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Abstract	

Membrane	receptors	constitute	major	targets	for	pharmaceutical	intervention.	Drug	design	efforts	

rely	 on	 the	 identification	 of	 ligand	 binding	 poses.	 However,	 the	 limited	 experimental	 structural	

information	available	may	make	 this	 extremely	 challenging,	 especially	when	only	 low-resolution	

homology	models	are	accessible.	 In	 these	cases,	 the	predictions	may	be	 improved	by	molecular	

dynamics	 simulation	 approaches.	 Here	 we	 review	 recent	 developments	 of	 multiscale,	 hybrid	

molecular	 mechanics/coarse-grained	 (MM/CG)	 methods	 applied	 to	 membrane	 proteins.	 In	

particular,	 we	 focus	 on	 our	 in-house	 MM/CG	 approach.	 It	 is	 especially	 tailored	 for	 G-protein	

coupled	receptors,	the	largest	membrane	receptor	family	 in	humans.	We	show	that	our	MM/CG	

approach	is	able	to	capture	the	atomistic	details	of	the	receptor/ligand	binding	interactions,	while	

keeping	 the	 computational	 cost	 low	 by	 representing	 the	 protein	 frame	 and	 the	 membrane	

environment	 in	 a	 highly	 simplified	 manner.	 We	 close	 this	 review	 by	 discussing	 ongoing	

improvements	and	challenges	of	the	current	implementation	of	our	MM/CG	code.	

	

	



Research	highlights	

• Multiscale	methods	can	provide	insights	into	membrane	proteins.		

• Structural	information	on	human	G-protein	coupled	receptors	is	very	limited.	

• Docking	becomes	challenging	when	only	low-resolution	homology	models	are	available.	

• Our	molecular	mechanics/coarse	grained	approach	improves	ligand	pose	predictions.	

	

Keywords	

G-protein	coupled	receptor;	Chemosensory	receptor;	Bitter	taste	receptor;	Homology	modeling;	

Molecular	docking;	Molecular	mechanics/coarse-grained	simulations	

	

Abbreviations	

MD,	Molecular	dynamics,	MM/CG,	molecular	mechanics/coarse-grained,	GPCR,	G-protein	coupled	

receptor,	hGPCR,	human	GPCR,	TAS2R,	taste	2	receptor,	OR,	olfactory	receptor,	H-AdResS,	

Hamiltonian	Adaptive	Resolution	Scheme	

		 	



1.	Introduction	

Membrane	proteins	constitute	20%	of	the	human	genome	[1,	2].	They	are	of	utmost	importance	

for	pharmaceutical	applications,	as	they	are	the	target	of	about	60%	of	FDA	approved	drugs	[3].	

Thanks	to	increasingly	reliable	molecular	docking	programs	[4],	predictions	of	ligand	binding	poses	

to	 membrane	 proteins	 have	 tremendously	 improved	 over	 the	 last	 decade	 [5-8].	 Nonetheless,	

while	highly	 successful	when	experimental	 structural	 information	 is	used,	docking	methods	may	

have	limited	predictive	power	for	low-resolution	homology	models	[4,	9-13],	i.e.,	models	built	with	

sequence	 identity	of	35%	or	 lower	with	their	structural	 templates	 [2,	14-17].	 In	 these	cases,	 the	

modeled	 orientation	 of	 the	 side	 chains,	 an	 obvious	 key	 facet	 of	 ligand/receptor	 molecular	

recognition,	 may	 lack	 the	 sufficient	 accuracy	 to	 make	 structural	 predictions.	 In	 addition,	 most	

docking	algorithms	neglect	the	presence	of	explicit	solvent	[18],	even	though	water	molecules	may	

be	 crucial	 to	 stabilize	 the	 ligand	 in	 a	 variety	 of	membrane	 proteins,	 such	 as	 G-protein	 coupled	

receptors	[19,	20].	Furthermore,	the	current	molecular	docking	approaches	provide	docking	scores	

or	estimated	binding	free	energies	that	may	correlate	with	the	experimentally	measured	EC50	or	

IC50	values,	but	do	not	correspond	to	the	actual	binding	free	energies.		

The	 predictions	 may	 be	 improved	 by	 combining	 docking	 with	 molecular	 dynamics	 (MD)	

simulations	 [21-23].	 Unfortunately,	 these	 methods	 are	 still	 highly	 demanding	 in	 terms	 of	

resources,	 storage,	 and	 trajectory	 analysis,	 despite	 recent	 advances	 in	 hardware	 (such	 as	 the	

Anton	massively	parallel	supercomputer	[24,	25])	and	software	(such	as	the	GPU-based	algorithms	

[26-28]	 and	 MD-based	 enhanced	 sampling	 methods	 [29,	 30]).	 Moreover,	 the	 sampling	 of	 the	

conformational	space	of	the	binding	cavity	might	still	be	not	long	enough,	especially	when	starting	

from	 low-resolution	models.	Thus,	extensive	validation	by	comparison	with	experimental	data	 is	

needed	[31,	32].		

