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Higher discriminants and the topology

of algebraic maps

Luca Migliorini and Vivek Shende

Abstract

Given a map between algebraic varieties, we define loci in the target of the map which
we name the “higher discriminants.” They are defined in terms of transversality con-
ditions, and, in case of a map between smooth varieties, they can be determined by a
tangent space calculation. We prove that the higher discriminants control the variation
of cohomology of the fibers in the following two senses: (1) the support of any sum-
mand of the pushforward of the intersection cohomology sheaf along a projective map
is a component of a higher discriminant, and (2) any component of the characteristic
cycle of the proper pushforward of the constant function is a conormal variety to a
component of a higher discriminant. As an example, in the last section of the paper, we
show that in the case of an algebraic completely integrable system, the stratification
by higher discriminants gives exactly the δ-stratification introduced by Ngô.

1. Introduction

Let f : X → Y be a proper family of algebraic varieties. Suppose given a satisfactory under-
standing of the cohomology of the general fiber and perhaps of some particularly well-behaved
special fibers. What can be said about the cohomology of an arbitrary fiber?

Where the map f is smooth, all fibers have the same cohomology. Over C, the theory of Whit-
ney stratifications assures us of the existence of some stratification of Y such that topological
properties of the fiber are constant in each stratum [Ver76]. Any question about the cohomology
of fibers could be answered by checking at the generic point of every Whitney stratum. Unfor-
tunately, there tend to be a vast number of strata—at least as many as topological types of
fibers—which are moreover hard to characterize even in small examples. Checking any fact on
each stratum is prohibitive.

Our purpose here is to explain a better strategy. First, we review two points of view on how to
think of cohomology in families. For simplicity, in this introduction we focus on complex varieties.
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Higher discriminants of algebraic maps

1.1 Microlocal geometry

MacPherson’s Chern class morphism from the vector space Con(X) of constructible functions to
homology,

c : Con(X)→ H∗(X) ,

commutes with proper pushforwards and is normalized by the condition that for smooth, properX,
we have c(1X) = c(TX) ∩ [X]. Any answer to our question almost necessarily involves coming
to terms with it: we want to understand the family of cohomologies of fibers Rf∗QX . A simpler
question is to understand the family of Euler characteristics of fibers f∗1X , and a still simpler
question is to understand c(f∗1X) = f∗c(1X).

We recall the microlocal perspective on these issues [KS90, Ken90]. To a constructible func-
tion ξ on a smooth variety Z, one can assign the conical Lagrangian SS(ξ) of co-directions
in T ∗Z along which it fails to remain constant; see Definition 2.4. This is called the singular
support. Each component can be weighted by the generic amount by which the function changes;
the result is a conical Lagrangian cycle in T ∗Z called the characteristic cycle. This gives an
isomorphism between the free abelian groups of constructible functions and conical Lagrangian
cycles. The space of conical Lagrangian cycles Lag(T ∗Z) has a geometrically natural basis given
by the closures T ∗SZ of conormal bundles to smooth, locally closed subvarieties. So, in our setting
f : X → Y , we expand

CC(f∗1X) =
∑
α

nα[T ∗VαY ] . (1.1)

To return to constructible functions, we invoke the Brylinski–Dubson–Kashiwara local index
formula [BDK81, Gin86]

CC−1 : Lag(T ∗Z)
∼−→ Con(Z)[

T ∗SZ
]
7→ (−1)codimS EuS .

The “Euler obstruction” EuS is a constructible function intrinsic to a variety S and taking
value 1 at smooth points, originally defined by MacPherson in terms of the Nash transform. By
the above index formula, we have

f∗1X =
∑
α

(−1)codimVαnα · EuVα .

There is a pushforward of conical Lagrangian cycles commuting with the characteristic cycle
transformation [Mac74, Ken90, KS90]. From f : X → Y , one forms f̃ : T ∗Y ×Y X = f∗(T ∗Y )→
T ∗Y and the differential df : T ∗Y ×Y X → T ∗X. These give a correspondence

T ∗X
df←− T ∗Y ×Y X

f̃−→ T ∗Y .

This correspondence gives the pushforward of Lagrangian cycles, and in particular

SS(f∗1) ⊆ f̃
(
df−1(0X)

)
,

where 0X denotes the zero section of T ∗X. Using this formula in practice means figuring out
what the components Vα of f̃(df−1(0X)) are. The purpose of the present work is to give a char-
acterization of these components in terms of more readily computable quantities.

1.2 The decomposition theorem

The second point of view comes from the decomposition theorem of Beilinson, Bernstein, and
Deligne [BBD82]. A special case of this asserts that if X is smooth and f : X → Y is projective,
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then

Rf∗Q =
⊕
α

IC(Uα,Lα)[nα] . (1.2)

In words, Rf∗Q splits as a direct sum of shifted simple perverse sheaves. One such simple perverse
sheaf, generically on its support Uα, is just a simple locally constant sheaf Lα; the perverse sheaf
can be uniquely recovered from Lα by a complicated procedure called intermediate extension.
This separates the problem into two steps: first, determine the Uα and Lα; second, understand
the intermediate extension.

