
04 June 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Schema profiling of document-oriented databases / Enrico Gallinucci, Matteo Golfarelli, Stefano Rizzi. - In:
INFORMATION SYSTEMS. - ISSN 0306-4379. - STAMPA. - 75:(2018), pp. 13-25. [10.1016/j.is.2018.02.007]

Published Version:

Schema profiling of document-oriented databases

This version is available at: https://hdl.handle.net/11585/629348 since: 2019-08-05

Published:
DOI: http://doi.org/10.1016/j.is.2018.02.007

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

https://hdl.handle.net/11585/629348
http://doi.org/10.1016/j.is.2018.02.007

Schema Profiling of Document-Oriented DatabasesI,II

Enrico Gallinucci, Matteo Golfarelli, Stefano Rizzi∗

DISI – University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
CINI, Via Salaria 113, 00198 Roma, Italy

Abstract

In document-oriented databases, schema is a soft concept and the documents in
a collection can be stored using different local schemata. This gives designers
and implementers augmented flexibility; however, it requires an extra effort to
understand the rules that drove the use of alternative schemata when sets of doc-
uments with different —and possibly conflicting— schemata are to be analyzed
or integrated. In this paper we propose a technique, called schema profiling, to
explain the schema variants within a collection in document-oriented databases
by capturing the hidden rules explaining the use of these variants. We express
these rules in the form of a decision tree (schema profile). Consistently with the
requirements we elicited from real users, we aim at creating explicative, precise,
and concise schema profiles. The algorithm we adopt to this end is inspired by
the well-known C4.5 classification algorithm and builds on two original features:
the coupling of value-based and schema-based conditions within schema profiles,
and the introduction of a novel measure of entropy to assess the quality of a
schema profile. A set of experimental tests made on both synthetic and real
datasets demonstrates the effectiveness and efficiency of our approach.

Keywords: NoSQL, Document-Oriented Databases, Schema Discovery,
Decision Trees

1. Introduction

Recent years have witnessed the progressive erosion of the relational DBMS
predominance to the benefit of DBMSs based on different representation models
(e.g., document-oriented and graph-based). Most new models adopt a schema-
less representation for data, which does not mean that data are stored without a

IThis work was partly supported by the EU-funded project TOREADOR (contract n.
H2020-688797).

II©2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 li-
cense http://creativecommons.org/licenses/by-nc-nd/4.0/. DOI: https://doi.org/10.

1016/j.is.2018.02.007.
∗Corresponding author
Email addresses: enrico.gallinucci2@unibo.it (Enrico Gallinucci),

matteo.golfarelli@unibo.it (Matteo Golfarelli), stefano.rizzi@unibo.it (Stefano Rizzi)

1

schema, but rather that schema is a soft concept and that the instances referring
to the same concept in the same collection can be stored using different “local”
schemata to better fit the specific features of each instance. So, while relational
databases are still widely used in companies to store the stably-structured por-
tions of corporate data, schemaless databases are preferred for storing heteroge-
neous data with variable schemata and structural forms, such as those located
in so-called data lakes.

Typical schema variants that can be found within a collection consist in
missing or additional attributes, in different names or types for an attribute,
and in different structures for instances (obtained for example by moving a set
of attributes into a sub-structure). These variants can either be created to
uniformly store and handle instances with specific features, or be a consequence
of the evolutions of the data management applications made in time to handle
emerging requirements or to recover from errors occurred during schema design.

Unfortunately, the absence of a unique, well-defined schema turns to a dis-
advantage when moving from operational applications to analytical applications
and business intelligence. Business intelligence analyses typically involve large
sets of data, so a single analysis often involves instances with different —and
possibly conflicting— schemata. In turn, this requires some extra effort to un-
derstand the rules that drove the use of alternative schemata, and an integration
activity to identify a common schema to be adopted for analysis. These tasks
are even harder when no detailed documentation is available, because the ana-
lyst has to search for the necessary knowledge either in the code that manages
data or in the data themselves.

1.1. Approach Overview

In this paper we propose a technique, called BSP (Build Schema Profile), to
explain the schema variants within a collection in document-oriented databases
by capturing the hidden rules explaining the use of these variants. We call this
activity schema profiling. Schema profiling is beneficial in different contexts:

• when trying to decode the behavior of an undocumented application that
manages a document-base;

• when carrying out a data quality project on schemaless data;

• when adopting a schema-on-read approach to query a document-oriented
database [1, 2];

• when designing a data warehouse on top of a schemaless data source, for
instance a corporate data lake.

Identifying the rules of schema usage is much like building a descriptive
model in a classification problem. A classifier is a model that predicts to which
of a set of classes a new observation belongs, based on a training dataset con-
taining observations whose class membership is known. Besides for predicting,
classifiers are also used to describe the rules for assigning a class to an observa-
tion based on the other observation features —which corresponds to our goal if

2

we consider the schema of a document as its class. So we can rely on the exist-
ing literature on classification to build schema profiles; in particular, based on
the requirements we collected from potential users of our approach (see Section
3), among the different types of classifiers we consider decision trees since: (i)
they natively provide an easy-to-understand representation of the schema usage
rules; (ii) the tree-based representation is the one spontaneously adopted by
the interviewed users; and (iii) the training approach for decision trees can be
modified to accommodate the changes necessary to the context of this paper.

Straightly reusing traditional decision trees for schema profiling would mean
classifying documents based on the values of their attributes only. However,
this would often lead to trees where a single rule serves different classes (i.e.,
different schemata are explained by the same rule), which would give an impre-
cise information. To address this issues, in BSP documents are also classified
using schema-based conditions related to the presence or absence of attributes.
To better understand this point, consider for example Figure 1, showing a por-
tion of a decision tree (which we call schema profile) built in the domain of
physical fitness to profile a collection of documents generated by training ma-
chines or by their users through mobile applications. Each internal node in
the tree is associated with a document attribute a and can express either a
value-based condition (white box; each outgoing edge is related to one or more
values of a, e.g., User.Age < 60) or a schema-based condition (grey box; the two
outgoing edges represent the presence or absence of a in the document, e.g.,
∃BPM). Each path in the tree models a rule; it leads to a leaf (represented
as a circle) that corresponds to a schema found for the documents that meet
all the conditions expressed along that path (document examples are shown
in dashed boxes). So, for instance, schema s2 is used in all the documents
for which ActivityType = “Run”, CardioOn = true, and field BPM is present
(independently of its value, or even if a value is missing).

Another drawback of traditional decision trees is that they often give several
rules for the same class. While this may be correct for some specific collections
(e.g., schema s1 in Figure 1 appears in two leaves, i.e., it is explained by two
different rules), in general we wish to keep the number of rules to a minimum
aimed at giving users a more concise picture of schema usage. This is achieved
in BSP by adopting a novel measure of entropy to be coupled with the one
typically used to characterize and build decision trees.

1.2. Contributions and Outline

The original contributions of this paper are:

• An analysis of the desiderata of real users that inspired BSP (Section 3).

• A novel measure of entropy, called schema entropy, which contributes to
assess the quality of a schema profile (Section 5).

• An algorithm that implements a divisive approach to deliver precise, con-
cise, and explicative schema profiles by mixing value-based and schema-

3

{ "ActivityType" : "Walk",
"User" :
{ "UserID" : 23,

"Age" : 42
}

}

ActivityType

CardioOn User

BPM User.Age

ActivityType=“Run” ActivityType=“Walk”

CardioOn=true CardioOn=false ∃

s
2

s
3

s
4

s
5

∃

s
1

s
3

s
1

∃

∃

{ "ActivityType" : "Run",
"Duration" : 10,
"CardioOn" : true,
"BPM" : 80

}

{ "ActivityType" : "Run",
"Duration" : 20,
"CardioOn" : true,
"BPM" :

}

{ "ActivityType" : "Run"
}

{ "ActivityType" : "Walk",
"User" :
{ "Name" : "Jack",

"Age" : 61
}

}

{ "ActivityType" : "Walk",
"Duration" : 60

}

{ "ActivityType" : "Bike",
"Duration" : 130

}

v
1

v
2

v
3

v
4

v
5

v
6

v
7

d
1

d
2

d
3

d
4

d
5

d
6

d
7

User.Age≤60 User.Age>60

ActivityType=“Bike”

Figure 1: A schema profile in the physical fitness domain

based conditions to better capture the rules explaining the use of different
schemata within a collection (Section 6).

• A set of experimental results on synthetic and real datasets (Section 7).

The paper is completed by Section 2, which discusses related work, Section 4,
which provides the necessary formal background, and Section 8, which draws
the conclusions.

2. Related Work

In this section we discuss the research areas mainly related to our work. In
particular, in Subsection 2.1 we summarize the approaches for schema discovery
on semi-structured data collections, while in Subsection 2.2 we discuss the main
techniques for schema matching.