Coarse-grained	(CG)	potential-based	simulations	[33-36]	allow	to	sample	the	conformational	space	

of	 biomolecules	 [37-50],	 including	 membrane	 proteins	 [51-54],	 more	 efficiently.	 Indeed,	 the	

computational	cost	of	CG-based	MD	may	be	two	to	three	orders	of	magnitude	lower	than	that	of	

all-atom	 (AA)	 force	 field-based	 MD	 simulations	 [42].	 However,	 while	 CG-based	 MD	 provide	

information	 on	 large-scale	 phenomena,	 they	 obviously	 cannot	 describe	 the	 atomistic	 details	 of	

protein-ligand	 interactions.	 To	 address	 this	 issue,	 one	may	 use	 hybrid	multiscale	methods	 that	

combine	atomistic	molecular	mechanics	(MM)	with	CG	molecular	dynamics	[55-64].		



In	 the	case	of	membrane	proteins,	different	MM/CG	approaches	have	been	applied	 [56,	57,	65-

77].	They	differ	 in	 (i)	 their	partitioning	of	the	system	between	the	MM	and	CG	regions;	 (ii)	 their	

MM	and	CG	force	fields;	and	(iii)	the	coupling	scheme	used	to	combine	the	MM	and	CG	parts.	In	

the	 approach	 developed	 by	 Voth	 and	 coworkers,	 the	 MM-CG	 and	 CG-CG	 interactions	 are	

determined	 using	 the	 so-called	 multiscale	 CG	 method	 [56,	 57,	 65].	 It	 uses	 a	 force-matching	

procedure	to	determine	an	effective	pairwise	CG	force	field	directly	from	the	trajectory	and	force	

data	generated	by	all-atom	MD	simulations.	The	resulting	CG	force	field	is	used	for	the	lipids	and	

water	molecules,	whereas	the	AMBER	all-atom	force	field	is	used	for	the	protein.	The	same	MM	

force	field	is	used	by	Orsi	and	coworkers	[66,	67].	However,	they	use	different	CG	force	fields	for	

water	(i.e.,	soft	sticky	dipole	model	[78])	and	membrane	(in	which	some	of	the	lipid	CG	beads	are	

ellipsoidal	 and	 thus	 are	 treated	 with	 the	 Gay-Berne	 potential	 [79],	 instead	 of	 the	 traditional	

Lennard-Jones	 potential	 [80,	 81]).	 The	MM-CG	 interactions	 are	 treated	with	 the	usual	 potential	

terms,	but	they	are	scaled	by	two	constants	parameterized	on	the	basis	of	hydration	free	energy	

(for	 electrostatics)	 and	 transmembrane	 permeability	 (for	 the	 Lennard-Jones/Gay–Berne	 mixed	

potential)	calculations.	In	contrast,	electrostatic	interactions	are	modeled	explicitly	in	the	ELBA	CG	

force	field	used	by	Genheden	and	coworkers	[68],	and	the	MM-CG	interactions	are	fine-tuned	by	

introducing	 two	 empirical	 parameters	 scaling	 the	 non-bonded	 interactions	 between	 the	 MM	

protein	 (described	with	 the	 AMBER	 force	 field)	 and	 the	 CG	 beads	 (representing	 the	water	 and	

lipids).	Alternatively,	Marrink	and	coworkers	couple	the	MM	and	CG	levels	of	resolution	by	making	

use	 of	 massless	 virtual	 sites	 [69,	 70],	 and	 describe	 the	 MM	 region	 (i.e.,	 the	 protein)	 with	 the	

GROMOS	united-atom	force	field	[82-84],	and	the	CG	region	(i.e.,	lipid	and	water	molecules)	with	

the	MARTINI	force	field	[85].	Additionally,	this	approach	may	include	a	dielectric	screening	of	the	

MM–MM	interactions	due	to	the	charged	CG	particles	in	order	to	improve	electrostatics	[70].	The	

same	 MM	 and	 CG	 force	 fields	 (GROMOS	 and	 MARTINI,	 respectively)	 are	 used	 by	 Han	 and	

coworkers	 in	 the	 PACE	 (Protein	 in	 Atomistic	 details	 coupled	 with	 Coarse-grained	 Environment)	

force	 field	 [71-73],	 However,	 the	 MM-CG	 coupling	 in	 this	 approach	 is	 re-parameterized	 to	

reproduce	thermodynamic	experimental	quantities.			

