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Abstract

Computation of nonlinear optical response functions allows for an in-depth connec-

tion between theory and experiment. Experimentally recorded spectra provide a high

density of information, but to objectively disentangle overlapping signals and to reach

a detailed and reliable understanding of the system dynamics, measurements must be

integrated with theoretical approaches. Here, we present a new, highly accurate and

efficient trajectory based semiclassical path integral method for computing higher-order

nonlinear optical response functions for non-Markovian open quantum systems. The

approach is, in principle, applicable to general Hamiltonians and does not require any

restrictions on the form of the intra-system or system-bath couplings. This method is

†JP and FS contributed equally to the development of the methods and applications that are detailed in
this publication.
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systematically improvable and is shown to be valid in parameter regimes where pertur-

bation theory-based methods qualitatively breakdown. As a test of the methodology

presented here, we study a system-bath model for a coupled dimer for which we com-

pare against numerically exact results and standard approximate perturbation theory

based calculations. Additionally, we study a monomer with discrete vibronic states that

serves as the starting point for future investigation of vibronic signatures in nonlinear

electronic spectroscopy.

Introduction

Experimental nonlinear spectroscopic techniques such as time-resolved 1-dimensional pump

probe (1DPP) methods and 2-dimensional electronic spectroscopy (2DES) contain enormous

amounts of detailed information about relaxation processes that ensue after photo excita-

tion. These techniques, for example, can now be applied to large arrays of chromophores

such as the pigment-protein light harvesting complexes that initiate photosynthesis,1 or to

new nano structured materials where processes like multiple exciton generation can poten-

tially enhance solar cell function.2 These powerful nonlinear spectroscopies can thus provide

detailed information on the ultrafast excitation energy transfer (EET) and charge transfer

(CT) and separation processes in light harvesting. Beating features are ubiquitous in these

signals and have highlighted the existence of long-lived vibronic coherence that may play

a role in enhancing the light harvesting function of these structures.1 This has motivated

reconsideration of the role that intra- and inter-molecular vibrational dynamics plays during

EET and CT processes in biological light harvesting complexes (LHCs), for example.1,3,4

While these experimental results can, in principle, provide important details about these

processes, the complexity of these spectra makes a thorough understanding of the origin of

particular signals a very difficult task. Overlapping signals that arise from different energetic

pathways make the interpretation of experimentally recorded spectral features nontrivial.

Because of this, theoretical methods that are able to reliably reproduce spectroscopic ex-
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periments are a necessity. The ability to selectively suppress individual degrees of freedom

(DOFs) in computational models of these complex systems allows for the previously-hopeless

assignment of many of the features of nonlinear spectra.5

Existing methods for the computation of nonlinear electronic spectra have shown great

utility as tools for aiding the interpretation of experimental results. These methods such

as those based on extensions to Redfield theory,6 quantum master equation approaches,7–10

wave packet based techniques,11 etc. are often perturbative in nature, e.g. they assume that

couplings of the sites to their environments are small compared to other terms. In addition,

the more standard methods for computing the nonlinear response may make dynamical

approximations about time scales of different processes (e.g. the Markovian and Secular

approximations). Recent simulations that attempt to compute the parameters in the model

Hamiltonians describing these types of systems from first principles12 suggest that they

can fluctuate considerably as the system samples its configuration space, so using model

parameters fit to averaged experimental results may not in general reliably capture the

influence of these fluctuations. Further, the magnitude of the parameter fluctuations can,

in principle, push the system between regimes where different perturbative approximations

make sense while others become nonphysical. Such fluctuations and variations in timescales

can invalidate the different perturbation theories or dynamical assumptions on which these

approaches are based, limiting their usefulness as predictive methods.

To address these issues, non-perturbative methods that avoid different dynamical approx-

imations have been developed such as the density matrix based hierarchical equations of mo-

tion (HEOM) approach13–16 or the wave function based multi-configuration time dependent

Hartree (MCTDH) scheme.17,18 These numerically exact techniques have been extended to

compute nonlinear optical responses in recent benchmark studies providing critical tests for

more approximate methods. Implementing these exact techniques to compute the nonlinear

optical response for larger more realistic models, however, can quickly become prohibitively

expensive. Recently, schemes that use these types of exact methods to compute the rapidly
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decaying memory kernel in master equation approaches based on the Liouville-von Neuman

equation, which can then be integrated to longer times19,20 have appeared and may offer ef-

ficient ways to compute the nonlinear optical response. A mixed quantum-classical Liouville

approach to nonlinear spectroscopy has been presented and applied to compute nonlinear

infrared spectroscopy.21–23 This approach employs a Wigner approximation that involved

propagating classical trajectories from a quantum initial distribution to describe the vibra-

tional dynamics underlying the nonlinear infrared response. The approach we develop here,

however, takes a different, but related semiclassical tack.