2.1. Schema Discovery

The task of schema discovery is not new to the research world. Early work
focused on finding ways to describe semi-structured data retrieved from web
pages and were mainly based on the Object Exchange Model (OEM). The gen-
eral idea was to automatically derive a concise [3] or approximate [4] labeled
graph model to allow efficient querying of data. In the latter group, approxi-
mation was achieved by applying clustering algorithms on the data, so that a
different model could be defined for each syntactically-similar group. As XML
became a standard for data exchange on the web, researchers had to deal with
the widespread lack of DTDs and XSDs for XML documents. Work such as

4

[5, 6, 7] focused on extracting the regular expressions that described the con-
tents of the elements in a set of XML documents, aimed at helping software tools
in processing XML documents or in integrating data through schema matching.

With the replacement of XML with JSON, similar issues are now being ad-
dressed on this new standard, with the goal of capturing and representing the
intrinsic variety of schemata within a collection of JSON objects. Izquierdo and
Cabot [8] propose to build a unique schema for the JSON objects returned by
a single API service; their goal is then to create a unified model to represent
the matches between the schemata derived from different API services. Klettke
et al. [9] propose two different graph structures that model the union of all the
attributes in a collection of JSON objects, aimed at measuring the heterogene-
ity of a collection and at detecting attributes with low support for data quality
investigations. Ruiz et al. [10] propose a reverse engineering process to derive
a versioned schema model for a collection of JSON objects: instead of consid-
ering the mere union of the attributes within a nested object, every intensional
variation is stored as a different version of such object. Wang et al. [11] adopt a
clustering technique to identify the smallest set of core attributes (called skele-
ton) by grouping similar schemata corresponding to specific business objects.
Whereas the skeleton facilitates the recognition of the underlying schemata by
the user, the assumption that schema-similarity is the metric that characterizes
the different object types is potentially misleading; indeed, this is not always
true in our experience.

The main features of the approaches mentioned above are summarized in
Table 1 and compared to those of BSP. Though BSP shares with the others
some techniques, its goal is completely different. The ultimate goal of the pre-
vious work is to provide either a concise [9, 11] or a comprehensive [8, 10] way
to describe the intensional aspects of the documents, not only for an easier
recognition of the schemata, but also to enable automated activities such as
querying, integration, and validation. Conversely, the goal of BSP is to explain
the schema variants. Besides, no other approach considers the extensional point
of view to describe the different usages of schemata. Finally, while all previ-
ous approaches produce in output some form of (global, skeleton, or reduced)
schema, BSP creates a schema profile that classifies schemata.

With the increasing diffusion of document-based stores, several tools are
currently known to perform schema detection on the available DBMSs. Start-
ing from MongoDB, a handful of free tools to help users in the analysis of
the hidden schema have been designed by third-party developers, such as va-
riety.js1, schema.js2, and mongodb-schema3. In ElasticSearch, the embedded
functionality of dynamic mapping4 automatically infers the schema to enable

1http://github.com/variety/variety
2http://www.npmjs.com/package/schema-js
3http://github.com/mongodb-js/mongodb-schema
4http://www.elastic.co/guide/en/elasticsearch/reference/current/dynamic-

mapping.html

5

Table 1: A comparison of the main approaches to schema discovery with BSP

A
p
p
ro
a
c
h

D
a
ta

fo
r
m
a
t

A
r
ra

y
s

A
tt
r
ib
u
te

m
a
tc
h

O
u
tp

u
t

G
o
a
l

[5, 6, 7] XML yes by name regular expr. describe global schema
[8] JSON no by name+values multi-schema describe inter-schema matches
[9] JSON yes by name reduced graph describe global schema
[10] JSON yes none multi-schema describe schema variants
[11] JSON no similarity skeleton schema describe main schema features
BSP JSON no by name+type schema profile explain schema variants

search capabilities on the documents. In Couchbase, the Spark connector5 can
perform automatic schema inference that will enable Spark SQL operations.
Also Apache Drill6 dynamically infers the schema at query time —although it
is used only internally and cannot be exported by the user. All these tools
derive a unique schema which collects the union of the attributes found in the
documents, possibly enriched by additional information such as the types and
support of each attribute. Finally, it is worth mentioning that the JSON-schema
initiative7 has risen with the idea to provide standard specifications to describe
JSON schemata; however, its adoption is still quite limited and restricted to
validation software.

2.2. Schema Matching

In parallel to schema discovery, plenty of research have focused on the issues
related to schema matching. Bernstein et al. [12] provide a comprehensive sum-
mary of the different techniques envisioned for generic schema matching, which
ranges from the relational world to ontologies and XML documents. Other pa-
pers have also investigated the applications of mining techniques specifically to
XML documents: for instance, Nayak and Iryadi [13] and Lee et al. [14] provide
clustering algorithms to be applied to XML schemata, while Guerrini et al. [15]
provides an overview of the different similarity measures that can be used to
cluster XML documents.

An interesting branch of schema matching is the one that exploits contex-
tual information in the data. For example, Bohannon et al. [16] propose an
enhancement of schema matching algorithms by extending matches (which re-
fer to table attributes) with selection conditions, which enables to identify the
cases in which the match is actually valid. The principle of analyzing instance
values is used also in [17] and [18], which apply machine learning techniques to

5http://github.com/couchbase/couchbase-spark-connector/wiki/Spark-SQL
6http://drill.apache.org
7json-schema.org

6

schema matching. Interestingly, while these approaches use contextual informa-
tion to identify schema matching conditions, we use contextual information for
the opposite reason, i.e., to justify schema heterogeneity.

3. Requirements for Schema Profiling

The first stage of our work has been devoted to elicit user requirements
for schema profiling with reference to the application domains of two projects
in which we were involved: the one of a company selling fitness equipment,
whose documents (corresponding to two datasets named RD1 and RD2 in Sec-
tion 7) contain the registrations of workout sessions, and the one of a software
development company, whose documents (dataset RD3) contain the log of the
errors generated by the deployed applications. In both domains, elicitation was
conducted as follows:

1. Interview. During these half-day sessions, we conducted semi-structured
interviews with the users to understand their goals, the type of information
they require, and the visualization format they prefer for the results.

• In the fitness domain we interviewed three users: the database ad-
ministrator, the application manager, and a data scientist. Both the
schemata and the data management applications were internally de-
veloped, so the users were supposed to have full control and good
knowledge of them.

• In the software development domain we interviewed two users: the
chief software developer and a junior developer. They use a third-
party repository for error logging, so in this case the users had little
control on the schema variants and on the data management appli-
cations.

At the end of the interview, we asked both user groups to describe the
schema variants they were aware of, and the reasons that led to using
each specific schema. No suggestions were given by us as to how these
descriptions should be expressed.

2. Description. After one week we had a second half-day session, during
which each user group delivered its descriptions as required and discussed
it with us. In both cases a tree was delivered where each node repre-
sented a condition, much like in Figure 1. Most conditions were given on
instances (e.g., Date ≤ 2016), while some were given on schemata (i.e.,
presence/absence of some attributes in a document). Schema-based con-
ditions were said to be used less because, though they obviously describe
the difference between schemata, they do not provide any explanation of
the the reason of this difference.

3. Check. At this stage we checked the user descriptions against the doc-
uments. For both domains the descriptions were incomplete (i.e., users

7

were not able to specify all the rules that precisely characterize each sin-
gle schema), and in some cases even wrong (i.e., the rules provided did
not correctly separate the documents according to their schemata).

The main hints we obtained are summarized below:

• Users need an easy-to-read, graphical, and compact schematization of
schema usage.

• Value-based conditions are preferred to schema-based ones. From the
users’ point of view, while a schema-based condition merely acknowledges
the difference between two schemata, a value-based condition explains
this difference in terms of the values taken by an attribute. For instance,
with reference to Figure 1, the schema-based condition on User states that
“The documents with schema s1 differ from those with schema s4 or s5

in that they give no description of the user”; conversely, the value-based
condition on User.Age states that “The documents with schema s4 and
those with schema s5 differ because they are related to young and elderly
users, respectively”.

• Users tend to describe the conditions that, according to their domain
knowledge, are most significant first. The importance of a condition is
subjective to some extent, but it is typically related to the usage of dif-
ferent applications/functionalities rather than to the actual inter-schema
similarity. Indeed, we found documents with very similar schemata that
are actually quite unrelated (e.g., they log the errors of different software
applications). This suggests to discard solutions, like [11], that reduce the
total number of schemata by clustering similar schemata together, because
the skeleton schemata they produce might lack some relevant attributes.

• Even for very experienced users, it is quite difficult to provide a precise
and complete description of the conditions ruling the schema usage.

Based on these considerations, we claim that an automated approach to schema
profiling is potentially beneficial and should have the following features:

• the result must take the form of a decision tree (called schema profile from
now on) to provide a comprehensible description;

• the schema profile should be explicative, i.e., it should give priority to
value-based conditions;

• the schema profile should be precise, i.e., it should accurately characterize
each single schema;

• the schema profile should be concise, i.e., it should provide a small set of
rules.

