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HIGHLIGHTS  

1) Evaluation of SWOT-like data under different flow conditions: high, low and mean flow 

2) Simulations show high performance of SWOT in sensing water surface elevation (-0.21 m) 

3) Water height errors for the high flow scenario are lower than in other flow conditions 

4) River orientation, topography and cross-track distance affect performance  
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ABSTRACT  

The Surface Water and Ocean Topography satellite mission (SWOT), scheduled for launch in 2021, will 

deliver two-dimensional observations of water surface heights for lakes, rivers wider than 100 m and oceans. 

Even though the scientific literature has highlighted several fields of application for the expected products, 

detailed simulations of the SWOT radar performance for a realistic river scenario have not been presented in 

the literature. Understanding the error of the most fundamental “raw” SWOT hydrology product is important 

in order to have a greater awareness about strengths and limits of the forthcoming satellite observations. This 

study focuses on a reach (~140 km in length) of the middle-lower portion of the Po River, in Northern Italy, 

and, to date, represents one of the few real-case analyses of the spatial patterns in water surface elevation 

accuracy expected from SWOT. The river stretch is characterized by a main channel varying from 100-500 

m in width and a large floodplain (up to 5 km) delimited by a system of major embankments. The simulation 

of the water surface along the Po River for different flow conditions (high, low and mean annual flows) is 

performed with inputs from a quasi-2D model implemented using detailed topographic and bathymetric 

information (LiDAR, 2 m resolution). By employing a simulator that mimics many SWOT satellite sensor 

characteristics and generates proxies of the remotely sensed hydrometric data, this study characterizes the 

spatial observations potentially provided by SWOT. We evaluate SWOT performance under different 

hydraulic conditions and assess possible effects of river embankments, river width, river topography and 

distance from the satellite ground track. Despite analyzing errors from the raw radar pixel cloud, which 

receives minimal processing, the present study highlights the promising potential of this Ka-band 

interferometer for measuring water surface elevations, with mean elevation errors of 0.1 cm and 21 cm for 

high and low flows, respectively. Results of the study characterize the expected performance of the 

upcoming SWOT mission and provide additional insights into potential applications of SWOT observations. 

 

KEYWORDS  

SWOT simulator; remote sensing; Ka-band interferometer; inland water surfaces; river monitoring; Po river  
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1 Introduction 

The monitoring of fresh water in rivers and lakes is fundamental for a large variety of scientific, societal and 

economic reasons. Neglecting water fluxes, the globally available freshwater represents a very small portion 

(3%) of the water on Earth. Of this, only 1.8% is available as superficial freshwater and directly exploitable 

for human needs (i.e. lakes and rivers), while the remaining part is locked in ice caps and glaciers (~68%) or 

in groundwater (~30%) (Prakash and Singh, 2016). Despite this limited amount and the essential role of 

surficial freshwater for humans and ecosystem services, its monitoring is still an open issue. In most 

countries, it is relatively sparsely monitored by means of ground-based stations, which measure the water 

surface height (referenced to some local datum) and estimate the river flows by means of rating curves. The 

result is a largely incomplete knowledge of river fluxes, with measurements provided by stream gauge 

networks of different density, accuracy and reliability over the globe (Biancamaria et al., 2010; Pavelsky et 

al., 2014; Wilson et al., 2015; Pena-Arancibia et al., 2015; Tomkins, 2014; Domeneghetti et al., 2012). The 

installation and maintenance costs required to sustain the monitoring networks constrain their installation 

mostly to highly-developed areas. For instance, the number of gauge locations in Europe and North America 

is nearly 50% of the overall number of stations available through the Global Runoff Data Centre (GRDC; 

2016 dataset), yet rivers in these continents only account for about 24% of the global runoff (Prakash and 

Singh, 2016). However, Central and South America have only 8% of the total number of gauging stations, 

compared to an amount of runoff that covers nearly the 25% of Earth’s freshwater flows (Prakash and Singh, 

2016; Shiklomanov and Rodda, 2003). In addition, when available, observation time series often suffer from 

data gaps, as well as national data sharing policies, or political conflicts in the case of trans-boundary basins, 

which may further limit the availability and use of streamflow data (Gleason & Hamdan, 2015; Hossain et 

al., 2014; Sneddon & Fox, 2012; Vörösmarty et al., 2001; Wolf et al., 1999). 

Although satellite data will probably never replace traditional ground-based gauges, remote sensing 

represents a valuable supplementary source of earth observation that is able to provide useful information for 

hydrological analysis and for river monitoring (e.g., Smith, 1997; Alsdorf et al., 2007; Smith and Pavelsky, 

2008; Durand et al., 2008; Michailovsky et al., 2013; Tourian et al., 2013; Andreadis and Schumann, 2014; 

Singh and Gupta, 2016; Schumann and Domeneghetti, 2016). In particular, satellite altimetry (e.g., 

ENVISAT, ERS, TOPEX/Poseidon, JASON 1 and 2) has been extensively used for the monitoring of river 
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and lakes (see e.g., Domeneghetti et al., 2014, 2015b; Jarihani et al., 2015), and for the estimation of river 

discharge (see e.g.; Birkinshaw et al., 2010; Getirana, 2010; Michailovsky et al., 2013; Tarpanelli et al., 

2013; Tourian et al., 2016). Despite the undeniable potential, the design of current satellite missions 

constrains the utility of such data: wide footprint resolution (from a few hundred to thousands of meters), 

limited ground track spatial resolution (in some cases as low as a few kilometers) and low revisit time (from 

10 to 35 days) represent the main limiting factors for current satellite data. In addition, these instruments 

provide only a single variable at a time (i.e., water elevation, width, etc.) among those required for a proper 

estimation of river flows and require appropriate calibration based on ground-based data (Pavelsky et al., 

2014).  

