This is the final Version of Record of:

Favali, M., Citti, G., & Sarti, A. (2017). Local and global gestalt laws: A neurally
based spectral approach. Neural Computation, 29(2), 394-422.

The final published version is available online at:
http://dx.doi.org/10.1162/NECO_a 00921

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Universita di Bologna (https.//cris.unibo.it/)

When citing, please refer to the published version.



https://cris.unibo.it/
http://dx.doi.org/10.1162/NECO_a_00921

LETTER

Communicated by Steven Zucker

Local and Global Gestalt Laws: A Neurally Based
Spectral Approach

Marta Favali
marta favali@ehess. fr
Center of Matfematics, CNRS - EHESS, Paris, 75244, France

Giovanna Citti
grovanna.citti@inibo.if
Dipartimento di Matematica, Universita di Bologna, Bologna, 40126, Italy

Alessandro Sarti
alessandro.sarti@ehess.fr
Center of Mathematics, CNKS - EHESS, Paris, 75244, France

This letter presents a mathematical model of figure-ground articulation
that takes into account both local and global gestalt laws and is compati-
ble with the functional architecture of the primary visual cortex (V1). The
local gestalt law of good continuation is described by means of suitable
connectivity kernels that are derived from Lie group theory and quan-
titatively compared with long-range connectivity in V1. Global gestalt
constraints are then introduced in terms of spectral analysis of a connec-
tivity matrix derived from these kernels. This analysis performs group-
ing of local features and individuates perceptual units with the highest
salience. Numerical simulations are performed, and results are obtained
by applying the technique to a number of stimuli.

1 Introduction

Cestalt laws have been proposed to explain several phenomena of visual
perception, such as grouping and figure-ground segmentation (Wertheimer,
1938; Kohler, 1929; Koflka, 1935; for a recent review, see Wagemans et al.,
2012). In order to individuate perceptual units, gestalt theory introduced
local and global laws. Among the local laws, we recall the principle of prox-
imity, similarity, and good continuation. The local law of good continuation
plays a central role in perceptual grouping (see Figure 1, top row, left)).
Regarding global laws, in the construction of percepts, the feature of
saliency is crucial, yet it is not easy to model quantitatively. In Berliner
Gestal theory, the concept of salience denotes the relevance of a form with
respect to a contextual frame, that is, the power of an object to be present
in the visual field. The role of salience is also pivotal in figure-ground
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Figure 1: (Top) Deformation of visual stimulus, represented by squares with
different angles between the inducers. The angle regularly decreases, and we
perceive regular deformations of the subjective Kanizsa square up to a certain
value of curvature, when the square suddenly disappears and the inducers are
perceived. (Bottom) The stimulus proposed by Field, Hayes, and Hess (1993)
(a) and the perceptual unit present in it (b). (c) The field lines of the association
field, represent the elements in the path that can be associated with the central
point (Field et al., 1993).

articulation. Due to the perceptual grouping process, scenes are perceived
as constituted by a finite number of figures, and the salience assigns a
discrete value to each of them. The most salient configuration pops up from
the ground and becomes a figure (Merleau-Ponty, 1945). Note that in the
case of continuous deformation of the visual stimulus, the salient figures
can change abruptly from one percept to another (Merleau-Ponty, 1945).
This happens, for example, in the top row of Figure 1, where a regular
deformation is applied to the Kanizsa square: we progressively perceive a
more curved square, until it suddenly disappears and the four inducers are
perceived as standing alone (see Lee & Nguyen, 2001; Pillow & Nava, 2002;
Petitot, 2008).

A number of results have been provided in order to refine the principles
of psychology of form and assess neural correlates of good continuation
law. In particular, Grossberg and Mingolla (1985) introduced a “cooperation
field” to model illusory contour formation. Similar fields of association and
perceptual grouping have been produced by Parent and Zucker (1989). In
the 1990s, Kellman and Shipley provided a theory of object perception that
adressed the perception of partially occluded 0b|ect°. and illusory contours
(Kellman & Shipley, 1991; Shipley & Kellman, 1992, 1994). Heitger and von
Der Heydt (Von Der Heydt, Heitger, & Peterhans, 1993) provided a theory
of figural completion that can be applied to illusory contour figures (as the
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Kanizsa triangle) and real images. Field et al. (1993) introduced through
psychophysical experiments the notion of association fields, describing the
Cestalt principle of good continuation. They studied how the perceptual
unit visualized in Figure 1b pops up from a stimulus of Gabor patches (see
Figure 1a). Through a series of similar experiments, they constructed an
association field that defines the pattern of position-orientation elements of
stimuli that can be associated with the same perceptual unit (see Figure 1c).

Starting from the classical results of Hubel and Wiesel (1977), it has
been possible to justify these perceptual phenomena on neurophysiological
bases. The results of Bosking, Zhang, Schofield, and Fitzpatrick (1997) and
Frégnac and Shulz (1999) confirmed that neurons sensitive to similar orien-
tation are preferentially connected. This suggests that the rules of proximity
and good continuation are implemented in the horizontal connectivity of
low-level visual cortices. A stochastic model that takes into account the
structure of the cortex, with position an orientation feature, was proposed
by Mumford (1994), and further exploited by Williams and Jacobs (1997)
and August and Zucker (2000). They modeled similar fields with Fokker-
Planck equations, taking into account different geometric features, such as
orientation and curvature. Petitot and Tondut (1999) introduced a model
of the functional architecture of V1, compatible with the association field.
Citti and Sarti (2006) proposed the model of functional architecture as a Lie
group, showing the relation between geometric integral curves, association
fields, and cortical properties. This method has been implemented in San-
guinetti, Citti, and Sarti (2008) and Boscain, Duplaix, Gauthier, and Rossi
(2012). An exact solution of the Fokker-Planck equation has been provided
by Duits and van Almsick (2008), and their results have been applied by
Duits and Franken (2009) to image processing.

