27 May 2024

ARCHIVIO ISTITUZIONALE
ONIVERSITA DI BOLOGNA DELLA RICERCA

Alma Mater Studiorum Universita di Bologna
Archivio istituzionale della ricerca

Approximate DIV and SQRT instructions for the RISC-V ISA: An efficiency vs. accuracy analysis

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:
Published Version:

Approximate DIV and SQRT instructions for the RISC-V ISA: An efficiency vs. accuracy analysis / Li, Lei;
Gautschi, Michael; Benini, Luca. - ELETTRONICO. - (2017), pp. 1-8. (Intervento presentato al convegno

27th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS)
tenutosi a Thessaloniki, Greece nel 25-27 Sept. 2017) [10.1109/PATM0S.2017.8106987].

This version is available at: https://hdl.handle.net/11585/624714 since: 2018-09-27
Published:

DOI: http://doi.org/10.1109/PATMOS.2017.8106987

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This item was downloaded from IRIS Universita di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

https://hdl.handle.net/11585/624714
http://doi.org/10.1109/PATMOS.2017.8106987

This is the post peer-review accepted manuscript of:

L. Li, M. Gautschi and L. Benini, "Approximate DIV and SQRT instructions for the RISC-V ISA: An
efficiency vs. accuracy analysis," 2017 27th International Symposium on Power and Timing
Modeling, Optimization and Simulation (PATMOS), Thessaloniki, 2017, pp. 1-8. doi:
10.1109/PATMO0S.2017.8106987

The published version is available online at: https://doi.org/10.1109/PATM0S.2017.8106987

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works

https://doi.org/10.1109/PATMOS.2017.8106987

Approximate DIV and SQRT Instructions for the
RISC-V ISA: An Efficiency vs. Accuracy Analysis

Lei Li
Integrated Systems Laboratory, ETH Zurich,
Gloriastrasse 35, 8092 Zurich, Switzerland
Research Institute of Electronic Science and Technology,
University of Electronic Science and Technology of China,
No. 2007, Xiyuan Ave., High-tech West Zone, 611731,
Chengdu, China
lile@iis.ee.ethz.ch

Abstract—In this paper, we present extensions to the floating
point unit of the RISC-V ISA with different numeric precision
including single precision, half precision and quarter precision.
To achieve more energy efficiency transprecision feature is
introduced through configurable mantissa precision, which can
be used to reduce the number of iterations and thus reduce the
energy consumption achieving a programmable trade-off
between accuracy and precision. Power estimations based on
synthesized results demonstrate that floating-point operations
with 8 to 11-bit mantissa can achieve an energy savings of 36%
when compared with single precision. We examine the error
propagations in benchmark applications with transprecision
options, and in a square root-intensive application we report
runtime reductions up to 43.65% which translates to 1.77x
energy ratio when compared to standard single precision
operations.

Keywords—Floating point unit (FPU); RISC-V; Division;
Square root; Energy efficiency

I. INTRODUCTION

Floating point operations are necessary for many
applications, ranging from climate modeling, electromagnetic
scattering theory to image and signal processing [1]. Most
general-purpose platforms including high-end CPUs, GPUs [2]
as well as low-power MCUs, such as ARM Cortex M4 [3][4]
have integrated floating point units (FPUs). Most instruction
set architectures (ISA) include floating point (FP) division and
square root operations, which are used especially in matrix
operations. For the last 20 years, significant research and
design effort focused on algorithms and efficient
implementation of floating point division (DIV) and square
root (SQRT) operations and many architectures were proposed
[5]-[8]. However up to now, division and square root
operations are still significantly more expensive in hardware
than multiplication and addition. The DIV and SQRT
operations are also less frequently utilized and come with a
large area overhead and long latency, leading significant
energy cost for the corresponding instructions.

In this paper, we focus on low-power, low-cost FP support
for near-sensor data processing in Internet of Things (IoT)
applications that are severely limited in their energy budget.

This paper was supported by EU project OPRECOMP (H2020-732631) and
partially supported by China Scholarship Council.

Michael Gautschi

Integrated Systems Laboratory, ETH Zurich,
Gloriastrasse 35, 8092 Zurich, Switzerland
gautschi@iis.ee.ethz.ch

Luca Benini
Integrated Systems Laboratory, ETH Zurich,
Gloriastrasse 35, 8092 Zurich, Switzerland
Ibenini@jiis.ee.ethz.ch

We consider an ultra-low-power cluster based processing
platform with multiple RISC-V compliant cores [9]-[12]. Our
approach is to integrate the SQRT and DIV hardware support
in a shared unit, which can be used by all the cores in a cluster.
The main contribution of this work is to extend the SQRT and
DIV hardware to control precision. This enables a
transprecision approach [13] at the application level, where we
can trade off precision with lower energy per operation with
controlled and localized approximation. Our design makes it
possible to ensure tightly controlled precision loss with a low
hardware overhead.