The decomposition theorem itself leaves the identity of the Uα as a mystery, but some results
constraining them are known. If X is nonsingular and the map f is semismall, then the Uα
which appear are precisely the relevant strata [BM83, dCM02]; see Remark 2.15. For any f , if
the maximum fiber dimension is d, then the Uα which appear can be shown by the relative hard
Lefschetz theorem to have codimension at most d, with strict inequality over the locus where the
fibers are irreducible (“Goresky–MacPherson inequality”; see [Ngô10, Théorème 7.3.1]). Finally,
there is the recent and celebrated result of Ngô [Ngô10, Ngô09], which applies to the case when
f : X → Y is a certain sort of relative compactification of a sufficiently well-behaved abelian
scheme and implies, for instance, that all the Uα which occur are contained in the locus where
the fibers f−1(y) are not integral. Finding a general set-up for this result and its generalizations
was the main motivation for this paper.

1.3 Higher discriminants

We now rephrase our goal: to understand f∗1X and Rf∗QX , we want to identify the varieties Vα
which appear in equation (1.1) and the varieties Uα which appear in equation (1.2). To this end,
we introduce the higher discriminants. When Y is smooth (a more general formulation appears
in Section 2.4), these are given by

∆i(f) := {y ∈ Y | no (i− 1)-dimensional subspace of TyY is transverse to f} .

This determines a stratification

Y = ∆0(f) ⊇ ∆1(f) ⊇ ∆2(f) ⊇ ∆3(f) ⊇ · · · .

Observe that ∆1(f) is by definition the locus where the fiber is singular, that is, the usual
discriminant. By generic smoothness,

codim ∆i(f) > i . (1.3)

We think about these discriminants in the following way. Moving δ ∈ ∆(f) off the discrim-
inant to 6 δ /∈ ∆1(f) changes the fiber topology: Xδ 6∼ X6 δ. But we can blur our focal point
to obscure this feature: we pass to a one-dimensional disc D 3 δ, chosen generic and small enough
to retract f−1(D) =: XD ∼ Xδ. A one-dimensional disc cannot be perturbed off the discriminant,
and indeed for δ general in ∆1(f), a perturbation D′ of the thickening D induces a homeomor-
phism XD′ ∼ XD. The higher discriminant ∆2(f) is the locus which still appears to our blurred
vision: where even a general perturbation of a general one-parameter thickening changes the fiber
topology.
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Our main result is that all the Vα and Uα of Sections 1.1 and 1.2 are irreducible components
of higher discriminants.

Theorem A. If f : X → Y is a proper map of smooth algebraic varieties, then any component
of the characteristic cycle of f∗1X is the conormal variety to an i-codimensional component
of ∆i(f) for some i.

Theorem B. If f : X → Y is a projective map of smooth algebraic varieties, then any component
of the support of a summand of Rf∗QX is an i-codimensional component of ∆i(f) for some i.

We will deduce Theorem A from the following result.

Theorem C. If f : X → Y is a proper map of smooth algebraic varieties, then f̃(df−1(0X)) is
the union over all i of the conormals to all the i-codimensional components of ∆i(f).

In fact, in characteristic zero, this implies Theorem B as well: the conormal to the support of
any summand of a sheaf is necessarily a component of the singular support (note that here it is
essential that we use singular support rather than characteristic cycle, where cancellation may
arise), so any such conormal will be a component of SS(f∗Q) ⊆ f̃(df−1(0X)).

In characteristic p, however, we do not have a good notion of constructible functions or
characteristic cycles; see Section 3.

Theorem B, however, can at least be sensibly stated in any characteristic. We give a proof in
Section 3 which works generally, under additional assumptions on the codimension of the higher
discriminants which are automatic in characteristic zero.

1.4 Applications

Theorems A, B, and C factor the problem of understanding f∗1 or Rf∗Q into two pieces: first,
by computing derivatives, determine the loci ∆i(f); second, understand their singularities well
enough to compute Euler obstructions or intersection cohomology sheaves. Note that the second
step no longer depends on the map f .

We remark briefly on two ways that such results may be used. One way, following [Ngô10], is
that given two maps f : X → B and g : Y → B, one can deduce comparisons of cohomology on
all fibers from comparisons of cohomology on sufficiently generic fibers. Our results here imply
that “sufficiently generic” means “the general point of each higher discriminant.” We have used
this method in [MS13, MSV15]; more precisely, our definition here of higher discriminants is
distilled from the method we used in [MS13], and our results here are applied in [MSV15].

Of course, doing so requires computing the higher discriminants. This, however, is a tangent
space calculation. For example, in Section 4, we describe (following ideas of Dima Arinkin) how
the higher discriminants can be computed in the case of an integrable system. This recovers the
support theorem of [Ngô10] in this case, but in fact more: it characterizes the microsupport as
well.

A different application appears in [ST13], where the cohomology of fibers of a map f : X → B
is bounded in terms of the cohomology of the general fiber and the singularities of the higher
discriminants.

Finally, the paper [dCMM17] contains a detailed study of the supports of the summands
considered in Theorem B in the case of a toric map between toric varieties. It would be interesting
to see if the supports in this case coincide with the higher discriminants.
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2. From singular support to higher discriminants

In this section, varieties are assumed to be real-analytic manifolds. According to [Ver76], real-
analytic stratifications can be refined to Whitney stratifications and provide a good setting for
constructible sheaf theory. We will use the word “sheaf” to mean a complex of sheaves of abelian
groups and “constructible sheaf” for a complex whose cohomology sheaves are locally constant
on each stratum of some real-analytic stratification and have perfect stalks [KS90, Exercise I.30].
We denote by Db

c(Z) the corresponding derived category of constructible sheaves on Z. Given
a locally closed smooth V ⊆ Z, we denote by T ∗V Z ⊆ T ∗Z its conormal bundle:

T ∗V Z = {(z, φ) ∈ T ∗Z | z ∈ V and TzV ⊆ Kerφ} .