The local laws are insufficient to explain the constitution of a percept,
since a perceived form is characterized by global consistency. Different au-
thors have qualitatively defined this consistency as pregnancy or global
saliency (Merleau-Ponty, 1945), but only a few quantitative models have
been proposed (Koch & Ullman, 1985). In particular, a spectral approach
tor image processing was proposed by Perona and Freeman (1998), Shi
and Malik (2000), Weiss (1999), Coifman and Lafon (2006). In Sarti and
Citti (2015) showed how this spectral mechanism is implemented in neural
morphodynamics in terms of symmetry breaking of mean field neural equa-
tions. In that sense, Sarti and Citti (2015) can be considered an extension of
Bressloff, Cowan, Golubitsky, Thomas, and Wiener (2002).

In this letter, we further develop the approach introduced in Sarti and
Citti (2015) and describe an algorithm for the individuation of perceptual
units using both local and global constraints: local constraints are mod-
eled by suitable connectivity kernels, which represent neural connections,
and the global percepts are computed by means of spectral analysis. The
model is described in the geometric setting of a Lie group equipped with a
sub-Riemannian metric introduced in Petitot and Tondut (1999), Citti and
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Sarti (2006), Sarti, Citti, and Petitot (2008). Despite the apparent mathemat-
ical difficulty, it helps to clarify in a rigorous way the gestalt law of good
continuation.

Here we introduce various substantial differences from the techniques
in literature. While studying the local properties of the model, we focus
on the properties of the connectivity kernels. The Fokker-Planck and the
Laplacian kernel in the motion group are already largely used for the de-
scription of the connectivity, since they qualitatively fit the experimental
data (Sarti & Citti, 2015). Here we perform a quantitative fitting between
the computed kernels and the experimental ones in order to validate the
model. We show that the cortical architecture is a realization of stochastic
sample functions and how, through this realization, we can construct the
connectivity kernel. We make a comparison between the fundamental solu-
tion of the Fokker-Planck equation with the experimental data of Bosking
et al. (1997), Ben-Shahar and Zucker (2004), and Gilbert, Das, Ito, Kapadia,
and Westheimer (1996), showing how the stochastic paths are implemented
in the neural network. In particular, we consider the distribution of a tracer
through lateral connection, modeling each injection with stochastic paths.
The bouton distributions are realizations of a stochastic process, in particu-
lar, of a random walk in B*xS" space. We show how the probability density
obtained as a combination of Fokker-Planck is an integration of stochastic
paths. Moreover, we propose also using the subelliptic Laplacian kernel in
order to account for the variability of connectivity patterns. Second we ac-
complish grouping with a spectral analysis inspired by the work of Sarti and
Citti (2015), who proved the neurophysiological plausibility of this process.
In the experiments, we manipulate the stimuli to demonstrate the relation
between the pop-up of the figure and the eigenvalue analysis. We analyze
in particular the swap between one solution and the other while smoothly
changing the stimulus in many grouping experiments. Finally, we enrich
the model, exploiting the role of the polarity feature, which allows us to
work with two competing kernels.

The plan of the letter is the following. Section 2 is divided in two parts,
first describing local constraints and then global ones. We first recall the
neurogeometry of the visual cortex and see how the cortical connectivity is
represented by the fundamental solution of Fokker-Planck, sub-Riemannian
Laplacian, and isotropic Laplacian equations. We propose a method for the
individuation of perceptual units, first recalling the notions of spectral anal-
ysis of connectivity matrices, obtained by the connectivity kernels. We will
see how eigenvectors of this matrix represent perceptual units in the image.
In section 3, we present numerical approximations of the kernels and will
compare kernels with neurophysiological data of horizontal connectivity
(Angelucci et al., 2002; Bosking et al., 1997), We will see how the differ-
ential equations that we need to solve originate from a stochastic process,
estimated with the efficient numerical technique of Markov chain Monte
Carlo methods (MCMC). We also perform a quantitative validation of the
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kernel considering the experiment of Gilbert et al. (1996), showing the link
between the connectivity kernel and the cell’s response. Finally in section 4,
we present the results of simulations using the implemented connectivity
kernels. We identify perceptual units in different Kanizsa figures, highlight-
ing the role of polarity and discussing and comparing the behavior of the
different kernels.

2 The Mathematical Model

In this section, we identify a possible neural basis for local gestalt laws
in the functional architecture of the primary visual cortex, the first cortical
structure that underlies the processing of visual stimuli. We donot claim that
the process of grouping has to be attributed exclusively to V1, since several
cortical areas are involved in segmentation of a figure, However, neural
evidence ensures that it takes place in V1 (see Lee & Nguyen, 2001; Pillow
& Nava, 2002). Hence, we focus on this area where the first elaboration is
made and is therefore important for the geometrical aspects of the process.

2.1 Local Constraints: The Neurogeometry of V1. In the 1970s, Hubel
and Wiesel (1962, 1977) discovered that this cortical area is organized in the
so-called hypercolumnar structure. This means that for each retinal point
(r. y), there is an entire set of cells, each one sensitive to a specific orientation
& of the stimulus.

The first geometrical models of this structure are due to Hoffman (1989),
Koenderink and van Doorn (1987), Williams and Jacobs (1997), and Zucker
(2006). They described the cortical space as a fiber bundle, where the retinal
plane (x. ¥) is the basis, while the fiber concides with the hypercolumnar
variable #. More recently, Petitot and Tondut (1999), Citti and Sarti (2006),
and Sarti et al. (2008), proposed describing this structure as a Lie group
with a sub-Riemannian metric (see also the results of Duits & Franken,
2009). This expresses the fact that each filter can be recovered from a fixed
one by translation of the point (. ) and rotation of an angle #. In particular,
the visual cortex can be described as the subset of points of R x S§'. Every
simple cell is the characterized by its receptive field, classically defined as
the domain of the retina to which the neuron is sensitive. The shape of the
response of the cell in the presence of a visual input is called the receptive
profile (RP’) and can be reconstructed by electrophysiological recordings
(Ringach, 2002). In particular, simple cells of V1 are sensitive to orienta-
tion and are strongly oriented. Hence, their RPs are interpreted as Gabor
patches (Daugman, 1985; Jones & Palmer, 1987). They are constituted by
two coupled families of cells: an even and an odd-symmetric one.

Via the retinotopy, the retinal plane can be identified with the two-
dimensional plane B2, A visual stimulus at the retinal point (x, ¥) activates
the whole hypercolumnar structure over that point. All cells fire, but the
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cell with the same orientation of the stimulus is maximally activated, giving
rise to orientation selectivity.

