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Abstract

In this paper, the comparison between a sliding mode observer and a high-order sliding mode observer for hydraulic
actuators is presented considering different sets of available measurements, parametric uncertainties and model
nonlinearities. The friction acting on the hydraulic cylinder and a dead-zone in the valve have been taken into
account as uncertain disturbances acting on the system. For comparison purposes, the observation results are set
side by side with the ones provided by an extended Kalman filter. Several simulations have been conducted in order to
analyze the performance of the estimators, particularly with respect to the possibility of estimating the disturbances
and unknown dynamics acting on the system, also in presence of measurement noise. Finally, experimental results
are presented to validate the effectiveness of the proposed observers in real conditions.
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1. Introduction

Over the past decade, observers have been used to improve the reliability of systems allowing fault detection and
diagnostics [1, 2]. Observers can also be adopted for reducing the number of sensors or for replacing sensors that may
not be able to withstand some extreme environmental conditions [3]. Many interesting applications of observers in
industrial applications are related to hydraulic actuation systems [4, 5, 6, 7]. Indeed, complexity and hard working
conditions of hydraulic systems, due to harsh environment and high operative load, strongly exhort to adopt state
observers functional for prognostics, diagnostics and fast fault detection. Moreover, observers in hydraulic systems are
a valid alternative to the installation of sensors for feedback controllers [8]. The design of state observers should take
into account the nonlinearities of hydraulic actuators such as friction, pressure-flow rate relationship and dead-zone
that occurs in closed center valves when the land width is greater than the port width at neutral spool position [9].
Within this context, several approaches have been proposed in literature. These methods include linear approaches,
linearized model based techniques [10] and observers based on nonlinear models [11, 12]. Extended Kalman filter
(EKF) has been adopted to detect faults in hydraulic actuators [13] by means of the state estimation. The approach
is based on the local linearization of the nonlinear system and allows to closely track the state trajectories when
compared to the linear approach of the Kalman filter [14]. Halder [15] showed a procedure to detect and isolate the
sensor fault of an EHA system using conventional EKF. An unscented Kalman Filter based approach is presented
in [16]. In [17], a nonlinear approach based on the State-Dependent-Riccati-Equation (SDRE) has been proposed
together with experimental validation. State-based estimators based on the Kalman filter provide satisfactory results
when the mathematical model of the system under consideration is known, indeed, unmodelled effects and parametric
uncertainties are only managed by stochastic variables. Consequently, these approaches fail when it is not possible
to model in detail the system dynamics. In addition, Kalman filter based estimators generally require long and hard
calibration procedures. The high degree of parametric uncertainty that characterizes hydraulic actuators exhorts the
researchers to follow robust approaches for the state estimation [18, 19]. In [20], the authors proposed a method
based on robust filter structure, to compensate for the effect of the unmodelled dynamics, combined with on-line
parameter adaptation, to account for the parametric uncertainty. In [21], an adaptive sliding mode observer (SMO)
is proposed for the estimates of velocity and parameters of an electro-hydraulic system. Even if SMO is a valid tool
for managing uncertainties, it is well known that the undesirable chattering phenomenon will degrade the estimation
performance and then a low pass filter is required for the reconstruction of the uncertainties. Higher order sliding
mode observers (HSMOs) can reduce chattering achieving a better sliding accuracy [22]. The use of HSMOs for state
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Figure 1: Schematic diagram of the hydraulic actuation system.

and unknown input estimation in uncertain nonlinear systems has been discussed in [23, 24]. In [25], the authors
have presented a HSMO for the estimation of road adhesion coefficient under various surface conditions. In [26] a
HSMO is proposed to estimate exactly the observable states and asymptotically the unobservable ones in MIMO
nonlinear systems with unknown inputs and stable internal dynamics. In [27] a step-by-step higher order sliding
mode observers for MIMO nonlinear systems with unknown inputs is described. A structural matching condition,
commenting on the possibility to design such observers and to reconstruct the unknown inputs, is derived. In [28]
the estimation problem of a class of SISO nonlinear Lipschitz systems with non-matching uncertainty where the
distribution vector may include the unknown states is considered.

In this paper, the design of a SMO and a HSMO for hydraulic actuators is presented considering parametric
uncertainties and model nonlinearities. Unlike [21], a dead-zone function has been introduced in the hydraulic
actuator mathematical model in order to describe a realistic control valve. Simulations and experimental tests have
been conducted in order to analyze the performance of the estimators, particularly with respect to the possibility
of estimating the disturbances and unknown dynamics acting on the system, also in presence of measurement noise.
This feature is particularly useful for system diagnosis and fault detection. Moreover, comparisons with the largely
used EKF are illustrated.

The paper is organized as follows: a fifth-order nonlinear model of the hydraulic actuator is derived in Section 2
taking into account dead-zone, friction and the nonlinear pressure-flow rate relationship; Section 4 and 5 focus on the
SMO and on the HSMO, respectively. Section 6 shows the simulation results, while Sec. 7 reports the experiments
performed of the test platform. Finally, conclusions are drawn in Section 8.