8

{	 	 "Ac&vityType"	 :	 "Run"	 ,	
	 	 	 "Dura&on"	 :	 108	 ,	
	 	 	 "CardioOn"	 :	 true,	
	 	 	 "Notes"	 :	 null	 ,	
	 	 	 "Details"	 :	 	
	 	 	 {	 	 "MusicTracks"	 :	 [4	 ,	 8]	 ,	
	 	 	 	 	 	 "Comments”:	
	 	 	 	 	 	 [{	 	 "UserID"	 :	 15	 ,	 	
	 	 	 	 	 	 	 	 	 	 	 	 "Comment":	 "Well	 done!"	
	 	 	 	 	 	 	 	 	 }	 ,	 	
	 	 	 	 	 	 	 	 {	 	 "UserID"	 :	 16,	
	 	 	 	 	 	 	 	 	 	 	 "Vote"	 :	 "6/10"	
	 	 	 	 	 	 	 	 }]	 ,	
	 	 	 }	 ,	
	 	 	 "User"	 :	 	
	 	 	 {	 	 "UserID"	 :	 23	 ,	
	 	 	 	 	 	 "Name"	 :	 "Jack"	 ,	
	 	 	 	 	 	 "Age"	 :	 42	 ,	
	 	 	 	 	 	 "FacebookID"	 :	 "jack42"	
	 	 	 	 }	
}	

{	 	 …	
	 	 	 "Comments"	 :	 	
	 	 	 {	 	 "type"	 :	 "array"	 ,	
	 	 	 	 	 	 "items"	 :	 	
	 	 	 	 	 	 [{	 	 "type"	 :	 "object"	 ,	
	 	 	 	 	 	 	 	 	 	 	 	 "proper&es"	 :	 	
	 	 	 	 	 	 	 	 	 	 	 	 {	 	 "UserID"	 :	 {	 "type"	 :	 "number"	 }	 ,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 "Comment"	 :	 {	 "type"	 :	 "string"	 }	
	 	 	 	 	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 	 }	 ,	 	
	 	 	 	 	 	 	 	 	 {	 	 "type"	 :	 "object"	 ,	
	 	 	 	 	 	 	 	 	 	 	 	 "proper&es"	 :	 	
	 	 	 	 	 	 	 	 	 	 	 	 {	 	 "UserID"	 :	 {	 "type"	 :	 "number"	 }	 ,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 "Vote"	 :	 {	 "type"	 :	 "string"	 }	
	 	 	 	 	 	 	 	 	 	 	 	 }]	
	 	 	 }	 ,	
	 	 	 ...	
}	

Path Type
	
Ac&vityType 	 primi&ve	
Dura&on 	 primi&ve	
CardioOn 	 primi&ve	
Notes 	 primi&ve	
Details 	 object	
Details.MusicTracks 	 array	
Details.Comments 	 array	
User 	 object	
User.UserID 	 primi&ve	
User.Name 	 primi&ve	
User.Age 	 primi&ve	
User.FacebookID 	 primi&ve	
	
	
	
	
	
	

(a) (b) (c)

Figure 2: A JSON document representing a training session (a), a portion of its JSON schema
(b), and its r-schema (c)

4. Formal Background

The central concept of a document-oriented database is the notion of docu-
ment, which encapsulates and encodes data in some standard format. The most
widely adopted format is currently JSON, which we will use as a reference in
this work.

Definition 1 (Document and Collection). A document d is a JSON ob-
ject. An object is formed by a set of name/value pairs, commonly referred to
as elements. A value can be either a primitive value (i.e, a number, a string,
or a Boolean), an array of values, an object, or null. Names cannot be repeated
within the same object, but they can be repeated at different nesting levels. A
collection D is a set of documents.

An important feature of JSON is that arrays have no constraint on the type of
their values, i.e., an array can simultaneously contain numbers, strings, other
arrays, as well as objects with different internal structures. Figure 2.a shows
a document representing a training session containing an array of objects with
different schemata (element Comments).

The JSON schema initiative provides the specifications to define the schema
of a document; however, as highlighted in the example in Figure 2, the resulting
schemata are quite verbose and they provide a complex representation of arrays.
Indeed, the schema of an array is defined as the ordered list of the schemata
of its values; in other words, two arrays share the same schema only if they
contain the same number of values and these values share the same schemata in
the same order. This schema-matching criterion would basically lead to having a
different schema for each single document, which would add unnecessary burden

9

to our approach —also considering that the type variability of array elements
is less relevant than that of the other attributes. Thus we adopt a more concise
representation for the schema of a document, called reduced schema, which does
not enter into the content of arrays, but simply denotes the presence of an array
structure.

Definition 2 (R-Schema of a Document). Given document d, the reduced
schema (briefly, r-schema) of d, denoted rs(d), is a set of attributes, each cor-
responding to one element in d. Attribute a ∈ rs(d) is identified by a pathname,
path(a), and by a type, type(a) ∈ {primitive, object, array}. While path(a) is a
string in dot notation reproducing the path of the element corresponding to a
in d, type(a) is the type of that element (type primitive generalizes numbers,
strings, Booleans, and nulls).

Note that, although r-schemata are defined as sets of attributes, their pathnames
code the document structure (short of the internal structure of arrays).

Example 1. Figure 2 shows a sample document, its JSON schema (as per the
specifications of the JSON schema initiative), and its r-schema. Note how, in
the r-schema, the complexity and heterogeneity of array Comments is hidden in
attribute Details.Comments with generic type array.

To put together the relevant information coded by different r-schemata, we
define a sort of global schema for the documents within a collection:

Definition 3 (R-Schema of a Collection). Let two attributes in the r-schemata
of two documents be equal if they have the same pathname and the same type.
Given collection D, we denote S(D) the set of distinct r-schemata of the docu-
ments in D (). The r-schema of D is defined as

rs(D) =
⋃

s∈S(D)

s =
⋃
d∈D

rs(d)

Given s ∈ S(D), we denote with |D|s the number of documents in D with r-
schema s.

Intuitively, rs(D) includes all the distinct attributes that appear in the r-
schemata of the documents in D.

The last concept we need to introduce are schema profiles.

Definition 4 (Schema Profile). Let D be a collection. A schema profile for
D is a directed tree T where each internal node (including the root) corresponds
to some attribute a ∈ rs(D) and can be either value-based or schema-based:

• a schema-based node has exactly two outgoing edges, labelled as ∃ and 6 ∃
respectively;

• a value-based node has two or more outgoing edges, each labelled with a
condition expressed over the domain of a.

10

Value-based nodes can only correspond to attributes of type primitive. Given
node v, we denote with Dv ⊆ D the set of documents that meet all the conditions
expressed by the nodes in the path from the root to v. In particular, a document
d such that a 6∈ rs(d) (missing attribute) or d.a = null (missing value) always
meets all the conditions expressed by a value-based node corresponding to a.

Intuitively, each internal node in a schema profile models a condition (on a
value-based column of the dataset if the node is value-based, on a schema-based
column if it is schema-based), and each path models a rule that includes a set of
conditions for selecting one or more r-schemata. We also remark that Definition
4 can accommodate both binary and n-ary trees; in Section 5 we will show that
binary trees are preferable to n-ary trees in our context.

The approach we adopt to deal with missing attributes and missing values
in Definition 4 is consistent with the one used by the decision tree algorithm we
chose, i.e., C4.5 [19] in its Weka implementation. In presence of a value-based
node corresponding to a, such document d is considered to belong to two or more
leaves; in other words, the sets Dvj for j = 1, . . . ,m are not necessarily disjoint.
Algorithm C4.5 also adopts a weighting mechanism in these cases; specifically,
when computing leaf cardinalities (namely, |Dvj | and |Dvj |s in Section 5), a
document d such that d ∈ Dv′ ∩Dv′′ is weighted depending on how the other
documents are distributed in v′ and v′′ [19].

Example 2. Figure 1 shows an n-ary schema profile with two schema-based
nodes (User and BPM) and three value-based nodes (ActivityType, CardioOn,
and User.Age). In this case, D = {d1, . . . , d7} and S(D) = {s1, . . . , s5}. The
schema profile has leaves v1, . . . , v7, with Dv1 = {d1, d2}. Note that document
d3 belongs to both v2 and v3, since attribute CardioOn is missing.

5. Quantifying Schema Profile Requirements

In Section 3 we claimed that, according to the users’ feedback, a good-quality
schema profile should be precise, concise, and explicative. In the following
subsections we discuss how we quantitatively characterize the requirements of
schema profiles; the criteria introduced here will be then used in the algorithm
proposed in Section 6.

Algorithm C4.5 adopts a divisive approach to build the decision tree. Divi-
sive approaches start from a single node that includes all the observations, and
then iteratively split each node into two or more nodes that include subsets of
observations. The split point is chosen in a greedy fashion by trying to maximize
the quality of the classification. In our context, splits come in different flavors.