Formally, curves and edges are lifted to new cortical curves, identified by
the variables (r. y. #) where # is the direction of the boundary at the point
(v. y). Citti and Sarti (2006) showed that these curves are always tangent
to the planes generated by the vector fields. They modeled these curves as
integral curves of suitable vector fields in the 5£(2) cortical structure. The
vector fields they considered are

X, = (cos#4,sin8,0). X, = (0,0.1). 2.1)

All lifted curves are integral curves of these two vector fields such that a
curve in the cortical space is

¢ (5)= (h ()X, + k()X )(c(5), ¢@®)=0. (2.2)

Citti and Sarti (2006) noted that these curves, projected on the 2D cortical
plane, are a good model of association fields.

2.2 A Model of Cortical Connectivity. From a neurophysiological point
of view, there is experimental evidence of the existence of connectivity
between simple cells belonging to different hypercolumns—the so-called
long-range horizontal connectivity. Combining optical imaging of intrin-
sic signals with small injections of biocytin in the cortex, Bosking et al.
(1997) clarified properties of horizontal connections on V1 of the tree shrew.
The propagation of the tracer is strongly directional, and the direction of
propagation coincides with the preferential direction of the activated cells.
Hence, connectivity can be summarized as preferentially linking neurons
with co-circularly aligned receptive fields.

The propagation along the connectivity can be modeled as the stochas-
tic counterpart of the deterministic curves defined in equation 2.2 for the
description of the output of simple cells. If we assume a deterministic com-
ponent in direction X| (which describes the long-range connectivity) and
stochastic component along X, (the direction of intracolumnar connectiv-
ity), the equation can be written as

. y.#)= (cosd sind, N, o)) = X, + N©, 0*)X,. (2.3)

where N(0. %) is a normally distributed variable with zero mean and vari-
ance equal to 2. The probability density of this process, denoted by », was
first used by Williams and Jacobs (1997) to compute the stochastic com-
pletion field, August and Zucker (2000, 2003) to define the curve indicator
random field, and Duits and Franken (in Duits & van Almsick, 2008; Duits
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Figure 2: (a) An isosurface of the connectivity kernel @, obtained by sym-
metrization of the Fokker-Planck fundamental solution, equation 2.4. (b) The
distribution of co-occurrence of edges in natural images (from Sanguinetti et al.,
2008). (c) Isosurface of the connectivity kernel e, obtained from the fundamen-
tal solution I, of the sub-Riemannian Laplacian equation, equation 2.7. (d) An
isosurface of the fundamental solution of the isotropic Laplacian, equation 2.11.

& Franken, 2009) to perform contour completion, denoising, and contour
enhancement.
The kernel obtained integrating in time the density z,

Iy 6)= f @y bt 2.4)
{)

is the fundamental solution of the Fokker-Planck operator FP = X, + 07 X,,.
The kernel I is strongly biased in the direction X, and is not symmetric.
A new symmetric kernel can be obtained as following

1 it ot
w (8. (. Y. ¢))= 2 (N(x.y8). . ¥.¢))
+ (X, Y. 6). (x.y.8)). (2.5)

Figure 2a shows an isosurface of the symmetrized kernel e, with its typ-
ical twisted butterfly shape. The kernel w, has been proposed in Sanguinetti
et al. (2008) as a model of the statistical distribution of edge co-occurrence
in natural images. The similarity between the two is proved at both a qual-
itative and a quantitative level (Sanguinetti et al., 2008; see also Figures 2a
and 2b).

If we assume that intracolumnar and long-range connections have com-
parable strength, the stochastic equation, equation 2.3, reduces to

@.¥.#)=NO.s)X + NQO. ;)X (2.6)
where N(0. 03-2) are normally distributed variables with zero mean and

variance equal to 2. In this case, the speed of propagation in directions X;
and X, is comparable. The associated probability density is the fundamental
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solution of the sub-Riemannian heat equation (Jerison & Sanchez-Calle,
1986). The integral in time of this probability density,

400
Iy d)= f (X, y. 0, L )dt (2.7)
0

is the fundamental solution of the sub-Riemannian Laplacian (SRL): SR =
Xy + 3 Xy

It is a symmetric kernel, so we do not need to symmetrize it, and we use
it as a model of the connectivity kernel:

(. 8). (V.. )= y.6). (X.if.8)). (2.8)

Figure 2c shows an isosurface of the connectivity kernel «,.

We will see in section 3.2 that a combination of Fokker-Planck and sub-
Riemannian Laplacian fits the connectivity map measured by Bosking et al.
(1997), where the Fokker-Planck fundamental solution represents well the
long distances of the trajectory, while the sub-Riemannian Laplacian repre-
sents the short ones. A combination of different Fokker-Planck fundamental
solutions can also be used to model the functional architecture of primates
experimentally measured by Angelucci et al. (2002).

While validating the model, we will see that a standard Riemannian
kernel does not provide the same accurate results. In order to show this,
we introduce an isotropic version of the previous model, a standard Rie-
mannian kernel. To constuct it, we complete the family of vector fields in
equation 2.1 with an orthonormal one,

X, = (—sin(¥), cos(@).0), (2.9)

choosing stochastic propagation in any direction, in such a way that equa-
tion 2.3 becomes

#.y.8)=NQO, )X, + NQ. /)X + NO, o*)X;. (2.10)
where N(D, (rf) are normally distributed variables with zero mean and

variance equal to 0}2 Its probability density will be denoted #,, and the
associated time-independent kernel,

00
Iy, y.6) = f vy (x, y. 6, Hdt, (2.11)
i

will be the fundamental solution of the standard Laplacian operator:
L=0"Xyy + 0 Xy + 0 X33 = 07 (8 + 9,) + £ 3y Ome of iits level sets is
represented in Figure 2d.
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In section 3.1 we describe a numerical technique to construct the three
kernels we have described.

2.3 Global Integration. Since the beginning of the twentieth century,
perception has been considered by gestaltists as a global process. More-
over, following Koch and Ullman (1985) and Merleau-Ponty (1945), visual
perception is a process of the visual field that individuates figure and back-
ground at the same time. Then it continues in segmenting the structures by
succeeding differentiations.