In this paper, we report results for a family of SQRT and
DIV units, including a standard single precision (SP) baseline
design, an alternative design that supports SP and
transprecision, a half precision (HP) design and a quarter
precision (QP) design. Our architecture is capable of IEEE
754-2008 SP but also can support operations with a
configurable mantissa. The special cases are handled in
compliance with IEEE 754-2008 and RISC-V specifications
[14].

This paper is organized as follows. In Section II, we
summarize the related works and present our idea. In Section
I, we introduce our transprecision architecture, present
synthesis results, power estimation and results of our error
analysis. In Section IV, we present simulation results with four
benchmark applications and finally in Section V, we offer our
conclusions.

II. RELATED WORK

Since the performance of many modern processing systems
are measured by the number of FP operations they perform per
time unit (i.e. GFLOPS), FPU design and optimization has
received significant research and development effort. FPUs of
Nvidia GPUs, such as Tesla GP100, support both SP and
double precision (DP) [2] FP numbers. FPUs of ARM CPUs
also support SP and DP floating point operations. Recent
dedicated platforms designed for CNN and deep learning, do
not have dedicated FP DIV/SQRT instructions, including
Google Tensor Processing Unit (TPU) [15] and the
Neurostream architecture [16]. In [1], Patil et al. present an out
of order floating point coprocessor for the RISC-V ISA, with

two independent continuous pipelined units implementing
division and square root without precision control. Of the
openly available implementations, the GRFPU has primarily
been developed for use with LEON processors and is based on
the SPARC V8 instruction set [17][18]. The division and
square root in GRFPU are iteratively computed using FP
multipliers [18]. GRFPU supports SP and DP, without fine-
grained precision control [17][18]. The HWACHA architecture
[19], includes a block diagram of its vector execution unit, but
does not provide any further information about FP DIV/SQRT
unit. The authors of [20][21] developed VFloat library for
FPGAs including division and square root, which is a variable
precision fixed- and floating-point library. “Variable
precision” herein denotes that the bit widths of exponent and
mantissa can be configured during RTL-level coding. Once
they are set, the precision is fixed. The algorithms of division
and square root in [20] and [21] are based on lookup tables and
multipliers, resulting in higher area overhead [20], compared
with the method used in this paper. FloPoCo is an open-source
generator of arithmetic cores with supporting variable precision
as VFloat, without supporting denormal numbers [22]. While
there are many FPU designs supporting SP or DP, to the best of
our knowledge there are no fine-grained precision control units
for complex FP operations found in the literature.

In this paper, we implement a shared division and square
root unit, which fully supports IEEE 754-2008 SP numbers. In
order to achieve a compact design, an addition-based iteration
algorithm is chosen for our design. The unit is based on a
shared iterative data path which can be used to compute
divisions, and square-roots with a latency of only eight cycles
for SP. In addition, the iterative behavior of the unit allows to
trade precision versus latency and enables a fine-grained
precision control. Relaxing precision constraints for certain
division, and square-root operations results in minor errors, but
reduces the latency and energy consumption of these
operations. Implemented in a multi-core cluster, the reduced
latency of these operations results in speedups which can be
translated into energy savings.

III. A FAMILY OF SHARED DIVISION AND SQUARE ROOT UNITS

In this section, we present the theory and the general
architecture of the controllable-precision, shared division and
square root units. In addition, we give synthesis results and
energy efficiency estimations.

A. The theory for approximate instructions

CPU instruction hardware efficiency (IHE) is introduced
herein for analyzing the performance of an instruction,
especially approximate instructions. IHE is defined as
AreaxLatencyxEnergy, where Area is the area overhead
of the hardware implementation, Latency is expressed in
CPU clock cycles, and Energy is the amount of energy for
executing the corresponding instruction. Thus, we can derive

IHE = Areax N* X Power (1)

Where N is the number of cycles for the operation to
complete. For cases where multi-cycle instructions are used,
reducing the number of clock cycles (N) will clearly benefit

THE the most. One feasible way to achieve this is to reduce the
accuracy of the operation to a certain degree. In other words,
using approximate instructions with reduced execution latency
will benefit the instruction hardware efficiency the most due to
the quadratic dependence to N. This presents an opportunity for
instructions such as the FP DIV/SQRT instructions, since most
implementations require several iterative cycles to complete.
By reducing the number of iterations for such operations, it is
possible to improve the energy efficiency at a higher rate than
the reduction incurred in accuracy.