In	the	aforementioned	methods,	the	protein	is	treated	at	the	MM	level,	whereas	the	lipids	are	CG	

and	 the	 solvent	 can	 be	 CG	 or	 dual	 resolution.	 However,	 if	 protein	 models	 are	 extremely	

approximate	(for	instance,	if	the	sequence	identity	with	the	templates	is	35%	or	lower),	one	may	

question	if	it	is	resonable	to	use	atomistic	descriptions	of	the	lipid	bilayer	or	even	of	the	complete	

protein.	Hence,	in	the	MM/CG	simulation	approach	developed	in	our	group	[74-76],	we	adopted	a	



dual-resolution	strategy	for	the	protein	and	an	implicit	representation	for	the	membrane	(Fig.	1).	

In	particular,	the	binding	site	and	the	surrounding	water	molecules	are	treated	using	an	atomistic	

force	field	(GROMOS),	while	the	rest	of	the	protein	is	described	at	the	CG	level	by	a	Gō-like	model	

[86].	 The	membrane	 is	modeled	 implicitly	 by	 using	wall	 potentials,	 instead	 of	 representing	 the	

lipids	 as	 CG	 beads.	 Therefore,	 this	 approach	 is	 particularly	 tailored	 to	 study	 ligand	 binding	 to	

membrane	proteins,	such	as	human	G-protein	coupled	receptors	(hGPCRs).1	Here	we	first	review	

the	theoretical	background	of	our	MM/CG	approach	(Section	2),	and	then	provide	an	overview	of	

recent	applications	to	the	hGPCR	membrane	protein	superfamily	(Section	3).	We	close	this	review	

by	 outlining	 some	 of	 the	 improvements	 currently	 being	 implemented	 in	 our	 MM/CG	 scheme	

(Section	4).	

	

Fig.	1.	Simulation	setup	of	our	Molecular	Mechanics/Coarse	Grained	(MM/CG)	approach.	The	MM,	I	(interfacial),	and	
CG	regions	are	indicated	with	yellow,	magenta,	and	blue	backgrounds,	respectively.	Five	walls	around	the	membrane	
protein	(here	a	human	G-protein	coupled	receptor,	hGPCR)	are	used	to	mimic	the	presence	of	a	 lipid	bilayer	and	to	
keep	the	water	in	place:	the	planar	walls	(1,	2),	the	hemispheric	walls	(3,	4)	and	the	membrane	wall	(5).	The	ligand	is	
located	in	the	center	of	the	atomistic	region	and	displayed	in	red	sticks.	

	

																																																													
1	 A	 similar	 approach	 has	 been	 developed	 very	 recently	 by	 Feig	 and	 coworkers	 [77],	 in	 which	 the	
CHARMM36	[87]	and	the	PRIMO	[49,	50,	88]	force	fields	are	combined	to	describe	the	MM	and	CG	parts	of	
the	protein,	respectively,	and	the	membrane	is	represented	with	the	heterogeneous	dielectric	generalized	
Born	(HDGB)	model	[89,	90].	However,	so	far	this	method	has	not	been	extensively	tested	for	membrane	
proteins.	



2.	Theoretical	background		

The	potential	energy	function	in	our	MM/CG	scheme	reads:	

𝑉 = 𝐸!! + 𝐸! + 𝐸!/!! + 𝐸!" + 𝐸!"/!	 	 	 	 	 	 	 (Eq.	1)	

where	EMM,	EI	and	ECG	are	the	potential	energies	of	the	atomistic	(MM)	region,	the	interface	(I)	and	

the	 coarse-grained	 (CG)	 region,	 respectively.	 EI/MM	 and	 ECG/I	 describe	 the	 interaction	 energies	

between	 the	 interface	 and	 the	 MM	 region	 and	 between	 the	 interface	 and	 the	 CG	 region,	

respectively.	EMM,	EI	and	EI/MM	have	the	same	form	as	in	the	GROMOS96	force	field	[91],whereas	

ECG	and	ECG/I	take	the	form	of	the	Gō-like	model	[86],	that	is:	

𝐸!" =
!
!

𝑘!(|𝑟! − 𝑟!!!|! − 𝑏!!!!! )!! + 𝑉!{1− exp[−𝐵!"(|𝑟! − 𝑟!|− 𝑏!")]}! 
!!! 	 	 (Eq.	2)	

