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A Hybrid Instruction Prefetching Mechanism
for Ultra Low-Power Multi-core Clusters

Maryam Payami, Erfan Azarkhish, Igor Loi, and Luca Benini, Fellow, IEEE

Abstract—The instruction memory hierarchy plays a critical
role in performance and energy efficiency of ultra-low-power pro-
cessors for the Internet-of-Things (IoT) end-nodes. This is mainly
due to the extremely tight power envelope and area budgets,
which imply small instruction-caches (I-Cache) operating at very
low supply voltages (near-threshold). The challenge is aggravated
by the fact that multiple processors, fetching in parallel, require
plenty of bandwidth from the I-Caches. In this paper, we propose
a low-cost and energy efficient hybrid instruction-prefetching
mechanism to be integrated with an Ultra-Low-Power (ULP)
multi-core cluster. We study its performance for a wide range
of IoT applications, from cryptography to computer vision, and
show that it can effectively improve the hit-rate of almost all of
them to above 95% (average performance improvement of over
2×). In addition, we designed our prefetcher and integrated it in a
4-cores cluster in 28nm FDSOI technology. We show that system’s
power consumption increases only by about 11% and silicon area
by less than 1%. Altogether, a total energy reduction of 1.9× is
achieved, thanks to more than 2× performance improvement,
enabling a significantly longer battery life.

Index Terms—Ultra Low-power Embedded Multi-cores, En-
ergy Efficiency, Instruction Cache, Instruction Prefetching

I. INTRODUCTION

Prefetching is an extensively studied technique for data-
memory latency hiding in high-performance processors. Yet,
instruction prefetching is not as critical in such systems for two
reasons. First, the data working-set in large-scale applications
is much larger than the code working-set. Second, the code
is cache-friendly, so a moderately sized instruction-cache (I-
Cache) achieves very high hit-rates, and architects rightfully
focus on the main bottleneck which is data caching [1]. In
parallel ULP processors for the Internet-of-Things (IoT) end-
nodes, the situation is reverted: data working sets are smaller
and highly amenable to tiling, double buffering, and DMA
management, since most workloads are linked to near-sensor
data processing [2][3]. On the other hand, the on-chip area
budget is much tighter in IoT end-nodes. This squeezes the
size of the I-Caches, also because they are often implemented
with low-density memories which can operate at low voltages
(e.g. standard-cell based caches [4][5]). This area squeeze
is further exacerbated by the fact that there are multiple
processors fetching in parallel, so the instruction memory
system must deliver plenty of bandwidth, requiring complex
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logic such as L0-buffers [6] and broadcast-interconnect [5],
which further increase the area dedicated to the instruction
memory. Therefore, in this context it is highly valuable in
term of area and energy-efficiency to keep the I-Cache small,
while at the same time exploit the latency-hiding opportunities
offered by prefetching to reduce the impact of cache-misses
[7]. Another factor is that the speed gap with the background
on-chip L2-memory (dense SRAM or even embedded flash),
where the entire code is stored, is not so huge, so the amount of
prefetched information can be kept small (a direct consequence
of Little’s law [2][5]). This also works in the direction of
making instruction prefetching highly effective.

Looking at the state-of-the-art instruction prefetching tech-
niques, a simple yet effective method is called next-line
prefetching (NLP) [1]. In this scheme, when a cache line
is fetched, a prefetch for the next sequential line(s) is also
initiated. One way to do this is called prefetch-on-miss. NLP
exploits spatial locality for sequential access patterns, but
for conditional/unconditional branches and function calls it
is ineffective [8]. The Stream prefetcher (STP), similarly,
follows a pattern or rule. As long as it persists, it issues a
stream of prefetch requests [8]. Target-line [1] tries to prefetch
non-sequential cache lines by maintaining a target prefetch
table in hardware. Combining this method with NLP can take
advantage of both mechanisms for sequential/non-sequential
code. The main disadvantage of this method is a significant
hardware cost for the table and the associated logic to perform
the table lookups and updates. Also, the effective-address of
the control-instructions need to be known even before their
execution. This can be very costly in terms of logic delay and
area. Plus, the compulsory misses do not benefit from it [1].