The forthcoming SWOT (Surface Water and Ocean Topography) mission (to be launched in 2021; 

https://swot.jpl.nasa.gov/) aims to overcome these limitations by providing two-dimensional and 

simultaneous observations of water surface elevation and water extent of inland water bodies (Durand et al., 

2010; Biancamaria et al., 2016).   

SWOT is the first surface water hydrology-dedicated satellite mission, jointly developed by NASA and 

CNES (the French space agency), in partnership with CSA and UKSA (Canadian and UK Space Agency, 

respectively). In addition to observing the ocean, SWOT is required to observe inland water bodies larger 

than 250 m x 250 m, with a goal of 10,000 m
2
, and rivers wider than 100 m. Although not considered a 

baseline mission requirement, the SWOT mission has a stated goal of observing rivers wider than 50 m and 

water bodies as small as 1 ha (see Biancamaria et al., 2016, for more details). SWOT will likely be able to 

produce groundbreaking results in many hydrological fields since it is expected to provide water extent, 

slope and water surface elevation for nearly 60% of basins larger than 50,000 km
2
 (Pavelsky et al., 2014). 

The Ka-band interferometer mounted on the satellite will ensure a spatially continuous two-dimensional 

observation of water elevation and inundation extent of water bodies located inside each of its two 50 km-

wide swaths.  

The SWOT product delivered to the end users will be the results of a post-processing averaging procedure 

over multiple raw pixels in order to minimize the effect of noise. The characteristics of these products, as 

well as the spatial resolution of river reaches to consider in order to ensure the best accuracy and 

effectiveness of these products, are still under study (Biancamaria et al., 2016; Frasson et al., 2017). 

https://swot.jpl.nasa.gov/
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Furthermore, since lower-level products will be provided on demand, future improvements to post-

processing procedures may help to achieve the goal of observing narrower rivers or smaller water bodies 

(Biancamaria et al., 2016). 

Table 1 summarizes the main science requirements of the mission (see e.g., Rodriguez, 2015; Biancamaria et 

al., 2016) and reports the expected accuracies for the satellite observables.  

 

Table 1. Main SWOT products requirements and goals (Rodriguez, 2015) 

Variable Condition Requirement 

Height accuracy 
Averaging area > 1 km

2
 

62.500 m
2 
< Averaging area<  1 km

2
 

< 10 cm 

< 25 cm 

Slope accuracy for a 10 km length of a 100 m wide river 1.7 cm/km 

Relative errors on 

water extents 

Water bodies > 10.000 m
2
 – rivers width >50 m 

Water bodies > 62.500 m
2
 – rivers width >100 m 

< 25% 

< 15% 

 

Biancamaria et al. (2015) have recently provided a clear and comprehensive overview of the hydrological 

applications that may benefit from SWOT’s observations. Most of the reported usages refer to satellite 

observables for the monitoring of lakes and reservoirs (e.g., Biancamaria et al., 2010), and for the 

characterization of river discharge (e.g., Durand et al., 2016, and references therein). However, other 

possible applications include the study of transboundary river management, estuaries, ice sheet topography 

and snow cover. Thus, the interest of the scientific community in SWOT products is high and so the analysis 

and understanding of the expected observation quality is important to its scientific applicability. 

In the majority of existing studies about SWOT mission potential, satellite observations are synthetically 

reproduced by corrupting appropriate observed or simulated data with random errors defined according to 

the science requirements (see Table 1; e.g., Wilson et al., 2015; Durand et al., 2008; Andreadis et al., 2007). 

This appears justified by the fact that these studies are mainly aimed at testing the suitability of SWOT data 

for different applications (i.e., water resources management, discharge estimation, etc.) using synthetic 

satellite data as a proxy with a given uncertainty, constant in space and time. Even though this approach may 

be reasonable in absence of real remotely sensed data, it may introduce some simplifications on estimating 

the expected SWOT products, neglecting for example possible inaccuracies related to the real river and 

floodplain topography, river orientation, layover effects, distance of the target to the satellite orbit, etc. 
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Bonnema et al. (2016) and Solander et al. (2016) tried to overcome this limitation by using SWOT 

observations from a satellite simulator developed at Caltech/NASA’s JPL (Jet Propulsion Laboratory) that 

mimics the instrument performance under real conditions (additional details on this are provided in Section 

3.3). These recent studies provide useful considerations regarding satellite potential on discharge estimation 

(Bonnena et al., 2016) and reservoir observation (Solander et a., 2016), but granting limited attention to the 

underlying characteristics of the data used. Frasson et al. (2017) have recently run the SWOT simulator over 

the Sacramento and the Po rivers, investigating the impact of different river-reach definition strategies on the 

estimation of reach-averaged hydrological variables (i.e. water height, width, slope and discharge). Although 

authors recognized the relevance of a possible interaction between the radar signal and the river surrounding 

topography (more details on that are provided in Section 3.3), performances and errors of simulator products 

are evaluated in terms of reach-averaged variables, and not at the detail of the most fundamental SWOT 

hydrology products. Therefore, further analyses are needed for a more comprehensive understanding of the 

value, potential and limitations of SWOT observations under actual/real conditions. This study investigates 

SWOT river observations and provides additional insights in relation to a real river topology under different 

flow conditions. 

In particular, it represents one of the few analyses to date in which the simulated water heights have error 

characteristics similar to those expected from SWOT, as produced by the SWOT hydrology simulator, and it 

complements the recent SWOT hydrology literature by studying different flow conditions (i.e., high, low and 

mean annual flow), which cover a possible range of water extents that may occur along the study area. In 

particular, the application of the SWOT simulator with very detailed topographic data and a river reach 

representative of actual mission measurement requirements enables: (i) the investigation of potential effects 

of near-river topography and river orientation, and their impact on topographic layover and water height 

measurements expected from SWOT;  (ii) the evaluation of satellite instrument performance on water height 

observations relative to the distance from the satellite nadir track. These objectives provide the structural 

sub-headings used in the following Methods (see Section 4), Results and Discussions (see Section 5) 

sections.  