B. The expanded architecture

In our architecture, division and square root is calculated
using the non-restoring binary divisor algorithm (NRBD) [7],
and the non-restoring square root calculation algorithm
(NRSC) [8] respectively, based on the study in [23] and our
platform. With radix-2 implementations of NRBD and NRSC,
n iterations are requested for n-bit mantissa at least. Fig.1
shows the architecture of the shared division and square root
unit in this paper. The architecture can be divided in to three
stages: a pre-processing-, an iteration-, and a post-processing-
stage. As a design goal, we tried to match the pipeline stages of
the unit to the clock period of the multi-core system into which
this unit would be added. When implemented in the
UMCG65LP-1P8M process, the clock period of the overall
system was 2.8ns. The iteration stage has been divided into
four parallel iteration units, each of which generate one
mantissa bit at this clock frequency. Taking into account one
cycle for the pre- and post-processing stage, a SP operation
(which has 24 bits of mantissa with the hidden bit) can be
computed in eight cycles (1+24/4+1). The first cycle is used by
the pre-processing stage which stores operands in registers and
generates control signals for the iteration stage. The following
six clock cycles are used to perform the 24 iterations on the
mantissa. Finally, the last cycle is used by the post-processing
block which normalizes and rounds the result. The output of
the post-processing block is then forwarded to the output
together with a ready signal which indicates a valid result.

At the preprocessing stage, two operands are unpacked into
two IEEE-754 encoded numbers with corresponding sign bits,
biased binary exponents, and mantissa. Each operand (OP,) can
be divided into a sign bit (SIGN,), exponent (EXP,) and
mantissa (MANT,) bits. IEEE 754-2008 includes denormal
numbers. A denormal number is represented with a biased
exponent of all 0 bits, which represents an exponent of Cj;,.+1
in SP. C,,.. denotes the bias value. For denormal numbers,
EXP,=8'h00 and MANT,!=23'h000000. To support
denormal numbers, two leading zero detectors (LZD) are added
to count the number of leading zeros in the mantissa part of
both operands, LZ,. With LZD1 and LZD2, two operands are
normalized. We assume that the operands of division are a and
b, where a is the operand of square root. The exponent for
division can be calculated by

(EXP,—LZ,) + C

Bias

- (EXP,— LZ,) 2)

For square root, the exponent can be computed as

OP, i‘ Cop

OP, $ Cop

Decompose

EXP, EXPy MANT,

CEXP ‘
Y ‘ LZD1 ‘ ‘ LZD2 ‘

MANT, SIGN, SIGN,

EXP, EXP,

Cyiant+1 ‘ ‘

Exponent operation 10g2(Cyiant)

A

Y

Operand detection

Prenormalization

The pre-processing stage
(one clock cycle)

Sign
operation

MANTq norm

-
d

Cymantt+1

-
>

MANT norm

Cexrt2 NRBD NRSC

The iteration stage
(3-6 clock cycles)

)
i

;‘
>

EXP, Cuanttl | MANT,

SIGN {ZEROx,INFx,NANx}

A A

Normalization

Cexp $ EXPorm

Cuantt3 }L MANT o

SIGN s

Rounding and renormalization

Cexp $ EXPes

Cumant "L MANT 3

The post-processing stage
(one clock cycle)

Compose

A

i Cor

Result

A,
{OF,UF,DV}

Fig.1 The architecture of the shared division and square root unit consisting of three main blocks: a pre-processing block to
prepare operands, a n iteration unit which is performing the NRBD/NRSC algorithm, and a post-processing block for

rounding and normalization.

EXP —L7Z
—e < 4+ C

s | 2+ (EXPa —LZa) mod 2 3)
The resulting exponent and normalized operands are stored
in flip/flops for the next stage. The sign of final result is
calculated by using the sign of both operands or one based on
Div_start and Sqrt_ start and stored into a flip/flop,
where Div_start and Sqrt_start are the trigger signals
of division and square root, respectively. Operand detection is
added to generate infinite (INF,), zero (ZERO,) and not a
number (NAN,) for normalization of the final result. The signal
Precision ctl is introduced to control the requested
mantissa width which also determines the latency of the
operation as shown in Table I. The design for HP also employs
the same architecture with a latency of only 5 clock cycles.
while QP is implemented with combinational logic and can be
implemented as a private unit of individual cores. Table I lists
the requested latency and the maximum error of the mantissa
for each of the modes supported by the architecture in Fig. 1.

All designs were implemented with SystemVerilog and
Synopsys Design Compiler (Version L-2016.03) was employed
for collecting the synthesized results using UMC65LP 1PSM

process technology. The worst-case corner was used in
synthesis with 1.0V power supply and 125°C temperature. Fig.
2 shows the synthesized area results at different timing
constraints. The synthesized results demonstrate that the
transprecision unit leads to only a 5% area overhead, compared
with a standard SP unit. Under the same clock frequency, the
area of HP and QP units are only 33-40% and 9-11% of the SP
unit, respectively.

TABLE I THE REQUIRED LATENCY AND THE MAXIMUM MANTISSA ERROR OF
THE DIFFERENT DIV/SQRT UNITS.