A Markov Prefetcher [8] monitors the address stream and
builds a Markov prediction table in hardware. The learning
phase of this scheme is usually long and its hardware cost is
significant. A wrong-path prefetcher combines the target and
next-line mechanisms, with the major difference that no target-
line addresses are saved and no attempt is made to prefetch
only the correct execution path [1]. Instead, in the simplest
case both paths of conditional branches are always prefetched.
This method can perform a potentially useful prefetch for a
branch which is not taken, if the execution returns to it in the
near future and it is then taken. No extra hardware is required
above NLP, but cache pollution and the large amount of extra
traffic are problematic.

Lastly, software-prefetching (SWP) [1] is based on the use
of some form of explicit fetch instructions with very little
added hardware. The only difficulty lies in correct placement
of the fetch instructions in the code (also known as prefetch
scheduling): It is possible to gain significant advantages by
inserting a few fetch instructions manually in strategic portions
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Fig. 1. (a) A processing cluster in the PULP platform, (b) block diagram of the multi-ported shared I-Cache in PULP, along with the prefetching augmentations,
(c) The FSM for the proposed hybrid prefetching scheme.

of the program [9]. Also, this technique allows for prefetching
complex access patterns and function calls.

In this paper we propose a hybrid-prefetching mechanism as
a combination of 3 low-cost schemes (NLP, SWP, and STP),
targeting tightly coupled multi-core clusters with simple in-
order cores which are suitable for IoT end-nodes. Furthermore,
a priority-based selection mechanism among the three schemes
is implemented to ensure reactiveness and to avoid prefetching
stale and useless information. We perform an extensive exper-
imental validation with various classes of benchmarks along
with an exploration of different approaches. Methodology and
results are presented in Section II and Section III. Conclusions
are drawn in Section IV. Further experiments and explanations
can also be found in [10].

II. METHODOLOGY AND DESIGN

To design an efficient instruction prefetcher, it is extremely
important to first study the typical IoT endnode workloads
[11]. Sixteen representative micro-benchmarks from four cat-
egories (Cryptography, Numerical, Artificial Intelligence, and
Image Processing) are selected for analysis: sha1, md5, and
whirlpool are cryptographic hash functions; aes is a symmet-
ric encryption algorithm; lu performs LU decomposition on
matrices; matrixmult and strassen perform matrix multipli-
cation; sobel is an edge detection operator; cnnconv is the
convolution operator in convolutional neural networks; srad
performs speckle reducing anisotropic diffusion; neuralnet is
a feed-forward network with 3 hidden layers with floating-
point arithmetic; fft computes the fast-fourier-transform; svm is
a fixed-point implementation of support-vector-machines; fast
is an efficient corner detection algorithm; finally singleloop
and multifunc are two synthetic benchmarks with a loop
of NOP instructions and with multiple function calls in a
loop, respectively. We analyze these benchmarks in terms of
instruction memory access patterns and roughly categorize
them into two groups: Group-1 (sha1, aes, md5, lu, matrixmult,
strassen, whirlpool, sobel, cnnconv, singleloop, multifunc)
have large loop bodies either naturally or through the use of
loop unrolling and function inlining for improved performance
and compiler scheduling (The unrolled codes will be identified
by “ u” suffix). This group generate a lot of capacity misses
in the cache. Group-2 (srad, neuralnet, fft, svm, fast) have
many function calls, mostly resulting in conflict misses in
the cache. External link libraries and software emulation of
floating-point/fixed-point arithmetic are examples which can