Although this study does not reflect work on actual targeted mission product requirements (characteristics of 

the final SWOT products are still under definition; see e.g. Biancamaria et al., 2016; Frasson et al., 2017), 
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simulations and analyses performed will contribute to ongoing discussions regarding the definition of SWOT 

products, as part of ongoing science team projects before and after launch.  

 

2 Study area and available data 

Figure 1 introduces the study area considered for the analysis. The Po river is the largest river in Italy, with 

an overall basin of about 70 090 km
2
. It flows from West to East, crossing the Northern part of the country, 

with a total length of nearly 652 km. From the source (i.e. Mount Monviso, c.a. 2100 m above sea level 

(a.s.l.)) to the beginning of the river delta, in proximity of the Adriatic Sea, the Po river receives more than 

141 tributaries from the Apennines (Northern side) and the close Western and Southern sides of the Alps 

(Montanari et al., 2016). Along its course, it evolves from a typical alpine behavior to a single-channel river, 

passing through river reaches characterized by a braided bed, and winding course with scroll-bars and 

abandoned meanders. The red box in Figure 1 highlights the river reach of interest: the lower portion of the 

Po river (nearly 140 km), from the gauging station of Borgoforte to the beginning to the delta (see also 

Figure 2 for details). At this stage, the Po river has received the majority of its tributaries (conventionally the 

catchment outlet is the gauging station of Pontelagoscuro) and is characterized by a stable main channel, 

surrounded by large dike-protected floodplains, and constrained by a well-maintained embankment system.  

Flow conditions vary significantly from flood to drought seasons. Even though the wet section width may 

reach 2470 m in case of a flood event (the Po river reaches its widest extent in this portion), the wetted area 

may decrease to approximately 100 m during low flow periods. Table 2 summarizes morphological features 

that characterize the river portion, from which emerge a notable variability of cross sectional width in 

relation to flows (see also Table 3).  

The significance of the embankment system delimiting the river course is reflected by the overall cross-

section flow depth (i.e. the difference between embankment elevation and river thalweg), on average equal to 

18.8 m (see Table 2), and the embankment height over the floodplain, in some cases higher than 12 m. Those 

latter values highlight a peculiarity of the study area, that is the presence of high, well maintained 

embankments that are in some cases very close to the main channel. These conditions may represent a 

critical issue for remote monitoring (more details on this are reported in Section 3.3). In the light of its 

dimensions, hydrological regime and flow direction (perpendicular to satellite track), the Po river represents 
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an excellent test-case candidate for the upcoming SWOT mission. Because of the strong human impact on its 

morphology, the Po river might not be representative of more natural rivers where the water dynamics may 

differ significantly under high and low flows; however, the Po river does offer the opportunity to study the 

effect of embankments and other engineering features (such as storage areas) on the accuracy of the expected 

products.  

 

Table 2. Morphological features of the lowest portion of the Po river (red box in Figure 1); data into brackets 

specify the range of variability: max-min values, respectively. 

Characteristics 
Po river 

Borgoforte- Pontelagoscuro 

Average cross-section width (m) 890 (2485 - 360) 

Average main channel width (m) 425 (850 - 159) 

Average main channel depth (m) 12.8 (19.7 - 5.5) 

Average embankment height  

over floodplain (m) 
6.9 (12.8 - 4.4) 

Average embankment height  

over river thalweg (m) 
18.8 (25.2 – 11.2) 

Sinuosity index (-) 1.23 

 

 

Figure 1. Po river basin with the main river network and principal gauging station; upper right box shows 

the SWOT nadir orbits over Italy, while the red box identifies the study area. 
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2.1 Data availability 

In the light of the socio-economic importance of the Po Valley, the main river network is continuously 

monitored (see e.g., Montanari et al., 2017).  Red points in Figure 1 indicate some of the most important 

gauging stations along the river, where many hydrological variables (e.g. flow level, river flows, water 

turbidity, temperature, etc.) have been monitored and recorded since the 1920s, providing a robust and 

reliable knowledge of the hydrological and hydraulic regime of the river. In particular, daily average river 

flow data collected at the gauging station of Borgoforte (Figure 1) are used in this study for the identification 

of the hydraulic scenarios considered (Section 3.1). 

River topography and bathymetry were obtained from a 2 m resolution digital elevation model (LiDAR and 

multi-beam sonar surveys performed by the Po River Basin Authority (AdB-Po) in 2005), which ensures an 

accurate reconstruction of the river morphology (see Castellarin et al., 2011; Domeneghetti et al., 2015).  

Terrain elevations for the areas outside the embankment system have been extracted from the SRTM digital 

elevation model (Shuttle Radar Topography Mission, http://srtm.csi. cgiar.org). Given its limited spatial 

resolution (i.e., 90 m) and altimetric accuracy (errors in terms of ground elevation may vary from 4.7 m up to 

9 m; see e.g. Rodriguez et al., 2006; Schumann et al., 2014; Domeneghetti, 2016), SRTM is only used for 

the topography description of the area outside the river system, and not relevant to the actual analysis.   

 

2.2 SWOT coverage of the study area 

The SWOT mission is planned to last at least 3 years, during which the satellite will provide continuous 

observations over almost all continental areas from 78°N to 78°S (Biancamaria et al., 2016). The satellite has 

an orbit repeat period of nearly 21 days. At each overpass, the antennas will cover a 120 km swath, with a 

gap of 20 km at the orbit nadir.  