A cortical mechanism responsible for this analysis has been outlined
by Sarti and Citti (2015), starting from the classical mean field equation of
Ermentrout and Cowan (1980) and Bressloff and Cowan (Bressloff et al.,
2002; Bressloff & Cowan 2003). This equation describes the evolution of
cortical activity and depends on connectivity kernels. The discrete output /2
of the simple cells selects in the cortical space (. y. #) the set of active cells,
and the cortical connectivity, restricted on this set, defines a neural affinity
matrix. The eigenvectors of this matrix describe the stationary states of the
mean field equation—hence, the emergent perceptual units. The system
will tend to the eigenvector associated with the highest eigenvalue, which
corresponds to the most important object in that scene. Mathematically
the approach is strongly linked to spectral analysis techniques for locality-
preserving embeddings of large data sets (Coifman & Lafon, 2006; Belkin
& Niyogi, 2003; Roweis & Saul, 2000), data segregation and partitioning
(Perona & Freeman, 1998; Meila & Shi, 2001; Shi & Malik, 2000), and a
grouping process in real images (Weiss, 1999).

2.4 The Cortical Activity Equation. We have seen thatin the presence of
a visual stimulus, cells aligned to its boundary give the maximal response.
We will assume that a discrete number of cells NV are maximally activated
and denote them (v, y,. &.) for /=1.....N. In Figure 10b, we show as an
example the cells responding to a Kanizsa figure, represented with their
Gabor-like receptive profiles. Following Sarti and Citti (2015), the cortical
connectivity is restricted to this discrete set and reduces to a matrix A:

A= o Yy O) (¥ 42 6))- (2.12)

In this discrete setting, the mean field equation for the cortical activity
reduces to

du , e ics .
V —Au(i)+s (;Au, il . (213)
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where s is a sigmoidal function and A is a phy sloluglcal parameter. The
solution tends to its stationary states, which are the eigenvectors of the
associated linearized equation:

N

A
Z Ai.;'“f = q’—(O) ;. (214)

=1

Hence these are the emergent states of the cortical activity that individu-
ates the coherent perceptual unit in the scene and allows segmenting it. This
is why we will assign to the eigenvalues of the affinity matrix the meaning
of a salience index of the objects. Since we have defined three different
kernels, we will define different affinity matrices. However, all kernels are
real and symmetric, so matrix A4 is a real symmetric matrix 4, ; = A, . Their
eigenvalues are real, and the highest eigenvalue is defined. The abbumatecl
principal eigenvectors emerge as symmetry breaking of the stationary so-
lutions of mean field equations, and they pop up abruptly as emergent
solutions, The first eigenvalue will correspond to the most salient object in
the image.

2.5 Individuation of Perceptual Units. Since the three different kernels
assign different roles to different directions of connectivity, the different
affinity matrices and their spectrum will reflect these different behaviors.
Consequently, the resulting data set partitioning will be stronger in the
straight direction using the Fokker-Planck ¢, kernel or will allow rotation
using the e kernel (see also (Cocci, Barbieri, Citti, & Sarti, 2015) for a deeper
analysis). Using the kernel w,, we expect an equal grouping capability in
the collinear and the ladder directions.

In Figure 3 we show the affinity matrix of the image presented in
Figure 10a. It is a square matrix with dimensions N x N, where V is ex-
actly the number of active patches. It represents the affinity of each patch
with respect to all the others. The structure of the affinity matrix is com-
posed by blocks, and the principal ones correspond to coherent objects. On
the rlght we visualize the complete set of eigenvalues in a graph (eigen-
value number, eigenvalues). We explicitly note that the first eigenvector will
have the meaning of the emergent perceptual unit. The other eigenvectors
do not describe an ordered sequence of figures with different rank. How-
ever, their presence is important, especially when two eigenvalues have
similar values. In this case, a small deformation of the stimulus can induce
a change in the order of the eigenvalues and produce a sudden emergence
of the corresponding eigenvector with an abroupt change in the perceived
image.

This is in good agreement with the perceptual characteristics of salient
figures of temporal and spatial discontinuity, since they pop up abruptly
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Figure 3: (Left) The affinity matrix that contains information about the affinity
of an active patch with respect to all the others. (Right) The set of its sorted
eigenvalues.

from the background, while the background is perceived as undifferentiated
(Merleau-Ponty, 1945). Spectral approaches give reason to the discontinu-
ous character of figure-ground articulation better than continuous models,
which instead introduce a gradual change in the perception of figure and
background (Lorenceau & Alais, 2001).

To find the remaining objects in the image, the process is then repeated on
the vector space orthogonal to p; the second and the following eigenvectors
can be found, until the associated eigenvalue is sufficiently small. In this
way, only # eigenvectors are qelected with 7 < N, this procedure reduces
the dimensionality of the description. This procedure neurally reinterprets
the process introduced by Perona and Freeman (1998).

3 Quantitative Kernel Validations

3.1 Numerical Approximations of the Kernels. In this section, we nu-
merically approximate the connectivity kernels «,, defined in section 2,

We obtain the discrete fundamental solution I} of equation 2.4 by devel-
oping random paths from the numerical solution of system 2.3 that can be
approximated by
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Xopas — X, = Ascos(¥)
Yopns — ¥, = Assing), s€0,...,H, (3.1)
O ns — 8. = AsN(0,0)

where His the number of steps of the random path and N, () is a generator
of numbers taken from a normal distribution with mean 0 and variance
o. In that way, the kernel is numerically estimated with MCMC methods
(Robert & Casella, 2013). Various realizations # of the stochastic path will be
given to solve this finite difference equation » times; the estimated kernel
is obtained averaging their passages over discrete volume elements, as
described in detail in Higham (2001) and Sarti and Citti (2015). We first fix
a discretization step As =1 without loss of generality; then we simulate
several # discrete-times random paths, assigning a value between 0 and
1 corresponding to the number of paths that passed through it, divided
by 7. This provides a distribution over the cells that, for a large value of
1 gives a discrete approximation of the connectivity kernel (Cocci et al,,
2015). Proceeding with the same methodology, the numerical evaluation
of fundamental solution I, of the hypoelliptic Laplacian, equation 2.7, is
obtained, and system 2.6 is discretized:

Xopas — X, = AsRcos(#)

Yopns — ¥, = AsRsin(@), se0,.... H, (3.2)
O e — 0. = AsN(oy,0)

where R = N(o,.0) and o is the variance in the # direction, The kernel
represented in Figure 2c is obtained by numerical integration of that system
and averaging as before the resulting paths.