In	equation	(2),	the	first	term	describes	the	interaction	between	consecutive	CG	beads	(Cα	atoms),	

where	𝑘!	 is	 the	 force	 constant	 and	𝑏!" 	 is	 the	 equilibrium	 distance	 corresponding	 to	 the	 native	

distance	between	CG	atoms.	Non-bonded	interactions	are	taken	into	account	in	the	second	term	

using	a	Morse-type	potential,	where	𝑉!=	5.3	kJ·mol-1	is	the	well	depth	and	𝐵!" = 5+ 6/𝑏!" 	nm−1	is	

its	modulating	coefficient.		ECG/I	takes	the	same	form	as	equation	(2),	except	that	the	summations	

run	 over	 the	 CG	 beads	 only	 in	ECG,	whereas	 for	ECG/I	 they	 run	 over	 both	 the	 CG	 beads	 and	 the	

interface	residues.	Hence,	the	term	ECG/I	ensures	the	integrity	of	the	protein	backbone	by	including	

bonded	 interactions	 between	 the	CG	 atoms	 and	 the	Cα	 atoms	 in	 the	 interface,	 as	well	 as	 non-

bonded	interactions	between	CG	atoms	and	the	Cα	and	Cβ	atoms	at	the	interface.	In	addition,	the	

thermal	 and	 viscous	 solvent	 effects	 acting	 on	 the	 system	 are	 mimicked	 by	 using	 the	 leap-frog	

stochastic	dynamics	with	reference	temperature	T =  300 K and	time	constant	τ =  0.4 ps [92].	

In	 the	MM	 region,	 the	 solvent	 is	 treated	 in	 an	 explicit	way	 using	 the	 SPC	water	model	 [93].	 In	

particular,	a	“droplet”	of	water	molecules	is	centered	around	the	MM	region	(see	Fig.	1).		

In	order	to	tailor	 this	approach	for	membrane	proteins,	 the	membrane	 is	 included	 in	an	 implicit	

way,	and	the	water	droplet	is	hemispherical,	so	it	does	not	protrude	inside	the	hydrophobic	core	

of	the	membrane	(see	Fig.	1).	The	representation	of	the	implicit	membrane	and	the	maintenance	

of	the	water	droplet	surrounding	the	ligand	binding	cavity	is	realized	in	practice	by	introducing	five	

walls	into	the	system	(Fig.	1)	[76]	described	by	five	corresponding	“wall”	functions	(Φ! , 𝑖 = 1… 5).	

A	level-set	approach	[94]	is	used	to	indicate	whether	𝑟	is	outside	of	the	protein/membrane	region	

(Φ(𝑟)! < 0),	 at	 the	 exact	 position	 of	 the	 wall	 (Φ(𝑟)! = 0)	 or	 inside	 the	 protein/membrane	

(Φ(𝑟)! >  0).	 The	 first	 two	walls	 (𝑖 = 1,2)	 are	 planar	walls	 that	 coincide	with	 the	 height	 of	 the	

heads	of	the	membrane	lipids	and	are	represented	by	



Φ!(𝑟) = ‖𝑟! − 𝑟!"‖	 	 for	𝑖 = 1, 2.	 	 	 	 	 	 	 (Eq.	3)	

In	 addition,	 two	 hemispheric	 walls	 (𝑖 = 3, 4)	 are	 used	 to	 cap	 the	 extracellular	 and	 cytoplasmic	

ends	of	the	protein,	which	are	described	by	the	functions	

Φ!(𝑟) = r! − ‖𝑟 − 𝜒‖		 for	𝑖 = 3, 4,	 	 	 	 	 	 	 (Eq.	4)	

which	are	defined	only	outside	the	membrane	region.	The	center	𝜒	of	each	hemisphere	is	located	

at	the	height	of	the	phospholipid	headgroups,	above	and	under	the	center	of	mass	of	the	protein.	

The	radius	𝑟! 	of	each	hemisphere	is	defined	such	that	the	protein	can	not	reach	the	wall	during	the	

simulation.	 The	 fifth	wall	 implicitly	 represents	 the	 hydrophobic	 region	 of	 the	membrane	 and	 is	

defined	by		

Φ!(𝑟) = 𝑟! −min!  ‖𝑟 − 𝑐!‖ ,		 	 	 	 	 	 	 	 (Eq.	5)	

where	 the	 distance	 between	 the	 point	 𝑟	 and	 the	 closest	 initial	 position	 of	 Cα	 atoms	 𝑐! 	 is	

computed,	and	r!	 is	 the	distance	between	the	Cα	atoms	and	the	wall	 is	set	 to	2.0	Å	by	default.	

Additionally,	a	smoothing	technique	[76]	is	applied	to	avoid	discontinuities	in	the	wall.	Boundary	

potentials	are	added	to	the	MM/CG	potential	energy	function	as	functions	of	the	distance	of	an	

atom	to	the	closest	wall	

𝑑(𝑟) = min!!!…!(‖Φ!(𝑟)‖),	 	 	 	 	 	 	 	 (Eq.	6)	

so	that:	

𝑉 𝑑 =
  !
!

           for 𝑑 = Φ! 𝑟  with 𝑖 = 1, 2, 3, 4

4𝜀 !
!

!
− !

!
                    for 𝑑 = Φ! 𝑟 .