Figure 2 shows the SWOT overpass over the study area, highlighting the left and right swaths sensed from 

the instrument (yellow areas) and the no-data nadir gap. Referring to this orbit, the present study considers 

three distinct, non-consecutive in time, overpasses over the study area, which are representative of three 

different hydrological conditions (see Section 3.1 for more details). 
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Figure 2. Example of a SWOT orbital pass over the study area: satellite swath (yellow areas), Po river reach 

considered in the study (dark blue; see also red box in Figure 1), flowing from the gauging station (red 

points) of Borgoforte to the beginning of the river delta (yellow point). 
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3 Pre-processing analysis  

3.1 Hydrodynamic simulations of the Po River 

This analysis considers three different flow scenarios that are representative of the possible river 

hydrological regime: high, low and mean flow conditions. Discharge values associated with those scenarios 

(Table 3) represent the upstream boundary conditions of the quasi-two-dimensional (quasi-2D) model 

implemented for the simulation of river dynamics. As in previous studies carried out on the same reach (see 

e.g. Castellarin et al., 2009, 2011; Domeneghetti et al., 2014, 2015) this work refers to a quasi-2D 

schematization of the river system, in which the interconnections between the main channel and dike-

protected floodplains are reproduced through lateral structures that capture the real altimetric behavior of the 

minor embankments as detected by the LiDAR (Section 2.1). The reader is referred to those previous studies 

for more details on the model implementation, calibration and validation. Three distinct numerical 

simulations for high, low and mean flows have been run along the 140 km length river reach, imposing the 

uniform flow option at the downstream river section.  

Table 3 summarizes some results of the hydraulic simulations and reports the variability in terms of width of 

the wetted river portion for the three cases. The high irregularity of the river topography induces a significant 

variation in water extent among the considered scenarios. The mean water extent may vary in time by a 

factor of three between low and high flow scenarios, while even higher variability can be observed at some 

specific locations (i.e. the largest flood extent is nearly 8 times the minimum for high and 4 times the 

minimum for low flows). 

Figure 3 further highlights the river topography and the variability of the flood extent. Panel (a) refers to the 

high flow scenario and clearly shows the presence of lateral floodplains in the upstream part of the study 

area, which result in wetted areas much larger than those observed in the lower portion of the river. Panels 

(d), (e) and (f) in Figure 3 highlight the water level variability among the considered scenarios and clearly 

show the dimension of the embankment system, which may play a significant role when monitoring the river 

from satellites.  
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Table 3. Water extents for the considered hydraulic scenarios. 

 Discharge  
(m

3
/s) 

Max flow width  
(m) 

Mean flow width 

(m) 

Min flow width  
(m) 

High flow 11 260 2472 805 306 

Mean flow 1500 544 311 168 

Low flow 170 458 258 109 

 

3.2 Simulation data processing 

A number of input data are required for the SWOT simulator to produce a realistic proxy of SWOT 

observations. As further detailed in Section 3.3, a high-resolution, high-accuracy terrain model (DTM) that 

incorporates river channel bathymetry and important hydraulic structures such as embankments and levees is 

needed. Also required is a 2D water depth grid that is associated with that terrain model. While a LiDAR-

based DTM supplemented with SONAR batymetric profiles was readily available for this test case (see 

Section 2), a 2D water depth grid needed to be derived from the quasi-2D HEC-RAS output. The common 

procedure to transform the 1D or quasi-2D HEC-RAS simulation output, i.e. water surface elevation profiles, 

to an interpolated 2D gridded requires interpolation of the water elevations associated with all cross-sections 

to a regular gridded water height surface based on triangulation. The high-accuracy DTM can then be simply 

subtracted from this water surface grid to produce the desired water depth grid, which in this instance 

represented the input to the SWOT simulator along with the LiDAR DTM. The procedure adopted to 

reproduce the 2D water surface uses an interpolant based on the 2D Delaunay triangulation, which creates an 

irregular network where the surface always passes through the sample water elevation values imposed at the 

cross-section locations. A nearest neighbour interpolation is applied to create a regular grid based on this 

triangular irregular network (or TIN) surface.  

The comparison of the “custom-generated” grid with 1D model output and water depth grid generated by 

other tools suitable for this task (i.e., HEC-GeoRAS) provides good results, with root mean square errors and 

bias of a few centimeters. Since this accuracy is comparable to that achieved during calibration of the HEC-

RAS model with gauged water levels (see e.g., Castellarin et al., 2010), we concluded that the performance 

of the “custom” translation of the HEC-RAS water surface profiles onto the 2D LiDAR grid is more than 

adequate for the purpose of this study. Also, it is worth highlighting that the 2D water surfaces need to 
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provide a realistic representation of the river under different conditions rather than its perfect representation. 

This said, the former represents the synthetic realities that the SWOT simulator will observe.  

 

Figure 3. Input datasets for the SWOT simulator: 2D water depth coverage simulated for (a) high, (b) mean 

and (c) low  river flow conditions (blue scale) and 2 m resolution DEM for river bathymetry and flood prone 

areas (from brown to green). Red boxes identify the same area used to show the different flood extents for 

(d) high and (e) low  flow events, which may correspond to very different water depths at a given cross-

section (e.g., cross-section S55; panel (f)). 

  

3.3 SWOT Hydrology Simulator 

The synthetic SWOT data for three overpasses were produced with the SWOT Hydrology Simulator 

developed by JPL. The simulator uses a high-resolution digital elevation model of the water surface and the 

terrain contained inside the study area to produce a simulated interferogram of the scene. Initially, the 

interferogram is produced in radar coordinates; it contains no noise and is only affected by terrain layover, a 

situation when radar returns from multiple targets reach the antennas at the same time, becoming 

indistinguishable and leading to height biases (Fjørtoft et al., 2014). The presence of topographic elements 

that border the water surface (e.g. mountains or embankments) may determine the layover and affect the 
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observation accuracy. This interaction depends on the target position with respect to the satellite nadir (i.e., 

near or far range) and on the terrain slope, which should not be higher than the sensor look angle in order to 

prevent layover (0.6° or 3.9° for near and far range, respectively; Fjortfot et al., 2014; Biancamaria et al., 

2016). Figure 4 provides a sketch of the terrain layover due to the presence of  river embankments 

considering a sensing angle smaller than 30° (similar to the one adopted by SWOT; Fjortfot et al., 2014) as 

for near-nadir viewing system, distinguishing different water extents (high and low flow), and two different 

river geometry configurations. Looking at Figure 4, it is evident how the river orientation and the presence of 

lateral floodplains influence the potential layover, which is expected to be more relevant when a river is 

parallel to the satellite orbit (Frasson et al., 2017).  