Finally, system 2.10, a model for the isotropic diffusion equation (see
equation 2.11), is approximated by

Xopas — 4= AsN(z,0)
Yepns — V.= AsN(5,0), s5€0,..., H, (3.3)
Oons — 0= AsN(p.0)

where o, o are the variances in the x, i, # directions. In order to obtain
the approximation of the kernel e, visualized in Figure 2d, the system is
integrated with the same technique used before. These kernels will be used
to construct the affinity matrices in equation 2.12.

3.2 Stochastic Paths and Cortical Connectivity. In this section, we de-
scribe the cortical architecture as a realization of stochastic sample functions;
in particular, we will see how the connectivity is associated with random
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Figure 4: From left to right, the mean connection distribution computed in
Ben-Shahar and Zucker (2004) from Bosking et al. (1997), the expected median
distribution for seven cells, and the results of our model considering seven
different random paths. It is evident that in our model, the standard deviation
is nonmonotonic with two local minima at 430 and —30 degrees.

paths. We will show that the position of presynaptic boutons in the images
of Bosking et al. (1997) can be seen as the realization of stochastic paths via
the anatomy. Every random walk starts from the injection site of a tracer
and gives the position of a set of boutons, as visualized in Figure 5a. The
probability density, which is described as a kernel, is the integration of all
the random paths; it is estimated as the density of the boutons. Finally,
the probability density, which is described as a kernel, is obtained as the
integration of all the random paths. From a neural point of view, this inte-
gration, which can be interpreted as the action of a columnar population,
provides an estimation of the density of the boutons.

We consider a hypercolumn of the ice cube scheme visual cortex, com-
posed of approximately 100 neurons. In the connectivity map in Figure 5a,
we notice the presence of an average of six boutons. In this way, the number
of possible connections in the visual cortex is 100°, and in our model, we use
a number of paths compatible with these data. Now we make a comparison
between the connectivity kernel previously defined and the experiments of
Bosking et al. (1997) and Ben-Shahar and Zucker (2004).

In Figure 4, we can see the results of Ben-Shahar and Zucker (2004). On
the left are the mean and standard deviation of the distribution of long-
range connections of seven injection sites considering the data of Bosking
et al. (1997), and in the middle are the expected median distribution for
seven cells from the curve model described in Ben-Shahar and Zucker
(2004). They noticed that the standard deviation is nonmonotonic, finding
two local minima at approximately +30 and —30 degrees. Contirming their
results, we show that our model implies a nonmonotonically changing
variance as the orientation difference increases. In particular, on the right
side of Figure 4, the mean and the standard deviation of seven random
paths, at a fixed orientation, are visualized. We notice the presence of the
nonmonotonicity of the standard deviation and that the two local minima
at almost 30 degrees are preserved.
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Figure 5: The connectivity map measured by Bosking et al. (1997) (a) and
Angelucci et al. (2002) (e), the pinwheel structure used for the estimate (b, f), the
tracer partitioned according to rectangles with sides equal to the distance be-
tween pinwheels (c, g), and the best-fit results (d, h). (i) The tracer superimposed
to the pinwheel structure found by Bosking et al. (1997). (j) The isocontours ob-
tained from a combination of Fokker-Planck.

Moreover, the fact that the mean and the variance of the model are similar
to the experimental data suggests that the choice of the normal distribution
allows us to find physiological values. For these reasons, the connectivity
represents the anatomical implementation of random paths.

We will now examine to what extent kernels @, /=1, 2 are models of
connectivity. The kernel @, is used for comparison and to show that a
uniform Euclidean kernel does not capture the anysotropic structure of the
cortex. The random paths that we compute through MCM are implemented
in the functional architectures in terms of the horizontal connectivity of
a single cell. However, the connectivity of an entire population of cells
corresponds to the set of all single cells” connectivities and then to the
Fokker-Planck fundamental solution.
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A first qualitative comparison between the kernels «, ¢, and the connec-
tivity pattern has been provided in Sarti and Citti (2015). Here we follow the
same framework, but we propose a more accurate quantitative comparison.

It is well known that the 3D cortical structure is implemented in the 2D
cortical layer as a pinwheel structure, which codes for position and orien-
tations (see Figure 5b). The pinwheel structure has a large variability from
one subject to the next, but within each species, common statistical prop-
erties have been obtained. Cortico-cortical connectivity has been measured
by Bosking et al. (1997) by injecting a tracer in a simple cell and recording
the trajectory of the tracer. In Figure 5a, the propagation through the lateral
connections is represented by black points. Bosking found a large variabil-
ity of injections, which have common stochastic properties as the direction
of propagation, a patchy structure with small blobs at approximately tixed
distance and the decay of the density of tracer along the injection site.

We model each injection with stochastic path solutions of equation 2.3.
Then we evaluate the stochastic paths on the pinwheel structure.

Due to the stochastic nature of the problem, we do not compare pointwise
the image of the tracer and the stochastic paths, but we average them on
the pinwheels. We partition the images of both the tracer and the stochastic
paths in M regions corresponding to the pinwheels,

I=UR, (3.4)
and forevery R, we compute the density of tracer 27, and the density of the
stochastic paths 2P, The two vectors D7;and 2P, are then rescaled in such
a way to have unitary Z2-norm, and the mean square error is computed:

E= 1@ > (pr- m})z. (3.5)

The free parameters of the model are the value of the standard deviation,
and the number of paths, the number of steps, appearing in equation 2.3
and in system 3.1. The best fit between the experimental and simulated
distributions has been accomplished by minimizing the mean square error
by varying these parameters.

Due to the different role of the directions X| and X, in the definition of
these kernels, the sub-Riemannian Laplacian paths and the Fokker-Planck
paths have different structures.