2. System Description and Modeling

The hydraulic actuation system under consideration consists mostly of a double-rod hydraulic cylinder and a
proportional valve. The hydraulic cylinder is linked to a mass that moves on a linear guide (Fig. 1). For the
derivation of the mathematical model, some assumptions are made: the tank pressure PT is equal to zero, the fluid
properties are not dependent on the temperature, the piston areas and the chamber volumes are equal, the internal
and external fluid leakages are negligible. The time dependence of the variables is omitted in the equations for
brevity. The dynamics of the movable mass displacement y(t) is governed by:

mÿ + bẏ + Ff (ẏ) = ApPL (1)

where m is the mass of the load, b is the viscous friction coefficient, Ff (ẏ) is the friction force, Ap is the piston
area, PL(t) = PA(t)− PB(t) is the load pressure, PA(t) and PB(t) are the pressures inside the two chambers of the
cylinder. The friction force is represented by the following equations:

Ff (ẏ) =

{
Fc sign(ẏ) + µmg sign(ẏ), ẏ 6= 0

Z |Z| ≤ Fc0 + µ0mg, ẏ = 0
(2)

where Fc is the Coulomb friction force in the hydraulic actuator (assumed equal to its static value Fc0), µ is the
Coulomb friction coefficient of the linear guide (assumed equal to its static value µ0), g is the gravitational acceleration
and Z is the net tangential force that acts on the actuator when it is not moving [29]. It is worth noticing that the
friction model is used in simulation only for the evaluation of the observer performance. The load pressure dynamics
[30] is given by:

V0
2β
ṖL = −AP ẏ +QL (3)



where V0 is the volume of each chamber for the centered position of the piston, QL = (QA +QB)/2 is the load flow
and β is the effective Bulk modulus. The load flow depends on the supply pressure Ps, the load pressure PL and the
valve spool position in accordance with the following equation:

QL = Ψ(ve)
√
Ps − |PL| (4)

where ve(t) is the displacement signal of the spool valve and Ψ(ve) is a gain that depends on the geometry of the
adopted proportional valve. The analytical expression of Ψ(ve) can be assumed as:

Ψ(ve) =


kqp

[
ve +

(
kq0
kqp
− 1

)
vep

]
, ve > vep

kq0 ve, ven ≤ ve ≤ vep

kqn

[
ve +

(
kq0
kqn
− 1

)
ven

]
, ve < ven

(5)

where ven, vep, kq0, kqn, kqp are parameters that must be identified experimentally. Equation (5) represents an
asymmetric bilinear function of the valve spool position. If kq0 = kqp = kqn, the function Ψ(ve) reduces to a linear
proportional valve. If kq0 = 0, Ψ(ve) describes a dead-zone function, where ven and vep are the limits of the dead-zone
and kqn and kqp are the gains if ve is negative or positive respectively. The adoption of Ψ(ve) is particularly efficient
to describe a dead-zone function if an overlapped valve is adopted [31]. The proportional valve dynamics can be well
represented by the following second order differential equation [32]:

v̈e
ω2
nv

+
2 εv
ωnv

v̇e + ve = ke u+ ve0 (6)

where parameters ωnv and εv are the natural frequency and the damping ratio of the valve respectively, ve0 is the
spool position bias, ke is the input gain and u(t) is the valve command. Finally, the equations governing the dynamics
of the whole system (movable mass + hydraulic system) are:

mÿ + bẏ + Ff (ẏ) = ApPL
V0
2β
ṖL = −AP ẏ +QL

QL = Ψ(ve)
√
Ps − |PL|

v̈e = −ω2
nvve − 2 εv ωnv v̇e + ω2

nv(ke u+ ve0)

(7)

The developed fifth order model fully describes the nonlinear dynamical behavior of the hydraulic actuation system
and takes the nonlinear friction forces and the nonlinear flow rate distribution into account. The nonlinear system
eq. (7) can be written in the following form:

ÿ = − b

m
ẏ − Ff (ẏ)

m
+
Ap PL
m

ṖL = −2β AP
V0

ẏ +
2βΨ(ve)

√
Ps − |PL|

V0
v̈e = −ω2

nvve − 2 εv ωnv v̇e + ω2
nv(ke u+ ve0)

(8)

Note that the system (8), whose state vector is given by x(t) = [y(t) ẏ(t) PL(t) ve(t) v̇e(t)]
T , is nonlinear in the

state and affine in the input u(t).
Now, the nominal system dynamics, separated from the disturbances, and the measurement equations are rewrit-

ten as:

ẋ(t) = f(x(t)) + g(x(t))u(t) + ϕ(x(t), t) (9)

z(t) = h(x(t)) (10)

where z(t) is the output vector, f(x(t), u(t)), ϕ(x(t), t) and h(x(t)) are the state dynamics, the disturbance and the
output non-linear functions respectively, u(t) is the input vector. The nominal system dynamics is then:

f(x(t)) =



ẏ

− b

m
ẏ +

Ap PL
m

−2β AP
V0

ẏ +
2β kq ve

√
Ps − |PL|
V0

v̇e

−ω2
nvve − 2 εv ωnv v̇e


(11)



g(x(t)) =


0
0
0
0

ω2
nvke

 , h(x(t)) =

 y
PL
ve

 , ϕ(x(t), t) =



0

−Ff (ẏ)

m
+ ηy(t)

2β (Ψ(ve)− kq ve)
√
Ps − |PL|

V0
+ ηPL

(t)

0
ω2
nv ve0 + ηve(t)


(12)

where kq is the nominal valve constant. The function η(t) = [ηy(t), ηPL
(t), ηve(t)]T includes unmodelled dynamics

and parameter uncertainties.