Precision Cuant Latency Max. mant.
(clock cycles) error
Single (SP) 23] TULP
8-11 5
Transprecision 12-15 6 23-precision ctl
16-19 7 ULP
20-23 8
Half (HP) 10 5 TULP
Quarter (QP) 2 1 T ULP

14000

—O—8P
—<— Transpresicion
12000 - HP

—6—QP

10000 -

2

Area (pm”)

8000
6000 -

4000

e oo

22 24 26 28 3 32

Delay (ns)

Fig. 2 Design space exploration results for the proposed FP
DIV/SQRT architectures with different number formats,
showing synthesis based area vs. delay trade-off for the
UMCS65LP process in the worst-case corner (1.0V, 125°C). The
proposed transprecision unit has an overhead of only 5% when
compared to SP.

—©—-SP X8
——Transprecision it ||
HP 4
Ir S x:7 -
QP v:09159 | x:8
| lv:1
X:6
> 08 Y: 0.7827 |
20
o) X:5
5 Y:06429
=}
_@ 0.6 4
s
£
=)
Z o4t)
X:5
Y:0.2225
0.2 4
X:1
Y¥:0.01169
o I | | | | |
! 2 3 4 5 6 7 8

Latency (numbers of clock cycles)

Fig. 3 Energy vs. latency of the HP, QP, and transprecision
units normalized to the energy of the SP unit.

The power data were collected using Synopsys Primetime
(Version H-2012.12-SP2) with the netlists and SDCs produced
by Synopsys Design Compiler and VCD files produced by
Mentor Questasim (Version 10.5a). Fig. 3 shows the
normalized energy (to SP) versus the latency of the different
operations whereas shorter latencies result in larger errors as
illustrated in Fig. 4. With respect to SP, Fig. 3 demonstrates
that the normalized energy of the transprecision unit can be
reduced from 105% to 64% by relaxing the precision constraint
and the corresponding latencies from eight to five clock cycles.
Further, the energy of a HP and QP unit is only 22.25% and
1.17 % of the energy of the SP unit, respectively, as shown in
Fig. 3. For QP, there are two reasons for such a low energy.
One is that the latency of QP is just one clock cycle, while 8
clock cycles for SP. The other one is that QP uses more less
hardware than SP, due to shorter bit widths. Based on these

data, some comparisons with SP can be made. The THE of the
transprecision design is 2.32%, 1.59x and 1.16Xx better with
respect to the SP unit when reducing the latency to 5, 6 and 7
cycles, respectively. Finally, HP and QP units can even achieve
a 20x and more than 6700x IHE improvement, respectively,
when normalizing to SP. Such units are great when less
precision can be tolerated, or to generate fast and energy-
efficient results which can be refined later.

40 | | | | 3107

nergy savings
[—©—Energy saving
- B - The computation error without denormal numbers
B-- 3107
-
o--,
ﬁ' - 1 5
< 20 B-- 310 g
= 1 ©
ps E-- s
0 | 9]
g m--, =1
f L 3107 3
2
2 -7 e
) o-- 100 £
M- -
o --
! 3107
o- -I
Ju]
20 I I I I I I I 408
8 10 12 14 16 18 20 22 24

Precision (CMANT)

Fig. 4 The computation errors and energy savings of the
transprecision approach when compared to SP (23 bits
mantissa) obtained by simulations with 1°000°000 random
vectors.

C. The error and energy savings on transprecision

Fig. 4 plots the results of our error analysis against the
energy savings achieved by the transprecision unit. Energy
savings are normalized to the SP design and defined as

- (Latencyg, X Power, — Latency,, X Power;,) @)
Nom Latencyg, X Powery,
Herein the error is defined as
X -X,
Error =— z | | ®)
i=0 | X |

where and X ; and X ; are the real result and the exact result,

respectively. M is the number of used random vectors. The
error metric is collected by simulating 1,000,000 random
vectors. For denormal numbers, EXP,=8’'h00 and
MANT, !=23'h000000. When transprecision is enabled, a
denormal number result with the mantissa less than 2(*
erecisionccl) ywill be truncated to be 0 (EXP,=8’h00 and
MANT,=23'h000000) . Fig. 4 shows the precision of the
calculation versus the energy savings when compared to SP
calculation. We show the average relative error excluding
denormal numbers because denormal numbers will be
truncated to zero and result in a relative error of 1 even though
the absolute error is below the largest possible denormal
number (2.17E-38). When decreasing the number of computed

mantissa bits, the latency decreases and the computed errors
increase linearly from 1077 to 107,

As shown in Fig. 4, the energy savings reduce in a step mode
corresponding to the reduced latency. 8% of energy can be
saved when relaxing precision constraints from SP to 19-bit
mantissa as one cycle less is required. To compute a mantissa
of 15 bits, only six cycles are required resulting in 22% less
energy with respect to a SP result. Finally, relaxing the
precision constraints even further allows to compute a 11-bit
mantissa requires a latency of only five cycles, and thus saving
36% of energy. Hence, energy savings tightly correlate with
the latency of the computation and the required precision. A
fine-grained precision control can therefore effectively be used
to reduce the latency of such operations and at the same time
reduce the runtime, and therefore increase the energy efficiency
of complex algorithms involving divisions, and square-roots.