 

Figure 4. Layover illustration for embanked river in case of incidence angles <<30° and in case of (a) large 

or (b) absent lateral floodplains (modified from Fjortfot et al., 2014). Dashed lines indicate constant range 

from the sensor; i.e. radar returns from the dashed line return to the sensor simultaneously.  

 

The simulator uses a water mask to distinguish between land and water pixels and estimates the returned 

power from the targets according to the chosen land-water contrast. Ulaby and Dobson (1989) found Ka-

band basckettering values, σ0, ranging from −5 to −10 dB for different land surfaces (i.e., rock, soil, and 

vegetation) in case of a 0°–5° incidence range, observing also a slowly falling trend with increasing 

incidence angle. Moller and Esteban-Fernandez (2015) further investigated backscattered signals from water 

surfaces showing σ0>10 dB for water bodies, even in case of limited wind speed. Fjortoft et al. (2014) found 

similar results and confirmed a difference in terms of Ka-band near-nadir backscattering coefficients of 

about 15 dB from land and water surfaces. In the light of these findings, we ran the simulation assuming a 

backscatter coefficient (σ0) of -5 dB for land and 10 dB for water. These values appear robust and reliable 

based on most recent findings of measurement campaigns made with KaRIn instruments, however, further 

research and sensitivity analysis, out of scope of the present work, would provide additional insights on 

SWOT observation. 
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Next, the simulator mimics the expected performance of the SWOT systems by adding correlated circular 

Gaussian noise to the interferogram. The Gaussian noise correlation depends on geometric and signal-to-

noise ratio decorrelations, which vary depending on whether the target contains water or land.  

The Ka-band sensor will observe water bodies with a ground pixel resolution of nearly 6 m in the direction 

of the satellite, and from 60 m to 10 m (near and far range, respectively) in the direction perpendicular to the 

satellite track (Biancamaria et al., 2010). Some spatial averaging is required to successfully geolocate the 

raw SWOT data, resulting in the definition of a pixel cloud, that is a collection of intrinsic pixels plotted with 

reference to a geographical coordinate system (i.e., WGS84) and holding information on the surface area and 

elevation. Radar returns from surface targets are in a quasi-regular grid with the aforementioned resolution 

when viewed in radar coordinates, i.e. range vs along-track position. However, after geolocation, a map of 

the target positions appears as a point cloud familiar to users of LiDAR data (Biancamaria et al., 2016; 

Frasson et al., 2017) when visualized in geographical coordinates.  The distortions that prevent a 1:1 

mapping from radar coordinates to geographical coordinates are due to topographic characteristics of the 

area (see Figure 4), as well as geolocation errors and possible distortions due to averaging procedures. 

As in the planned SWOT processing procedure, the noisy interferograms and returned power images are 

smoothed through a process called “multi-looking”, which averages the returned power of pixels found 

inside a window centered on the location of the target, reducing speckle at the cost of reduced spatial 

resolution [Cuchi, 1986; Ulaby et al., 2014]. The number of pixels over which multi-look averaging is 

performed is an important mission design parameter. The current plan is to release several data products with 

various levels of multi-looking. Here, we examine the so-called “raw” data product, where only 4 pixels in 

the along-track and 4 pixels in the cross-track directions are averaged. This is valuable as it represents a 

bounding, worst case, scenario for water surface elevation error. The SWOT hydrology simulator currently 

does not include errors associated with a number of phenomena that will affect product accuracy, including 

dry and wet tropospheric path delays, ionospheric path delays, and spacecraft roll uncertainty. 

According to the simulated multi-looked returned power, the simulator classifies targets into four groups: 

“land”, “land near water”, “water near land”, “interior water”. The first class contains land pixels with no 

water neighbors. The second class contains land pixels that have at least one neighbor classified as water.  
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The third class contains water pixels that have at least one neighbor classified as land. The last class contains 

water pixels that are completely surrounded by other water pixels (Frasson et al., 2017).  

The SWOT simulator uses the multi-looked interferograms for the generation of the geolocated pixel clouds 

and some of those simulated for this study are shown in Figures 6 and 7. 

 

4 Methods 

4.1 Water height error 

Referring to objective (i), that is the evaluation of the accuracy on water height measurements expected from 

the satellite sensor, we first analyze, separately, the “raw” product (namely, pixel cloud) generated by the 

SWOT simulator for the three considered hydraulic scenarios (high, low and mean flow conditions). 

Considering each pixel at a time, independently of its classification, the values observed by the satellite are 

compared to the elevations extracted, at the same location, from the digital surface models (DSMs) used as 

input (section 3.2), which represent the river geometry and the “true” water surface elevation reproduced 

with the hydraulic model (see section 3.2). The elevation of the free surface, both for the wet or dry area, is 

evaluated as the average elevation over an area of 25 m x 25 m around the considered point.  The error on 

water surface elevation,  , is calculated for each simulated pixel as: 

             (1) 

 

where       and      represent the average free-surface values expected from SWOT and provided as 

synthetic input, respectively. 

A second, finer analysis distinguishes among flooded and not flooded areas, thus considering only those 

points that are wet, or dry, in the synthetic simulations used as input for the simulator. Similarly, the same 

analysis is also performed distinguishing among the four pixel classifications described in section 3.3, thus 

evaluating the expected performances in relation to the nature of the observed surface (i.e. interior water, 

water near land edge, land near water edge and land).  

