldbank.270a.info/property/region>.

40

Table 12: Variables used in the SPARQL queries for detecting patterns
Name Type Pattern Value
?c input ass., gen. URI of c
?maxCard input ass. parameter maxCard
?offset input ass. query offset

?p output ass. a property linked to c
?class output ass. a class to which the instances o belong
?rightCard output ass. right cardinality of a
?leftCard output ass. left cardinality of a

?nO output ass.
range cardinality, i.e., number of distinct instances of
class involved in p

?nS output ass.
domain cardinality, i.e., number of distinct instances of c
involved in p

?type output gen. the superclass of c

?s auxiliary ass. an instance of c
?o auxiliary ass. an instance linked to s through p
?nProp auxiliary ass. number of properties p connecting s to o

OBSERVATIONS (excerpt)
<http://worldbank.270a.info/dataset/world-bank-indicators/CM.MKT.LCAP.CD/IT/2012>

a qb:Observation;
qb:dataSet <http://worldbank.270a.info/dataset/CM.MKT.LCAP.CD>;
<http://purl.org/linked-data/sdmx/2009/measure#obsValue> 4804526464008mlns:decimal;
<http://worldbank.270a.info/classification/indicator/>

<http://worldbank.270a.info/classification/indicator/CM.MKT.LCAP.CD>;
<http://purl.org/linked-data/sdmx/2009/dimension#refArea>

<http://worldbank.270a.info/classification/country/IT>;
<http://purl.org/linked-data/sdmx/2009/dimension#refPeriod>

<http://reference.data.gov.uk/id/year/2012>.

References

[1] V. Markl, Situational business intelligence, in: Proc. BIRTE, 2008.

[2] A. Abelló, J. Darmont, L. Etcheverry, M. Golfarelli, J. Mazón, F. Nau-
mann, T. B. Pedersen, S. Rizzi, J. Trujillo, P. Vassiliadis, G. Vossen, Fusion
cubes: Towards self-service business intelligence, IJDWM 9 (2013) 66–88.

[3] M. Stonebraker, What does ’big data’ mean?, http://cacm.acm.org/blogs,
2012.

[4] J. Eberius, M. Thiele, K. Braunschweig, W. Lehner, Drillbeyond: Enabling
business analysts to explore the web of open data, PVLDB 5 (2012) 1978–
1981.

[5] B. Kämpgen, S. Stadtmüller, A. Harth, Querying the global cube: Integra-
tion of multidimensional datasets from the web, in: Proc. EKAW, 2014,
pp. 250–265.

[6] A. Abelló, O. Romero, T. B. Pedersen, R. B. Llavori, V. Nebot, M. J. A.
Cabo, A. Simitsis, Using semantic web technologies for exploratory OLAP:
a survey, IEEE Trans. Knowl. Data Eng. 27 (2015) 571–588.

41

[7] C. Bizer, T. Heath, T. Berners-Lee, Linked data - the story so far, Int. J.
Semantic Web Inf. Syst. 5 (2009) 1–22.

[8] J. Varga, A. Vaisman, O. Romero, L. Etcheverry, T. Pedersen, C. Thomsen,
Dimensional enrichment of statistical linked open data, Web Semantics:
Science, Services and Agents on the World Wide Web 40 (2016).

[9] L. Etcheverry, A. Vaisman, QB4OLAP: A vocabulary for OLAP cubes on
the semantic web, in: Proc. COLD, Boston, USA, 2012.

[10] R. P. D. Nath, K. Hose, T. B. Pedersen, Towards a programmable semantic
extract-transform-load framework for semantic data warehouses, in: Proc.
DOLAP, Melbourne, Australia, 2015, pp. 15–24.

[11] T. Komamizu, T. Amagasa, H. Kitagawa, H-SPOOL: A SPARQL-based
ETL framework for OLAP over linked data with dimension hierarchy ex-
traction, IJWIS 12 (2016) 359–378.