D. Comparison with state-of-the-art

TABLE I COMPARSIONS WITH STATE-OF-THE-ART

[1] [20] [18] [22] DW This
work
DIV 31 14 15 8 5 5-8
latency
[cycles]
SQRT 31 15 23 6 6 5-8
latency
[cycles]
Frequency 240 129/125 250 350 350 350
[DIV/SQR | MHz MHz MHz MHz MHz MHz
T]
Area - - 100 (19 29 7.6
[kGE] FPU)
Process Xilin Xilinx 130nm UMC UMC uMC
X XC2V60 | CMOS 65nm 65nm 65nm
Virte 00
x-6
TP support no no no no no yes
Sharing no no Partial no no Full

Most of state-of-the-art designs require several clock cycles
to compute a division or square-root. Our implementation
achieves high frequency and low latency, just at the cost of
7.6kGE. Table Il summarizes existing state-of-the art designs.
The designs in [1] are with a latency of 31 clock cycles for
both DIV and SQRT operations. VFloat just supports FPGAs
and employs a more complex algorithm with the latency of 14
and 15 clock cycles for DIV and SQRT, respectively. Based
on the analysis in [20], it has higher area overhead than our
design. GRFPU in [18] just provided some partial sharing of
FP multipliers with the latency of 15 and 23 clock cycles for
DIV and SQRT, whereas the proposed design in this paper
shares the full datapath from the pre-processing stage to the
post-processing stage. FPSqrt and FPDiv of FloPoCo in [22]
employ full pipelined architectures, which account for the
large area, 19kGE. The designs from FloPoCo were chosen for
the best performance with meeting the timing constraints, 8-
cycle latency for FPDiv and 6-cycle latency for FPSqrt. Our
design is just 40% of the area of FloPoCo designs, with

supporting denormal numbers and integrating the
transprecision (TP) feature. Synopsys Design Ware (DW)
components (DW fp div and DW fp sqrf) come as
combinational blocks and have been pipelined with four and
five register stages and then retimed with the Synopsys Design
Compiler to achieve the same frequency of 350 MHz. Those
designs are pipelined entities which can accept a new
operation in every clock cycle but also come at a high area
overhead of 29 kGE. The area of our unit is just 26.2% of DW
components.

IV. INTEGRATION IN A MULTI-CORE SYSTEM

In this section, we discuss the integration of the
transprecision DIV/SQRT unit in a multi-core platform.

A. Multi-core low-power processing platform

The parallel ultra-low-power (PULP) platform targets to
achieve a very high energy efficiency through near-threshold
operation and compensates performance degradations in
frequency by utilizing multiple, energy-efficient processor
cores which operate on a shared memory and fetch instructions
from a shared cache. The shared, tightly-coupled data memory
(TCDM) is word-interleaved and split in multiple banks to
minimize the number of access contentions. The multi-core
platform is explained in more detail in [10], [11] and the latest
version of the platform utilizes small RISC-V processors which
support the RV32IMC instruction set as presented in [12].
Recently, the cores have been updated to support IEEE-754 SP
format through a dedicated FPU. To fully support the single-
precision extension (RV32F) of the RISC-V ISA, division and
square-root operations have to be supported as well. These
operations can be supported with the proposed design, which
allows to compute single-precision division, and square-root
operations in a single shared hardware block with a latency of
eight cycles.

The RISC-V cores of the multi-core platform feature a
four-stage pipeline allowing the cores to process one operation
per cycle. FP operations are more complex in terms of timing,
and cannot be computed in a single cycle which is why the
FPU has been pipelined with one register stage. As long as no
inter-instruction dependencies occur, the cores are able to hide
up to two cycles of latency, allowing to execute programs at a
very high IPC. Under normal circumstances it is not possible to
hide eight cycles of latency needed for SP DIV/SQRT
operations in such a shallow pipeline leading to many stalls
during operation, which increases the runtime of complex
kernels, and thus reduces its energy efficiency. Slightly
relaxing precision constraints of division, and square-root
operations, will result in shorter latencies for these operations,
greatly reducing the number of stalls, and therefore improving
the overall energy efficiency in situations where the reduced
accuracy is acceptable.