Definition 5 (Split). Let D be a collection and a ∈ rs(D) be an attribute in
the r-schema of D. Let T be a schema profile for D and v be one of its leaves. A
split of v on a, denoted σa(v), transforms T into a schema profile T ′ where v is
an internal node corresponding to a and has two or more new leaves as children.
In particular, σa(v) is a schema-based split if v is a schema-based node in T ′,

11

and a value-based split if v is a value-based node in T ′. Value-based splits are
made as follows:

• If a is numeric, σa(v) has two children and the corresponding edges are
labelled with conditions a ≤ “val” and a > “val”, respectively.

• If a is categorical, σa(v) can be either binary or multi-way. In the first
case, it has two children and the corresponding edges are labelled with
conditions a = “val” and a 6= “val”, where “val” is a value of the domain
of a. In the second case, it has one child for each value “val” in the domain
of a and each corresponding edge is labelled with condition a = “val”.

Based on this definition, in a schema-based split v has two children and the
corresponding edges are labelled as ∃ and @), while in a value-based split v has
two or more children and the corresponding edges are labelled with a condition
expressed over the domain of a. Note that, while any splitting value “val”
can be adopted for value-based splits on numeric attributes and binary splits
on categorical attributes, different values produce schema profiles with different
qualities. The criteria we adopt for evaluating splits (namely, gain and loss) will
be introduced in the following subsections, while in Section 6 we will propose
an algorithm based on a function (FindBestSplit) that finds the best split for
a given attribute by exhaustive search on its domain.

Example 3. Figure 3 shows an example of schema-based split at an early stage
of the building of the schema profile of Figure 1. Initially, T has three leaves
v1, v2, v3 (resulting from a multi-way, value-based split on the categorical at-
tribute ActivityType). The schema-based split on attribute User creates a new
schema profile where v3 becomes a schema-based node with two children, u1 and
u2. A further value-based split on the numeric attribute User.Age creates two
additional leaves as depicted in Figure 1.

5.1. Explicativeness

As mentioned in Section 3, we consider a schema profile to be explicative
if it prefers value-based nodes over schema-based nodes, because the latter ac-
knowledge that there is a difference between two r-schemata but do not really
explain its reason. Indeed, a schema-based condition on an attribute a always
partitions the documents based on the presence/absence of a so, in a sense, it
merely explains itself. On the other hand, a value-based condition on the values
of a does not partition the documents based on the presence/absence of a, and it
always relates a to other attributes. For instance, in Figure 1, schemata s4 and
s5 differ since they include attributes User.UserID and User.Name, respectively,
and an explanation for this difference is given in terms of the values taken by
attribute User.Age.

So, when comparing two schema profiles, we will evaluate explicativeness
using the percentage of schema-based nodes; the lower this number, the more
explicative the schema profile:

% schema-based nodes =
] schema-based nodes

] nodes

12

Ac#vityType	

Ac#vityType=“Run” Ac#vityType=“Walk”

s1

Ac#vityType=“Bike”

{	 	 "Ac#vityType"	 :	 "Run",	
	 	 	 "Dura#on"	 :	 10,	
	 	 	 "CardioOn"	 :	 true,	
	 	 	 "BPM"	 :	 80	
}	

{	 	 "Ac#vityType"	 :	 "Run",	
	 	 	 "Dura#on"	 :	 20,	
	 	 	 "CardioOn"	 :	 true,	
	 	 	 "BPM"	 :	 	
}	

{	 	 "Ac#vityType"	 :	 "Run"	
}	

{	 	 "Ac#vityType"	 :	 "Walk",	
	 	 	 "Dura#on"	 :	 60	 	
}	

{	 	 "Ac#vityType"	 :	 "Bike",	
	 	 	 "Dura#on"	 :	 130	 	
}	

v1 v2 v3

d1
d2

d3

d4
d7

s2, s3

{	 	 "Ac#vityType"	 :	 "Walk",	
	 	 	 "User"	 :	 	
	 	 	 {	 	 "Name"	 :	 "Jack",	
	 	 	 	 	 	 "Age"	 :	 61	
	 	 	 	 }	 	
}	

d5

d6

{	 	 "Ac#vityType"	 :	 "Walk",	
	 	 	 "User"	 :	 	
	 	 	 {	 	 "UserID"	 :	 23,	
	 	 	 	 	 	 "Age"	 :	 42	
	 	 	 	 }	
}	

s1, s4, s5

(a)

Ac#vityType	

User	
∃	

s1

s1

∃	

{	 	 "Ac#vityType"	 :	 "Run",	
	 	 	 "Dura#on"	 :	 10,	
	 	 	 "CardioOn"	 :	 true,	
	 	 	 "BPM"	 :	 80	
}	

{	 	 "Ac#vityType"	 :	 "Run",	
	 	 	 "Dura#on"	 :	 20,	
	 	 	 "CardioOn"	 :	 true,	
	 	 	 "BPM"	 :	 	
}	

{	 	 "Ac#vityType"	 :	 "Run"	
}	

{	 	 "Ac#vityType"	 :	 "Walk",	
	 	 	 "Dura#on"	 :	 60	 	
}	

{	 	 "Ac#vityType"	 :	 "Bike",	
	 	 	 "Dura#on"	 :	 130	 	
}	

v1 v2

u1 u2d1
d2

d3

d4

d7

s4, s5

{	 	 "Ac#vityType"	 :	 "Walk",	
	 	 	 "User"	 :	 	
	 	 	 {	 	 "UserID"	 :	 23,	
	 	 	 	 	 	 "Age"	 :	 42	
	 	 	 	 }	
}	

{	 	 "Ac#vityType"	 :	 "Walk",	
	 	 	 "User"	 :	 	
	 	 	 {	 	 "Name"	 :	 "Jack",	
	 	 	 	 	 	 "Age"	 :	 61	
	 	 	 	 }	 	
}	

d5
d6

Ac#vityType=“Run” Ac#vityType=“Walk”
Ac#vityType=“Bike”

s2, s3

(b)

Figure 3: Schema profile before (a) and after (b) a schema-based split

5.2. Precision

A distinguishing feature of divisive approaches is the function they adopt
to quantify the “purity” of the leaves where observations are classified, where
a leaf is said to be pure if all its observations share the same class. The most
common function used to this end is entropy [20], whose definition —properly
contextualized to our application domain— we include below.

Definition 6 (Entropy and Gain). Let D be a collection, S(D) be the set of
distinct r-schemata of the documents in D, and T be a schema profile for D
with leaves v1, . . . , vm. The entropy of leaf vj is

entropy(vj) = −
∑

s∈S(Dv)

|Dvj |s
|Dvj |

log
|Dvj |s
|Dvj |

(1)

where
|Dvj

|s
|Dvj

| is the probability of r-schema s within leaf vj. Leaf vj is said to be

pure if entropy(vj) = 0. The entropy of T is then defined as the weighted sum

13

A	

A=“a1” A=“a3”

s1 s4

A=“a2”
B	 B	 B	

s2 s4 s3 s4

B	

B=“b1”

s1 s2

B=“b2”

A	

s3

s4

A	 B	 |Ds|
s1 a1 b1 40
s2 a2 b1 30
s3 a3 b1 20
s4 − b2 10

B=“b1” B=“b2” B=“b1” B=“b2”B=“b2” A=“a1” A=“a3”
A=“a2”

A	

A=“a1” A=“a3”

A=“a2”

B	

B=“b1” B=“b2”

s4s1, s4 s2, s4 s3, s4 s1, s2, s3

TA	 TB	

TAB	 TBA	

B=“b1”

Figure 4: A collection (on the left) and four possible schema profiles (see Example 4)

of the entropies of the leaves of T :

entropy(T) =

m∑
j=1

|Dvj |
|D|

· entropy(vj) (2)

where
|Dvj

|
|D| is the probability of leaf vj. Let σa(vj) be a split that creates two or

more leaves, u1, . . . , ur, resulting into a schema profile T ′; the gain related to
σa(vj) is defined as the difference between the entropy of T and the one of T ′:

gain(σa(vj)) = entropy(T)− entropy(T ′) =

=
|Dvj |
|D|

· entropy(vj)−
r∑

k=1

|Duk
|

|D|
· entropy(uk) (3)

Entropy is strictly related to precision as informally defined in Section 3: within
a schema profile with null entropy, all the documents included in each leaf share
the same r-schema, thus the schema profile has maximum precision.

Example 4. Let D be a collection with 100 documents, 4 r-schemata s1, . . . , s4,
and two attributes, A and B. The values of the attributes for the different r-
schemata are listed in Figure 4 (symbol “–” means “any value”), together with
four possible schema profiles. A degenerate schema profile T0 that includes a
single node v0 has entropy entropy(T0) = entropy(v0) = 1.85 (because Dv0 ≡
D). The multi-way splits of v on A and B have gain(σA(v0)) = 1.39 and
gain(σB(v0)) = 0.47, and produce schema profiles TA and TB, respectively, with
entropy(TA) = 0.46 and entropy(TB) = 1.38. Both schema profiles TAB and TBA
have null entropy.