cause this behavior. We execute the benchmarks on the plat-
form individually, and multi-programmed workloads are out
of the scope of this paper. By analyzing these representative
instruction streams, we propose a hybrid mechanism based on
next-line prefetching (NLP), stream prefetching (STP), and
software prefetching (SWP). We demonstrate that for Group-
1 a combination of NLP+STP can effectively remove most of
the misses thanks to their large loop bodies. But for Group-
2, software assistance is required to achieve high hit-rates.
Therefore, a combination of NLP+SWP is proposed with
software prefetch requests explicitly inserted in the code. This
is particularly beneficial for function calls, because their code
can be brought into the cache right before execution with a
prefetch request inserted slightly before each call. It is worth
mentioning that cold-misses can be easily eliminated as well
by insertion of an SWP command right before the main loops
[10]. In our design, the prefetched blocks are stored inside
the cache, eliminating the need for a separate storage, and
prefetched lines are treated differently from normal cache-lines
to reduce the risk of cache pollution, as explained later.

We integrate our prefetcher in the PULP platform [3], an
ultra low-power multi-core targeting energy-efficient compu-
tation for the IoT applications. As shown in Figure 1a, each
processing cluster in PULP includes a set of light-weight
RISC-V based cores with 4 pipeline stages and in-order
execution (no branch prediction, predication, or multiple issue
is supported) for energy efficient operation. The processors
share a Scratchpad Memory (SPM) for computation and a
DMA engine for bulk transfers.

A multi-ported I-Cache is shared among these cores, en-
abling flexible execution of different code sizes, as opposed
to private caching mechanisms [5]. Figure 1b illustrates an
overview of this shared I-Cache which is based on private
cache-controllers (P$C) with shared data and tag banks, flex-
ibly designed based on standard-cell memories (SCM) with
controlled placement [4]. Cache hits are independently handled
by the P$Cs in a single cycle, while miss requests from
multiple P$Cs are redirected to a master cache controller, with
the possibility to be merged if they target the same cache line.
A cache miss might take several cycles as the L2 memory is
situated out of the clusters (See Figure 1a). The replacement
policy is pseudo-least-recently-used (PLRU), and associativity
is a generic parameter. A more detailed description of this
cache architecture is presented in [5].

Integrating our proposed prefetching techniques requires
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minor modifications to the baseline I-Cache illustrated in
Figure 1b: a small finite-state-machine (FSM), a new P$C,
and one port only to the tag array (all highlighted in red
color). When a software prefetch request arrives at this FSM,
depending on its size, it is issued to the corresponding P$C
line-by-line (each line is 16Bytes). If another prefetch request
arrives while serving a request, the FSM drops the current
request and starts the new one. This mechanism is therefore
“preemptive” to avoid issuing stale requests causing cache
pollution. The block diagram of this FSM is shown in Fig-
ure 1c. The newly added P$C consults the tag array before
issuing any request and ignores prefetch requests to the already
existing blocks. Plus, if no free ways are available, it looks
up the LRU table (shown in Figure 1b) to choose a victim
block for replacement. A prefetch request is then sent to the
master controller through the miss-interconnect shown in the
same figure. Unlike the processors, the prefetcher does not
use the prefetched blocks, so it only needs a read-port to the
tag banks. This also simplifies its P$C state-machine. Each
SWP command requires two processor instructions for setting
the address and size of the prefetch. This can be achieved
through ISA extension of the processors, however, in this work
we have added two memory mapped registers to the processor,
writing to which triggers the prefetch FSM. This is easier to
achieve and does not need compiler support. One interesting
benefit of the PLRU replacement appears when used with the
prefetcher. Prefetched blocks can be treated differently from
normal blocks, by not updating their LRU counter when they
are brought by the prefetcher. This way prefetched blocks
are more prone to being replaced than the normal blocks and
prefetcher induced pollution can be controlled.