The sub-Riemannian Laplacian allows diffusion in direction X, and fa-
vors the change of the angle; it can be used to describe short-range connec-
tivity as described in section 4.4. Hence, it is responsible for the center blob
in a neighborhood of injection points (see Figure 5c). The Fokker-Planck
kernel produces an elongated, patchy structure and seems responsible for
the long-range connection (see Figure 5d). We apply our quantitative fit
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only to the long-range connectivity, discarding the tracer in the neighbor-
hood of the injection. For this reason, the sub-Riemannian Laplacian is not
involved in validating the model.

The method is first applied to fit the image of the tracer taken by Bosking
et al. (1997; see Figure 5a). They evaluate all the kernels on the pinwheels
(see Figure 5b) to obtain a patchy structure. In order to apply formula 3.4,
we cover both the image of the tracer and the Fokker-Planck with a regular
distribution of rectangles, with edges equal to the mean distances between
pinwheels (see Figures 5¢, and 5d); clearly we do not cover the central zone,
where we cannot fit the Fokker-Planck kernel). The resulting error value
is £ < 8%, showing that the model accurately represents the experimental
distribution.

A similar procedure has been applied to the image of the tracer provided
in Angelucci et al. (2002; see Figure 5e). They obtain their result with various
injections in the neighborhood of a pinwheel, so that all orientations are
present and the tracer propagates in all directions. In this case, we do not
have natural pinwheels; hence we use artificial pinwheels, obtained with
the algorithm presented in Barbieri, Citti, Sanguinetti, and Sarti (2012); see
Figure 5f), with the constraint that the mean distance between the artificial
pinwheels is equal to the mean distance between the blobs produced by the
tracer. Here we consider Fokker-Planck paths with all directions to obtain
the apparent isotropic diffusion. Also in this case, we cover it with rectangles
and perform a best fit; the minimum error value is £ < 8% (see Figures 5g,
and 5h).

Bosking et al. (1997) showed a famous image with the tracer superim-
posed to the pinwheel structure (see Figure 5i). In this case, we have the
tracer and the pinwheel of the same animal. This allows going below the
scale of the pinwheel, and we correctly recover the orientation with the
pinwheel (see Figure 5j). The estimated kernel is again a combination of
Fokker-Planck. As before, we focus on orientations; hence, we model only
the long-range part of the image, discarding the center blob. The evalua-
tion of the error is made with squared regions at a scale smaller that the
pinwheel, and the error goes below £ < 9%.

3.3 Perceptual Facilitation and Density Kernels. In order to obtain
a stable and deterministic estimate of this stochastic model, we used the
density kernel, which is a regular deterministic function, coding the main
properties of the process. We perform a quantitative validation of these
regular kernels, comparing them to an experiment by Gilbert et al. (1996).
They study the capability of cells to integrate information out of the single
receptive field of the cells. This integration process is due to the long-
range horizontal connections; hence, it can be used to validate our model
of long-range connectivity. As we recognized in the previous section, it is
the Fokker-Planck kernel that can be considered a model for long-range
connectivity; hence, we use this kernel.
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Figure 6: (Left) The experiment of Gilbert et al. (1996), with the stimulus com-
posed by randomly placed and oriented lines and the black histogram of the
cell’s response. (Right) The histogram evaluated from the probability density in
response to the same distribution of lines.

Figure 6 (left) shows the results of Gilbert et al. (1996), visualized by
the cell’s response to randomly placed and oriented lines in a black his-
togram. A vertical line is present in the receptive field of a cell selective
to this orientation, and the intensity of its response is represented in the
first column of the histograms. If the stimulus is surrounded by random
elements aligned with the first one, the cell’s response increases (resp. the
second, third, and last column of the histograms). When the other random
elements are not aligned with the fixed one (as in the fifth, sixth, and sev-
enth columns), the cell’s response decreases because it reflects an inhibitory
effect.

On the right in the blue histogram, we evaluate the probability density
modeled by the kernel in equation 2.5 in the presence of the same configu-
ration of elements. The same trend is obtained considering the probability
density distribution, as visualized in Figure 6 (right). In order to consider
the inhibitory effect, we evaluate the kernel with 0 mean. A quantitative
analysis of the differences between them has been evaluated considering
the mean square error between the two normalized histograms. The er-
ror of 8% underlines how this connectivity kernel well represents neural
connections.

4 Emergence of Percepts

In the following experiments, some numerical simulations will be per-
formed in order to test the reliability of the method for performing grouping
and detecting perceptual units in an image. The kernel considered here de-
pends only on orientation. Hence, it can be applied to detect the salience of
geometrical figures, which can be very well described using this feature.

The purpose is to select the perceptual units in these images, using the
following algorithm:
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1. Define the affinity matrix A4, ; from the connectivity kernel.

2. Solve the eigenvalue problem A, ;= A, where the order of /is
such that 4, is decreasing,.

3. Find and pruject on the segments the eigenvector #, associated with

the largest eigenvalue.

The parameters used are 1,000,000 random paths with o = 0.15 in system
31,0 =1and 2, 5, = 0.11 mqystem’%Z and &, p = (.15 in system 3.3. The
value of # is defined as follows: // = ,J_dmw where 4 is the maximum
distance between the inducers of the stimulus. Similar parameters have

been used for all the experiments.

4.1 The Field, Hayes, and Hess Experiment. In this section we consider
some experiments similar to the ones of Field et al. (1993), where a subset
of elements organized in a coherent way is presented out of a ground
formed by a random distribution of elements. A first stimulus of this type is
represented in Figure 7a. The connectivity among these elements is defined
as in equations 2.4 and 2.7.

After the affinity matrix and its eigenvalues, the eigenvector correspond-
ing to the highest eigenvalue is in red. The results show that the stimulus
is well segmented with the fundamental solutions of Fokker-Planck and
sub-Riemannian Laplacian equations (see Figure 7b).

Now we consider a similar experiment proposed in Field et al. (1993),
where the orientation of successive elements differs by 15, 30, 45, 60, and
90 degrees and the ability of the observer to detect the path was measured
experimentally. It was proved that the path can be identified when the
successive elements differ by 60 degrees or less. With our method, we
obtain similar results: if the angle between successive elements is less than 60
degrees (Figures 7c-7¢), the identification of the unit is correctly performed.
With an angle equal to 60 degrees (see Figure 7f) only part of the curve
is correctly detected: this can be interpreted as the observer’s increasing
difficulty to detect the path. Finally, with higher angles (Figure 7g) the
first eigenvector of the affinity matrix corresponding to random inducers,
confirming the results.