We present a non-perturbative, non-Markovian semiclassical path integral method for the

computation of nonlinear optical response functions in open quantum systems that explicitly

treats all DOFs.24,25 This method makes no assumptions about the nature of intra-system

couplings or the form of the spectral density that defines the frequency-dependent couplings

between the system and its environmental DOFs, providing a way of accurately treating

the coupled electronic, vibrational and vibronic dynamics at the heart of the nonlinear

optical response. Moreover the method is based on propagating classical-like trajectories that

include effects such as quantum transitions and the decay of an initially prepared coherent

superposition of system quantum states in the presence of coupling to the environment. The

independent trajectory nature of the approach makes for a highly efficient implementation

for computing nonlinear responses and results in a flexible approach with good scaling to

larger numbers of quantum states and explicit bath degrees of freedom.

The outline of the paper is as follows: First the general theory of nonlinear optical re-

sponse functions is summarized. Next we present an approach for propagating dynamical

operators based on the mapping Hamiltonian formulation for systems with discrete quantum

states coupled to a bath described by continuous coordinates. This approach is based on the

partial linearized density matrix (PLDM) dynamics method,24,25 only now applied for arbi-

trary operators. The partial linearized operator dynamics expressions for computing optical

response functions are then presented and an algorithm for their efficient implementation is
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outlined. Results for 2DES for several simple model Hamiltonians involving quantum sub-

systems including electronic and vibrational states coupled to different baths are presented

along with comparisons to exact HEOM results and results obtained from other approximate

theoretical approaches. Finally some concluding observations are summarized.

Theory

Optical Response Functions

To describe the time evolution of a system in the presence of an external electromagnetic

field, the field-matter Hamiltonian is partitioned as

Ĥtot(t) = Ĥ + Ĥ ′(t) (1)

where Ĥ is the molecular Hamiltonian that describes the time evolution of the full system in

the absence of the electromagnetic field and Ĥ ′(t) = −~̂µ · ~E (~r, t) represents the interaction

of the system with a classical external electromagnetic field, ~E (~r, t). For clarity, in what

follows we will omit the ~r dependence of the electric field as well as the vectorial nature of

both the field and molecular dipole operator, ~̂µ.1

Perturbation theory in the field matter interaction gives that the signal that is order n in

the field strength can be obtained from the nth-order macroscopic polarization, which reads

P (n) = Tr[µ̂ρ̂(n)] (2)

where n is the number of times the sample has interacted with the external electromagnetic

field, ρ̂(n) =
[
µ̂, ρ̂(n−1)

]
is the nth order perturbed density operator and ρ(0) is the ground state

1The expressions given here can be generalized in a straightforward way to incorporate this relative field
and molecular dipole orientational information by recognizing that each laser pulse in a typical experiment
has its electric field polarized in a specific direction, perpendicular to the direction of propagation of the
pulse, so the orientation dependence of the light-matter interaction for each pulse in the above expression is
influenced by the dot product of the molecular transition dipole and the field polarization vector associated
with the particular pulse.
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density matrix prior to any field interaction. In third-order experiments, the sample interacts

with three laser pulses having wave vectors (±~k1,±~k2,±~k3). After the initial interaction, the

system (prepared by the first pulse in a coherence between the ground and first excited state

manifolds) is allowed to evolve for a time t1 before the second pulse arrives. We similarly

define t2 as the time interval between the second and third pulses. During this t2 interval

the excited system interacts with its environment causing relaxation, potentially involving

excitation energy transfer to other excited states and decoherence arising from entanglement

of the evolving system state and its surroundings. Monitoring nonlinear spectroscopic signals

as functions of t2 can thus provide detailed information about these excited state processes.

At a time delay t3 after interacting with the third pulse, a response is emitted from the

sample in a direction that is the sum of the incoming wave vectors of the different laser

pulses, as depicted in Figure 1.6,26

t2 t1

±~k2

±~k3

±~k1 ± ~k2 ± ~k3

±~k1

Figure 1: Pictorial representation of a third-order nonlinear spectroscopy experiment. The
signal is emitted in the direction of the sum of incoming wave vectors.

The directionality of these responses allows for the independent detection of signals that

correspond to different sample-field interaction schemes. The most frequently reported re-

sults for third-order experiments contain information from the rephasing and nonrephasing

signals (~kr = ±(−~k1 +~k2 +~k3) and ~knr = ±(~k1−~k2 +~k3), respectively) although the method

presented here is capable of describing all possible nonlinear responses. The signals can be

further partitioned into ground state bleaching (GSB), stimulated emission (SE), and ex-

cited state absorption (ESA) contributions.27 These reflect different sequences of transitions

that can occur as a consequence of the field-matter interactions. These interactions are
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conveniently summarized by double-sided Feynman diagrams and, in Figure 2, we show an

example of these diagrams for the nonrephasing signal.