2.1 Review of the singular support of sheaves and transversality

To a complex of sheaves F on a real manifold Z, one can assign the locus of co-directions in the
cotangent bundle along which it fails to remain locally constant. This is its singular support, a
conical Lagrangian subvariety of the cotangent bundle; see [KS90, Chapter V] and [VW13, § 3]
for a clear recollection of the properties of the singular support. A covector p = (z, ξ) ∈ T ∗Z
does not belong to SS(F) if there exists an open neighborhood U of p in T ∗Z such that for any
z′ ∈ Z and any real function φ defined in a neighborhood of z′ such that dφz′ ∈ U and φ(z′) = 0,
one has (

RΓ{φ>0}F
)
z′

= 0 .

From its very definition, SS(F) is a conical subset, that is, invariant by the action of R>0 on T ∗Z.
The definition of singular support makes sense for an arbitrary bounded complex of sheaves, and
by [KS90, Theorem 6.5.4], the singular support SS(F) is an involutive (or co-isotropic) subset
of T ∗Z. If F is constructible, then SS(F) is furthermore Lagrangian [KS90, Theorem 8.4.2].

Singular support transforms well under certain natural operations. Given a map f : X → Y
of real-analytic manifolds, we write

T ∗X
df←− X ×Y T ∗Y

f̃−→ T ∗Y .

We write f† := f̃ ◦(df)−1 and f † = (df)◦ f̃−1 for the corresponding maps between subsets of T ∗X
and subsets of T ∗Y .

The convolution f† controls singular supports of proper pushforwards: according to [KS90,
Proposition 5.4.4], we have

SS(Rf∗F) ⊆ f†SS(F) (2.1)

if the restriction of f to the support of F is proper.

Recall that for a nonsingular variety Z, we denote by 0Z = T ∗ZZ ⊂ T ∗Z its zero section,
clearly a Lagrangian subvariety. Notice the important special case of formula (2.1): if F = QX

with X smooth, then SS(QX) = 0X and (2.1) becomes

SS(Rf∗QX) ⊆ f†(0X) =
{

(y, ϕ) ∈ T ∗Y | ∃x ∈ f−1(y) such that ϕ ◦ dfx = 0
}
. (2.2)

Definition 2.1. Given a conical subset A ⊆ T ∗Y , we say that f : X → Y is transverse to A if

A ∩ f†(0X) ⊆ 0Y ,

that is, no nonzero covector in A annihilates dfx(TxX) for x ∈ f−1(y). We say that a submanifold
U ⊆ Y is transverse to A if the inclusion map is transverse to A. Finally, we say that a subspace
V ⊆ TyY is transverse to A if no nonzero covector in Ay = A ∩ T ∗y Y annihilates V .

118



Higher discriminants of algebraic maps

Remark 2.2. If Ay is a vector subspace of TyY
∗, hence of the form Ay = U⊥ with U ⊆ TyY ,

then no subspace W ⊆ TyY with dimW < dimAy is transverse to Ay, while there exists an open
dense subset of (dimAy)-dimensional subspaces of TyY which are transverse to Ay.

2.2 Review of constructible functions

In this section, we work in the complex-analytic set-up. The group of constructible functions C (Z)
on a complex-analytic variety Z is the free abelian group generated by characteristic functions
of closed analytic subvarieties. We recall below some relevant facts; for a detailed treatment see,
for example, [KS90, § 9.7] or [Sch03, § 2.3].

A map f : X → Y induces a proper pushforward f! : C (X) → C (Y ): if W ⊆ X is a closed
subvariety and 1W is its characteristic function, then f!1W (y) := χc(f

−1(y) ∩ W ). We have
written the compactly supported Euler characteristic to emphasize its additivity, but recall that
for algebraic varieties, the compactly supported and usual Euler characteristics agree (see, for
example, [Ful93, Note 13] or [Sch03, § 6.0.6]). We employ Viro’s integral notation [Vir88]: if
πZ : Z → point is the structure map, then for ξ ∈ C (Z) we write

∫
Z ξdχ := (πZ)!ξ. Explicitly, if

ξ =
∑
ξα1Zα , then ∫

Y
ξdχ :=

∑
α

ξαχc(Yα) .

Because all the strata are locally contractible, we have the following result.

Lemma 2.3. Fix ξ ∈ C (Z). Then for any z ∈ Z, there exists an ε0 > 0 such that, for 0 < ε 6 ε0,

ξ(z) =

∫
‖z‖<ε

ξdχ .

We recall that for a subvariety V ⊆ Z, one can define the Euler obstruction EuV (z) (see
[Mac74]), a constructible function with support on V . It satisfies EuV (z) = 1 if z is a smooth
point, and it is constant along strata of a Whitney stratification and preserved by taking products
with smooth spaces. There is a hyperplane formula: assuming dimV > 0 and taking a local
embedding at some v ∈ V ⊆ Cn, ∫

Dn−1

EuV dχ = EuV (v) (2.3)

for a general disc Dn−1 passing near (but not through) v; see [BDK81], and also [BLS00, Theo-
rem 3.1] and [Sch02]. The functions EuV give a basis for C (X).