3. Extended Kalman Filter

The derivation of the EKF is briefly recalled in the following lines, since it has been adopted for a comparative
analysis. The system and the measurement eqs. (9)-(10) can be generically rewritten in a discrete-time form which
also accounts for both process and measurement noise as:

xk = fk(xk−1, uk−1) + Lk φk (13)

zk = h(xk−1, uk−1) +Mk gk (14)

where fk(x, u) is the discrete-time state equation obtained by integrating eq. (9) from time tk−1 to time tk, xk−1 and
uk−1 are the values of the state and the input vectors at the time instant (k − 1), φk is the Gaussian white process
noise with covariance Qk, zk is the measurement vector at time k, and gk is the Gaussian white measurement noise
with covariance Rk. The EKF is conceptually based on two fundamental steps, namely prediction (denote by the
superscript −) and correction (denote by the superscript +). Denoting the generic variable estimates as (̂·), the state
prediction x̂−k and the error covariance prediction P−k as well as the state correction x̂+k and the error covariance
correction P+

k at the k-th time instant are given by:

x̂−k = fk(x̂+k−1, uk−1) (15)

P−k = Ak−1P
+
k−1A

T
k−1 + LkQkL

T
k (16)

Kk = P−k H
T
k (HkP

−
k H

T
k +MkRkM

T
k )−1 (17)

x̂+k = x̂−k +Kk[zk − h(x̂−k , uk)] (18)

P+
k = (I −KkHk)P−k (19)

with

Ak−1 =
∂fk(x̂, uk−1)

∂x̂

∣∣∣∣
x̂=x̂+

k−1

(20)

Hk =
∂h(x̂, uk−1)

∂x̂

∣∣∣∣
x̂=x̂−

k

(21)

where Kk is usually denoted as the Kalman gain. The following initializing conditions are applied to the state
estimates and to the error covariance:

x̂+0 = E[x0] (22)

P+
0 = E[(x0 − x̂+0 )(x0 − x̂+0 )T ] (23)

where E[·] is the expected value.

4. SMO Design

The design of an SMO for the system (9)-(10) has been carried out according to the methodology reported in
[33].

Considering the output vector components, it can be easily verified that the relative degree r of the outputs are:

ry = 2, rPL
= 1, rve = 2 (24)



It can be also verified that the sum of the output relative degrees is 5, i.e. the dimension of whole state space,
meaning that, given the output vector z(t), there are no hidden dynamics in the system. Moreover, the conditions
for the design of the SMO are also satisfied. Therefore the SMO is obtained by combining an optimal linear state
observer and a SMO

˙̂x = f(x̂) + g(x̂)u+ L(h(x̂)− z) + Γe (25)

where Γ = diag[η1 · · · η5] is the diagonal matrix of positive SMO gains and

e =


e1
e2
e3
e4
e5

 = sign


y − x̂1
η1e1

PL − x̂3
ve − x̂4
η4e4

 (26)

is the vector of SMO nonlinear error functions.
The linear observer gain, L, has been designed considering the linear part of the system (8) only and computing

the solution of the Continuous-time Algebraic Riccati Equation (CARE) with identity weight matrix. Therefore, the
equations of the considered linear system are

ẋ = Aox+Bou (27)

z = Cox (28)

where

Ao =


0 1 0 0 0

0 − b
m

Ap

m 0 0

0 − 2βAp

V0
0 0 0

0 0 0 0 1
0 0 0 −ω2

nv −2 εv ωnv

 , Bo = g(x), Co =

 1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

 (29)

Assuming that the state estimation error goes to zero, the estimation of the disturbance acting on the system
can be expressed as

ϕ̂(x, t) = ˙̂x− f(x̂)− g(x̂)u− L(h(x̂)− z)− Γe (30)

5. HSMO Design

The design of the HSMO for the system (8) exploits the approach proposed in [26]. Therefore, this HSMO also
presents the capability of unknown disturbance estimation. Given the properties about the output relative degrees
already discussed in the design of the SMO carried out in Sec. 4, it follows that the HSMO is able to provide, in
finite-time, an estimation for both the state and the external disturbances, i.e.

lim
t→∞

||x̂(t)− x(t)|| = 0 (31)

lim
t→∞

||ϕ̂(t)− ϕ(t)|| = 0 (32)

Since no hidden dynamics is present in the system, as described in Sec. 4, the system (8) can be rewritten in
Brunowsky canonical form as:

ξ̇ = Λξ + Φ(ξ) + ϕ(ξ) + g(ξ)u (33)

where ξ(t) = x̂(t) is the state estimation and

Λ =


0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 , Φ(ξ) =



0

− b

m
˙̂y +

Ap P̂L
m

−2β AP
V0

˙̂y +
2β kq v̂e

√
Ps − |P̂L|
V0

0

−ω2
nv v̂e − 2 εv ωnv ˙̂ve


, ϕ(x(t)) = ϕ(x(t), t)

∣∣∣
η(t)=[0, 0, 0]T

(34)
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Figure 2: Valve input voltage adopted for all the tests.