  	 	 	 	 	 (Eq.	7)	

The	potential	𝑉	 is	purely	 repulsive	 for	walls	1	 to	4,	whereas	 for	wall	5	 it	 is	a	 softened	Lennard-

Jones-type	potential,	where	ε	is	the	depth	of	the	potential	well	and	σ	is	the	finite	distance	at	which	

the	potential	is	zero,	so	that	the	minimum	of	the	potential	is	at	𝑑 = 2𝜎 = 𝑟!.	Water,	Cα	atoms	of	

both	MM	and	CG	regions,	as	well	as	atoms	belonging	to	aromatic	residues	Phe,	Trp	and	Tyr	(the	

so-called	“anchor	residues”),	are	influenced	by	these	potentials.	The	membrane	wall	potential	(Eq.	

7,	 𝑖=5)	 constrains	 the	 shape	 of	 the	 protein	 while	 maintaining	 a	 good	 degree	 of	 flexibility.	

Nonetheless,	we	would	 like	 to	 note	 here	 that	 this	model	 neither	 allows	distinguishing	between	

different	types	of	bilayers	nor	 includes	electrostatics	(see	also	Section	5).	The	cut-off	distance	of	

the	potentials	is	set	to	15	Å	for	the	repelling	walls	(𝑖	=	1	to	4),	and	to	1.5𝑟!	for	the	membrane	wall	

(𝑖	 =	 5).	 The	 first	 value	 is	 chosen	 such	 that	 a	water	molecule	 cannot	 pass	 through	 this	 distance	

during	one	time	step,	while	the	second	value	guarantees	that	the	force	does	not	affect	the	MM	



region.	The	force	is	shifted	so	that	it	is	continuous	at	the	cut-off	distance	and	set	to	a	finite	value	

(1000	kJ	mol−1	nm−1)	near	the	wall	in	order	to	prevent	too	large	forces	acting	on	the	system.	The	

current	version	of	the	MM/CG	code	described	here	is	implemented	within	the	GROMACS	4.5	code	

[95-99].	

	

3.	Applications	to	human	G-protein	coupled	receptors		

The	 largest	membrane-bound	 receptor	 family	expressed	 in	humans	 is	 that	of	G-protein	 coupled	

receptors	(hGPCRs).	These	proteins	encompass	ca.	4%	of	the	protein-coding	human	genome	[100]	

and	 are	 of	 paramount	 importance	 for	 pharmaceutical	 intervention,	 as	 almost	 40%	 of	 currently	

marketed	 drugs	 target	 hGPCRs	 [3,	 101].	 They	 can	 be	 classified	 using	 two	 (overlapping)	 systems	

(Fig.	 2A),	 following	 either	 classes	A-F	 [102]	 or	 the	 group	 representatives	 (glutamate,	 rhodopsin,	

adhesion,	frizzled	and	secretin,	i.e.,	the	GRAFS	system)	[103].	All	GPCRs	share	a	common	scaffold	

[104]	 formed	by	 seven	 transmembrane	 (TM)	α-helices	 (TM1	 to	 TM7)	 connected	by	 intracellular	

and	extracellular	loops	(ICLs	and	ECLs,	respectively)	(Fig.	2B).	Their	tertiary	structure	resembles	a	

barrel,	with	the	seven	transmembrane	helices	forming	a	cavity	within	the	plasma	membrane	that	

serves	as	the	ligand-binding	domain,	often	covered	by	the	loop	ECL2	(see	Fig.	2B).		

	

Fig.	2A	Pie	diagram	showing	the	number	of	members	and	structures	of	human	GPCRs,	grouped	according	to	the	two	
most	commonly	used	classification	systems:	either	by	classes	A–F	[102]	or	by	their	prototypical	members	glutamate,	
rhodopsin,	 adhesion,	 frizzled	 and	 secretin	 (GRAFS)	 [103].	 The	 taste	 2	 receptors	 have	 been	 included	 in	 class	 A,	
following	phylogenetic	[144]	and	motif	conservation	[145]	analyses.	



	 	

Fig.	 2B	 Schematic	 representation	 of	 the	 basic	 structure	 of	 GPCRs.	 These	 membrane	 proteins	 comprise	 seven	
transmembrane	helices	(TM)	connected	by	intracellular	(ICL)	and	extracellular	(ECL)	loops.	
	

Experimental	structural	information	is	available	only	for	46	unique	receptor	structures	compared	

to	the	ca.	800	hGPCRs	(i.e.,	6%,	as	reported	in	GPCRdb	[105,	106]	as	of	Nov	15th,	2017).	Most	of	

them	(39)	belong	to	the	rhodopsin	(class	A)	family.	In	addition,	one	belonging	to	the	frizzled	(class	

F)	family	[107],	four	to	the	secretin	(class	B1)	family	[108,	109],	and	two	to	the	glutamate	(class	C)	

family	 [110-113]	 have	 been	 solved.	However,	 no	 structure	 is	 available	 for	 the	 ca.	 400	 olfactory	

receptors	(ORs)	and	the	25	taste	2	receptors	(TAS2Rs,	also	known	as	bitter	taste	receptors).	These	

so-called	chemosensory	receptors	constitute	about	half	of	the	whole	hGPCR	superfamily	and	are	

potential	novel	drug	targets	against	a	myriad	of	extranasal	and	extraoral	diseases	[31,	114-117].		