SE GSB ESA

pump

pump

probe

resp.
|eihg| |eihg|

|eihg||eihg||eihg|t1

t2

t3

|gihg| |gihg| |gihg|

|gihg||gihg|

+~k1 +~k1 +~k1

�~k2

�~k2 �~k2

+~k3 +~k3+~k3

|gihg|

|gi

|ei

|fi

a) b)

, |e0i|eihe0||eihe0|

|fihe0|
|e0ihe0|

"

Figure 2: a) Double-sided Feynman diagrams that represent nonrephasing interaction
schemes. For conciseness, only diagrams that survive the rotating wave approximation are
shown. Red arrows indicate an interaction with the external field. The vertical lines repre-
sent time evolution, with dashed lines indicating time periods where the corresponding wave
function can mix into a linear combination of eigenstates. Note that, in our methodology,
mixing is allowed when the system is in a coherence, not just when it is in a population.
b) Pictorial representation of the excitation manifolds involved in the Feynman diagrams
depicted in a).

Partial Linearized Operator Dynamics

The propagation scheme we develop here to evolve the operators that appear in expressions

for the nonlinear optical responses is a straightforward generalization of the partial linearized

density matrix (PLDM) dynamics approach,24 and will henceforth be referred as PLDM

(although it is not restricted to the propagation of density matrices24,25). Here we outline

the principle ingredients of this approach and generalize it to evolving arbitrary operators.

The time evolution of the expectation value of a general operator 〈Ô〉(t) = 〈Ψ|eiHtÔe−iHt|Ψ〉,

where H is a general system-bath Hamiltonian and the system and bath are prepared in some

initial state |Ψ〉, can be accurately described using a semiclassical path integral formalism for

the forward (e−iHt) and backward (eiHt) propagators.28 Employing the Meyer-Miller map-

ping model to a general system-bath Hamiltonian in the diabatic representation, the discrete
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quantum states of the system are exactly mapped onto a set of fictitious harmonic oscillator

raising and lowering operators (|α〉 → â†α = (x̂α − ip̂α)/
√

2) and the Hamiltonian takes the

form29,30

Ĥ =
P̂ 2

2M
+

1

2

∑

α

Hαα(R̂)
(
x̂2
α + p̂2

α − 1
)

+
1

2

∑

β 6=α

Hαβ(R̂) (x̂αx̂β + p̂αp̂β) (3)

where (x̂, p̂) and (P̂ , R̂) represent the complete sets of system and bath phase-space operators,

respectively, and we take h̄ = 1.

To arrive at the partial linearized operator dynamics algorithm, the Herman-Kluk31,32

(or coherent state) semiclassical propagator is employed for the system DOFs.2 The bath

part of the full propagator is written in phase space path integral form, and a (forward)

propagator matrix element takes the form

〈nt, RN |e−iĤt|n0, R0〉 =

(
N−1∏

k=1

∫
dRk

dPk
2π

)∫
dPN
2π

eiS0(t)T[nt,n0] (4)

where S0(t) = ε
∑N

k=1[Pk
(Rk−Rk−1)

ε
− P 2

k

2M
] is the bath kinetic action with time step ε and

T[nt,n0] is the system transition amplitude, given by

T[nt,n0] =

∫
dx0dp0

1

2
(xnt + ipnt)(xn0 − ipn0)e

iS1(t)e−
i
2

∑
α(xαtpαt−xα0pα0 )e−

1
2

∑
α(x2α0+p2α0 ) (5)

Here, S1(t) is the bath-dependent system action, which reads

S1(t) =

∫ t

0

dτ

[∑

α

pαẋα − H̃(R, x, p)

]
(6)

where H̃(R, x, p) = 1
2

∑
αHαα(R)(x2

α + p2
α) + 1

2

∑
α 6=βHαβ(R)(xαxβ + pαpβ).

2While results are independent of the specific choice of the coherent state width parameter, γ, choosing it
as γ = 1

2 has the useful consequence that the coherent state version of the semiclassical van Vleck determinant
exactly cancels the troublesome − 1

2

∑
αHαα(R) term in Eq. (3).33 This mitigates the issue of the bath DOFs

propagating on an inverted potential energy surface (PES) when the mapping variables sample regions of
phase space in which x̂2α + p̂2α < 1.
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Next, the forward and backward propagator matrix elements are combined and the

bath phase space DOFs are transformed to mean and difference variables, defined as R̄ =

(R +R′) /2 and Z = R − R′, respectively, with similar definitions for the corresponding

momenta, P̄ and Y . The approximation made in the partial linearization scheme comes

through a truncation of the functional Taylor series expansion about the mean bath phase

space path, (R̄(t), P̄ (t)), to linear order in the difference path variables, Z(t) and Y (t).

This approximation is based on the assumption that forward and backward bath paths

will remain close to each other for short times. Moreover, we use the approximation that
∑

α pαẋα−H̃(R̄, x, p) ≈∑α pαẋα−H̃(R, x, p) = 1
2
d
dτ

(
∑

α pαxα) to cancel the complex bound-

ary terms in Eq. (5) (as well as those associated with the backward propagator) by using the

result in Eq. (6).34 This approximation states that the classical (mean) bath drives nona-

diabatic transitions in the quantum subsystem. Upon integration of this partial linearized

approximate result over bath difference path variables (e.g. Z0 . . . ZN−1), the final expression

for the evolution of a matrix element of operator Ô is obtained as24

〈
nt, R̄N +

ZN
2

∣∣∣∣Ô(t)