The derivative of the observer state ξ
{i}
j (t), ∀ i ∈ [1, 2, 3], ∀ j = 0, . . . , ri−1, being ri the relative degree of the i-th

output, can be estimated in finite-time from the measured outputs zi = hi(x) by means of a high-order sliding-mode
differentiator [34]:

j ∈ 0, . . . , ri − 1

v
{i}
−1 = zi

· · ·
σ̇
{i}
j = v

{i}
j

e
{i}
j = σ

{i}
j − v{i}j−1

v
{i}
j = −ν{i}j δ{i}1/(ri−j+1)

|e{i}j |
(ri−j)/(ri−j+1)sign(e

{i}
j ) + σ

{i}
j+1

· · ·
σ̇{i}ri = −ν{i}ri δ

{i}sign(e{i}ri )

(35)

where, according to [34],

ν
{1, 3}
j = [3, 1.5, 1.1], ν

{2}
j = [1.5, 1.1]

In eqs. (35), the coefficients δ{i} are scaling factors that can be use to adjust the convergence rate of the observer
[28]. It follows that

ξ
{i}
j+1 = σ

{i}
j , j ∈ 0, . . . , ri − 1, ξ̇{i}ri = σ{i}ri

Since finite-time exact estimates of ξ are available via the higher-order sliding-mode differentiator (35), an asymp-
totic estimation of the disturbance input vector can be provided by means of

ϕ̂(ξ, t) = ξ̇ − Λξ − Φ(ξ)− g(ξ)u (36)

6. Simulations

In order to evaluate the benefits of the proposed estimator, simulations have been carried out on the mathematical
model of the hydraulic actuator (8). The model parameters have been determined by means of an identification
procedure [31], and are reported in Tab. 1.

It is worth noting that, during the simulations, an asymmetric dead-zone in the valve has been considered in the
simulation model (vep = 0.43 V; ven = 0.21 V), and that different valve gains have been assumed in the positive
and negative working regions. Also a small valve leakage around the rest position has been considered in the
valve simulation model, while an ideal valve with no dead-zone has been assumed in the observer design. Another
important consideration related to the experimental implementation of the system is that no information is available
from the valve manufacturer about the relation between the valve output position signal and the effective valve spool



Table 1: Nominal parameters of the hydraulic actuator.

Description Symbol Unit Value
Piston mass m kg 440

Piston viscous friction coeff. b N s m−1 23555
Piston static friction force Fc0 N 950
Piston Coulomb friction force Fc N 950
Guide static friction coeff. µ0 0.01
Guide Coulomb friction coeff. µ 0.01
Piston area Ap m2 0.01
Centered camera volume V0 m3 0.004
Bulk modulus β Pa 1e9

Nominal valve gain kq m3/(s V Pa
1
2 ) 6e-7

dead-zone center gain kq0 m3/(s V Pa
1
2 ) 1e-12

dead-zone positive gain kqp m3/(s V Pa
1
2 ) 6.15e-7

dead-zone negative gain kqn m3/(s V Pa
1
2 ) 5.86e-7

Spool position bias ve0 V 0.01

Input gain ke 0.49

Valve natural frequency ωnv s−1 152
Valve damping coeff. εv 0.92
Supply pressure Ps Pa 6e6
Pos. valve dead-zone voltage vep V 0.43
Neg. valve dead-zone voltage ven V 0.21

position. Therefore, the valve spool position and velocity will be expressed in Volts to reflect the output position
signal provided by the valve itself.

Simulations have been performed in two different conditions, assuming perfect knowledge of the measured outputs
during the first test and considering the presence of measurement noise in the second. The performance of the SMO
and the HSMO will be evaluated through a comparison with the EKF estimator and the simulated state.

The simulated results have been obtained by means of open loop tests employing a sine wave as input, charac-
terized by a frequency low enough to better appreciate the effects of the dead-zone. For all the tests reported in this
paper we assumed u(t) = 2 sin(π t), as seen in Fig. 2. The parameters adopted for the observers are the same of the
hydraulic actuator model reported in Tab. 1, but the piston friction, the valve dead-zone and the valve spool bias
have been neglected in the observer design. Therefore, these quantities, i.e. the piston friction, the valve dead-zone
and the valve spool bias, are considered as unknown disturbance inputs to be reconstructed by the observers.