A next-line prefetcher (NLP) can be easily integrated, as
well, by a small modification to the FSM, illustrated in the
Figure 1c. The AXI interconnect to L2 memory is constantly
monitored and if a miss is observed there, N next lines
starting from that miss address are prefetched. The NLP is
extended to a stream prefetcher (STP) by inserting a wait-
state in the FSM in Figure 1c. After completion of one
burst request, a new prefetch request is automatically started
after waiting for a specific number of cycles. With proper
choice of a parameter called wait-cycles (the number of cycles
to remain in the wait state) it is able to perform prefetch-
before-miss. This is explored in Section III. To summarize,
the single FSM illustrated in Figure 1c combines the three
proposed schemes with different priorities and preemption.
SWP has the highest priority and STP has the lowest. This is to
ensure reactiveness and to avoid prefetching stale and useless
information. NLP and STP can be enabled/disabled at run-time
with their parameters (burst-size, wait-cycles) adjusted through
dedicated configuration registers. This can be achieved either
by the user program itself (requiring code modification), or
using an additional runtime, allowing user programs to run
unmodified. SWP, however, always requires code modification
with prefetch request commands explicitly inserted in it.

III. EXPERIMENTAL RESULTS

Our baseline scenario consists of the cycle-accurate RTL
model of PULP with one processing cluster, 512 KB of L2
memory, and the required peripheral devices. All program
codes are stored in L2 and it takes at least 20-cycles for

0
10
20
30
40
50
60
70
80
90

100 0

16

32

64

128

192

256

272

288

Group 1 Group 2 

PF Size (B) 

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

NLP 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

sha1
aes
md5
 singleloop
matrixmult

Wait (Cycles) NLP STREAM 

a) 
b) 

Hi
t R

at
e 

(%
) 

N
or

m
al

ize
d 

Ex
ec

ut
io

n 
Ti

m
e 

Fig. 2. a) Effect of the burst size (B) of NLP on the average hit-rates, b) The
effect of STP wait-cycles on the execution time of different benchmarks.

a core to access it through the path highlighted in Fig-
ure 1a. Since L2 is shared by many cores and also used
for data, its access time can increase further, unpredictably.
The processing cluster has 4 RISC-V cores, 1 KB of 2-way
set-associative I-Cache with PLRU replacement, and 8 SPM
banks of 2 KB, and the required interconnects and peripherals.
A small cache configuration is chosen with the main goal
to optimize area and energy efficiency compared to large
caches without prefetching. Performance has been measured
in cycle-accurate simulation of the PULP platform executing
complete benchmarks in QuestaSim 10.2c. Logic synthesis
has been performed in Synopsys Design Compiler J-2014.09-
SP4 in topographical mode using the 28nm-FDSOI technology
by STMicroelectronics at 125◦C, 0.9V, Slow-Slow process
corner. A clock frequency of more than 500MHz was achieved,
not limited by the I-Cache or the prefetcher (the critical-path
was in the data interface of the cores towards the shared SPM).
Power consumption was extracted at the 25◦C, 0.9V, Typ-Typ
corner using Synopsys Primetime H-2013.06-SP2.

First, the burst size of the NLP mechanism is changed from
0 (disabled) to 288 Bytes. The average hit-rate is plotted in
Figure 2a. For Group-1, on the average, 65% improvement in
hit-rate is achieved with the cryptography benchmarks (sha1,
md5, aes) gaining the highest benefit. For Group-2, however,
only 15% improvement is obtained at the best case. The fast
kernel also does not gain any benefit because of having too
many branches. It is, therefore, better to disable the prefetcher
for it. Total execution-time was found to improve by over 2×
for Group-1 and only by 1.2× for Group-2. Another glance
at Figure 2a reveals that for some benchmarks in Group-
1, there is still some room for improvement, and hit-rate is
not yet close to 100%. This is because of the “prefetch-
on-miss“ strategy which triggers the prefetcher only when
a miss has already happened. In this case it is possible to
enable the STP and adjust its wait-cycles to completely remove
the unnecessary misses. The effect of wait-cycles on STP’s
performance (combined with NLP with a typical burst size of
256 Bytes) is illustrated in Figure 2b. As can be seen, with
zero wait cycles, the STP works even worse than NLP due to
over-prefetching and polluting the cache, however with wait-
cycles around 50 to 60, hit-rate is improved to over 95% and
execution-time is further reduced.