Constructible sheaves have associated constructible functions: with F ∈ Db
c(Z), we associate

[F ] ∈ C (Z) , [F ](z) =
∑

(−1)i dimHi(F)z .

The map F → [F ] factors through the Grothendieck group and is compatible with pushforward:
f∗[F ] = [Rf∗F ]. Clearly, 1W = [QW ] for a closed subvariety W .

The formalism of nearby and vanishing cycles (see [KS90, § 8.6] for their definition and the
convention for shifts employed here) extends to constructible functions; we recall here enough to
fix the notation. Given a regular function ` : Z → C and Z0 = `−1(0), we have the distinguished
triangle of complexes of sheaves on Z0

Φ`F → F|Z0 → Ψ`F
[1]−→ . (2.4)

The functors Φ and Ψ descend to operators on constructible functions [Ver81, Propositions 3.4
and 4.1]. If Z is a complex space and ` : Z → C a holomorphic function, we have the vanishing
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and nearby operators on constructible functions Ψl,Φl : C (Z) → C (`−1(0)) as follows: given
ξ ∈ C (Z), a point p ∈ `−1(0), and ε� δ,

Ψ`ξ(p) :=

∫
Bε(p)∩`−1(δ)

ξdχ , Φlξ(p) := ξ(p)−Ψlξ(p) . (2.5)

If F is a constructible sheaf, evidently Φ`[F ] = [Φ`F ] and similarly [Ψ`F ] = Ψ`[F ].

We may rewrite the hyperplane formula (2.3) for the Euler obstruction of a subvariety V ⊆ Z
as

(Φ` EuV )(z) = 0 for dimV > 0 and ` : Z → C a general coordinate function near z .

Definition 2.4 (Singular support of a constructible function). For ξ ∈ C (Z), a covector p =
(z, λ0) ∈ T ∗Z does not belong to SS(ξ) if there exists an open neighborhood U of p such that
for any z′ ∈ Z and any real function ` defined in a neighborhood of z′ such that d`z′ ∈ U and
`(z′) = 0, one has Φ`(ξ) = 0.

Note that the definition is compatible with the map Db
c(Z) → C (Z), in the sense that we

have the inclusion SS([F ]) ⊆ SS(F), which may be proper as the example of Q0 ⊕Q0[1] on A1

shows. If ξ is constructible with respect to a decomposition S = {Zα} of Z, which, after refining,
we may suppose to be a Whitney stratification, then SS(ξ) ⊆

⋃
T ∗ZαZ and it follows from (2.2),

that is, [KS90, Proposition 5.4.4], that we have the inclusions

SS(f∗1) ⊆ SS(Rf∗Q) ⊆ f†(0X) . (2.6)

2.3 Higher discriminants

In order to organize the discussion of transversality, we introduce higher discriminants. For this,
recall that in Definition 2.1, we introduced the notion of transversality of a vector subspace
in TzZ to a conical subset of T ∗Z:

Definition 2.5. Let C ⊆ T ∗Z be a conical subvariety. We define

∆i(C) := {z ∈ Z |no (i− 1)-dimensional subspace of TzZ is transverse to C} .

Clearly, when we work in the complex-analytic category, we refer to the complex dimension in
the definition above.

We write ∆i(C)reg for the locus where ∆i(C) is locally a manifold of codimension i.

Remark 2.6. If C ′ ⊆ C, then ∆i(C ′) ⊆ ∆i(C) and ∆i(C ′)reg ⊆ ∆i(C)reg.

As we discussed above, by [KS90], the singular support of a constructible sheaf or function
is conical Lagrangian. If F is constructible with respect to the Whitney stratification S = {Sα}
of Z, then

SS(F) ⊆
⋃
T ∗SαZ

and similarly for a function.

The higher discriminants control the decomposition of a conical Lagrangian into irreducible
components. To state the result precisely, recall that in the category of real manifolds, conical only
means “invariant under R>0”; we write RC to take the negative scalars as well. This distinction
will be forgotten when we return to complex geometry.
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Theorem 2.7. If C ⊆ T ∗Z is a closed conical subanalytic Lagrangian subset, then we have
codim ∆i(C) > i. Moreover,

RC =
⋃
i

T ∗
∆i(C)reg

Z .

Proof. Choose a Whitney subanalytic stratification of Z such that RC is contained in a union
of closures of conormal bundles to strata (see [KS90, Proposition 8.3.10]). Observe that the
Whitney condition A amounts to the assertion that if S′ is a stratum inside the closure of S,
then T ∗SZ|S′ ⊆ T ∗S′Z. It follows that C is contained in the union of (not closures of) conormal
bundles to strata; increasing C to this union only enlarges ∆i(C) (by Remark 2.6), so we are
free to do this.

To now prove the first claim, we need only consider strata of codimension at most i, above
which C is the conormal bundle, to which any general i-dimensional subspace of the tangent
space is transverse.

As for the second statement, the inclusion T ∗
∆i(C)reg

Z ⊆ RC is obvious. For the reverse

inclusion, observe that if C 6=
⋃
i T
∗
∆i(C)reg

Z, then there must be a full-dimensional component

C0 of C not included in this union. On a dense open subset, we can identify C0 = T ∗V Z for
some V . But then V ⊆ ∆codimV (C); since codim ∆codimV (C) = codimV , we have equality along
the smooth locus. This gives a contradiction.

Applying this result to a conical Lagrangian of the form f†(0Y ), we immediately have the
following result (see Remark 2.2).