6.1. Simulation with ideal measurements

The first simulation has been carried out by assuming perfect knowledge of the outputs (i.e. no measurement
noise) to evaluate the capabilities of the three observers, the EKF, the SMO and the HSMO, to correctly estimate
the system state as well as the disturbances, i.e. the friction acting on the hydraulic cylinder, the valve dead-zone
and its bias.

Even if no noise is assumed to act on the system during this test, the EKF has been implemented assuming the
process noise covariance matrix Lk and the output noise covariance matrix Mk equal to the identity matrix of proper
dimensions. The EKF has been selected since it represents a well-known reference in the field of state estimation.
Moreover, the EKF parameters are the same adopted in [17] to allow a direct comparison between the results and
then to validate the proposed approach.

The SMO gains have been selected according to the design procedure reported in [27] and [33] and trying to achieve
a good trade-off between observer estimation accuracy and limited estimation chattering due to the switching nature
of the observer. The gains adopted during the simulations are reported in Tab. 2. On the other hand, the scaling
factors of the HSMO are reported in Tab. 3 and they have been designed as a suitable trade-off between estimation
error convergence speed and sensitivity to measurement noise. Both for the SMO and the HSMO, several parameters
sets have been tested in simulation to find the aforementioned observer performance trade-off, but for the sake of
brevity the response provided by the selected parameter set are reported only for the two observers. It is worth
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Figure 3: Piston position, velocity and friction during simulation (black), data estimated by the EKF (blue), by the SMO (red) and by
the HSMO (green).

noting that this is also one of the main purpose of simulations, i.e. to ease the test of different parameter sets and
find a suitable compromise between conflicting design specifications limiting time consuming experimental tests.

The simulation results in case of no noise in the measurements are shown in Fig. 3, 4 and 5. In particular,
Fig. 3 reports the piston position, velocity and friction. More in detail, Fig. 3(a) shows the simulated and estimated
piston position by the EKF, the SMO and the HSMO together with the comparison between the estimation errors,
to highlight the very large error of the EKF with respect to the SMO and the HSMO. The bottom plot reports the
comparison between the estimation error of the the SMO and the HSMO only, to highlight the better performance
of the HSMO with respect to the SMO.

Figure 3(b) reports the simulated and estimated piston velocity by the three observers, as well as the comparison
between the estimation errors to highlight the very large error of the EKF with respect to the SMO and the HSMO.
In the bottom plot, the comparison between the estimation error of the SMO and the HSMO are reported to highlight
the better performance of the HSMO with respect to the SMO.

Table 2: Gains of the SMO.

η1 η2 η3 η4 η5
20 45.5 60000 0.2 2
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(b) Valve dead-zone. Top plot: valve dead-zone during
the simulation and the one estimated by the SMO and the
HSMO. Bottom plot: comparison between the estimation
error of the SMO and the HSMO.

Figure 4: Pressure inside the piston chamber and valve dead-zone during simulation (black) and estimated by the EKF (blue), by the
SMO (red) and by the HSMO (green).

Finally, Fig. 3(c) shows the friction acting on the piston during the simulation and the one estimated by the
SMO and the HSMO (the EKF does not provide any disturbance estimation). In particular, Fig. 3(c) reports the
friction acting on the piston during the simulation and the one estimated by the SMO and the HSMO (note that the
friction estimated by the SMO is almost zero). The comparison between the estimation error of the the SMO and
the HSMO is reported in the bottom plot to highlight the fact that the SMO does not provide a reliable estimation
of the piston friction.

The reason why the SMO shows a poor friction estimation can be ascribed to the fact that, differently from the
HSMO that is based on the concept of high-order differentiator [34], the SMO state estimation dynamics cannot
guarantee a proper relation between the different components of the state vector. This in turn results into poor and
strongly state dependent disturbance estimation performance.

The pressure in the piston chamber and the effect of the valve dead-zone are reported in Fig. 4. In particular,
Fig. 4(a) reports the simulated and estimated piston pressure and the comparison between the estimation error of
the EKF, the SMO and the HSMO, to highlight the very large error of the EKF with respect to the SMO and the
HSMO. In the bottom plot, the comparison between the estimation error of the the SMO and the HSMO only is
reported, to highlight the better performance of the HSMO with respect to the SMO.

For what related to the valve dead-zone, Fig. 4(b) reports the valve dead-zone during the simulation and the
one estimated by the SMO and the HSMO in the top plot, while in the bottom plot, the comparison between the
estimation error of the SMO and the HSMO, to highlight the fact that the SMO does not provide a reliable estimation
of the piston friction, while the HSMO estimation error is close to zero.

The simulation data related to the valve are reported in Fig. 5. In particular, Fig. 5(a) shows the spool position
and its estimation together with the comparison between the estimation errors of the EKF, the SMO and the HSMO,
to highlight the very large error of the EKF with respect to the SMO and the HSMO.

Figure 5(b) reports the spool velocity and the one estimated by the EKF, the SMO and the HSMO in the top
plot, while in the bottom plot, the comparison between the estimation error of the EKF, the SMO and the HSMO,
in this case the three observer performance are comparable.