Finally, we present an example where there are two units in the scene
with roughly equal salience and roughly equal eigenvalues. In the first and
the second rows of Figure 8, the stimuli are composed by a curve and a
line in a background of random elements. In stimulus a, represented in
the first row, the elements composing the curve are perfectly aligned and
very nearby, so this has the highest saliency; it represents the eigenvector
associated with the first eigenvalue (as shown in red in Figure 8b). The
second eigenvalue in this case is slightly smaller. After computing the first
eigenvector, the stimulus is updated (see Figure 8c); the first eigenvector of
the new affinity matrix is computed, corresponding to the inducers of the
line (see Figure 8d).
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Figure 8: (Rows 1 and 2) Examples (a, e) with two units in the scene, where a
change in the angle leads to a change in the order of the eigenvalues (b, f), (c, g),
(d, h). (Rows 3 and 4) Examples (i, m) with two units in the scene with different
length. (j, n; k, o; 1,p) The results of simulation.

In the second row (see Figure 8e), we slightly modify the stimuli, in
particular the alignement of the element forming the curve (e.g., an angle
of pi/18). As a consequence, the line becomes the most salient perceptual
unit and the first eigenvector (see Figure 8f). The stimulus is updated (see
Figure 8g), and the first eigenvector of the new affinity matrix corresponds to
the inducers of the curve (see Figure 8h). It is notable that in this case, a small
change of the eigenvalues corresponds to small change of the eigenvectors,
but the first eigenvalue swaps with the second one, and, consequently, we
obtain an abrupt change in the perceived object.
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Figure 9: (Top) Schematic description of the hypercolumn of odd simple cells
centered in a point (x, ). The maximal activity is observed for the simple cell
sensitive to the direction of the boundary of the visual stimulus. The set of max-
imally firing cells is visualized in the last image. (Bottom) (a) A cartoon image,
(b) the first eigenvector of the affinity matrix without polarity, (c) its represen-
tation with polarity-dependent Gabor patches, and (d) the corresponding first
eigenvector.

In the previous examples, we have considered all contours with almost
the same length. We show here that this length does not affect the feature
of saliency. The two perceptual units in Figures 8i and 8m have different
lengths. The results underline how the proximity of contours is stronger
than length: the shortest units with nearer segments are the first perceptual
units, associated with the most salient eigenvectors (see Figures 8j, and
8n). Then the stimuli are updated in Figures 8k and 80), and the second
eigenvectors are visualized in Figures 8] and 8p.

In this analysis, different features can be considered. In particular, the
distances between the segments also play a central role. Consider, for exam-
ple, the straight line in Figure 8a. If one or more segments is missing from
the contour, we could obtain a less accurate segmentation (a similar effect
is noticed in the case of unaligned segments). Favali, Abbasi-Sureshjani, ter
Haar Romeny, and Sarti (2016) considered a similar analysis with small or
disconnected contours applied to the study of vessel connectivities.

4.2 The Role of Polarity. The feature of polarity leads to inserting in
the model the feature of contrast: contours with the same orientation but
opposite contrast are referred to opposite angles. For this reason, we assume
that the orientation # takes values in [0. 27) when we consider the odd filters
and in [0, 7) while studying the even ones.

The response of the odd filters in presence of a cartoon image is schemat-
ically represented in Figure 9. At every boundary point, the maximally ac-
tivated cell is the one with the same direction of the boundary. Then the
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maximally firing cells are aligned with the boundary (see Figure 9, top
right).

In order to clarify the role of polarity, we consider an image in Figure 9a,
studied by Kanizsa (1980), in the contest of a study of convexity in per-
ception. In this case, if we consider only the orientation of the boundaries
without polarity, we completely lose any contrast information and obtain
the grouping in Figure 9b. Here, the upper edge of the square is grouped
as a unique perceptual unit. On the other side, while inserting polarity, the
Gabor patches on the upper edge boundary of the black or white region
have opposite contrast and detect values of #, which differs from 7 (see
Figure 9¢). There is no affinity between these patches; the first eigenvector
of the affinity matrix, represented in red, correctly detects the unit presentin
the image and corresponds to the inducers of the semicircle (see Figure 9d).
This underlines the important role of polarity in perceptual individuation
and segmentation. We also note that the first perceptual unit detected is the
convex one, as predicted by the gestalt law (see Kanizsa, 1980).

4.3 The Kanizsa [llusory Figures. We consider here stimuli formed by
Kanizsa figures, represented by oriented segments that simulate the output
of simple cells. Lee and Nguyen (2001) describe the completion of Kanizsa
figures taking place in V1.

We first consider the stimulus of Figure 10a. The connectivity among its
elements will be analyzed with the kernels defined in equations equations
24 and 2.7.

The results of simulations with the fundamental solutions of Fokker-
Planck and sub-Riemannian Laplacian equations are shown in Figure 10.
The first eigenvector, visualized in red, corresponds to the inducers of the
Kanizsa triangle (see Figure 10c). In this example, after computing the first
eigenvector of the affinity matrix, this matrix is updated by removing the
identified perceptual unit and then computing the first eigenvector of the
new matrix (see Figure 10d). These simulations show that circles are asso-
ciated with the less salient eigenvectors. In that way, the first eigenvalue
can be considered a quantitative measure of saliency because it allows the
segmentation of the most important object in the scene and the results of
simulations confirm the visual grouping. When the affinity matrix is formed
by different eigenvector with almost the same eigenvalues, as in Figure 10d,
itis not possible to recognize the most salient object because they all have the
same influence. Here, we show just one inducer in red. The other two have
the same eigenvalue. That also happens, for example, when the inducers
are not aligned circularly or are rotated.