4.2 Spatial variability 

With reference to objective (ii) we investigate SWOT errors in relation to target distance from the satellite 

nadir track by evaluating the water height at different locations identified along the satellite overpass. Figure 
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5 shows a sketch of the river discretization adopted for the analysis. Starting from the satellite track (red line 

in Figure 5) the sensed swaths (left and right; see also Figure 2) are discretized by drawing lines parallel to 

the SWOT orbit spaced at 1 km along the river center line. In this study we refer to the surveyed river center 

line, but the Global River Width from Landsat (GRWL) database can also be used for applications on any 

target rivers (Allen and Pavelsky, 2015). 

The intersections of the river center line with lines running in parallel to the satellite ground track represent 

the nodes (black points), which are considered representative of the averaging areas (i.e., pink area in Figure 

5) and used to define the distance from the nadir. On average, each reference area covers a surface equal to 

62 000 m
2
, which corresponds to about the minimum extent of the water body for the science requirements 

(see Table 1). This said, it is worth highlighting here that science requirements (Rodriguez, 2015) specify the 

characteristics that the highest level of processed data (i.e., level-2 data product) should meet in terms of 

accuracy and resolution. However, those requirements are not given with respect to pixel clouds, which 

represent the basic unit of SWOT observation and which are considered in this study (see also Section 3.3). 

Reaching mission requirements stated in Table 1 will require the application of averaging procedures aimed 

at defining appropriate river stretches, which are still under definition (see also Frasson et al., 2017). 

Assuming these uncertainties and on-going research activities carried out within the mission team, this study 

is aimed at performing SWOT simulator to a real river topography under different flow conditions, providing 

additional insights on the value, potential and limitations of the future mission, rather than evaluating the 

achievement of the mission requirements. Although errors identified in this study are obtained by the 

averaging of multiple pixels, the methodology applied does not represent the one that will be applied to 

produce SWOT level-2 products. Thus, a direct comparison with mission requirements is not fair and may be 

misleading. 

The study refers to each averaging area at a time and evaluates the mean error (ME) and the mean absolute 

error (MAE), for all the pixel points observed by the simulator and falling within the bounding area, 

distinguishing their classification (i.e., interior water, water near land edge, land near water edge, land).  
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Figure 5. Schematic representation of the river discretization for the left swath;  

similar discretization has been adopted for the right swath.  

 

5 Results and Discussion 

5.1 Water height 

Figure 6 shows the overall simulated observations expected from SWOT under different flows. The red line 

represents the satellite orbit over the Po river, while the dashed lines indicate the nadir gap (20 km width), 

where no interferometry measurements are available (see also Figure 2). Panels (a) and (b) show the pixel 

clouds that reproduce the surface elevation sensed for high and low flow conditions, respectively. Panels (c) 

and (d) provide a zoom-in of the same area and clearly highlight the variability of the sensed surface 

elevation showing heights detected from the radar considering all point classifications (land, land near water 

edge, water near land edge and interior water). Zoomed-in areas in panels (c) and (d) allow the identification 

of the expected single pixel cloud obtained from the satellite.  
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Figure 6. Pixel clouds showing the surface elevation (m a.s.l.) sensed by SWOT under different flow 

conditions, (a) high  and (b) low flows, referring to all point classification; zoom in of panels (c) and (d) 

highlight the pixel clouds observed within a small river portion. 

 

Despite the fact that the water surface extent is reasonably apparent in both cases, there are also obvious 

errors in the classification of wet and dry pixels: within the wetted area there are many pixels characterized 

by heights that are significantly different from the average water surface elevation. Also, boundaries along 

the water edge and the surrounding topography are not sharp, and points with low heights are mixed with 

others that seem to reproduce the embankment structure. 

The position of the target area relative to the ground track (i.e. far or near range), as well as the river 

orientation and the slope of the surrounding topography (such as embankments) seem to lead to a spatial 

variability of the layover effects (Fjørtoft et al., 2014). This appears evident in both panels (c) and (d) where 

the presence of the embankments affects the accuracy of water surface observations differently for the left 

and right river sides. These errors seem to occur along the overall swath, although the errors are larger at the 

near and far range. In addition, points affected by layover will likely be characterized by high geolocation 
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error since the vertical and horizontal accuracies are both functions of the phase interferogram accuracy 

(Biancamaria et al., 2016).  

In order to better evaluate the error on water heights, Figure 7 reports the water surface elevation only for 

those pixels classified as interior water by the simulator. This is motivated by the fact that those pixels are 

expected to be surrounded by other wet pixels and are also less likely to be affected by layover. For the same 

reasons, pixels classified as water near land edge may contain mixed return signals from both wet and dry 

areas and are also omitted. Water surface elevations shown on Figure 7 present a realistic reproduction 

illustration of all the considered scenarios (i.e., high, mean and low flows). The wetted areas appear more 

clearly identified in all the cases, and the decreasing elevation of the water surface moving from upstream to 

downstream appears realistic. Despite these promising performances, some unrealistic water surface values 

are present in all the simulations. Such pixels are particularly evident for the high flow scenario (upper panel 

of Figure 7) and especially in the proximity of the left embankment. Errors are more frequent at the near and 

far range of the satellite orbit, with the only exception being the upstream river reach (far range of the left 

swaths), where extremely high and low height values are recorded in all scenarios. The amount of error in 

the simulated pixels is surprisingly higher for the high flow event compared to mean and low flow scenarios. 

This may be explained by a greater impact from the layover effect induced by the proximity of the water 

surface to the main embankment system (see Figure 4). Referring, for example, to the river cross-section 

reported in Figure 3, the contiguity of the water with the embankment crest, as well as its riverside slope 

(close to 30-35%; see Fjørtoft et al., 2014) and its orientation might accentuate the layover effect, producing 

biased observations in many cases. This would also explain why similar errors do not occur so frequently for 

lower flows, when the water surface is more distant from the surrounding structures.  
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Figure 7. Pixel clouds reproducing the water surface elevation (m a.s.l.) for points classified as interior water 

under different flow conditions: high, mean and low flows (upper, intermediate and lower panel, 

respectively). 