Finally, Fig. 5(c) shows the valve input bias during the simulation and the one estimated by the SMO and the
HSMO (the EKF does not provide any disturbance estimation). In particular, Fig. 3(c) reports the input bias of
the valve during the simulation and the one estimated by the SMO and the HSMO together with the comparison
between their estimation errors, to highlight the fact that the SMO does not provide a reliable estimation of the

Table 3: Scaling coefficients of the HSMO.

δ{1} δ{1} δ{1}

220 60000 1000
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(c) Valve input bias. Top plot: valve input bias during
the simulation and the one estimated by the SMO and the
HSMO. Bottom plot: comparison between the estimation
error of the SMO and the HSMO.

Figure 5: Valve position, velocity and input bias during simulation (black) and estimated by the EKF (blue), by the SMO (red) and by
the HSMO (green).

valve input bias.
To summarize, the performance of the designed observers in terms RMS value of the state and disturbance

estimation errors are reported in Tab. 4 and 5 respectively. These data confirm that the HSMO performs better than
the other observers in almost all the cases.

6.2. Simulation with noise in the measurements

The second simulation has been carried out to evaluate the capabilities of the three observers in case the output
measurements are affected by noise. The parameters of the noise acting on each output are reported in Tab. 6.

As in the previous case, the EKF, the SMO and the HSMO estimate the system state as well as the disturbances,
i.e. the friction acting on the hydraulic cylinder, the valve dead-zone and its bias.

Table 4: RMS value of the state estimation errors.

y ẏ PL ve v̇e

EKF 1.6503e-6 2.2145e-4 278.22 2.9039e-5 4.0586e-4

SMO 2.8377e-10 1.1495e-6 25.950 1.5413e-7 2.4494e-6

HSMO 2.1673e-10 5.4116e-7 0.6121 4.3315e-6 7.1518e-4
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Figure 6: Piston position, velocity and friction during simulation in case of noise in the measurements (black), data estimated by the
EKF (blue), by the SMO (red) and by the HSMO (green).

Also in this case, the EKF has been implemented assuming the process noise covariance matrix Lk and the output
noise covariance matrix Mk equal to the identity matrix on opportune dimension. The SMO gains and HSMO scaling
factors are the same adopted during the previous simulation tests and they are reported in Tab. 2 and 3 respectively.

The results of this simulation are shown in Fig. 6, 7 and 8. In particular,Fig. 6 reports the piston position,
velocity and friction. More in detail, Fig. 6(a) shows the simulated piston position and the position estimated by the
EKF, the SMO and the HSMO, together with the comparison between the estimation errors of the three observers.
In this case, it is possible to see from the plot of the piston position estimation error reported in the bottom plot of
Fig. 6(a) that the EKF and the HSMO perform similarly, while the SMO is much more sensitive to the measurement
noise.

Figure 6(b) reports the simulated piston velocity and the three observer estimations, as well as the comparison
between their estimation errors, to highlight the very large error of the EKF with respect to the SMO and the HSMO.
From the piston velocity estimation error reported in the bottom plot of Fig. 6(b) it can be seen that the EKF is
less sensitive to the noise, but in general the HSMO provides a better estimation of the state.

Table 5: RMS value of the disturbance estimation errors.

Piston Friction Load Pressure Valve Bias

SMO 11.067 8.4590e-7 0.0016

HSMO 1.6026 9.5660e-9 1.3839e-5
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(b) Valve dead-zone. Top plot: valve dead-zone during
the simulation and the one estimated by the SMO and the
HSMO. Bottom plot: comparison between the estimation
error of the SMO and the HSMO.

Figure 7: Pressure inside the piston chamber and valve dead-zone during simulation in case of noise in the measurements (black) and
estimated by the EKF (blue), by the SMO (red) and by the HSMO (green).

Finally, Fig. 6(c) shows the friction acting on the piston during the simulation and the one estimated by the SMO
and the HSMO (the EKF does not provide any disturbance estimation). In the top plot, the friction acting on the
piston during the simulation and the one estimated by the SMO and the HSMO is reported (note that the friction
estimated by the SMO is almost zero). The bottom plot shows the comparison between the estimation error of the
the SMO and the HSMO, to highlight the fact that the SMO does not provide a reliable estimation of the piston
friction while, despite the noise, the HSMO is still able to provide a reliable disturbance estimation.

The pressure in the piston chamber and the effect of the valve dead-zone are reported in Fig. 7. Figure 7(a)
reports, in the top plot, the simulated piston pressure and the one estimated by the EKF, the SMO and the HSMO,
while, in the bottom plot, the comparison between the estimation errors highlights the very large error of the EKF
with respect to the SMO and the HSMO.

It is possible to see from the plot of the chamber pressure estimation error reported in the bottom plot of Fig. 7(a)
that the HSMO performs better than the other observers, and the particular that the SMO is much more sensitive
to the measurement noise with respect to the others. For what related to the valve dead-zone, Fig. 7(b) reports the
valve dead-zone during the simulation and the one estimated by the SMO and the HSMO in the top plot, while, in
the bottom plot, the comparison between the estimation errors of the two observers is shown. Also in this case, the
SMO is not able to provide a reliable disturbance estimation due also to the presence of the measurement noise.