∣∣∣∣n′t, R̄N −
ZN
2

〉
=
∑

n0,n′0

∫
dR̄0dx0dp0dx

′
0dp
′
0 G0G

′
0

× 1

2
(xnt + ipnt)(xn0 − ipn0)

1

2
(x′n′t − ip

′
n′t

)(x′n′0 + ip′n′0)

(
N−1∏

k=1

∫
dR̄k

dP̄k
2π

)∫
dP̄N
2π

×On0n′0
W (R̄0, P̄1) eiP̄NZN

N−1∏

k=1

δ

(
P̄k+1 − P̄k

ε
− Fk

) N∏

k=1

δ

(
R̄k − R̄k−1

ε
− P̄k
M

)

(7)

This equation should be interpreted in the following way: initial nuclear DOFs are sam-

pled from the quasi-probability distribution (the so-called partial Weyl symbol)On0n′0
W (R̄0, P̄1) =

∫
dZ0〈n0, R̄0 + Z0

2
|Ô|n′0, R̄0− Z0

2
〉e−iP̄1Z0 , labeled by initial system states n0 and n′0, and map-

ping variables (system DOFs) are sampled from the Gaussian functionsG0 = exp
[
−1

2

∑
α (x2

α0 + p2
α0)
]

and G′0. The system mapping DOFs are evaluated along classical-like trajectories (satisfy-
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ing Hamilton’s equations for the Hamiltonian, H̃, defined under Eq. (6)) and the nuclear

trajectories (as prescribed by the products of δ-functions) are determined by an effective

force Fk = −1
2
∇R̄k

(
H̃(R̄, x, p) + H̃(R̄, x′, p′)

)
resulting from different forward, (x, p), and

backward, (x′, p′), system DOFs.24 The trajectories propagated from such initial conditions

provide a dynamical ensemble over which quantities can be averaged thus performing the

following integrals
∑

n0,n′0

∫
dR̄0dx0dp0dx

′
0dp
′
0, yielding the desired time evolved operator

matrix elements.3

This framework offers a robust and systematically improvable means of computing the

time evolution of quantum mechanical operators. Indeed, the measure of quantum mechan-

ical accuracy can be controlled by a simple repartitioning of the system-bath Hamiltonian.

However, the necessity of averaging the (often oscillatory) complex phase factors associated

with the product of polynomial terms in the mapping variables in Eq. (7) can be problem-

atic, resulting in considerable noise in computed averages at longer times requiring larger

ensembles of trajectories to obtain desired convergence. Alternatively, treating this algo-

rithm as a short-time propagator where the linearization approximation is valid introduces

quantum interference effects in the bath and, in the limit of infinite time slices, converges to

exact quantum mechanical results.25

PLDM Computation of Optical Response Functions

Theoretical analysis of the response of a system to an external electric field allows for the

direct comparison of theory and experiment. The linear response function is responsible for

the connection between linear polarization and the electric field,27

P (1)(t) =

∫ ∞

0

dt1 R
(1)(t1) E(t− t1) (8)

3It should be pointed out that, although the Herman-Kluk propagator is semiclassical, the Meyer-Miller
Hamiltonian is at most quadratic in the system mapping variables. Therefore, this semiclassical propagator
provides an exact quantum mechanical treatment of the system dynamics for fixed bath variables.
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where the first order response function, R(1)(t1) = iTr[µ̂(t1)µ̂×(0)ρ̂(0)], gives the response

of the system to a single interaction with the electric field. Here, µ̂(t) = e+iĤtµ̂e−iĤt is the

dipole operator in the interaction representation and µ̂×(t) • = [µ̂(t), •] is the time dependent

dipole commutation superoperator.

While the linear response of a system contains useful information about the relative

energy gaps between ground and excited electronic states and the strength of coupling be-

tween electronic and nuclear DOFs, to study the excited state dynamics of the system one

must go beyond linear response. For this purpose, we consider the third-order nonlinear

response. Since the third-order polarization is the source of the emitted signal, the signal

corresponding to any third-order nonlinear spectroscopy experiment can be extracted from

the time-convolution of the nonlinear response function, R(3)(t3, t2, t1), with the appropriate

external time dependent electric field according to the following result:27

P (3)(t) =

∫ ∞

0

dt3

∫ ∞

0

dt2

∫ ∞

0

dt1 R
(3)(t3, t2, t1)

× E(t− t3)E(t− t3 − t2)E(t− t3 − t2 − t1)

(9)

In typical third order experiments the field is defined by three time ordered light pulses that

are shorter than the separations between them, but long compared to the oscillation period

of the laser electric field. In the semi-impulsive limit, where the pulses are approximated by

δ-functions at times τ1, τ2 and τ3 multiplied by factors of the form e±i(
~ki·~r∓ωit), the integrand

is only finite when t3 = t− τ3, t2 = τ3− τ2, and t1 = τ2− τ1 so the signal is directly obtained

as the response function R(3)(t3, t2, t1),6 which can be written in terms of the multi-point

dipole correlation function as:

R(3)(t3, t2, t1) = (i)3 〈µ̂(t3 + t2 + t1) µ̂×(t2 + t1) µ̂×(t1) µ̂×(0)〉

= (i)3 Tr[µ̂(t3 + t2 + t1) µ̂×(t2 + t1) µ̂×(t1) µ̂×(0)ρ̂(0)]

(10)
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The third order signals are often presented as functions of frequencies Ω1 and Ω3 for differ-

ent t2 delay times by Fourier transformation of the third order response, R(3)(t3, t2, t1) →

R̃(3)(Ω3, t2,Ω1).