Entropy tends to decrease with each split; the higher the gain (i.e., the
decrease in entropy), the more convenient the split. It is well-known [21] that

14

gain-based criteria are biased and tend to privilege multi-way splits on attributes
with several values. A classical solution to this problem is to consider binary
splits only, or to add a weighting factor to normalize the gain for different
attributes (so-called gain ratio criterion) [22].

5.3. Conciseness

Entropy is focused on node purity, hence its minimization often leads to split
observations of the same class among several leaves; this is more frequent when
the number of classes is high [23], as normally happens in our context. While this
is a secondary problem in generic classification problems, where the precision of
the resulting model is more important than its readability, it becomes critical
in schema profiling since it conflicts with the conciseness requirement. Indeed,
in our context, each r-schema might end up for being explained by a wide set
of rules, thus precluding users from getting a concise picture of schema usage.
For instance, with reference to Example 4, TBA is clearly the schema profile that
best represents the collection, with each r-schema being reached by a single path
in the tree. Nevertheless, the tree chosen by an entropy-based algorithm would
be TAB, where s4 is doubled, because of the higher gain when splitting T0 on A.

To evaluate conciseness of schema profiles, in this section we propose a mea-
sure called schema entropy. As stated in Section 3, our requirement is reduce
the number of rules provided by maximizing the cohesion of the documents that
share the same r-schema —a maximally concise schema profile is one where there
is a single rule for each r-schema. So we invert the original definition of entropy
to relate it to the purity of the r-schemata instead of the purity of the leaves:
in terms of entropy, a leaf is pure if it contains only documents with the same
r-schema; in terms of schema entropy, an r-schema is pure if all its documents
are in the same leaf. The schema entropy of a degenerate schema profile where
all the documents are included into a single node (the root) is 0; clearly, when
a split is made, the schema entropy can never decrease, so the concept of gain
is replaced by that of loss (the lower the loss, the more convenient the split).

Definition 7 (Schema Entropy and Loss). Let D be a collection, S(D) be
the set of distinct r-schemata of the documents in D, and T be a schema profile
for D with leaves v1, . . . , vm. The schema entropy of r-schema s ∈ S(D) is

sEntropy(s) =

m∑
j=1

|Dvj |s
|D|s

log
|Dvj |s
|D|s

(4)

The schema entropy of T is then defined as

sEntropy(T) = −
∑

s∈S(D)

|D|s
|D|
· sEntropy(s) (5)

Let σa(vj) be a split resulting into schema profile T ′; the loss related to σa(vj)
is defined as:

loss(σa(vj)) = sEntropy(T ′)− sEntropy(T) (6)

15

Definition 7 implies that the loss of split σa(vj) is 0 iff, for each r-schema s ∈
S(Dvj), all the documents with r-schema s belonging to Dvj are put into a
single leaf of T ′. As a consequence, all schema-based splits have null loss.

Example 5. With reference to Example 4, T0 has null schema entropy. It is
loss(σA(v0)) = 0.16 and loss(σB(v0)) = 0; since all the following splits have null
loss, it is sEntropy(TAB) = 0.16 and sEntropy(TBA) = 0. Therefore, TBA is the
most convenient from the point of view of schema entropy.

Let m be the number of leaves and n the number of r-schemata; we note
that:

• The schema entropy of a schema profile T can be 0 only if m ≤ n (because
clearly, if m > n, at least one r-schema appears in more than one leaf).

• The entropy of a schema profile T can be 0 only if m ≥ n.

Although these observations apparently suggest that entropy and schema en-
tropy are conflicting, actually their goals are not mutually exclusive. Indeed,
splitting a node so that documents with the same r-schema are kept together,
means putting documents with different r-schemata in separate children; so, the
splits determining low or null loss tend to yield a high gain as well. In Section
6 we will show how BSP builds on both entropy and schema entropy to achieve
a trade-off between conciseness and precision of schema profiles.

We close this section with an important remark. As already stated, our
definition of schema profile (Definition 4) accommodates both binary and n-ary
trees —depending on whether binary or multi-way splits are allowed. However,
we observe that an n-ary schema profile can always be translated into binary
form without changing its entropy and schema entropy (because they only de-
pend on how documents are partitioned among the leaves). Besides, multi-way
splits on high-cardinality categorical attributes produce a strong fragmentation
of r-schemata into leaves and an undesired increase in schema entropy. For these
reasons, in the following we will focus on binary schema profiles.

6. Building Schema Profiles

As already mentioned, our algorithm is inspired to C4.5 [19] in its Weka
implementation (named J48). C4.5 implements a divisive approach that starts
by creating a single node that includes all the observations in the dataset; as
such, according to Definition 6, this root node has maximum entropy. Then the
algorithm iteratively splits each leaf into two new leaves that include subsets of
observations; since the final goal is to minimize the entropy, at each iteration
the split that maximizes the gain is greedily chosen. The algorithm stops when
either all the leaves are pure or all the splits are statistically irrelevant.

In our domain, recalling the user requirements illustrated in Section 3, we
can informally state our final goal as follows:

16

Given collection D find, among the schema profiles for D with null entropy,
one that (i) has minimum schema entropy on the one hand, and (ii) has the
minimum number of schema-based nodes on the other.

Null entropy ensures that each leaf includes documents belonging to one r-
schema only (i.e., the schema profile is precise), schema-entropy minimization
calls for having a single rule to explain each r-schema (the schema profile is con-
cise), while minimization of schema-based nodes ensures that most conditions
are meaningful (the schema profile is explicative). Obviously, to fit this goal,
the splitting and stop strategies of the C4.5 algorithm have to be modified by
considering schema entropy on the one hand, and by taking into account the
distinction between schema-based and value-based splits on the other.

A solution for our problem can be always found since, as no two r-schemata
with exactly the same attributes exist, any schema profile can be extended
using schema-based nodes until each leaf includes documents belonging to one
r-schema only (i.e., the schema profile has null entropy). On the other hand,
the (trivial) schema profiles including only schema-based nodes have null schema
entropy but they do not meet subgoal (ii). Indeed, subgoals (i) and (ii) may be
conflicting; to rule the trade-off, in BSP we allow schema-based splits only if no
value-based split satisfies the following quality criterion:

Definition 8 (Valid Split). A value-based (binary) split σa(v) is valid if
loss(σa(v)) ≤ ε and gain(σa(v)) ≥ ω, where ε, ω ≥ 0 are thresholds.

Based on Definitions 6 and 7, it is easy to verify that ε ∈ [0..log|D|] and ω ∈
[0..log|S(D)|]. There is not an ideal all-purpose setting for these threshold; as we
will show in Section 7, through ε and ω users can fine-tune the trade-off between
subgoals (i) and (ii) so as to obtain satisfactory schema profiles depending on
the specific features of the collection. More specifically: the higher ε, the more
the user is privileging schema profiles with a few schema-based nodes —i.e.,
explicative ones; the higher ω, the more the user is favoring schema profiles
whose value-based nodes considerably decrease entropy —i.e., concise ones.

Consistently with the final goal stated above, we define a criterion for com-
paring two splits as follows:

Definition 9. Given two splits σ(v) and σ′(v) (possibly on different attributes),
we say that σ(v) is better than σ′(v) (denoted σ(v) ≺ σ′(v)) if either (i)
loss(σ(v)) < loss(σ′(v)), or (ii) loss(σ(v)) = loss(σ′(v)) and gain(σ(v)) >
gain(σ′(v)).

The pseudocode of Algorithm 1 implements BSP. It is a recursive procedure
that splits a generic leaf v of the tree T representing the schema profile; it is
initially called with a degenerate tree consisting of one single node, and stops
when all leaves are pure. Value-based splits are tried first (lines 3 to 6); can-
didate attributes for splitting are those that are present in at least one of the
documents in Dv. For each candidate attribute a, function FindBestSplit finds
the best binary split by exhaustively computing gain and loss for each possible

17

Algorithm 1 BuildSchemaProfile (BSP)
Require: T , a schema profile; v, the leaf of T to be split; ε and ω, two thresholds
Ensure: T , a new schema profile where v is split
1: bestSplit← ∅
2: rsv ← ∪s∈S(Dv)s . Set of attributes in the r-schemata of the documents in v
3: for a ∈ rsv s.t. type(a) = primitive do . Evaluate value-based splits
4: σa(v)← FindBestSplit(a, ε, ω)
5: if σa(v) is valid ∧ σa(v) ≺ bestSplit then
6: bestSplit← σa(v)

7: if bestSplit = ∅ then . If no valid value-based split is found...
8: for a ∈ rsv doevaluate schema-based splits
9: σa(v)← SchemaBasedSplit(a)

10: if σa(v) ≺ bestSplit then
11: bestSplit← σa(v)

12: for u ∈ Children(σa(v)) do . For each leaf u generated by the split...
13: AddChild(T, v, u)add u to T as a child of v...
14: if |S(Du)| > 1 thenand, if u is not pure, ...
15: T ← BuildSchemaProfile(T, u)split it

16: return T

condition on a (as per Definition 5) and using Definition 9 for split comparison.
If no valid value-based split is found for the given threshold ε, schema-based
splits are tried (lines 8 to 11). Function SchemaBasedSplit(a) returns the
schema-based split for attribute a; since all schema-based splits are considered
to be valid, one schema-based split is always found at this stage. Finally, T is
extended by adding the new leaves generated by the best split found as children
of v (lines 12 to 15). If a new leaf u is pure, recursion stops; otherwise, u is
recursively split.