Even though the cost of the iterative DIV/SQRT unit
(7.6kGE) is low, it still brings a considerable 16% area
overhead to a single RISC-V core. Since this unit is rarely
accessed it has been shared among all eight cores which allows
to amortize the area overhead better, and increases its
utilization. The iterative behavior of the proposed unit allows

results of variable precision to be generated within 5 to 8 cycles
of latency. The integration of this shared unit into the multi-
core cluster is shown in Fig. 5 where each RISC-V core
implements a four-stage RV32IMC micro-architecture. To be
able to interface the shared unit, the iteration stage has been
extended with an additional dispatcher unit, which is
responsible for offloading FP operations, stalling the pipeline,
and writing results back to the register file (RF). As any other
functional wunit, the dispatcher gets operands from the
forwarding multiplexers and the opcode from the instruction
decoder which are located in the decode-stage. Whenever a FP
operation is decoded, the dispatcher issues a request to a round-
robin arbiter which guarantees that all cores get a fair portion
of the shared unit similar to what is presented in [24]. If
multiple cores issue a request, the arbiter will only grant one,
and forward the request signal, the input operands, and opcode
together with a tag that identifies the source core to the shared
unit where the actual computation is taking place. The tag
signal is used to route the result back to the right core where it
will be written back to the RF. Since the shared unit is based on
an iterative data path, it cannot accept a new operation in every
clock cycle but only when the unit is idle. Therefore, the shared
unit has been extended with a ready signal, which is used in the
arbiter to decline any requests when the unit is busy. Declined
requests, due to an access contention or a busy shared unit, are
processed in the core-dispatchers which stall their pipeline and
retry to access the shared unit in the subsequent cycle. Since FP
divisions, and square-roots are not very frequently executed on
a processor, the number of contentions remains below 1% even
for division, and square-root intensive benchmark kernels.

s —~

PULP Cluster Shared L1: TCDM - 64+8 kB

Cluster Bus

,h.m~|mnm.-uxm-k'l—*'l~ .

2

refill request signals

Fig. 5 The multi-core cluster architecture with eight cores and a
shared FP-Div/Sqrt unit (shown in red) which has variable
precision and a latency of 5-8 cycles.

In the following, the impact on performance (speedup,
energy, and error) of the shared transprecision DIV/SQRT unit
has been analyzed. Error propagation, speed-up gains and the
resulting energy-savings have been studied on a set of complex
function kernels which utilize the DIV/SQRT unit.

B. Error Propagation

Two matrix decompositions (Chol, QR), and geometry
calculations like a reprojection error of 2D projective
transforms (ProjErr2D) [25] and a three-dimensional distance
computation (Dist3D) have been implemented in C, and
executed on the cluster utilizing different precision constraints.

Each kernel is executed 10 times and the total number of
instructions and the corresponding DIV/SQRT operations are
listed in Table III.

TABLE III COMPLEXITY OF THE FOUR TEST PROGRAMS

Kernal Chol QR Dist3D ProjErr2D
name
Instructions 24’564 1557909 12°133 82°778
DIVs 90(0.37%) 710(0.46%) 0 2°530(3.06%)
SQRTs 100(0.41%) 170(0.11%) | 1°000(8.24 0

%)
Input matrix 10x [10x10] 10x [10x10] 10x 10x [2x100]
dimensions [3x100]

The maximum relative error and the relative error of the
L2-norm of these four kernels have been collected using
Matlab, in Fig. 6 and Fig. 7, respectively.

—6—Chol
—7QR_Q
QR_R
—&—Dist3D
—&—ProjErr2D

=X

Normalized maximum error
S
[

Precision

Fig. 6 The maximum relative error versus number of computed
mantissa bits.

The maximum relative error is defined as

J (6)

where a; denotes the elements of the exact matrix A and b;
denotes the elements of the computed matrix B using a reduced
precision. The relative norm error is defined as:

a,—b,
a

1

Error,,, = max(

Error, = —norm(A —B) (7
Norm norm(A)

where norm() is the norm function in Matlab, which returns the
L2-norm.

There is an increasing trend on the errors for all these four
programs with the decrease of the precision including the
maximum error and norm error. The curves of Dist3D in Fig. 6
and Fig. 7 show a good linearity, which are in good agreement
with the curve of the tested error in Fig. 4. Dist3D is a SQRT-
intensive application and SQRT accounts for 8.24% of the
instructions, the only application where the number of SQRT
operations exceeds 5% of the total. For Chol and QR, DIV and
SQRT only account for 0.77% and 0.57%, respectively. 3.06%

of the instructions of ProjErr2D are DIV operations. The
shared platform was only implemented with the SP and
transprecision units, therefore HP and QP data for the shared
implementation are not presented.

—6—Chol
—=7-QR_Q
QR_R
—&-Dist3D
—&—ProjEmr2D

Normalized norm error

fer

. L g
8 10 12 14 16 18 20 2 M
Precision

Fig. 7 The relative error of the L2-norm versus number of
computed mantissa bits.

C. Energy Savings

Utilizing the transprecision unit to compute DIV/ SQRT
operations of less precision has no effect on the power
consumption, but on the energy as the energy consumption is
dominated by the latency of the instruction as shown in Fig 4.
Hence, the reduced runtime which is depicted in Fig. 8 lead to
likewise energy savings in the cluster which allow to execute
the corresponding program more energy efficient, if an
increased error can be tolerated. The relation between the
latency and the precision is listed in Table 1. For Dist3D, with
the latency decreasing from 7 clock cycles to 5 clock cycles,
more than 14%, 28% and 43% executing time can be reduced.
For ProjErr2D, the runtime can be reduced by 0.32%, 15.48%
and 22.83% when reducing the latency of the DIV/SQRT unit
from 7 to 5 clock cycles.