Lemma 2.8. Let f : X → Y be a map of smooth manifolds. Then ∆i(f†0X) is the locus in Y of
points y ∈ Y such that no (i− 1)-dimensional subspace of TyY is transverse to f .

Definition 2.9 (Higher discriminants of a map). We write ∆i(f) := ∆i(f†0X).

Remark 2.10. If f is proper, then ∆i(f) is closed and, moreover, ∆>i(f) ⊆ ∆i(f) by the openness
of the transversality condition.

Definition 2.11 (Higher discriminants of constructible sheaves and functions). If F is a con-
structible function or a complex of constructible sheaves on the nonsingular variety Z, we set
∆i(F ) := ∆i(SS(F )).

Translating the definitions of the higher discriminants and the singular support gives the
following lemma.

Lemma 2.12. The higher discriminant ∆i(F ) is the locus of z ∈ Z such that for the general
i-dimensional local complete intersection Di 3 x and general linear form ` : (Di, z) → (C, 0), we
have Φ`(F |D i)(z) 6= 0.

Theorems A, B, C, whose statements we recall, follow immediately from the discussion above.

Theorem C. If f : X → Y is a proper map of smooth algebraic varieties, f†(0X) = f̃(df−1(0X))
is the union over all i of the conormals to all the i-codimensional components of ∆i(f).

Proof. This follows from Theorem 2.7 and Lemma 2.8.

Theorem C and the inclusions (2.6) give Theorem A.
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Theorem A. If f : X → Y is a proper map of algebraic varieties, then any component of the
characteristic cycle of f∗1X is the conormal variety to an i-codimensional component of ∆i(f)
for some i.

Finally, the decomposition theorem and the observation that if F is a summand of Rf∗QX ,
then the conormal bundle to the support of F is a component of SS(Rf∗QX) give Theorem B.

Theorem B. If f : X → Y is a projective map of algebraic varieties, then any component of the
support of a summand of Rf∗QX is an i-codimensional component of ∆i(f) for some i.

We end this section with two examples from complex geometry clarifying the notion of higher
discriminant.

Example 2.13 (Higher discriminants and stratification by the rank of the differential). The locus
∆i(f) may be larger than the image of the locus in X where df has cokernel of dimension at least i.
Indeed, let f be the blow-up of a point p on a smooth surface: the image of df has dimension one
at every point of the exceptional divisor. Nevertheless, p ∈ ∆2(f): no one-dimensional disc in the
base is transverse to all these tangent space images simultaneously, and indeed the inverse image
of every one-dimensional disc D through p will be given by the union of the proper transform
of D and the exceptional divisor, which is singular.

On the other hand, it may well happen that a stratum for the map is not a higher discriminant.

Example 2.14 (The versal deformation of the cusp curve). Let f : X ⊆ A2 × P2 → A2 = Y be
the family of projective curves{

(a, b, [X,Y, Z]) ∈ A2 × P2 | ZY 2 −X3 − aXZ2 − bZ3 = 0
}
. (2.7)

If ∆ ⊆ A2 is defined by {
(a, b) ∈ A2 | 4a3 + 27b2 = 0

}
,

a stratification for the map is given by{
(0, 0) ⊆ ∆ ⊆ A2

}
.

Nevertheless, just as for the other points of ∆, the inverse image of a one-dimensional complex
disc through the origin has nonsingular total space. Therefore, ∆2(f) = ∅ and ∆1(f) = ∆. Notice
that in this case ∆1(f) does not support any summand of Rf∗QX .

Remark 2.15. Let f : X → Y be a semismall map, with X nonsingular, and assume f(X) = Y .
Define Yi = {y ∈ Y such that dim f−1(y) = i}. A component Yα of Yi supports a summand of
Rf∗QX if and only if dimYα = dimY − 2i (these are the relevant strata; see [BM83, dCM02]).
It follows from Theorem 3.4 that in this case Yα ⊆ ∆2i(f). This means that there is no
(2i − 1)-dimensional disc through the general point of Yα with nonsingular inverse image of
the right codimension. For example, if a point y is a zero-dimensional relevant stratum, namely
dim f−1(y) = 1

2 dimX, then there is no Cartier divisor through x whose inverse image is a non-
singular Cartier divisor in X. Notice that the consideration of the dimension of the fiber would
give a much cruder estimate, namely that there is no i-dimensional disc with nonsingular inverse
image of the right codimension.

2.4 Remarks on the singular case

The above ideas make immediate sense when Y is singular: one simply chooses locally an embed-
ding of Y into a smooth manifold. Below, we comment on what can be done when X is singular.
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We omit the proofs, both because they are standard and because, although it is possible to set
up the theory, we do not know in practice how to compute the higher discriminants.

Fix an embedding of X in a smooth manifold X̃. Let S be the canonical Whitney stratification
of (X̃,X) constructed in [Tei82, Chapter VI, § 3]. Let T ∗SX be the union of all conormals to strata
in Y ; by the Whitney conditions, this is closed.

Given a map f : X → Y , fix an extension f̃ : X̃ → Y . Then we can take f†0X := f̃†(0X),
which gives a conical subvariety of Y . We can again define ∆i(f) := ∆i(f†0X).