 

Table 4 reports mean errors (ME) and mean absolute errors (MAE) estimated for the overall swath assuming 

as reference areas the wet and dry extents taken from the input scenarios and considering all pixels that lie 

within.  

As expected, Ka-band is less precise on estimating the land surface and errors are much larger for dry areas 

than for water bodies. For water bodies, errors are in general quite low and are smaller at lower flows than at 

higher flows. This is somehow counterintuitive, since the water body becomes smaller for low flows. 

However, the higher error associated with an extreme event can be explained by significant layover effects 

associated with the scenario in which the water reaches the embankment (see Figure 4 and 6). The higher the 

layover, the higher the geolocation errors, with many pixel points sensed as land that actually fall within 

wetted areas.  
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Table 4. Mean error (and mean absolute error; m) of water surface elevations estimated considering the 

overall extent of dry and wet areas as identified in the input scenarios. 

 Dry area Wet area  

High flow 2.041 (6.79) -0.111 (1.89) 

Mean  flow -1.889 (7.15) 0.028 (2.58) 

Low flow -2.267 (7.17) 0.021 (2.57) 

 

 

Figure 8. Errors (m) in water surface elevation sensed by SWOT at points classified as interior water under 

different flow conditions: (a) high and (b) low flows (panels (c), (d), (e) and (f) are reported in Figure 9). 
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Figure 9. Errors (m) in water surface elevation at points classified as interior water under different flow 

condition: panels c) and e) refer to high flow, panels d) and f) refer to low flow (see boxes in Figure 8). 

 

Figure 8 reports errors,   (eq. (1)), on water surface elevation at each pixel cloud considering only interior 

water targets in case of high (a) and low (b) flow conditions. Figure 9 magnifies small regions shown in 

Figure 8, and it is apparent that many pixels have very small errors. At the same time, Figure 8 also 

highlights the presence of pixels with water heights very different from the real surface. Although some of 

those pixels are located in the middle of the wetted portion, the majority of the errors are located at water 

edges. Panels (c) and (e) highlight that overestimation typically occurs on the riverward edge of the 

embankment, becoming evident (errors as high as 15 m) when the orientation of the embankment system is 

aligned with the satellite track. Panels (d) and (f) confirm this behavior. In contrast, underestimation occurs 

on the landward side of the embankment, especially along the river reaches that flow parallel to the satellite 

orbit (see panels (e) and (d) in Figure 9).  

Table 5 lists the mean error (and MAE) in surface elevation (both water and land) by distinguishing different 

point classifications provided by the simulator. Interior water outperforms all other classifications, and, as 

expected, the larger the water extent, the lower the error value for interior water, which ranges from an 

average value of 0.16 cm to -21.8 cm passing from high to low flow scenarios. Even though a direct 

comparison with the mission requirements is not appropriate, results for the interior water classification fall 
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within the error range expected for the smaller observable water extents (Table 1). Differently from what 

happens with a water body, the electromagnetic waves that reach non-water areas will be backscattered in all 

directions, and therefore less energy is returned to the satellite antenna. As a consequence, the sensing of 

land elevation is less efficient, with errors that reach almost half a meter for low flow. The detection of the 

boundary between land and water is even less precise, and sensing of water near land edge and land near 

water edge results in very large errors under all the considered flow conditions. 

 

Table 5. Mean error (and mean absolute error; m) of surface elevations  

for different point classifications. 

 Point classification 

 All points Interior water  
Water near land 

edge 
Land near water 

edge 
Land 

High flow 0.040 (2.244)  -0.0016 (1.595) 0.378 (2.261)  0.773 (4.762) 0.059 (7.322) 

Mean flow -0.354 (3.498) -0.157 (1.496) -1.249 (2.323) -1.489 (5.062) -0.197 (7.377) 

Low flow -0.51 (3.64) -0.218 (1.507) -1.365 (2.421) -1.588 (5.186) -0.47 (7.22) 

 

For the points classified as interior water and water near land edge, Figure 10 reports the histograms of errors 

on water surface elevation for all considered flows. The error distributions appear quite symmetric and not 

biased, with exceptions of water near land edge for mean and low flows, where the underestimation is 

prevalent.  

 

   

Figure 10. Histograms of errors,  , on water surface elevation for the three scenarios considering points 

classified as interior water (blue bars) and water near land edge (brown bars). 
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5.2 Spatial variability of water height observations 

Referring to the swath discretization described in Section 3.4.2 (see also Figure 5), Figure 11 shows the 

comparison among simulated and observed water surface profiles for the three considered scenarios using a 

ten-point moving average filter of pixel clouds classified as interior water. The adoption of a moving average 

filter of about 10 km is in line with the river stretch discretization suitable for SWOT product provision 

(Frasson et al., 2017).  Figure 11 shows a good performance in reproducing the water surface profile in case 

of high flow, while larger errors (i.e. underestimation) are expected for mean and low flows, especially at 

near and far range.  

 
Figure 11. Water surface profiles for the three considered scenarios: (blue) Hec-Ras and (red) SWOT water 

profiles estimated considering an averaging area of 1 km
2
 (see section 4.2)  

and a ten-point moving average filter.  

 

Figure 12 reports the mean error (ME) calculated over each averaging area identified along the observed 

river stretch with a step of 1 km. Moving from the satellite track, panels in Figure 12 show the errors for 

pixel points classified as interior water (upper panel) and water near land edge (lower panel) for the three 

scenarios. For the points classified as interior water (upper panel of Figure 12), Figure 13 uses the same 

values and locates the errors along the river stretch in relation to their position and distance to the satellite 

track for the three events: upper, central and lower panel for high, mean and low flows, respectively. 