Figure 8 reports the simulation of the valve. In particular, in Fig. 8(a) the valve position and the position
estimated by the EKF, the SMO and the HSMO are shown together with the comparison between the estimation
errors of the three observers.

From the bottom plot, it possible to see that in this case the EKF provides a more noisy state estimation, while
the SMO provides even better estimation than the HSMO. Similar results can be seen in Fig. 8(b) about the spool
velocity, in the top plot, the spool velocity and the one estimated by the EKF, the SMO and the HSMO are reported,
while the bottom plot reports the comparison between their estimation errors. As for the valve position, also in this
case it possible to see that the SMO provides even better than the HSMO, while the EKF provides a noisy state
estimation.

Finally, Fig. 8(c) shows, in the top plot, the valve input bias during the simulation and the one estimated by
the SMO and the HSMO (the EKF does not provide any disturbance estimation), while, in the bottom plot, the
comparison between the estimation error of the SMO and the HSMO is reported. Also in this case, the HSMO shows

Table 6: Parameters of the noise for each output measurement.

Output y PL ve

Mean Value 0 0 0

Covariance 5e-32 1e52 1e-12
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(c) Valve input bias. Top plot: simulated and estimated
input bias of the valve. Bottom plot: comparison between
the estimation error of the SMO and the HSMO.

Figure 8: Valve position, velocity and input bias during simulation in case of noise in the measurements (black) and estimated by the
EKF (blue), by the SMO (red) and by the HSMO (green).

the advantage of providing a reliable disturbance estimation even in presence of noise.
The performance of the designed observers in terms RMS value of the state and disturbance estimation errors in

case of noise in the outputs are reported in Tab. 7 and 8 respectively. These data confirm that the HSMO performs
better than the other observers in almost all the cases.

7. Experimental Results

Experimental tests have been performed on the hydraulic system test-bed to verify the effectiveness of the
proposed approach for the observation of the system state. For the ease of comparison, the experiment reported in
this paper replicates the same conditions evaluated during the simulations. A longer time interval will be shown in
the experimental data plots to show in a better way the effectiveness of the method in real conditions.

Table 7: RMS value of the state estimation errors in case of noise in the output measurements.

y ẏ PL ve v̇e

EKF 2.5083e-6 2.2293e-4 387.18 1.7428e-4 0.0052

SMO 9.5067e-6 1.9305e-4 356.11 1.1722e-6 8.1682e-5

HSMO 1.9627e-6 7.6326e-5 90.984 4.0858e-5 0.0020
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(c) Friction acting on the piston estimated by the SMO and
the HSMO.

Figure 9: Piston position, velocity and friction during the experiment (black), data estimated by the EKF (blue), by the SMO (red) and
by the HSMO (green).

As for the previous simulation tests, both the EKF, the SMO and the HSMO have been evaluated and compared
to show the benefits of the different observers. In particular, the evaluated observers are the same used during the
simulation, therefore they are designed on the base of the nominal system parameters reported in Tab. 1. The SMO
gains and HSMO scaling factors are the same adopted during the previous simulation tests and they are reported in
Tab. 2 and 3 respectively.

The experimental setup is equipped with sensors that provide the same output information assumed during the
simulations, i.e. the piston position, pressure and spool position. As mentioned in case of the simulation tests, no
information is available from the valve manufacturer about the relation between the valve output position signal
and the effective valve spool position. Therefore, the valve spool position and velocity will be expressed in volts
to reflect the output position signal provided by the valve itself. For the comparison with the piston and spool
velocities estimated by the observers, these data have been reconstructed from the respective position information
through digital filtering. During the experiments, no data can be obtained about the disturbance affecting the
system, therefore any consideration about their quality can be performed in relation to simulation results only.

Table 8: RMS value of the disturbance estimation errors in case of noise in the output measurements.

Piston Friction Load Pressure Valve Bias

SMO 11.082 5.6295e-6 0.0152

HSMO 1.8828 7.4070e-7 6.2572e-5



-4

-2

0

2

4

6

L
oa

d 
Pr

es
su

re
 [

Pa
]

106

System State EKF SMO HSMO

0 1 2 3 4 5 6 7 8 9 10
Time [s]

-3

-2

-1

0

1

2

Pr
es

su
re

 E
rr

or
 [

Pa
]

106

EKF SMO HSMO

(a) Pressure inside the piston chamber. Top plot: piston
pressure and estimation by the EKF, the SMO and the
HSMO. Bottom plot: comparison between estimation er-
rors.

0 1 2 3 4 5 6 7 8 9 10
Time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

D
ea

d-
zo

ne
 E

st
im

at
io

n 
[m

3 /(
s 

Pa
1/

2
)]

10-3

SMO   HSMO   

(b) Valve dead-zone estimation provided by the SMO and
the HSMO.

Figure 10: Pressure inside the piston chamber and valve dead-zone during the experiment (black) and estimated by the EKF (blue), by
the SMO (red) and by the HSMO (green).