The PLDM framework has been shown to be capable of accurately reproducing quantum

autocorrelation functions35,36 and we employ it here to compute the multi-point dipole au-

tocorrelation function needed for third-order optical spectroscopy according to the following

expression:

R(3)(t3, t2, t1) = (i)3
∑

nt3

(
N3+N2+N1∏

k=N2+N1+1

∫
dR̄k

dP̄k
2π

) ∑

nt2 ,n
′
t2

∫
dR̄N2+N1

dP̄N2+N1

2π
dxt2dpt2dx

′
t2
dp′t2 Gt2G

′
t2

×
(
µρ(3)

)
nt3nt3

N3+N2+N1−1∏

k=N2+N1+1

δ

(
P̄k+1 − P̄k

ε
− Fk

) N3+N2+N1∏

k=N2+N1+1

δ

(
R̄k − R̄k−1

ε
− P̄k
M

)
δ
(
P̄N2+N1+1 − P̄N2+N1

)

× δ
(
R̄N2+N1 − R̄N2+N1−1

ε
− P̄N2+N1

M

)(N2+N1−1∏

k=N1+1

∫
dR̄k

dP̄k
2π

) ∑

nt1 ,n
′
t1

∫
dR̄N1

dP̄N1

2π
dxt1dpt1dx

′
t1
dp′t1 Gt1G

′
t1

×
(
µ×ρ(2)

)
nt2n

′
t2

N2+N1−1∏

k=N1+1

δ

(
P̄k+1 − P̄k

ε
− Fk

) N2+N1∏

k=N1+1

δ

(
R̄k − R̄k−1

ε
− P̄k
M

)
δ
(
P̄N1+1 − P̄N1

)

× δ
(
R̄N1 − R̄N1−1

ε
− P̄N1

M

)(N1−1∏

k=1

∫
dR̄k

dP̄k
2π

)∑

n0,n′0

∫
dR̄0dx0dp0dx

′
0dp
′
0 Gt0G

′
t0

×
(
µ×ρ(1)

)
nt1n

′
t1

N1−1∏

k=1

δ

(
P̄k+1 − P̄k

ε
− Fk

) N1∏

k=1

δ

(
R̄k − R̄k−1

ε
− P̄k
M

)(
µ×ρ(0)

)n0n′0
W

(R̄0, P̄1)

(11)

Equations (10) and (7) have been used to obtain this result including a trace over all

DOFs, as outlined in the SI. Here (µ̂ρ̂(j))ntjn′tj
are the matrix elements of the product of the

transition dipole operator and the evolved density operator after the jth field interaction, i.e.,

from Eq.(7), these matrix elements of the jth order perturbed propagated density operator

are computed from the time evolved mapping variables as ρ̂(j)
ktj ltj

= 1
2
(xktj + ipktj )(xntj−1

−

12



ipntj−1
)1

2
(x′ltj

− ip′ltj
)(x′n′tj−1

+ ip′n′tj−1

) and Gtj = exp[−1
2

∑
α(x2

αtj
+ p2

αtj
)] (with a similar

definition for G′tj) is the initial distribution of mapping variables for the (j + 1)th time

interval. Finally in Eq. (11), N1, N2, and N3 are the number of bath steps in each of the

time intervals t1, t2, and t3 respectively.4

Due to the state-collapsing nature of the dipole operator, each time it is applied it projects

the evolving operator onto a different subspace of the global Hilbert space (see Figure 3).

Therefore, after a dipole interaction, each matrix element can potentially give rise to a large

number of new matrix elements that need to be propagated. From Eq. (11) the sums over

the starting state indices at each of the interaction times have the potential to dramatically

increase the number of terms that must be evolved, and each in principle requires propagating

many independently sampled trajectories. This suggests that the complete treatment of

realistic systems will be very computationally demanding with a brute-force implementation.

To mitigate this problem, a Monte-Carlo importance sampling procedure is employed to

treat the intermediate state sums for the interactions at t1 and t2 by selecting the “most

important” matrix element as the sole initially-occupied state for subsequent propagation.