7. Experimental Results

The Weka J48 algorithm we use for experimental comparisons requires a
dataset structured as a table where each row represents an observation (in our
case, a document) and each column represents a feature to be used for classifi-
cation; one additional column is used to store the class each observation belongs
to. So we define the dataset associated with a collection as follows.

Definition 10 (Dataset). Let D be a collection. The dataset associated with
D is a table with the following structure: (i) a column named rsId; (ii) one
schema-based column named exists path(a) type(a) for each attribute a ∈ rs(D);
and (iii) one value-based column named path(a) type(a) for each attribute
a ∈ rs(D) such that type(a) = primitive. The dataset includes a row for ev-
ery d ∈ D, such that

1. rsId stores a unique identifier given to rs(d) within S(D);

2. exists path(a) type(a) = 1 if a ∈ rs(d), 0 otherwise;

3. path(a) type(a) stores the value taken by attribute a in document d if
a ∈ rs(d), null otherwise.

18

Table 2: Portion of the dataset for our running example

rs
Id

A
ct
iv
it
yT

yp
e
p
ri
m
it
iv
e

C
ar
d
io
O
n
p
ri
m
it
iv
e

B
P
M

p
ri
m
it
iv
e

U
se
r.
A
g
e
p
ri
m
it
iv
e

. . . ex
is
ts

A
ct
iv
it
yT

yp
e
p
ri
m
it
iv
e

ex
is
ts

C
ar
d
io
O
n
p
ri
m
it
iv
e

ex
is
ts

B
P
M

p
ri
m
it
iv
e

ex
is
ts

U
se
r
o
b
je
ct

ex
is
ts

U
se
r.
A
g
e
p
ri
m
it
iv
e

. . .
s0 Bike null null null . . . 1 0 0 0 0 . . .
s1 Run false null null . . . 1 1 0 0 0 . . .
s1 Walk false null null . . . 1 1 0 0 0 . . .
s2 Run true 120 null . . . 1 1 1 0 0 . . .
s3 Run true null null . . . 1 1 0 0 0 . . .
s4 Walk true null 42 . . . 1 1 0 1 1 . . .
s5 Walk true null 65 . . . 1 1 0 1 1 . . .

Table 3: Dataset features

Name Origin Timespan |D| |S(D)| #columns Depth Opt. Bal.
SD1 yes yes
SD2 synthetic — 10 K 8 4 + 7 — no yes
SD3 yes no
RD1 fitness 4 months 5 M 6 6 + 10 5 yes no
RD2 fitness 4 months 767 K 139 35 + 38 5 no no
RD3 sw develop. 27 months 473 K 122 90 + 149 2 no no

Example 6. Table 2 shows a portion of the dataset for our running example;
for space reasons, some columns are omitted.

For testing we use a set of both synthetic and real-world datasets, whose
characteristics are summarized in Table 3. Timespan shows the number of
months spanned by real datasets; #columns is the number of value-based columns
plus the number of schema-based columns in the dataset; Depth shows the max-
imum nesting depth of the JSON documents in real datasets; Optimal indicates
whether a schema profile exists that is both concise (i.e., with null schema en-
tropy) and explicative (i.e., with no schema-based nodes); Balanced indicates
whether all the r-schemata have roughly the same number of documents.

Synthetic datasets (i.e., SD1, SD2 and SD3) are relatively small and have
been created using a simple rule-based generator: we devised two schema profiles
(shown in Figure 5) and then used them as a model to generate the data. The
four value-based columns correspond to primitive attributes, shared by all doc-
uments (i.e., no value-based column has missing values); the presence/absence
of three more object attributes allows eight r-schemata to be distinguished.
SD1 is the simplest dataset, where each r-schema has about 1/8 of the 10 000
documents. SD2 presents a balanced but non-optimal situation obtained by
assigning, for each r-schema, multiple values to attribute subtype —thus forcing
a loss in schema entropy when splitting on that attribute. Lastly, SD3 is gen-

19

Type	

Subtype	 Year	

Type=“a” Type≠ “a”

Subtype=“a1” Subtype≠“a1”

s5 s6v5 v6

Level	 Year	

s1 s2

Level>1Level≤1

v1 v2 s3 s4

Year>15Year≤15

v3 v4

Year≤15

Year	 Level	

Year>15

s7 s8v8v7

Year≤14 Year>14 Level>1Level≤1

Type	

Subtype	 Year	

s5 s6v7 v8

Level	 Subtype	

s1 s2v1 v2

v5

Year	 Level	

s7 s8v10v9Year	

s3 s4v6

Level	

s1 s2v3 v4

Type=“a” Type≠ “a”

Subtype=“a1” Subtype≠“a1”

Subtype=“a2” Subtype≠“a2”Level>1Level≤1 Level>1Level≤1

Level>1Level≤1

Year≤14 Year>14

Year≤15 Year>15

Year≤15 Year>15

Figure 5: The schema profiles used to generate the synthetic datasets SD1 and SD2 (top),
and SD3 (bottom); dashed boxes highlight the differences

erated with the same rules as SD1 but presents an unbalanced situation, where
four r-schemata have 9/10 of the documents. All three synthetic datasets can
be downloaded at big.csr.unibo.it/bsp.

As to real-world datasets, RD1 and RD2 have been acquired from a company
that sells fitness equipment, and they contain the registration of new workout
sessions and the log of the activities carried out during a workout session, re-
spectively. RD3 has been acquired from a software development company and
contains the log of the errors generated by the deployed applications. These
three datasets have a key role in evaluating BSP, because they include a large
number of documents and present a higher number of attributes and r-schemata.

7.1. Effectiveness

To evaluate the effectiveness of BSP we must verify whether it is really capa-
ble of identifying the rules that drive the use of different schemata in documents,
which can be done by comparing the schema profiles obtained by BSP with a
baseline. To assess the impact of schema entropy and prove that BSP is not a
minor improvement over a general-purpose algorithm for building decision trees,
the schema profiles are also compared with those obtained from the original ver-
sion of the Weka J48 algorithm, which only uses entropy. Since schema-based
splits typically yield higher gain than value-based ones (and, therefore, are fa-
vored by J48), we also run J48 on reduced versions of the datasets that only

20

include value-based columns; we will label with J48-V and J48-VS the schema
profiles obtained by ignoring or considering schema-based attributes, respec-
tively. A comparison with other approaches in the literature is not possible
since, as shown in Table 1 and discussed in Section 2.1, all those approaches
produce a (global, skeleton, or reduced) schema, which by no means can be
compared to a schema profile (which has a completely different structure and
goal).

To compare two schema profiles we consider the document partition induced
by the tree leaves but also the tree structure; more specifically:

• To measure the difference in document partition we rely on the HR-index
[24], which is a fuzzy variation of the well-known Rand index [25] largely
used in the literature for comparing partitions. The basic idea behind the
Rand index is that two partitions p1 and p2 are similar if the pairs of
documents that are together (separate) in p1 are also together (separate)
in p2. The HR-index extends this idea to fuzzy partitions. The value of
the index ranges from 0 (completely different partitions) to 1 (identical
partitions).

• The tree edit-distance (TED) defines the distance between two trees as the
length of the cheapest sequence of node-edit operations that transforms
one tree into the other [26], and its variants are recognized to be a good
choice for comparing XML collections when the structure is particularly
relevant [15]. Importantly, TED does not take into account the depth
of a node in the tree (i.e., an edit operation on the root costs the same
as an edit operation on a leaf). Since this would have a strong impact
when comparing decision trees (where the order of decisions is relevant),
to measure the difference in tree structure we adopt a modified version of
TED which weighs the cost of an edit operation made on a node with the
depth of that node; in particular, given a tree of height h and a node v
at depth d (1 ≤ d ≤ h), the cost of an edit operation on v is 1/d. The
minimum value for TED is 0 (identical trees), while the maximum value
clearly depends on the size of the compared trees.