Now we consider the Kanizsa square as stimulus and change the angle
between the inducers, so that the subjective contours become curved (see
Figures 10e-h, second row). The fact that illusory figures are perceived de-
pends on a limit curvature. Indeed, we perceive a square in the first three
cases but not the last one. The results of simulations with the fundamental
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Figure 10: The Kanizsa triangle (a) and the maximally responding odd filters
(b). (c) The first eigenvector of the affinity matrix, using the fundamental solu-
tions of Fokker-Planck (see equation 2.4 and 3.1) and sub-Riemannian Laplacian
equations 2.7 and 3.2. After this computation, the affinity matrix is updated by
removing the detected perceptual unit; the first eigenvector of the new matrix
is visualized (d). Examples of stimulus (row 2) with aligned and unaligned in-
ducers. Stimulus with rotated (k) and unaligned (j, 1) inducers (row 4). The first
eigenvectors of the affinity matrix using the fundamental solutions of Fokker-
Planck and sub-Riemannian are visualized in red (rows 3 and 5).

solutions of Fokker-Planck and sub-Riemannian Laplacian equations con-
firm the visual grouping (see Figures 10e-h, third row). When the angle
between the inducers is not too high, Figures 10e to 10g, the first eigen-
vector corresponds to the inducers that form the square; otherwise, in
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Figure 10h, the “Pacman” becomes the most salient object in the image.
In this case, we obtain four eigenvectors with almost the same eigenvalue.

Now we consider the Kanizsa bar in Figure 10i, second row) that is
perceived only if the inducers are aligned. Also, the result of simulation
confirms the visual perception if we use the fundamental solutions of the
Fokker-Planck and the sub-Riemannian Laplacian equations (see Figure 10i,
third row). When the inducers are not aligned, all the kernels confirm the
visual perception, showing two different perceptual units (see Figure 10j).

Considering a stimulus composed of rotated or unaligned inducers, as
in Figures 10k and 101, it is not possible to perceive it, and the results
of simulations, using all the connectivity kernels described, confirm the
visual grouping. In that case, the affinity matrix is decomposed in three
eigenvectors with almost the same eigenvalues, which represent the three
perceptual units in the scene.

4.4 Sub-Riemannian Fokker-Planck versus Sub-Riemannian Lapla-
cian. The two kernels we analyze are not mutually exclusive and can be
implemented in different cells. The presence of different populations of cells
in relation to mathematical models has been also studied in Ben-Shahar
and Zucker (2004). We have outlined in sections 2.2 and 3.2 that the Fokker-
Planck kernel accounts for long-range connectivity and the sub-Riemannian
Laplacian for a short range. In the previous examples, we obtained good
results with both kernels, but this difference emerges while we change the
parameters. In Figure 11, we compare the action of these two kernels.

In the first row of Figure 11, we see some segments, which form a
unique perceptual unit. If they are not too far, the grouping is correctly
performed by both the Fokker-Planck and the sub-Riemannian Laplacian
(see Figures 1la and 11b). When we separate the inducers, the percep-
tual unit is correctly detected by the Fokker-Planck kernel (see Figure 11c),
while the sub-Riemannian Laplacian is unable to perform the grouping (see
Figure 11d). This confirms that the Fokker-Planck kernel is responsible for
long-range connectivity. In the second row, we consider an angle. When the
angle is sufficiently large, the Fokker-Planck becomes unable to perform the
grouping (see Figure 11e), while the sub-Riemannian Laplacian correctly
performs the grouping of the perceptual unit (see Figure 11f). This confirms
that the sub-Riemannian Laplacian can be used as a model for short-range
connectivity.

4.5 Sub-Riemannian versus Riemannian Kernels. In order to further
validate the sub-Riemannian model, we show that the model applied with
the isotropic Laplacian kernel does not perform correctly. In Figure 12 (top),
the visual perception is not correctly modeled: the first eigenvectors coin-
cide with one of the inducers and the squares are not recognized. That also
happens for the stimulus of Figure 10a and when the inducers are unaligned
circularly or are rotated.
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Figure 11: (Top) A few aligned segments that are correctly grouped by the
Fokker-Planck and the sub-Riemannian Laplacian (a, b). When we separate the
inducers, the perceptual unit is correctly detected using the Fokker-Planck ker-
nel (¢), while the sub-Riemannian Laplacian is not able to perform the grouping
(d). (Bottom) We consider an angle. In this case, the Fokker-Planck is unable
to perform the grouping (e), while the sub-Riemannian Laplacian can correctly
perform the grouping (f).
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Figure 12: Stimulus of Figure 10. The results do not fit the visual perception if
we use the isotropic Laplacian equation (2.11 and 3.3) and confirm the need to
use a sub-Riemannian kernel to model the cortical connectivity.
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5 Conclusion

In this work, we have presented a neurally based model for figure-ground
segmentation using spectral methods, where segmentation has been per-
formed by computing eigenvectors of affinity matrices.

Different connectivity kernels that are compatible with the functional
architecture of the primary visual cortex have been used. We have modeled
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them as fundamental solutions of Fokker-Planck, sub-Riemannian Lapla-
cian, and isotropic Laplacian equations and compared their properties.

With this model, we have identified perceptual units of different Kanizsa
figures, showing that this can be considered a good quantitative model
for the constitution of perceptual units equipped by their saliency. We
have also shown that the fundamental solutions of Fokker-Planck and sub-
Riemannian Laplacian equations are good models for the continuation law,
while the isotropic Laplacian equation is less representative for this gestalt
law. However, it retrieves information about ladder parallelism, a feature
that can be analyzed in the future. All three kernels are able to accomplish
boundary, completion, with a preference for the Fokker-Planck and the
sub-Riemannian Laplacian operators.

The proposed mathematical model is then able to integrate local and
global gestalt laws as a process implemented in the functional architecture
of the visual cortex. The kernel considered here depends only on orienta-
tion. Hence, it can be applied to detect the salience of geometrical figures,
which can be very well described using this feature. The same method can
be applied to natural images if their main features are related to orien-
tations, as in retinal images (see Favali et al., 2016). The ideas presented
here could be extended to more general kernels able to detect geometrical
features different from orientation as curvature (Abbasi et al., 2016), and
we are confident that there is a relation between the highest eigenvector
and the salient object. However, for general images, we cannot rely on this
simple geometric method, since different cortical areas can be involved in
the definition of the salience, with a modulatory effect on the connectivity

of V1.
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