Also, the intermediate mapping variable integrals are evaluated using a steepest descent

approximation. This method, termed “focusing” (the basic ingredients of which have already

been presented in the literature37), drastically reduces the computational effort needed to

compute multi-point correlation functions in the PLDM framework.5

This algorithm can be summarized for a general n-state system as follows:

1. At t=0, the dipole commutator prepares the system in a coherence between the ground

and single exciton manifold (e.g. |e〉〈g|) and initial system mapping variables are

sampled from Gaussian distributions as indicated in Eq.(11). Assuming the bath DOFs

are unaffected by the electronic dipole operator (the Condon approximation), these

variables are sampled from their equilibrium distribution on the ground electronic
4Note: The k indices labeling the terms in the products in Eq.(11) apply only to the quantities immediately

to the right of the product.
5When evaluating linear response functions this focusing procedure is unnecessary because there is only

a single time interval.
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Figure 3: Pictorial representation of the effect of the subsequent dipole interactions on the
evolving operator, represented as a matrix in which filled grey sectors correspond to non-
zero elements of selected subspaces of the global Hilbert space. The arrows indicate time
propagation.

state. An ensemble of trajectories, originating from these system and bath initial

conditions is then initiated.

2. The system DOFs are propagated for a time t1 using classical trajectories that satisfy

Hamilton’s equations obtained from the mapping Hamiltonian in Eq. (3). The bath

DOFs are propagated simultaneously according to the effective forces, Fk defined under

Eq. (7) , which depend on (both forward and backward) system mapping variables, as

outlined in Eq. (11).

3. At t = t1, the dipole commutator is applied again and the system is projected into a

new set of states, while the bath DOFs remain continuous through the operation of

the dipole. For each state of the projected subspace, mapping variables are re-sampled

from gaussian distributions.

· If “focusing” is applied then the “most important” matrix element is selected as

the new initial condition for subsequent propagation, according to the following steps:

a) The elements of the dipole operated density matrix are written, in polar

coordinates, as:

(µρ(1))nt1n′t1
→ rnt1rn′t1

e
i(θnt1

−θn′t1
)

(12)
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and a normalized probability density function, mnt1n
′
t1
, is constructed according

to:

mnt1n
′
t1

=
rnt1rn′t1
Nt1

; Nt1 =
∑

nt1n
′
t1

rnt1rn′t1
(13)

b) A uniform random number ξ ∈ (0, 1] is extracted, and the probability density

mnt1n
′
t1

uniformly sampled (see the SI for details), selecting the “most important” ma-

trix element (not1 , n
′o
t1

) as the new (occupied) initial system density matrix element for

the next time interval propagation

c) A trajectory dependent weight Ωt1 = Nt1e
i(θnot1

−θn′ot1
)
is saved.

d) The “steepest descent” approximation is used to evaluate the integrals over

the mapping variables resulting in the following:

(nt1 , n
′
t1

) = (δnt1 ,not1 , δn
′
t1
,n′ot1

) (14)

4. For each given t1, steps 2-3 are repeated for a desired number of t2 values (i.e. replacing

t1 by t2 in these steps).

5. For each combination of t1, t2 the system and bath are propagated for a time delay

t3, after which the expectation value of the third-order polarization is computed by

averaging over all trajectories.

· If “focusing” is used, the appropriate Monte-Carlo weights are accumulated and

applied when computing the contribution of each trajectory to the final response.
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Results

Although this formalism is applicable to any form of nonlinear spectroscopy, for “proof-of-

concept” purposes, here we present 2DES results for several benchmark problems to explore

the reliability of the approach in various parameter regimes. The focusing approximation

has been employed for all of the models studied. As mentioned above, these calculations

were performed in the impulsive limit and they ignore the vectorial nature of the radiation-

matter interactions, however, general pulse shapes and relative orientations of laser field

polarization and molecular dipoles can be readily incorporated. It should be noted that

our calculation based on Eq. (11) includes all contributions to the third order response.

The rotating wave approximation was applied for the analysis of the computed response

functions, and the various contributions (GSB, SE, ESA) disentangled. We note however,

that this approximation can also easily be relaxed, and non-resonant contributions included.

Additionally, for the results presented here, the integrals over initial mapping variables were

evaluated using the “steepest descent" approximation. It was found that fully sampling the

initial mapping distribution did not significantly affect the results.

The Frenkel-Exciton system-bath Hamiltonian has found great utility as a model to

represent the energetics of molecular aggregates. As such, we have employed this model to

describe the time evolution of the full system in the absence of an electromagnetic field.

Assuming that the system and bath are initially in a product state, ρ̂(0) = ρ̂
(0)
s ρ̂

(0)
b , with the

bath in thermal equilibrium, the initial harmonic bath DOFs are sampled from the Wigner

transform of the bath Boltzmann operator.

(
ρ̂

(0)
b

)
W
∝

Nosc∏

k=1

exp

[
−2 tanh(βωk/2)

ωk

(
P 2
k

2
+
ω2
kQ

2
k

2

)]
(15)

The system is assumed to be initially in its ground state.
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Coupled Dimer