[12] L. Etcheverry, A. A. Vaisman, Querying semantic web data cubes, in: Proc.
Alberto Mendelzon Int. Workshop on Foundations of Data Management,
CEUR-WS.org, Panama City, Panama, 2016.

[13] B. Kämpgen, A. Harth, No size fits all - running the star schema benchmark
with SPARQL and RDF aggregate views, in: Proc. ESWC, Montpellier,
France, 2013, pp. 290–304.

[14] N. Choi, I. Song, H. Han, A survey on ontology mapping, SIGMOD Record
35 (2006) 34–41.

[15] J. David, F. Guillet, H. Briand, Matching directories and OWL ontologies
with AROMA, in: Proc. CIKM, Arlington, USA, 2006, pp. 830–831.

[16] Z. Syed, T. Finin, Unsupervised techniques for discovering ontology ele-
ments from wikipedia article links, in: Proceedings of the NAACL HLT
2010 First International Workshop on Formalisms and Methodology for
Learning by Reading, Association for Computational Linguistics, 2010, pp.
78–86.

[17] J. Mazón, J. Lechtenbörger, J. Trujillo, A survey on summarizability issues
in multidimensional modeling, Data Knowl. Eng. 68 (2009) 1452–1469.

[18] C. Bizer, T. Heath, T. Berners-Lee, Linked data - the story so far, Int. J.
Semantic Web Inf. Syst. 5 (2009) 1–22.

[19] O. Romero, A. Abelló, A survey of multidimensional modeling methodolo-
gies, IJDWM 5 (2009) 1–23.

[20] M. Golfarelli, D. Maio, S. Rizzi, Conceptual design of data warehouses
from E/R schema, in: Proc. HICSS, Hawaii, USA, 1998, pp. 334–343.

42

[21] F. M. Suchanek, S. Abiteboul, P. Senellart, PARIS: Probabilistic alignment
of relations, instances, and schema, PVLDB 5 (2011) 157–168.

[22] M. R. Jensen, T. Holmgren, T. B. Pedersen, Discovering multidimensional
structure in relational data, in: Proc. DaWaK, 2004, pp. 138–148.

[23] N. Koudas, S. Sarawagi, D. Srivastava, Record linkage: similarity measures
and algorithms, in: Proc. SIGMOD, Chicago, Illinois, 2006, pp. 802–803.

[24] E. Lim, J. Srivastava, S. Prabhakar, J. Richardson, Entity identification in
database integration, Inf. Sci. 89 (1996) 1–38.

[25] A. Das, J. Gehrke, M. Riedewald, Approximate join processing over data
streams, in: Proc. SIGMOD, San Diego, California, 2003, pp. 40–51.

[26] J. Euzenat, P. Shvaiko, Ontology Matching, Second Edition, Springer, 2013.

[27] P. A. Bernstein, J. Madhavan, E. Rahm, Generic schema matching, ten
years later, PVLDB 4 (2011) 695–701.

[28] M. Golfarelli, S. Rizzi, Data Warehouse design: Modern principles and
methodologies, McGraw-Hill, 2009.

[29] M. Bouza, B. Elliot, L. Etcheverry, A. A. Vaisman, Publishing and querying
government multidimensional data using QB4OLAP, in: Proc. LA-WEB,
Minas Gerais, Brazil, 2014, pp. 82–90.

[30] V. Nebot, R. B. Llavori, Statistically-driven generation of multidimensional
analytical schemas from linked data, Knowl.-Based Syst. 110 (2016) 15–29.

[31] B. Vrdoljak, M. Banek, S. Rizzi, Designing web warehouses from XML
schemas, in: Proc. DaWaK, 2003, pp. 89–98.

[32] O. Romero, D. Calvanese, A. Abelló, M. Rodriguez-Muro, Discovering
functional dependencies for multidimensional design, in: Proc. DOLAP,
ACM, 2009, pp. 1–8.

[33] C. Hirsch, J. Hosking, J. Grundy, Interactive visualization tools for ex-
ploring the semantic graph of large knowledge spaces, in: Proc. VISSW,
volume 443, 2009.