For high flow condition (red points in Figure 12), errors on interior water are limited along the overall swath, 

with an average value equal to 0.072 m and a percentage of errors lower than ± 25 cm equal to 57%, 63% 
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and 60% for minimum, mean and maximum flow, respectively. Significant errors emerge at the border of the 

satellite swath (far range) where the overestimation is prevalent (see also Figure 9, panel c)). In contrast, near 

range areas underestimate the water surface (Figure 13, upper panel), especially on the right side where the 

unfavorable river orientation and the lower river width exacerbate the inaccuracies. Errors are generally 

small (ɛ < ± 25 cm) in the central part of the satellite swath, in particular in the range 20-45 km from the 

satellite track (in both directions), where the error is on average 0.012 m. High flow is, in general, associated 

with errors lower than that of other scenarios (upper panel of Figure 12), with the only exception of near 

range locations (from 10 to 20 km) where all simulations show limited accuracies and provide similar results.  

Errors of interior water points in case of mean and low flows (blue and black, respectively) are not biased 

and quite similar: average error equals -0.16 m for mean flow and -0.2 m for low flow. For both these 

scenarios the performance of the radar is limited at the far range locations, resulting in errors that may be 

larger than ± 50 cm. However, errors are smaller at the near range, where in both cases they are lower, if not 

comparable, to those observed for high flow condition.  
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Figure 12. Mean error (ME) on water surface elevation for interior water (upper panel) and water near land 

edge (lower panel) points; points are shown in relation to the distance from the Nadir orbit  

(negative distances indicate the left swath). 

 

In the upper panel of Figure 12 and panels of Figure 13, there are specific locations where the errors in water 

surface elevation are high, independent of the river flow conditions. These areas are particularly evident in 

the left swath at a distance of around 20 km from the satellite ground track, where all scenarios present high 

errors. Looking at the river geometry at this location, the influence of the river orientation is apparent, with 

high errors that occur when the main river, and thus the embankment system, is parallel to the satellite track.   

However, with the exception of the case above, the influence of the river orientation does not appear so 

obvious. Even though the river orientation alone does not appear sufficient to justify some errors, its 
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combination with the width of the water body and the layover induced by the surrounding topography may 

explain these errors (see Figure 4), especially significant in the near range of the left swath (see Figures 12 

and 13, upper panels), with errors in case of high flow larger than those obtained for the other two scenarios.  

Panels of Figure 13 show the location of the ME of pixels classified as interior water. As expected, large 

errors are observed for all scenarios, with values up to a few meters, increasing from near range to far range. 

Different from previous results, the lower panel of Figure 12 shows some biases in all  scenarios. Since these 

pixels have at least one neighbour point classified as land (“water near land edge”), these biases are related to 

the interaction with the surrounding terrain, which affects the backscattered signal. The different behavior 

observed in case of high flow is likely related to the terrain layover that masks the lower target (i.e., water 

surface) and provides overestimation (see also Frasson et al., 2017). The occurrence of these biases for high 

flow events is more evident in the right swath than the left, and is probably due to the different river 

orientation, which makes the right swath more prone to terrain layover.    

 

 

Figure 13. ME for all the points classified as interior water for (a) high , (b) mean  

and (c) low flow conditions. 
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6 Conclusion 

This work evaluates the potential of the SWOT mission to accurately measure water surface elevations in 

rivers and provides additional insights concerning the performance of the satellite instrument under different 

flow conditions: high, low and mean flows. Satellite observations are modeled using the SWOT hydrology 

simulator over a ~140 km stretch of the Po river. The hydraulic conditions of the river are reproduced by 

means of a quasi-2D model built on high-accuracy topographic and bathymetric data, which allows 

investigation of the interaction of the radar signal with both water bodies and their surrounding topography.  

The analysis highlights the high performances of the Ka-band radar interferometer on sensing the water 

bodies (i.e., interior water) with a mean error, in the worst case scenario, equal to -0.21 m using unprocessed 

(“raw”) SWOT data (see Table 5). Although this study is not intended to directly verify the achievement of 

the mission requirements (the ultimate level of SWOT processed data are under definition), the results 

obtained represent a useful element of discussion that opens optimistic scenarios on the achievement of 

mission requirements. Because SWOT is not designed to accurately measure dry land, the identification of 

wet pixels located at the fringe of the wetted areas (i.e., water near land edge) is obviously quite inaccurate, 

with mean height errors exceeding 1 m in some cases (see Table 5). Errors for the high flow scenario are 

lower than those obtained for the other hydraulic conditions. Thus, as expected, the larger the water extent, 

the lower the error. Lower performances are expected for limited water extents, with the consequence that 

smaller rivers, or even low flow conditions in medium to large rivers, would be monitored with higher 

uncertainty. Unfortunately, these conditions (i.e., low flows and droughts) represent the most difficult 

hydrological regime to predict in case of absence of traditional observations (see e.g., Pugliese et al., 2014; 

Castellarin et al., 2013).  

The study also shows that the river orientation and the target location relative to the satellite orbit (near and 

far range) affect the accuracy. In all the hydrological scenarios simulated, the better performances (lower 

errors) are normally observed in the central part of the swath, between 20 and 45 km from the satellite 

ground track. Even though the river orientation alone does not seem to compromise the observation, its 

combination with layover induced by the surrounding topography (e.g., embankment or other obstacles) may 

result in higher inaccuracies.  
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This work provides one of the few available detailed analyses to date of SWOT radar pixel accuracy over a 

real river case study using different flow conditions. Conclusions and insights were possible due to the 

application of the SWOT simulator, which enables a deeper understanding of the satellite’s capabilities, and 

its potential applications, that cannot be inferred by referring, exclusively, to mission requirements or other 

“proxy” datasets. Despite using “raw”, unprocessed, simulated satellite data, and thus neglecting the 

averaging process that will be performed before the final SWOT products are released, the results obtained in 

terms of water surface elevation are promising. Results of the present work provide useful insights into 

SWOT observations, helping the scientific community to become more familiar with observations that can 

be expected from the satellite and become aware of limitations and error sources. The findings are also 

valuable for further development of SWOT data products and for the identification of river reaches for which 

we can expect to have more reliable observations.  
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