1.05 T T ‘Jt

4
3
=3

Normalized runtime
=1
Q2 (=3
S w

9
T

—6&—Chol

—5-QR
Dist3D

——ProjErr2D |

o
=Y
By

=)
o
T

o
73
b

6 7 8
Latency(N)

w

Fig. 8 Normalized runtime with respect to SP for different
precision requirements.

Fig. 9 plots the energy ratio based on runtime reduction for
these four programs. The energy ratio is defined as:

Timey,, o X Power,

®)

Energy ratio=—
Timey, g7p X Powersyﬂp

is the requested number of cycles by
transprecision and Time... is the requested number of
cycles by SP. Power,.. is the system power by
transprecision and Power,,, ., is the system power by SP. The
power ratio can be estimated as

where Time,. .

Power, DIV ISORT, TP

Poweryy sorrse (9)

Powers)»s,rp _ TlmeD]V/SQRT,TP %

Powery, Timey,, 1p

TlmeD]V/SQRT,TP
(1o sy
Ti imeg,, rp

where Time,,, s e 1S the requested number of cycles of
division and square root operations by transprecision.
PoWeTryysrr, e 18 the power of division and square root
operations by transprecision and Power,,y spr, s 15 the power
of division and square root operations by SP.

Table IV lists the runtime reduction and the energy ratios to
SP. For the application Chol, the maximum energy ratio is
1.01x. QR can obtain an average energy ratio of 1.02x. Chol
and QR only use very few divisions and square roots. Dist3D is
a SQRT-intensive application. 1.77x, 1.39x and 1.16x energy
ratios can be achieved by reducing the corresponding executing
time for the precision with the latency from 5 to 7 clock cycles.
For ProjEr2D, DIV accounts for 3.06% of the instructions.
1.29x and 1.18x energy ratio can be obtained with a
transprecision unit with a latency of 5 and 6 clock cycles,
respectively. The average energy ratio is 1.16X.

From the above analysis, it can be concluded that
approximate DIV and SQRT instructions are very effective for
DIV/SQRT-intensive applications. Even 1.44x average energy
ratio can be achieved by reducing the corresponding precision
for Dist3D.

TABLE IV RUNTIME REDUCTION AND ENERGY RATIOS TO SP OF THE FOUR
APPLICATIONS AT DIFFERENT PRECISIONS

Transprecision | Chol QR Dist3D | ProjErr2
(Latency) D
Runtime SP 100% 100% 100% 100%
reduction 7 -0.21% | +1.36% | +14.26 +0.32%
%
6 +0.21% | +1.23% | +28.43 +15.48%
%
5 +1.29% | +2.73% | +43.65 +22.83%
%
Energy Energy using 1 1 1 1
ratio to SP
SP 7 1.00 1.01 1.16 1.00
6 1.00 1.01 1.39 1.18
5 1.01 1.03 1.77 1.29
Average 1.00 1.02 1.44 1.16

—6—Chol

17k —&-QR §
Dist3D

——ProjEm2D

Energy ratio
5 %
T
L L

Latency(N)

Fig. 9 Energy ratios to SP for different precision requirements.
Energy ratios tightly correlate with the runtime reduction.

V. CONCLUSION

We have proposed a family of iterative architectures
capable of computing FP DIV/SQRT operations in one single
hardware unit with a latency of eight cycles while consuming
only 7.6 kGE of area. Even though a latency of eight cycles is
already better as most state-of-the-art designs, it can be further
decreased by computing less mantissa bits in less iterations.
This transprecision unit has been shared among eight cores in
PULP platform and its impact on error, runtime and energy has
been evaluated on different benchmark kernels. The results
demonstrate that approximate DIV and SQRT instructions are
very effective for DIV/SQRT-intensive applications. In the best
case, the energy ratio of 1.77x can be improved by reducing the
precision requirements to 11 mantissa bits with respect to a
single-precision implementation while still achieving error
rates of 0.01. HP, and QP formats will allow for even more
dramatic reductions in latency, and therefore lead to additional
savings. In the future we will explore HP and QP formats in
more depth, test more applications and explore the impact of
mixing these formats.

ACKNOWLEDGMENT

We thank F. K. Gurkaynak in Integrated Systems
Laboratory (IIS), ETH Zurich for his efforts on improving this
paper. We thank S. Mach in IIS, ETH Zurich for his help on
HP and QP. We thank M. Schaffner in IIS, ETH Zurich for his
help on FloPoCo.