We	first	 investigated	the	predictive	power	of	MM/CG	simulations	on	a	class	A	hGPCR,	 for	which	

both	X-ray	structures	and	extensive	all-atom	MD	simulations	were	available,	 in	order	to	validate	

our	approach.	Our	test	system	was	the	human	β2-adrenergic	receptor	 (hβ2AR),	 in	complex	with	

either	 its	 inverse	 agonist	 S-Carazolol	 (S-Car)	 or	 its	 agonist	 R-Isoprenaline	 (R-Iso)	 [76].	 We	 first	

compared	 the	MM/CG	 simulations	with	 the	 all-atom	MD	 simulations	performed	by	Vanni	et	 al.	

[118].	Both	the	AA	and	the	MM/CG	simulations	were	carried	out	for	800	ns,	but	a	15-fold	speedup	

was	observed	with	 the	multiscale	approach	 [118].	 The	MM/CG-predicted	binding	poses	were	 in	

fair	agreement	with	the	corresponding	all-atom	poses	in	the	same	complex,	and	also	reproduced	

the	receptor/ligand	interactions	observed	in	the	crystal	structures	used	as	a	starting	point	of	both	

types	of	simulations.	Furthermore,	we	 investigated	the	predicting	power	of	the	MM/CG	method	

when	using	low-resolution	homology	models.	To	achieve	this	aim,	a	homology	model	of	the	same	

hβ2AR/S-Car	 complex	 was	 built	 using	 MODELLER	 [119,	 120]	 (using	 as	 template	 the	 crystal	

structure	of	squid	rhodopsin	[121],	which	displays	a	sequence	identity	of	only	20%	with	the	target	



hβ2AR)	 and	 HADDOCK	 (for	 docking	 S-Car)	 [122].	 After	 800	 ns	 of	 MM/CG	 simulation	 time,	 the	

obtained	hβ2AR	protein	structure	was	similar	to	the	X-ray	structure	(2	Å	RMSD	of	the	Cα	atoms),	

and	the	main	protein/ligand	interactions	observed	in	the	X-ray	structure	were	reproduced	as	well.		

These	encouraging	results	support	the	notion	that	this	MM/CG	approach	can	be	used	in	general	

for	 low-resolution	 ligand/hGPCR	 complexes.	 Hence,	 we	 applied	 the	 same	 procedure	 to	

chemosensory	 hGPCRs	 for	 which	 there	 is	 no	 experimental	 structural	 information,	 in	 particular	

bitter	taste	receptors.	Unfortunately,	the	average	sequence	identity	between	these	chemosensory	

hGPCR	 targets	 and	 the	 hGPCR	 templates	 with	 available	 experimental	 structural	 information	 is	

invariably	20%	or	lower	[23,	109],	making	bioinformatics/docking-based	structural	predictions	far	

from	 trivial	 [9,	 10,	 12,	 13,	 123-127].	 Indeed,	 predictions	 of	 agonist	 binding	 to	 bitter	 taste	 and	

olfactory	 receptors	using	a	variety	of	docking	approaches	 showed	 that	 their	predictive	power	 is	

very	 limited	 [23],	 as	 they	 are	 not	 able	 to	 capture	 the	 residues	 shown	 experimentally	 to	 be	

important	for	binding.	These	initial	binding	poses	can	be	further	refined	with	MD	simulations,	 in	

particular	using	our	MM/CG	approach,	resulting	in	a	dramatic	improvement	in	the	predictions	[23,	

128,	129].	

We	 first	 studied	 the	 human	 TAS2R38	 bitter	 taste	 receptor	 [130]	 in	 complex	 with	 its	 agonists	

phenylthiocarbamide	(PTC)	and	propylthiouracil	(PROP).	The	receptor	structure	was	built	by	multi-

template	 homology	modeling	 using	MODELLER	 [119,	 120].	 The	 sequence	 identity	with	 the	 best	

templates	 was	 about	 13%.	 Two	 receptor	 models	 were	 selected	 differing	 mainly	 in	 the	 highly	

variable	extracellular	loop	ECL2	(Fig.	2A).	To	generate	the	initial	ligand	poses,	the	two	models	were	

funneled	through	an	information-driven	docking	protocol	using	the	HADDOCK	program	[122].	The	

resulting	four	docking	models	underwent	μs-long	MM/CG	simulations	at	room	temperature	(300	

K).	 These	 MM/CG	 simulations	 identified	 the	 protein	 residues	 involved	 in	 interactions	 with	 the	

ligands,	in	agreement	with	the	previously	reported	experimental	mutagenesis	and	functional	data	

[130].	In	particular,	the	interacting	residues	are	the	same	as	those	whose	mutation	was	found	to	

affect	 the	 EC50	 values	 experimentally.	 The	 simulations	 also	 allowed	 to	 predict	 new	 binding	 site	

residues,	and	these	predictions	were	subsequently	verified	by	performing	additional	site-directed	

mutagenesis	experiments.	Altogether,	the	MM/CG	simulations	were	consistent	with	more	than	20	

site-directed	 mutagenesis	 and	 functional	 calcium	 imaging	 experiments	 of	 hTAS2R38	 [128].	