[34] R. Mirizzi, A. Ragone, T. Di Noia, E. Di Sciascio, Semantic wonder cloud:
exploratory search in DBpedia, Springer, 2010.

[35] S. Castano, A. Ferrara, S. Montanelli, Thematic exploration of linked data,
in: Proc. VLDS, Seattle, WA, 2011, pp. 11–16.

[36] G. Tummarello, R. Cyganiak, M. Catasta, S. Danielczyk, R. Delbru,
S. Decker, Sig.ma: Live views on the web of data, Web Semantics: Science,
Services and Agents on the World Wide Web 8 (2010) 355–364.

43

[37] V. Nebot, R. B. Llavori, J. M. Pérez-Mart́ınez, M. J. Aramburu, T. B. Ped-
ersen, Multidimensional integrated ontologies: A framework for designing
semantic data warehouses, Journal on Data Semantics XIII 13 (2009) 1–36.

[38] S. Khouri, I. Boukhari, L. Bellatreche, E. Sardet, S. Jean, M. Baron,
Ontology-based structured web data warehouses for sustainable interop-
erability: requirement modeling, design methodology and tool, Computers
in Industry 63 (2012) 799–812.

[39] B. Kämpgen, S. O’Riain, A. Harth, Interacting with statistical linked data
via OLAP operations, in: Proc. of The Semantic Web Satellite Events,
2015, pp. 87–101.

[40] M. Meimaris, G. Papastefanatos, P. Vassiliadis, I. Anagnostopoulos, Effi-
cient computation of containment and complementarity in RDF data cubes,
in: Proc. EDBT, Bordeaux, France, 2016, pp. 281–292.

[41] D. Ibragimov, K. Hose, T. B. Pedersen, E. Zimányi, Towards exploratory
OLAP over linked open data - a case study, in: Proc. BIRTE, Riva del
Garda, Italy, 2014, pp. 114–132.

[42] I. F. Cruz, F. P. Antonelli, C. Stroe, Agreementmaker: Efficient matching
for large real-world schemas and ontologies, PVLDB 2 (2009) 1586–1589.

[43] S. Araújo, J. Hidders, D. Schwabe, A. P. de Vries, SERIMI - resource
description similarity, RDF instance matching and interlinking, in: Proc.
OM, Bonn, Germany, 2011.

[44] R. Touma, O. Romero, P. Jovanovic, Supporting data integration tasks
with semi-automatic ontology construction, in: Proc. DOLAP, Melbourne,
Australia, 2015, pp. 89–98.

[45] Y. R. Jean-Mary, E. P. Shironoshita, M. R. Kabuka, Ontology matching
with semantic verification, J. Web Sem. 7 (2009) 235–251.

[46] S. Kolahi, L. V. Lakshmanan, On approximating optimum repairs for
functional dependency violations, in: Proc. ICDT, St. Petersburg, Russia,
2009, pp. 53–62.

[47] H. Müller, J.-C. Freytag, Problems, methods, and challenges in compre-
hensive data cleansing, Professoren des Inst. Für Informatik, 2005.

[48] G. Beskales, I. F. Ilyas, L. Golab, A. Galiullin, Sampling from repairs of
conditional functional dependency violations, The VLDB Journal 23 (2014)
103–128.

[49] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, S. Auer, Qual-
ity assessment for linked data: A survey, Semantic Web 7 (2015) 63–93.

[50] C. Fürber, M. Hepp, Swiqa - a semantic web information quality assessment
framework, in: ECIS, volume 15, Helsinki, Finland, 2011, p. 19.

44

[51] C. Böhm, F. Naumann, Z. Abedjan, D. Fenz, T. Grütze, D. Hefenbrock,
M. Pohl, D. Sonnabend, Profiling linked open data with ProLOD, in: Proc.
ICDEW, Long Beach, California, 2010, pp. 175–178.

[52] Y. Huhtala, J. Kärkkäinen, P. Porkka, H. Toivonen, TANE: An efficient al-
gorithm for discovering functional and approximate dependencies, Comput.
J. 42 (1999) 100–111.

45