For synthetic datasets, our testing baseline are the schema profiles used to
create the datasets (Figure 5). Table 4 shows the results of the tests made on
these datasets to measure the quality of schema profiles with reference to three
critical situations (the value of ω is set to zero in these tests, as its manipulation
has no remarkable effect on the synthetic datasets due to their small size):

1. Incomplete information: in this case the use of different schemata is ruled
by either the values of attributes that are not present in the documents
or the values of non-primitive attributes for which there is no value-based
column in the dataset (e.g., arrays). To assess how the lack of information
progressively affects profile building we carried out three tests with an in-
creasing level of incompleteness. We start from the simplest dataset, SD1
(test T1), and progressively remove value-based columns Subtype (test T2)

21

Table 4: Effectiveness tests on synthetic datasets

T
e
st

D
a
ta

se
t

A
lg
o
r
it
h
m

ε S
c
h
e
m
a

e
n
tr
o
p
y

#
le
a
v
e
s

%
sc

h
e
m
a
-b
a
se
d

n
o
d
e
s

T
E
D

H
R
-i
n
d
e
x

T1 SD1
J48-V — 0 8 0% 0 0
J48-VS — 0 8 14% 0 0

BSP 0.1 0 8 0% 0 0

T2 SD1
J48-V — 1.92 38 0% 9.06 0.061
J48-VS — 0 8 29% 1.33 0

BSP 0.1 0 8 14% 0.5 0

T3 SD1
J48-V — 2.65 33 0% 9.03 0.097
J48-VS — 0 8 42% 1.67 0

BSP 0.1 0 8 42% 1.17 0

T4 SD2
J48-V — 0.59 15 0% 3.45 0
J48-VS — 0 8 28% 2.32 0.013

BSP
0.1 0 8 14% 1.48 0.013
0.3 0.21 10 0% 0 0

T5 SD3
J48-V — 0.10 12 0% 4 0.001
J48-VS — 0 8 14% 2.33 0.125

BSP 0.1 0 8 0% 0 0

and Level (test T3); threshold ε is set at 0.1 for BSP. Obviously, the loss
of information in T2 and T3 prevents algorithms from building the ex-
act baseline profile. However, the BSP profiles do not diverge significantly
from the baseline, as the split strategy is designed to keep documents with
the same r-schema together; thus, BSP resorts to schema-based conditions
to recover the lost information and eventually provides the same document
partitioning as the baseline.

2. Non-optimal dataset : in SD2, the use of different schemata is ruled by
complex conditions that are not considered by our search strategy; hence,
no concise and explicative schema profile can be found and one of these
two features must be sacrificed. Test T4 shows how this trade-off can
be achieved by adjusting ε. With ε = 0.1, BSP is less tolerant to the
separation of documents of the same r-schemata into different leaves; this
results in BSP preferring schema-based conditions and generating a concise
(8 leaves and zero schema entropy) but inaccurate (high TED and non-
zero HR-index) schema profile. The baseline actually splits the documents
of r-schemata s1 and s2 into 4 leaves (see Figure 5), and this result can
be achieved by increasing ε to 0.3, at the expense of a substantial loss in
terms of schema entropy.

3. Unbalanced dataset : in this case the documents are unevenly distributed
among the r-schemata. We run a single test (T5) on the unbalanced
dataset SD3, with threshold ε still set at 0.1. The results show that

22

only BSP is capable of perfectly reproducing the baseline, as the schema
entropy measure favors a pure separation of the r-schemata even if the
entropy gain is limited (due to the unbalanced distribution).

The comparison with J48-V and J48-VS helps us outlining the strengths
of BSP that eventually yield better results than a standard decision tree algo-
rithm. In particular, we observe that — except for T1 — J48-V builds more
complicated schema profiles with a higher number of leaves. This is due to
the fact that entropy alone does not encourage conciseness; rather, it tends to
maximize the gain by separating the documents belonging to the most frequent
r-schemata, even if the documents of the less frequent r-schemata end up to be
split in multiple leaves. Eventually, the schema profiles of J48-V often result in
a document partitioning that diverges from the one of the baseline. Addition-
ally, the schema profiles built by J48-VS show the importance of considering
the difference between value- and schema-based columns. These profiles tend to
overuse schema-based conditions, even when there is no issue of incompleteness
(i.e., T1, T4, and T5), thus failing to identify value-based splits that would have
been more explicative and more accurate.

For our real-world datasets a complete baseline is not available; indeed,
during requirement elicitation our users could only provide a very small schema
profile consisting of the two or three value-based conditions that they presumed
to be representative of the schema usage. Given such premise, we start by
studying the behavior of BSP with different values of ε and ω. The three
diagrams in Figure 6 show the effects of the two thresholds on the schema
profile for RD2 in terms of conciseness (given by the number of leaves and by
the schema entropy) and its explicativeness (given by the percentage of value-
based nodes). The first observation is that, when a very concise schema profile
is requested by the user (i.e., ε = 0 and the schema entropy is therefore forced
to be null), the major risk is to renounce to explicativeness (as shown by the
low percentage of value-based nodes). As ε is increased, the general tendency
is to create more explicative schema profiles. However, by allowing splits that
increase the schema entropy, BSP may be inclined to choose those splits that
single out only a small fraction of the documents (i.e., splits yielding a very low
loss, but also a very low gain); in this case, the risk is to obtain a very complex
schema profile. Conversely, the increase of ω favors conciseness by filtering out
the aforementioned splits.

As the order of the conditions is very relevant, users may be interested more
in the upper parts of the schema profile than in the lower ones. So, with the next
test we analyze the structure of the schema profile by segmenting the tree at
different levels of depth. Figure 7 shows the level-by-level decomposition of the
schema profile generated on RD2. Based on the results of the previous test, we
set ε = 0.01 and ω = 0.1. The figure shows that the entropy rapidly decreases,
while the low schema entropy ensures the conciseness of the schema profiles
across every stage. Most importantly, the percentage of schema-based nodes is
kept quite low within the first levels, denoting a good degree of explicativeness of
the upper part of the schema profile. Schema-based conditions tend to increase

23

0
0.01

0.1
0.2

0.4

0

1000

2000

3000

4000

5000

6000

0
0.01 0.1 0.2 0.4

ε

le

av
es

ω

0
0.01

0.1
0.2

0.4

0

2

4

6

8

0
0.01 0.1 0.2 0.4

ε

Sc
he

m
a

en
tro

py

ω

0
0.01

0.1
0.2

0.4

0%

20%

40%

60%

80%

0
0.01 0.1 0.2 0.4

ε

%
 v

al
ue

-b
as

ed
 n

od
es

ω

Figure 6: The effects of different values of ε and ω on RD2

in the lower parts, where a good degree of separation of the r-schemata has
already been achieved (as proven by the low entropy).

As a final test, we evaluate the quality of the schema profiles generated for
real-world datasets with respect to the baseline provided by the user. Since
the baseline is limited to two or three value-based conditions, a comparison
against complete schema profiles would inevitably be unfair and reveal great
dissimilarities. Therefore, the values of TED have been determined by limiting
each schema profile to a number of levels that equals the one in the baseline;
the calculus of the HR-index is omitted for the same reason. The values of ε
and ω for RD1 and RD3 have been determined by a statistical evaluation, as
previously shown for RD2. Table 5 shows the results of the test. In particualr,
BSP always provides a very concise schema profile, which also matches with the
baseline in RD1. The comparison with J48-V and J48-VS confirms the issues
that would emerge by adopting the basic algorithms — i.e., a less accurate and
over-complicated schema profile by relying on entropy alone, and an overuse of
schema-based columns without differentiating between value- and schema-based
conditions.

7.2. Efficiency

The driving factor in estimating the complexity for computing the gain and
loss of a split is the number of documents, |D| (since the number of r-schemata,
|S(D)|, and the number of leaves, m, are clearly quite lower than |D|). Under
this assumption, we know from the literature that the complexity for evaluating

24

0%

10%

20%

30%

40%

50%

60%

70%

80%

0

0.5

1

1.5

2

2.5

3

3.5

levels (# leaves)

% schema-based nodes Entropy Schema entropy

Figure 7: Level-by-level decomposition of the schema profile generated on RD2 with ε = 0.01
and ω = 0.1

all the possible splits of leaf v on attribute a by computing their gain and loss
is O(|Dv|) if a is categorical (including the case in which a is a schema-based
columns), O(|Dv| ·(log|Dv|+1)) if a is numeric [27]. Within an iteration of BSP,
this cost is paid whenever functions FindBestSplit and SchemaBasedSplit
are called. In turn, the number of calls depends on the number of attributes
belonging to rsv.

Formally modeling the complexity of the basic operations is not sufficient to
evaluate the overall BSP execution time. The number of recursive calls is related
to the effectiveness of the purity measures, to the availability of useful value-
based attributes, and to the inherent complexity of the dataset. To properly
analyze this holistic bundle of factors we compare the BSP execution time with
the ones of J48-V and J48-VS on real-world datasets8; the tests were made on
a 64-bits Intel Core i7 quad-core 3.4GHz, with 16GB RAM, running Windows
7 pro SP1. For the same tests of Table 5, Table 6 shows:

• the total execution times (in seconds) to build the schema profiles;

• the number of times that functions FindBestSplit and SchemaBasedSplit
are called (shown as #FBS and #SBS, respectively);

• the average number of documents involved when functions FindBestSplit
and SchemaBasedSplit are called (shown as Avg #docs per FBS and Avg
#docs per SBS, respectively);

Note that (i) the number of iterations does not necessarily reflect the size of the
tree, because J48 adopts post-pruning techniques that eventually reduce the size
of the schema profile; (ii) the time for post-pruning is not considered because
of its irrelevance (not greater than a second); (iii) BSP is not penalized by the

8Synthetic datasets are not considered for evaluating efficiency since their execution time
is below one second.