Table 9: RMS value of the state estimation errors obtained during the experiment.

y ẏ PL ve v̇e

EKF 1.8376e-5 7.0581e-4 7.3312e+3 7.2157e-4 0.0583

SMO 5.6111e-8 1.2418e-4 129.56 2.3022e-4 0.0121

HSMO 2.2120e-7 6.2318e-5 63.753 1.6682e-4 0.0136

The results of the experimental test are shown in Fig. 9, 10 and 11. In particular, Fig. 9 reports the piston
position, velocity and the estimated friction. Figure 9(a) shows the piston position and the position estimated by the
three observers together with the comparison between the estimation errors. In this case, it is possible to see from
the plot of the piston position estimation error reported in the bottom plot of Fig. 9(a) that the EKF shows a large
error with respect to the SMO and the HSMO. On the other hand, the SMO and the HSMO perform similarly and,
if compared with the previous simulation in noisy condition, the SMO performs very well since the measurement
noise is smaller than the ones evaluated in simulation.

Figure 9(b) reports, in the top plot, the piston velocity and the one estimated by the EKF, the SMO and the
HSMO while the bottom plot reports the comparison between the estimation error of the EKF, the SMO and the
HSMO, to highlight the larger error of both the EKF and the SMO with respect to the HSMO. From the piston
velocity estimation error reported in the bottom plot of Fig. 9(b) it can be seen that the HSMO provides a better
estimation of the state with respect to the EKF and the SMO.

Finally, Fig. 9(c) shows the friction acting on the piston estimated by the SMO and the HSMO (the EKF does not
provide any disturbance estimation). From this plot it can be seen that the the SMO does not provide a meaningful
friction estimation, while the HSMO estimate a friction even larger than the one adopted during the simulation.

The pressure in the piston chamber and the effect of the valve dead-zone are reported in Fig. 10. In particular,
Fig. 10(a) reports the piston pressure and the one estimated by the EKF, the SMO and the HSMO together with the
comparison between their estimation errors, to highlight the very large error of the EKF with respect to the SMO
and the HSMO. It is possible to see from the plot of the chamber pressure estimation error reported in the bottom
plot of Fig. 10(a) that the HSMO performs better than the other observers, even if the reduced measurement noise
with respect to the previous simulations allows to the SMO to provide a reliable estimation.

For what related to the valve dead-zone, Fig. 10(b) reports the estimation provided by the SMO and the HSMO:
by comparing this plot with the simulation results, it is clear in particular from the estimation provided by the
HSMO that the valve dead-zone presents a more complex behavior with respect the simulations.

Figure 11 reports the valve data. In particular, Fig. 11(a) and 11(b) show, in the top plots, the valve position and
velocity and the ones estimated by the EKF, the SMO and the HSMO, while the bottom plots report the comparison
between the estimation errors of the three observers. From these plots, it possible to see that in this case the three
observers performs in a similar way, with the HSMO estimation error apparently less affected by the respective
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(c) Valve input bias estimated by the SMO and the HSMO.

Figure 11: Valve position, velocity and input bias during the experiment (black) and estimated by the EKF (blue), by the SMO (red)
and by the HSMO (green).

output variations but from the measurement noise only.
Finally, Fig. 11(c) shows the valve input bias estimated by the SMO and the HSMO (the EKF does not provide

any disturbance estimation). Also in this case, the HSMO shows the advantage of providing a reliable disturbance
estimation.

The performance of the designed observers in terms RMS value of the state estimation errors during the experi-
mental test are reported in Tab. 9. These data show that both the SMO and the HSMO provide good performance
in terms of state estimation, but the HSMO significantly outperforms the SMO in terms of meaningful disturbance
estimation.

8. Conclusions

In this paper, the evaluation of different robust observation methods applied to a hydraulic actuation system
is reported. A SMO and a HSMO are compared with an EKF considered as a standard approach for the state
observation in case of noisy measurements and uncertain systems.

The comparison between the observer responses has been executed in simulation first assuming perfect output
knowledge, to evaluated the tuning of the observers and the general properties of the different methods, in particular
with respect to the state observation error and the disturbance estimation. Secondly, simulations with noisy outputs
have been carried out to verify the sensitivity of the observers with respect to noise.

Finally, an experimental test reproducing the same working conditions evaluated in simulation have been presented
to highlight the characteristics of the different approaches in real conditions.



From this analysis, it can be summarized that both the SMO and the HSMO show better performance with
respect to the EKF, and that the HSMO presents in general a more reliable behavior even in presence of noisy
outputs and large external disturbance. A noticeable additional feature of the HSMO is the ability of providing a
reliable estimation of the disturbance acting on the system, which can be exploited for diagnosis purpose and fault
detection. Moreover, the design procedure of the HSMO is simpler and with a smaller set of parameters to tune with
respect to the SMO.

Future work will be devoted to investigate the possibility of reducing the number of sensors in the system and to
evaluate the system behavior in different loading conditions and during specific working cycles.
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