For Group-2, on the other hand, a combination of SWP
and NLP was found effective. Software prefetch requests were
manually inserted in the source code, before the function calls.
The code size increase due this operation was less than 11% in
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the benchmarks. Moreover, NLP was enabled to aid SWP with
prefetching the sequential code sections. This way both the
original sequential misses and most of the additional misses
due to the code size increase can be eliminated. Please note
that the manually inserted SWP instructions only increase the
size of the sequential blocks, and these blocks are perfectly
prefetched by NLP. More than 91% hit-rate was achieved with
total execution only 8% higher than a 16 KB warm cache with
100% hits. This is interesting given that the area of the 16 KB
cache is approximately 16× larger (2.8× larger cluster).

Effect of the hybrid prefetcher on silicon area and power
consumption is illustrated in Figure 3. As can be seen, the
cluster area is increased by less than 1% (mainly due to the
FSM and the additional read port to the tag array), and the total
power consumption increase in the system (including the L2
memory and the peripherals) is around 11%, on the average.
The power increase mostly occurs in the processors and the
L2 memory, because of fewer stall cycles and the increased L2
traffic. Total energy reduction and performance improvement
are shown in Figure 4, for each individual benchmark at
its best prefetching configuration. On the average, energy-
efficiency is improved by 1.9×, thanks to the average im-
provement of 2.1× in performance and very marginal increase
in power consumption. This enables a significantly longer
battery-life in energy constrained systems. Note that enlarging
the cache is not as energy- and area-efficient as prefetching. An
8 KB cache without prefetching achieves similar performance
as a 1 KB cache with prefetching, with 29% more power
consumption and 2× larger cluster area. Also, further increase
in cache size (to 2 KB) in presence of the prefetcher was found
unnecessary, as performance only improves by less than 5%
with more than 10% increase in total power (See Figure 3c).
Another observation is that if we unroll strassen, its baseline
performance will improve by 2.3×, and if we use prefetch-
ing with this unrolled version, another 35% improvement is
achievable (less than 10% power consumption increase). This
highlights that even though unrolling increases the code size
it has a very positive impact on compiler scheduling, and if
augmented with a proper prefetching mechanism it can be
very beneficial for energy efficiency. To sum up, our proposed
scheme allows simple in-order processors to issue multiple
outstanding instruction fetch transactions towards the L2 mem-
ory, and provides them with latency hiding capabilities, similar
to out-of-order processors with large issue widths. This way,
stall-cycles are reduced and energy efficiency is improved to
a great extent [10].

IV. CONCLUSIONS

In this paper we proposed a low-cost hybrid instruction
prefetching mechanism based on SWP, NLP, and STP to
be integrated with ultra low-power multi-core platforms with
simple in-order cores. We studied a wide range of applications
and grouped them into two categories: the ones with large
computation loops, and the ones with many function calls.
We showed that for most of the benchmarks in the first group
a cooperation between NLP and STP can improve the ICache
hit-rate to over 95% with an average performance improve-
ment of over 2×. While for the second group, SWP+NLP can
be effective, leading to a similar improvement. By synthesizing
our designs using the state-of-the-art technologies we showed
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that the increase in system’s power (about 11%) and cluster’s
silicon area (less than 1%) are negligible. Overall, our pro-
posed prefetching scheme allows for an average energy reduc-
tion of 1.9× over the range of studied applications. The future
directions include studying the effectiveness of the proposed
schemes for larger (IoT gateway) system configurations, and
complex parallel workloads including operating systems and
virtual memory. We will also study compiler modifications to
automatically insert software prefetch commands in the code.
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