25

Table 5: Effectiveness tests on real-world datasets

D
a
ta

se
t

A
lg
o
r
it
h
m

ε ω S
c
h
e
m
a

e
n
tr
o
p
y

H
e
ig
h
t

#
le
a
v
e
s

%
sc

h
e
m
a
-b
a
se
d

n
o
d
e
s

T
E
D

RD1
J48-V - - 2.16 10 48 0% 0
J48-VS - - 0 3 6 60% 1

BSP 0.01 0.1 0 3 6 80% 0

RD2
J48-V - - 3.69 35 521 0% 2.33
J48-VS - - 0 17 115 93% 1.33

BSP 0.01 0.1 0.10 14 228 69% 1.33

RD3
J48-V - - 2.07 34 243 0% 1
J48-VS - - 0 12 85 73% 1

BSP 0.01 0.01 0.10 26 231 50% 0.5

added calculation of schema entropy, since this requires the same data used to
calculate the entropy (as per Definition 7).

By looking at the results, we observe that the execution time of BSP is
consistent with the one of J48. More specifically, BSP is always faster than
J48-VS; this is due to the fact that BSP does not try schema-based splits if a
valid value-based one has been found. This is confirmed in RD1 and RD3 by the
lower value of #SBS, and in RD2 by the lower number of involved documents
(because BSP tends to resort to schema-based columns only in the lower levels of
the schema profile). With respect to J48-V, we observe that the ability of BSP
to quickly converge to a precise schema profile requires a much lower number of
calls to the FBS function. However, this does not necessarily correspond to a
boost in performance due to the higher complexity of the FBS function in BSP
to evaluate schema-based splits.

8. Conclusions

In this paper we have presented BSP, an approach to schema profiling for
document-oriented databases. To the best of our knowledge, BSP is the first
approach to schema profiling based on extensional information. The idea is to
capture the rules that explain the use of different schemata within a collection
through a decision tree whose nodes express either value-based or schema-based
conditions. Guided by the requirements elicited from users, we have proposed
an algorithm that builds precise, concise, and explicative schema profiles. The
experimental tests have shown that BSP is capable of achieving a good trade-off
among these features and of delivering accurate schema profiles.

Our future work in this field will develop along two different perspectives.
On the implementation side, we will incorporate user interaction in the schema
profile building algorithm to give users a closer control on the trade-off among

26

Table 6: Efficiency tests on real-world datasets

D
a
ta

se
t

A
lg
o
r
it
h
m

ε ω T
im

e
(s
ec

.)

#
F
B
S

#
S
B
S

A
v
g
#
d
o
c
s
p
e
r
F
B
S

A
v
g
#
d
o
c
s
p
e
r
S
B
S

RD1
J48-V - - 172 1270 - 225 K -
J48-VS - - 43 27 12 2839 K 3290 K

BSP 0.01 0.1 42 26 11 3320 K 3162 K

RD2
J48-V - - 125 7515 - 27 K -
J48-VS - - 139 2784 550 59 K 184 K

BSP 0.01 0.1 116 2851 602 57 K 91 K

RD3
J48-V - - 156 4282 - 36 K -
J48-VS - - 229 991 1095 124 K 138 K

BSP 0.01 0.01 191 1984 558 64 K 39 K

the different features of schema profiles and to inject additional knowledge in
it. Also, we will evaluate the state of the art of decision tree algorithms to en-
hance the performance of BSP (e.g., by incrementally building the decision tree
[28, 29, 30], by introducing approximation mechanisms [31, 32], or by deploying
the algorithm on a big data infrastructure [33]). From a more research-oriented
point of view, we will investigate how to take advantage of schema profiles when
querying document collections; for instance, we will use schema profiles to en-
hance schema-on-read approaches to analytical querying in business intelligence
contexts [1, 2].

References

[1] Z. H. Liu, D. Gawlick, Management of flexible schema data in RDBMSs -
opportunities and limitations for NoSQL, in: Proc. CIDR.

[2] X. L. Dong, D. Srivastava, Big data integration, in: Proc. ICDE, pp.
1245–1248.

[3] S. Nestorov, J. Ullman, J. Wiener, S. Chawathe, Representative objects:
Concise representations of semistructured, hierarchical data, in: Proc.
ICDE, pp. 79–90.

[4] Q. Y. Wang, J. X. Yu, K.-F. Wong, Approximate graph schema extraction
for semi-structured data, in: Proc. EDBT, pp. 302–316.

[5] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, K. Shim, XTRACT:
a system for extracting document type descriptors from XML documents,
SIGMOD Record 29 (2000) 165–176.

27

[6] J. Hegewald, F. Naumann, M. Weis, XStruct: Efficient schema extraction
from multiple and large XML documents, in: Proc. ICDE Workshops, pp.
81–81.

[7] G. J. Bex, W. Gelade, F. Neven, S. Vansummeren, Learning deterministic
regular expressions for the inference of schemas from XML data, ACM
TWEB 4 (2010) 14.

[8] J. L. C. Izquierdo, J. Cabot, Discovering implicit schemas in JSON data,
in: Proc. ICWE, pp. 68–83.

[9] M. Klettke, U. Störl, S. Scherzinger, O. Regensburg, Schema extraction
and structural outlier detection for JSON-based NoSQL data stores., in:
Proc. BTW, volume 2105, pp. 425–444.

[10] D. S. Ruiz, S. F. Morales, J. G. Molina, Inferring versioned schemas from
NoSQL databases and its applications, in: Proc. ER, pp. 467–480.

[11] L. Wang, S. Zhang, J. Shi, L. Jiao, O. Hassanzadeh, J. Zou, C. Wangz,
Schema management for document stores, Proc. VLDB Endowment 8
(2015) 922–933.

[12] P. A. Bernstein, J. Madhavan, E. Rahm, Generic schema matching, ten
years later, Proc. VLDB Endowment 4 (2011) 695–701.

[13] R. Nayak, W. Iryadi, XML schema clustering with semantic and hierarchi-
cal similarity measures, Knowledge-Based Systems 20 (2007) 336–349.

[14] M. L. Lee, L. H. Yang, W. Hsu, X. Yang, XClust: clustering XML schemas
for effective integration, in: Proc. CIKM, pp. 292–299.

[15] G. Guerrini, M. Mesiti, I. Sanz, An overview of similarity measures for clus-
tering XML documents, in: Web Data Management Practices: Emerging
Techniques and Technologies, Idea Group, 2007, pp. 56–78.

[16] P. Bohannon, E. Elnahrawy, W. Fan, M. Flaster, Putting context into
schema matching, in: Proc. VLDB, pp. 307–318.

[17] H. Nottelmann, U. Straccia, sPLMap: A probabilistic approach to schema
matching, in: Proc. ECIR, pp. 81–95.

[18] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, P. Domingos, iMAP: dis-
covering complex semantic matches between database schemas, in: Proc.
ICMD, pp. 383–394.

[19] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann,
1993.

[20] C. E. Shannon, A mathematical theory of communication, ACM SIGMO-
BILE Mobile Computing and Communications Review 5 (2001) 3–55.

28

[21] H. Deng, G. Runger, E. Tuv, Bias of importance measures for multi-valued
attributes and solutions, in: Proc. Int. Conf. on Artificial Neural Networks,
pp. 293–300.

[22] J. R. Quinlan, Induction of decision trees, Machine learning 1 (1986)
81–106.

[23] S. R. Safavian, D. Landgrebe, A survey of decision tree classifier method-
ology, IEEE TSMC 21 (1990) 660–674.

[24] E. Hullermeier, M. Rifqi, A fuzzy variant of the rand index for comparing
clustering structures, in: Proc. IFSA-EUSFLAT, pp. 1294–1298.

[25] W. M. Rand, Objective criteria for the evaluation of clustering methods,
Journ. of the American Statistical association 66 (1971) 846–850.

[26] S. M. Selkow, The tree-to-tree editing problem, Information processing
letters 6 (1977) 184–186.

[27] S. Ruggieri, Efficient c4. 5 [classification algorithm], IEEE TKDE 14 (2002)
438–444.

[28] P. Utgoff, Incremental induction of decision trees, Machine learning 4
(1989) 161–186.

[29] S. Crawford, Extensions to the CART algorithm, Int. Jour. of Man-Machine
Studies 31 (1989) 197–217.

[30] D. Kalles, T. Morris, Efficient incremental induction of decision trees,
Machine Learning 24 (1996) 231–242.

[31] J. Gehrke, V. Ganti, R. Ramakrishnan, W.-Y. Loh, BOAT-optimistic de-
cision tree construction, SIGMOD Record 28 (1999) 169–180.

[32] P. Domingos, G. Hulten, Mining high-speed data streams, in: Proc.
SIGKDD, pp. 71–80.

[33] W. Dai, W. Ji, A MapReduce implementation of C4.5 decision tree algo-
rithm, Int. Jour. of Database Theory and Application 7 (2014) 49–60.

29