Lemma 2.8 has the following variant: ∆i(f) is the locus of y ∈ Y such that there is no (i− 1)
germ of a complete intersection Di−1 passing through y for which the inclusion f−1(Di−1) :=
(X×Y Di−1) ↪→ X is normally nonsingular; that is, it admits a neighborhood in X homeomorphic
to a bundle over itself and codim(Di−1, Y ) = codim(f−1(Di−1), X).

With these definitions, Theorem C again holds. In Theorem A, it is natural to replace QX

with the intersection cohomology sheaf with respect to some perversity. The result holds in all of
these cases because, with the above definitions, using [GM83, § 5.4.1], we have SS(ICX) ⊆ T ∗XX,
hence SS(f∗ICX) ⊆ f†(SS(ICX)) ⊆ f†T

∗
XX, hence ∆i(SS(f∗ICX)) ⊆ ∆i(f). Theorem B will

hold with QX replaced by the middle-perverse intersection cohomology sheaf.

2.5 Theorem A: reformulations and applications

We now give some corollaries of Theorem 2.7. Throughout this section, we work with complex
varieties. For X smooth and S ⊆ X, we write T ∗SX for the closure of the conormal bundle of the
smooth locus of S. We denote by CC(φ) the characteristic cycle of the constructible function φ.
Its definition in terms of vanishing cycles, discussed in [Bry86, § I.1], gives the following result.

Corollary 2.16. Let X be a complex variety, and let ξ be a constructible function on X.
Let {∆i,α}α be the i-codimensional components of ∆i(ξ). For xi,α ∈ ∆i,α a general point, X ⊃
Di 3 xi,α a general i-dimensional disc, and l : Di → C a general linear form, define ξi,α =
Φl(ξ|Di)(xi,α). Then

CC(ξ) =
∑

(−1)iξi,αT ∗
∆i,αX .

By the Brylinski–Dubson–Kashiwara index theorem [BDK81, Gin86], we have CC(EuS) =
(−1)codimS [T ∗SY ], giving the following corollary.

Corollary 2.17. With the hypotheses and notation of Corollary 2.16,

ξ =
∑
i,α

ξi,α Eu
∆i,α .

Finally, assume that f : X → Y is a proper map of complex varieties. Since SS(f∗1X) ⊆
f†SS(1X) = f†T

∗
XX [KS90], the following holds.

Corollary 2.18. Let f : X → Y be a proper map of complex varieties. Let {∆i,α}i,α be the
codimension i components of ∆i(f). Then

CC(f∗1X) =
∑
i,α

(−1)iξi,αT ∗
∆i,αY ,

f∗1Y =
∑

ξi,α Eu
∆i,α .
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3. Theorem B in characteristic p

In positive characteristic p, finding a good notion of constructible functions or characteristic
cycles turns out to be extremely subtle. The main problem is wild ramification: for instance, the
map

as: A1 x 7→xp−x−−−−−→ A1

is a nontrivial cover whose source is a space with Euler characteristic one; composing with the
pushforward to a point gives a counterexample to the possibility that the naive pushforward of
constructible functions is functorial. There is some recent important progress on this topic [AS07,
Sai09, Sai15].

Similarly, easy examples with inseparable morphisms show that the estimate (1.3) on the
codimension of the higher discriminants may not hold. In the recent paper [Bei16], Beilinson
defines a notion of singular support for étale constructible sheaves on an algebraic variety X over
an arbitrary field, as a closed subset of T ∗X, and proves that every irreducible component has
dimension dimX. However, the examples given in [Bei16] show that this is not as well behaved as
in characteristic zero; in particular, the singular support is not necessarily a union of conormals
to subvarieties of X. Therefore, even assuming that the estimate (1.3) holds, the methods used
in the previous sections cannot be extended. Here we give another proof of Theorem B, for the
direct image of the constant sheaf on a nonsingular variety, also valid over positive-characteristic
fields, under the supplementary hypothesis that the codimension estimate (1.3) holds.

Throughout, we employ the formalism of perverse sheaves [BBD82]. For Z an algebraic variety
and K ∈ Db

c(Z) a constructible complex, we denote by pH i(K) its ith perverse cohomology sheaf.
We adopt the usual shift convention: if Z is smooth, then QZ [dimZ] (or Ql,Z [dimZ] in the étale
setting) is perverse. We work in some setting where a formalism of weights is available, either
with `-adic sheaves over a finite field Fq or with mixed Hodge modules over C. We say that
K ∈ Db

c(Z) is pure semisimple of weight k if it is isomorphic to the direct sum of its perverse
cohomology sheaves and for every i, the sheaf pH i(K) is a semisimple pure perverse sheaf of
weight i+ k.

We reformulate the definition of higher discriminants of a map in this context.

Terminology: Let Y be a nonsingular variety. Given y ∈ Y , by “a k-dimensional disc Dk ↪→ Y
through y,” we mean a germ of a nonsingular k-dimensional subvariety passing through y.

Definition 3.1. Let f : X → Y be a proper map of nonsingular algebraic varieties. A k-
dimensional disc Dk ↪→ Y through y ∈ Y is transverse to f if f−1(Dk) is nonsingular along f−1(y)
and codim

(
f−1

(
Dk
)
, X
)

= codim
(
Dk, Y

)
.

Definition 3.2. Let f : X → Y be a proper map of nonsingular algebraic varieties. Then

∆i(f) =
{
y ∈ Y | there is no Di−1 ↪→ Y through y transverse to f

}
. (3.1)

Remark 3.3. The definition generalizes immediately to the case of Y locally embeddable into
a smooth variety; all the results hold mutatis mutandis for such Y .