In our first test of the methodology, the 2DES of a coupled dimer was computed. In this

model we assume a pair of coupled sites, each of which has two levels, i.e. each site has a

significant gap between its first, and all the other excited states. The manifold of coupled

dimer states probed during a third-order nonlinear spectroscopy experiment is completely

described by the site basis states, |ij〉, so that a general time dependent state has the form:

|ψ(t)〉 =
1∑

i,j=0

Cij(t)|ij〉 (16)

where i and j represent the electronic state of each site. The Hamiltonian in this represen-

tation becomes

Ĥ =
1∑

i,j=0

εij |ij〉〈ij|+
∑

ij∈01,10

∆ij,ji |ij〉〈ji|

+
∑

ij∈01,10,11

M∑

m=1

cmij R̂m |ij〉〈ij|+
M∑

m=1

1

2

(
P̂ 2
m + ω2

mR̂
2
m

)
1̂

(17)

where c is the strength of the linear system-bath coupling, with c11 = c10 + c01, and ε11 =

ε10 + ε01. The spectral density that determines the bath mode frequencies and the frequency

dependent system-bath coupling constants is of the Ohmic-Lorentz model form, J(ω) =

2λ ω/ωc
(1+(ω/ωc)2)

= π
2

∑
m

c2m
ωm
δ(ω − ωm). In the calculations carried out here, each site was

coupled to its own independent identical set of M = 100 bath oscillators sampled from this

distribution.38

As a test of the validity of the method presented here, two different coupled dimer models

were considered.

First, to demonstrate the applicability of the PLDM 2DES approach in parameter regimes

where perturbation theory-based methods can become inaccurate, we considered a dimer
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Figure 4: Comparison of HEOM, PLDM, and SPECTRON 2DES at different t2 times for a
coupled dimer at 300 K with ε10 − ε01 = 100 cm−1, ∆01,10 = 100 cm−1, and µ00,01/µ00,10 =
−0.2. The bath has a cutoff frequency of ωc = 18 cm−1 and a reorganization energy of
λ = 50 cm−1. The PLDM calculation presented here is averaged over only 60,000 trajectories
initialized from each element of

(
µ×ρ(0)

)
with nonzero amplitude. Note: The color range has

been scaled to highlight the midrange features as detailed in the SI

system coupled to a bath with a slow relaxation time (ω−1
c = 300 fs). In the limit of

slow bath relaxation, the Markovian approximation can become unphysical. In Figure 4

the 2DES results computed with the PLDM approach are seen to reproduce those obtained

from numerically exact hierarchical equations of motion (HEOM) calculations with surpris-
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ing accuracy, even when the results are averaged over a limited number of trajectories. The

“SPEC” results reported in Figure 4 were computed using the SPECTRON software pack-

age,6 employing line-shape functions obtained from the spectral density to account for all

dephasing mechanisms in the absence of transport, and then using secular Redfield theory to

describe transport. It is well known that Redfield theory can provide inaccurate transport

dynamics in certain model parameter regimes, and we also notice that the use of the secular

approximation not only decouples populations from coherences, but also prohibits the mix-

ing between coherences. This means that a density matrix element initiated in |e〉〈g| will

evolve according to it’s own equation of motion, without coupling with any other |e′〉〈g| term.

These approximations lead to qualitatively inaccurate results, even for t2 = 0 fs, where this

approach predicts inverted relative intensities of features corresponding to the two exciton

states. In recent work it was demonstrated that this coupled dimer model also exhibits the

complete breakdown of the second-order time-convolutionless master equation for this range

of parameters.10

Results for the second coupled dimer model considered are presented in Figure 5. This

model displays a coherent energy transfer mechanism, which is revealed by oscillations of

the energy transfer-related cross-peak. The majority of the increase in positivity of the

energy transfer related cross-peak (below the diagonal) can be attributed to the quenching

of negative ESA signal of the higher exciton state, concurrent with the energy migration

process. Independent 2DES corresponding to isolated ESA or GSB and SE signals are

presented in the Supporting Information.

Vibronic monomer

In many systems-of-interest, there can be higher frequency nuclear vibrational modes that are

strongly coupled to the electronic transitions.12 In this case, the nuclear vibration becomes

inherently quantum mechanical, and cannot be accurately treated using the approximate

dynamical model that may still be reliable for other more weakly coupled bath modes. In
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Figure 5: 2DES for a coupled dimer at 300 K with ε10− ε01 = 200 cm−1, ∆01,10 = 200 cm−1,
and µ00,01/µ00,10 = 2.4. The spectral density parameters employed were λ = 50 cm−1,
ωc = 200 cm−1. Panel a) shows the spectra for varying t2 waiting time. Panel b) shows
the amplitude of the energy transfer-related cross-peak at (Ω1,Ω3) ≈ (1325, 875) cm−1. The
amplitude evolves with coherent oscillations resonant with the energy difference between
exciton states.

order to track the dynamics of particular vibronic states, a repartitioning of the system-bath

Hamiltonian is required. For illustrative purposes, we consider a simple vibronic monomer

including one discrete harmonic vibrational mode and a single electronically excited state

interacting with a continuum of Mc more weakly coupled bath modes described by a Hamil-

tonian of the following form:

Ĥ =
∞∑

nu=0

ε(nu)
g |gnu〉〈gnu |+

∞∑

ns=0

ε(ns)e |ens〉〈ens|+
∞∑

ns=0

Mc∑

m=1

cmR̂m |ens〉〈ens|+
Mc∑

m=1

1

2

(
P̂ 2
m + ω2

mR̂
2
m

)
1̂

(18)

where |gnu〉 is the electronic ground state dressed with the state of the discrete vibrational

mode with frequency Ωd and in energy level nu centered in coordinate space about the

ground electronic state’s unshifted (“u”) equilibrium position, |ens〉 is the electronically ex-

cited state dressed with the discrete vibrational mode in energy level ns centered in co-
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ordinate space about the excited electronic state’s shifted (“s”) equilibrium position, and

ε
(nu)
g = εg +

(
nu + 1

2

)
Ωd are the energies of the electronic ground state manifold. In a similar

fashion, ε(ns)e = εe − Λd +
(
ns + 1

2

)
Ωd is the excitation energy at the Franck-Condon point

minus the reorganization energy, Λd =
c2d

2Ω2
d
, dressed with the discrete mode (see Figure 6).
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Figure 6: Summary of Vibronic Monomer study at 300 K. The electronic system-bath cou-
pling model spectral density is identical to that used in the coupled dimer study reported
in Figure 5. The additional discrete mode in the vibronic monomer model studied here has
a frequency of Ωd = 500 cm−1 and Huang-Rhys factor S = 0.45. The |gn〉 to |en〉 energy
gap is 5000 cm−1. In this study the initial system density operator is a population on the
total ground state |g0〉. Panel a) shows the linear absorption spectrum as well as the corre-
sponding 2DES spectra for various values of t2. Panel b) presents a pictorial representation
of the model system Hamiltonian used in this study. Panel c) shows the evolution of the
off-diagonal peak located at (Ω1,Ω3) = (5000, 5500) cm−1 as a function of the t2 delay time.

In the vibronic basis, elements of the electronic dipole matrix are modulated by the

overlap of shifted vibrational wavefunctions. The magnitude of the overlap is dictated by

Huang-Rhys factor, S = Λd/Ωd, which indicates the relative shift between ground and excited

state PESs.
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〈ens|µ̂|gmu〉 = µeg〈ns|mu〉

= µeg

∫
dx 〈n|x− c/Ω2

d〉〈x|m〉
(19)

In the calculation presented here, only vibrational energy levels 0 and 1 of the strongly cou-

pled discrete mode were included due to the rapid fall-off of vibrational overlap for transitions

between |g0〉 → |ens〉 for large Huang-Rhys factors.39

Figure 6 presents 2DES results for the vibronic system at various values of t2. The

evolution of the diagonal peaks and cross-peaks is modulated with a period of 66.7 fs,

corresponding to the 500 cm−1 frequency of the discrete mode. These signal modulations

can be easily misinterpreted in experiments as a signature of electronic coherence between

different sites. For example, in Figure 6 it is shown that off-diagonal features associated with

pure vibrational coherence can exhibit oscillatory modulation reminiscent of peaks associated

with electronic coherence. The accuracy of the dynamics method presented in this work

allows us to reproduce, and correctly interpret all kinds of signal oscillations. Indeed we

want to apply this machinery to realistic coupled systems in which vibronic signatures are

present in order to test recent experimental results that suggest the influence of vibronic

coherence on long-lived coherent energy transfer.4

Finally, we also note that the possibility of explicitly including vibronic states allows

for a proper description of realistic pulse shapes: experimental pulses are in fact band-

width limited, i.e. able to excite just some of the many possible available vibronic states.

Accounting for this band-width effect using post-processing is not as accurate as actually

including only the relevant set of vibronic states. This aspect, which has not been developed

in the present work, will be the subject of a future study.
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Conclusions

We have presented a semiclassical path integral method for computing nonlinear optical re-

sponse functions in non-Markovian open quantum systems. It combines a detailed descrip-

tion of the non-equilibrium dynamics responsible for energy transfer after photo-excitation

in molecular aggregates (through the PLDM methodology) with response function theory of

field-matter interactions, allowing for the direct connection between theory and experiment.

We have demonstrated that the method presented here is capable of producing accurate

results in parameter regimes where perturbation theory-based methods breakdown signifi-

cantly.10 If perturbation theory-based methodologies remain the only feasible way of treating

system with a very large number of interacting chromophores, while paying the price of using

approximations which limit their validity to certain parameters regimes, the methodology

introduced here avoids this drawback by making no assumption about the form or strength

of intra-system or system-bath couplings, even if it is generally more expensive. This method

is not restricted to harmonic baths, although its accuracy in computing nonlinear spectra

for anharmonic systems has yet to be studied. We also note that our approach is trajectory

based and, as such, scales linearly in a parallel computation environment.

Our semiclassical path integral method offers an exciting starting point from which to

explore the development of accurate, yet computationally economical, methods for comput-

ing nonlinear electronic spectroscopy. Future work will apply the present methodology to

study e.g. systems of coupled vibronic sites (to clarify the influence of coherent phenom-

ena in energy transfer) and to describe the influence of finite bandwidth pulse shapes. We

are also working on the further development of the PLDM 2DES approach to decrease the

computational cost and extend its applicability to larger systems, for example, by employing

more efficient representations of the environmental variables.40–42
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