Moreover,	 they	 pointed	 out	 key	 interactions	 between	 hTAS2R38	 and	 its	 agonists,	 which	 were	

impossible	to	capture	by	using	the	standard	bioinformatics/docking	approach	only	[23,	128].	

	



The	MM/CG	approach	was	subsequently	used	to	investigate	the	binding	structural	determinants	in	

another	member	of	the	human	bitter	taste	receptor	family,	hTAS2R46,	in	complex	with	its	potent	

agonist	 strychnine	 (Fig.	 3)	 [129].	 The	 initial	model	 of	 the	 complex	was	built	 using	 the	GOMoDo	

web-server	[131],	which	combines	MODELLER	[119,	120]	and	HADDOCK	[122]	in	a	single	pipeline.	

Also	 in	 this	 case,	 the	 simulation	 results	 were	 consistent	 with	 more	 than	 20	 site-directed	

mutagenesis	experiments.	These	were	either	previously	reported	[132]	or	predicted	on	the	basis	

of	the	MM/CG	simulations	[129].	Interestingly,	the	mutagenesis	data	could	not	be	explained	in	full	

when	 considering	 only	 the	 protein-ligand	 interactions	 in	 the	 classical	 binding	 cavity	 of	 class	 A	

GPCRs	 (i.e.,	 the	 so-called	 orthosteric	 site).	 Some	 of	 the	 residues	 experimentally	 verified	 to	 be	

important	 for	 strychnine	 binding	 were	 located	 outside	 this	 classical	 site,	 more	 towards	 the	

extracellular	 part	 of	 the	 receptor.	 This	 conundrum	 was	 solved	 with	 the	 help	 of	 the	 MM/CG	

simulations,	 which	 showed	 that,	 besides	 the	 orthosteric	 site,	 the	 ligand	 can	 also	 sample	 a	

secondary	binding	cavity	located	in	the	extracellular	side,	referred	to	as	vestibular	site	[129].	This	

led	 to	 the	 conclusion	 that	 hTAS2R46	displays	 a	 two-site	 architecture,	most	 likely	 in	 order	 to	be	

able	 to	 discriminate	 the	 broad	 range	 of	 agonists	 recognized	 by	 this	 receptor.	 The	 identified	

vestibular	 binding	 site	 shares	 similarities	 with	 the	 extracellular	 allosteric	 binding	 site	 found	 in	

other	hGPCRs	[133-135].	

	

Fig.	3.	Close	up	of	the	orthosteric	ligand	binding	site	of	the	hTAS2R46	receptor	in	complex	with	its	agonist	strychnine	
[129].	 The	 atomistic	 part	 of	 the	 protein	 is	 displayed	 as	 blue	 ribbons	 and	 the	 ligand	 in	 green	 sticks;	 only	 the	water	
molecules	 closest	 to	 the	 ligand	 are	 shown	 for	 the	 sake	 of	 clarity.	 The	 red	 spheres	 represent	 the	 Cα	 atoms	 of	 the	
residues	interacting	with	the	ligand	in	the	MM/CG	simulations	[23],	which	coincide	with	the	residues	experimentally	
determined	to	be	involved	in	ligand	binding	by	mutagenesis	and	functional	data	[132].	
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4.	Perspectives	

Calculations	 are	now	underway	 for	 all	 chemosensory	hGPCRs	 for	which	 functional,	 site-directed	

mutagenesis	and	ligand	SAR	experiments	are	available	[23].	In	addition,	several	new	features	are	

being	 implemented	 in	 the	MM/CG	code	 in	order	 to	 increase	 the	 accuracy	of	 the	 ligand	binding	

pose	prediction.			

In	particular,	the	currently	implemented	united	atom	force	fields	(i.e.,	GROMOS43a1	[91]	for	the	

protein	 and	 PRODRG	 [136],	 optionally	 with	 RESP	 charges	 [137]	 for	 the	 ligand)	 are	 being	

complemented	by	 the	all-atom	AMBER14SB	 force	 field	 [138,	 139]	 for	 the	protein	 and	 the	GAFF	

force	field	 [140]	 for	 the	 ligand.	The	electric	 field	of	 the	protein	 frame,	not	present	 in	the	CG	Gō	

potential,	is	being	included	by	using	the	multipolar	reconstruction	approach	reported	in	Ref.	[141].	