3.1 Supports are discriminants

The decomposition theorem of [BBD82] asserts that if f : X → Y is proper and X is nonsingular,
then Rf∗Q (or Rf∗Q`) is pure semisimple. In other words, there are nonsingular locally closed
subvarieties Vi ⊆ Y carrying semisimple local systems Li such that Rf∗Q =

⊕
IC(Vi, Li)[di] for

appropriate di ∈ Z.
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Theorem 3.4. Let f : X → Y be a projective map between algebraic varieties, with X nonsin-
gular. Let G be a summand of Rf∗Q`, and let k be the codimension of suppG. Then

suppG ⊆ ∆k(f) .

In particular, if, for every k, we have codim ∆k(f) > k, then every summand of Rf∗Q` is
supported on the closure of a k-codimensional component of ∆k(f).

Often, even in characteristic p, it is possible to just directly make the tangent space calcu-
lation determining the ∆k(f) and directly show that ∆k(f) has codimension at least k. For an
application, see [MSV15].

We turn to giving the proof of Theorem 3.4. First, we develop some preliminary notions.

Definition 3.5. We write S(Z) ⊆ Db
c(Z) for the set of pure semisimple complexes K which are

moreover symmetric in the sense that pH i(K) ' pH −i(K)(−i) for every i ∈ Z.

Remark 3.6. (i) If K,K[r] ∈ S(Z), then either K = 0 or r = 0.

(ii) If K = K1 ⊕K2 and two of the three complexes are in S(Z), then so is the third.

(iii) If K ∈ S(Z) and KΛ is the sum of the summands of K with support exactly equal to
Λ ⊆ Z, then KΛ ∈ S(Z).

Lemma 3.7 ([BBD82, Corollaire 4.1.12]). If P is a simple perverse sheaf on Z and i : D ↪→ Z is
a Cartier divisor, then either

(i) suppP ( D and i∗P [−1] is perverse, or

(ii) suppP ⊆ D and i∗P is perverse.

Corollary 3.8. Let Z be a variety, and let i : D ↪→ Z denote the closed immersion of a Cartier
divisor. If K ∈ S(Z) and i∗K[−1] ∈ S(D), then D does not contain the support of any summand
of K.

Proof. Write K = K ′ ⊕ i∗K ′′, where i∗K
′′ is the direct sum of all the summands whose support

is contained in D. By Remark 3.6(ii), we have K ′, i∗K
′′ ∈ S(Z). By hypothesis, i∗K and hence

i∗K ′ and i∗i∗K
′′ = K ′′ have semisimple perverse cohomology sheaves. By Lemma 3.7, (up to

Tate twists)

pH k(i∗K ′[−1]) =
(
i∗pH k(K ′)

)
[−1] '

(
i∗pH −k(K ′)

)
[−1] = pH −k(i∗K ′[−1])

and so i∗K ′[−1] ∈ S(D). Thus, since i∗K[−1] = i∗K ′[−1]⊕K ′′[−1] ∈ S(D), we have K ′′[−1] ∈
S(D). On the other hand, obviously K ′′ ∈ S(D), which, by Remark 3.6(i), gives a contradiction
unless K ′′ = 0.

Proof of Theorem 3.4. As f is projective and, by the smoothness of X, the sheaf F := Q`[dimX]
is pure and perverse, it follows from the decomposition theorem and the relative hard Lefschetz
theorem that Rf∗F ∈ S(X).

We first show that the zero-dimensional supports of the summands of Rf∗F are contained
in ∆dimY (f). Indeed, if y /∈ ∆dimY (f,F), then by definition there exists a divisor i : D → Y
containing y such that D̃ := f−1(D) is nonsingular in a neighborhood of f−1(y). Thus i∗F [−1]
is pure perverse; hence, by the decomposition theorem, R(f |

D̃
)∗(i

∗F [−1]) ∈ S(D).

By proper base change,

R(f |D̃)∗(i
∗F [−1]) = i∗Rf∗F [−1]
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in a neighborhood of y. Therefore i∗Rf∗F [−1] ∈ S(D) and, by Corollary 3.8, there is no summand
of Rf∗F supported on y.

In the general case, let Z be the support of a simple summand G of Rf∗F , and denote its
codimension by k. We show that z ∈ ∆k(f). If not, then, there is a (k−1)-dimensional disc Dk−1

through z transverse to f . Since transversality is an open condition, there is a k-dimensional disc
Dk through z containing Dk−1 and transverse to f . Consider the restriction f| : f

−1(Dk) → Dk.
By proper base change, there is a nonzero summand of Rf|∗F [k− dimY ]|Dk supported at z, but
also a codimension one disc through z transverse to f|, and we find a contradiction from what
we proved in the first step.

Remark 3.9. In [MS13, § 5], we proved (but did not state) a weaker form of Theorem 3.4.

Remark 3.10. One might hope for a more precise form of Theorem 3.4, holding for the direct
image of a pure perverse sheaf F on Y , in which the role of the higher discriminants ∆i(f) is
played by the “discriminants of pure perversity” ∆i

p(f,F), defined as follows: Say that a disc
Di−1 → Y through y ∈ Y is transverse if F|f−1(Di−1)[−codim(Di−1, Y )] is pure perverse. Then

define ∆i
p(f,F) to be the locus of y ∈ Y through which there is no (i−1)-dimensional transverse

disc Di−1 → Y . Unfortunately, it is not clear whether these discriminants have the required
properties to make the argument of Theorem 3.4 work. Clearly, ∆i

p(f,Q) ⊆ ∆i(f), and it is easy
to find examples in which inclusion is strict, for example with finite maps, but, on the other
hand, the determination of these discriminants looks quite hard.