REFERENCES

[11 V. Patil, A. Raveendran, S. P M, A. D. Slevakumar, and V. D, “Out of
order floating point coprocessor for RISC-V ISA,” VLSI Design and
Test (VDAT), 19th International Symposium on, 2015, pp.1-7

[2] Precision & Performance: Floating Point and IEEE 754 Compliance for
NVIDIA GPUs, NVDIA, 2017

[3] Cortex-M Series Family,
www.arm.com/products/processors/cortex-m

[Online] Available:

(4]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]

Cortex-M4 Processor, [Online] Available:
www.arm.com/products/processors/cortex-m/cortex-m4-processor.php

Peter Soderquist, and Miriam Leeser, “Division and square
root:choosing the right implementation,” IEEE Micro, vol. 17, no.4,
pp-56-66, Jul./Aug. 1997.

Alberto Nammarelli, and Tomos Lang, “Low power radix-4 combined
division and square root,” Computer Design, International Conference
on, Oct. pp.1-7, 1999.

K. Jun, and E. E.Swartzlander, “Modified non-restoring division
algorithm with improved delay profile and error correction,” Signals,
Systems and Computers (ASILOMAR), 2012 Conference Record of the
Forty Sixth Asilomar Conference on, pp.1460-1464, Nov. 2012

Y. Li, and W. Chu, “Implementation of single precision floating square
root on FPGAs,” Field-Programmable Custom Computing Machines,
1997. Proceedings., The 5th Annual IEEE Symposium on, pp.226-232,
Apr. 1997

PULP:Parallel Ultra Low power. [Online] Available: www.pulp-
platform.org/

D. Rossi, A. Pullini, L. Loi, et al., “193 MOPS/mW 162 MOPS, 0.32V to
1.15V Voltage Range Multi-Core Accelerator for Energy-Efficient
Parallel and Sequential Digital Processing”, IEEE Cool Chips XIX, pp
1-3,2016

D. Rossi , A. Pullini, 1. Loi, et al., “A 60 GOPS/W, -1.8 v to 0.9 v body
bias ULP cluster in 28 nm UTBB FD-SOI technology”, Solid. State.
Electron., vol. 117, pp 170-184, 2016

M. Gautschi, P. Schiavone, A. Traber, et al., “A near-threshold RISC-V
core with DSP extensions for scalable IoT Endpoint Devices”, IEEE
Transactions on Very Large Scale Integration Systems, vol. 99, 2017

OPRECOMP - Open transPREcision COMPuting, IBM, [Online]
Auvailable:
researcher.watson.ibm.com/researcher/view_group.php?id=7863

A. Waterman, K. Asanovic, The RISC-V intruction set manual volume T
: User-level ISA document version 2.2 May 7, 2017

N.P. Jouppi, C. Young, N. Patil, et al, “In-datacenter performance
analysis of a Tensor Processing Unit,” To appear at the 44" ISCA
Toronto, Canada, June,26. 2017

E. Azarkhish, D. Rossi, I. Loi, L. Benini, “Neurostream: Scalable and
Energy Efficient Deep Learning with Smart Memory Cubes”, arXiv
preprint arXiv:1701.06420, 2017

IEEE-STD-754 Floating Point Unit GRFPU / GRFPU-FT
CompanionCore Data Sheet, version 1.0.3 Aeroflex Gaisler AB,2009

GRFPU - High Performance IEEE-754 Floating-Point Unit, [Online]
Available: www.gaisler.com.

The Hwacha Microarchitecture Manual, Version 3.8.1, University of
California at Berkeley, Dec. 2015.

X. Wang, and M. Leeser, “VFloat: a variable precision fixed and
floating-point library for reconfigurable hardware,” ACM transactions
on reconfigurable technology and systems, vol.3, no. 3, pp.16:1-34 ,Sep.
2010

X. Fang, “Variable precision floating point reciprocal, division and
square root for major FPGA vendors”, Master disseration, Northeastern
univeristy Boston, Massachusetts, Aug., 2013

F. Dinechin and B. Pasca, “Designing custom arithmetic data paths with
FloPoCo,” IEEE Design & Test of Computers, 28(4):pp.18-27, Jul. 2011

R. Michard, A. Tisserand and N. Veyrat-Charvillon, “divgen: a divider
unit generator,” Proc. SPIE 5910, Advanced Signal Processing
Algorithms, Architectures, and Implementations XV, pp.1-12, 2005

M. Gautschi, M. Schaffner, F. K. Gurkaynak, L. Benini, et al., “A 65nm
CMOS 6.4-t0-29.2p]/FLOP@0.8V shared logarithmic floating point unit
for acceleration of nonlinear function kernels in a tightly coupled
processor cluster”, Dig. Tech. Pap. - IEEE Int. Solid-State Circuits Conf.,
vol. 59, pp. 82-83, 2016

R. Hartley, and A. Zisserman, “Multiple View Geometry in Computer
Vision”, Cambridge University Press, 2003

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