This	may	refine	the	binding	pose	for	ligands	with	net	charge	or	dipole	moment,	as	well	as	improve	

the	orientation	of	the	water	network	inside	the	receptor.		

Furthermore,	 one	 may	 want	 to	 remove	 possible	 artifact	 on	 protein	 dynamics	 imposed	 by	 the	

upper	hemisphere	wall	 (see	Fig.	1),	 in	order	 to	enable	 rigorous	calculations	of	binding	affinities.	

We	are	addressing	this	 issue	by	 introducing	a	coarse-grained	water	reservoir	around	the	system	

that	exchanges	water	molecules	with	the	atomistic	region	[142],	using	the	so-called	Hamiltonian	

Adaptive	 Resolution	 Scheme	 (H-AdResS)	 [143].	 In	 its	 original	 implementation,	 the	 H-AdResS	

method	was	 used	 only	 for	 liquid	 water	 [143],	 but	 recently	 we	 investigated	 its	 reliability	 in	 the	

presence	 of	 proteins	 [142].	 Fully	 atomistic	 cytoplasmatic	 proteins	 and	 their	 surrounding	 water	

droplets	were	coupled	to	the	CG	water	reservoir,	so	that	the	MM	water	molecules	diffuse	to	and	

from	 CG	 waters	 by	 changing	 their	 resolution	 on-the-fly.	 Notably,	 the	 structure	 and	 dynamical	

properties	of	both	protein	and	water	were	well	 reproduced	 [142].	Within	our	current	efforts	 to	

improve	the	MM/CG	code,	we	are	now	combining	the	MM/CG	scheme	with	H-AdResS	by	replacing	

the	upper	hemisphere	capping	the	water	droplet	(Fig.	1)	with	the	dual-resolution	solvent.	This	will	

result	 in	 a	 grand-canonical	 ensemble	 for	 the	 MM/CG	 system,	 and	 thus	 in	 a	 correct	 statistical	

ensemble	for	calculating	ligand	binding	free	energies.		

As	 long-term	 future	 extensions	 of	 the	 code,	we	 are	 considering	 the	 application	 of	 our	MM/CG	

approach	to	other	non-GPCR	membrane	proteins.	This	will	require	the	implementation	of	further	

modifications	in	the	MM/CG	code	in	order	to	account	for	the	different	number	and	size	of	the	MM	

and	 CG	 regions.	 Specifically,	 in	 ion	 channels	 the	 process	 of	 interest	 may	 be	 ion	 binding	 and	

conduction,	and	thus	the	region	of	 interest	consists	of	the	residues	lining	the	channel	pore.	As	a	



result,	a	larger	number	of	atoms	needs	to	be	treated	atomistically,	which	may	pose	a	challenge	to	

the	 current	parallelization	of	 the	 code.	 In	 addition,	 some	 ion	 channels	 are	 composed	of	 several	

subunits,	but	the	current	version	of	our	coarse-graining	script	(used	to	set	up	the	MM/CG	system)	

does	 not	 allow	 a	 straightforward	 treatment	 of	 such	 oligomeric	 systems	 yet.	 Finally,	 the	 lack	 of	

electrostatics	of	the	Gō-like	model	might	affect	the	accuracy	of	the	ion	channel	simulations	more	

than	for	GPCRs.	Given	the	structural	diversity	of	non-GPCR	membrane	proteins,	the	list	of	possible	

improvements	 needed	 in	 our	 MM/CG	 code	 is	 not	 exhaustive	 and	 will	 has	 to	 be	 re-assessed	

specifically	for	each	type	of	system.	

In	conclusion,	we	anticipate	that	the	MM/CG	code	may	become	a	useful	and	rather	general	tool	to	

predict	 both	 the	 pose	 and	 the	 affinity	 of	 ligands	 binding	 to	 any	 membrane	 protein	 whose	

structural	 determinants	 are	 not	 experimentally	 known.	 So	 far,	 our	MM/CG	 approach	 has	 been	

tested	 extensively	 only	 for	 hGPCRs,	 since	 the	 current	 implementation	 of	 the	MM/CG	 code	 has	

been	tailored	to	study	ligand	binding	to	GPCRs.	As	of	today,	as	many	as	94%	of	the	total	number	of	

receptors	of	this	biologically	and	pharmacologically	fundamental	membrane	protein	class	do	not	

have	 an	 experimental	 structure	 available.	 Therefore,	we	 expect	 that	 further	 applications	 of	 the	

MM/CG	 code	 will	 be	 useful	 to	 the	 hGPCR	 community	 and	 that,	 in	 the	 future,	 our	 MM/CG	

approach	could	be	extended	to	other	non-GPCR	membrane	proteins.	
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