4. Higher discriminants of algebraic completely integrable systems

In this section, we show how one can determine the higher discriminants of an algebraic com-
pletely integrable system. We are grateful to Dima Arinkin for explaining to us the following
argument [AF16, Ngô09], which sheds light on the link between the “δ−regularity” assumption
and the support theorem in [Ngô10]. We make the following assumptions (see [DM96, AF16]):

(i) The scheme X is a complex nonsingular quasi-projective variety, endowed with an algebraic
symplectic form Ω.

(ii) The map h : X → Y is a flat projective map with connected and reduced fibers to a nonsin-
gular d-dimensional affine variety Y with 2 dimY = dimX. The restriction of ω to the smooth
locus of any fiber is zero.

(iii) There exists a commutative group scheme G→ Y acting on X → Y , with dimG = dimX,
making h into a completely integrable system: For every point x ∈ X, let dhx : TxX → Th(x)Y
be the differential and

tdh : T ∗h(x)Y → T ∗xX
Ω∼= TxX

its adjoint. Then we have an isomorphism Lie(Gh(x)) ∼= T ∗h(x)Y , and the derivative of the action
is given by the linear map

Lie(Gh(x)) ∼= T ∗h(x)Y
tdh−→ T ∗xX

Ω∼= TxX

above.

(iv) On a dense open set Yo ⊆ Y , the group scheme Go = G×Y Yo → Yo is an abelian scheme.

(v) For every x ∈ X, the stabilizer S(x) < Gh(x) is affine.
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Remark 4.1. Let M (n, d) be the moduli space of stable Higgs bundles (E,Φ) of rank n and
degree d on a genus g projective curve, where d and n are assumed coprime and g > 2. Let
h : M (n, d)→ A be the Hitchin map. We recall that the points of A parameterize certain Cartier
divisors contained in the total space of the canonical bundle KC of C, the spectral curves. Let
Ared ⊂ A be the open set corresponding to reduced spectral curves and M (n, d)red := h−1(Ared).
The hypotheses above are satisfied by the restriction of the Hitchin map

h| : M (n, d)red → Ared .

A detailed study of the supports of the Hitchin map, using the methods developed in the present
paper, is pursued in a forthcoming paper by M. A. de Cataldo, J. Heinloth, and L. Migliorini.

Recall that, by the theorem of Chevalley, for every y ∈ Y , the neutral component Goy of the
commutative algebraic group Gy is an extension

1→ Hy → Goy → Ay → 1

of an abelian variety Ay by a connected affine algebraic group Hy, whence an upper-semiconti-
nuous function

δ : Y → N , δ(y) = dimHy .

In particular, for every y ∈ Y , we have the subspace Lie(Hy) ⊆ Lie(Gy) ∼= T ∗y Y . By semicon-
tinuity, the fourth assumption amounts to asking that δ−1(0) 6= ∅. The last assumption on the
stabilizers is not particularly restrictive, in view of the following.

Lemma 4.2. Suppose that a connected algebraic group G acts on a connected variety Z. Then
either the stabilizers of all points of Z are affine or the stabilizers of all points of Z fail to be
affine.

Proof. We may assume Z irreducible. Suppose that there is a point x ∈ Z whose stabilizer
S(x) < G is not affine. The stabilizer acts on the local ring OZ,x; since S(x) is not a linear group,
this representation must have a kernel H(x). Since H(x) acts trivially on the local ring OZ,x, it
acts trivially on the entire Z, and we are left to show that H(x) is not affine.

Clearly, the quotient S(x)/H(x) is affine, having a faithful linear representation. Hence, the
kernel H(x) cannot be affine, otherwise S(x) would be an extension of an affine group by an
affine group, and therefore affine itself.

Notice also that because of the assumptions made on the dimension and the connectedness
of the fibers of h, for y ∈ Yo the group scheme Gy acts transitively on h−1(y).

Proposition 4.3. We have ∆i(h) = {y ∈ Y | δ(y) > i}.

Proof. For x ∈ X, let y = h(x), and let Sx ⊆ Gy denote the neutral connected component
of its stabilizer. Its Lie algebra satisfies Lie(Sx) ⊆ Lie(Gy) = T ∗y Y . From the definition of the
Hamiltonian action, it follows that

dh(TxX) = Lie(Sx)⊥ ⊆ TyY

is the orthogonal complement of this subspace Lie(Sx) ⊆ T ∗y Y . By hypothesis, Sx is affine, hence
contained in the maximal affine Hy. This implies that the images dh(TxX) for x ∈ h−1(y) all
contain Lie(Hy)

⊥. By the Borel fixed point theorem [Spr98, Theorem 6.2.6], the Lie algebra
Lie(Hy) is the stabilizer of some x ∈ h−1(y), and the statement follows from the fact that the
codimension of this smallest subspace is exactly δ(y).
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From this proposition, one gets a fairly workable criterion for proving support theorems in the
line of those in [Ngô10, CL12, CL16]; see the forthcoming paper [MSV15], where compactified
Jacobian fibrations associated with family of planar curves are considered in detail.
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