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Abstract Entropy is widely employed in many applied sciences to measure
the heterogeneity of observations. Recently, many attempts have been made
to build entropy measures for spatial data, in order to capture the influence of
space over the variable outcomes. The main limit of these developments is that
all indices are computed conditional on a single distance and do not cover the
whole spatial configuration of the phenomenon under study. Moreover, most of
them do not satisfy the desirable additivity property between local and global
spatial measures. This work reviews some recent developments, based on uni-
variate distributions, and compares them to a new approach which considers
the properties of entropy measures linked to bivariate distributions. This per-
spective introduces substantial innovations. Firstly, Shannon’s entropy may
be decomposed into two terms: spatial mutual information, accounting for the
role of space in determining the variable outcome, and spatial global residual
entropy, summarizing the remaining heterogeneity carried by the variable it-
self. Secondly, these terms both satisfy the additivity property, being sums of
partial entropies measuring what happens at different distance classes. The
proposed indices are used for measuring the spatial entropy of a marked point
pattern on rainforest tree species. The new entropy measures are shown to
be more informative and to answer a wider set of questions than the current
proposals of the literature.
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Keywords Shannon’s entropy · spatial entropy · categorical variables ·
additivity property · residual entropy · mutual information · marked spatial
point processes

1 Introduction

Over the last decades, several attempts have been made to account for space
in entropy measures. The main aim is twofold. On the one hand, there is a
need to exploit the flexibility of entropy as a measure of heterogeneity of a
variable X able to capture several aspects (information, surprise, diversity,
uncertainty, contagion) and computable even for qualitative variables. On the
other hand, knowledge about the spatial location of occurrences ought to be
included, which may be influenced by what happens at surrounding locations,
i.e. their neighbours.

The available indices are challenging attempts to include space into entropy
measures, all based on the univariate approach of the classic Shannon’s formula
of entropy (1948). These contributions, belonging to the fields of geography,
ecology and landscape studies, refer to two different approaches. The first one
(Batty, 1974, 1976, 2010; Karlström and Ceccato, 2002) restricts the analysis
to only one category of the variable of interest X at a time, and uncertainty
pertains to the spatial distribution of the realizations of such category over pre-
defined areas. Under this perspective, Karlström and Ceccato (2002) build
a spatial entropy measure which can be decomposed in partial terms and
additively recomposed following the idea of Local Indices of Spatial Association
(LISA) proposed by Anselin (1995). The second approach (O’Neill et al, 1988;
Li and Reynolds, 1993; Riitters et al, 1996; Leibovici, 2009; Leibovici et al,
2014; Parresol and Edwards, 2014) transforms the study variable X into a
new variable Z whose values account for the distance at which simultaneous
realizations ofX occur. The main advantage is to embed all categories ofX and
the chosen distance into one variable. Unfortunately, the resulting measures
are not decomposable (therefore not additive), and conceived for one distance
range at a time, since uncertainty in this case pertains to the categories of the
new variable Z.

Starting from the variable Z, this work constitutes a new proposal for mea-
suring spatial entropy which generalizes previous measures by taking advan-
tage of the properties of entropy based on bivariate distributions defined in the
information theory field (Cover and Thomas, 2006; Stone, 2015). This novel
approach considers different distance ranges by an additional study variableW
representing space; as a consequence, it allows to define entropy measures that
are able to discern and quantify the role of space in determining the outcomes
of the transformed variable Z, and therefore of X. Indeed, the entropy of Z
can be decomposed into spatial mutual information, i.e. the entropy due to
space, and spatial residual entropy, i.e. the remaining information brought by
the variable itself once space has been considered. Furthermore, this proposal
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Fig. 1 Spatial distribution of 4 tree species over the Barro Colorado Island observation
window.

solves the problem of preserving additivity in constructing entropy measures,
allowing for partial and global syntheses.

When spatial data are considered, outcomes are georeferenced over spa-
tial units, which may be points or areas, and spatial entropy measures can be
computed accordingly. In recent literature, heterogeneity has been measured
over areal datasets, and, to our knowledge, very few works deal with point
data (Leibovici et al, 2014). Areal datasets are preferred, when using entropy
measures, because computations are easier with discrete space. Nevertheless,
most spatial entropy measures can be employed for point data, as long as
they present a finite number of categories. A dataset about the presence of
tree species over Barro Colorado Island, Panama, is considered to assess the
performance of the proposed method compared to other available approaches
(see, for instance, Rajala and Illian, 2012). Barro Colorado Island has been the
focus of intensive research on lowland tropical rainforest since 1923, and its
flora is better known than in any site of comparable size throughout the world
(http://www.ctfs.si.edu). Research identified several tree species over a rectan-
gular observation window of size 1000×500 metres, whose spatial distribution
is of interest; the tree species constitute the point data categorical mark. This
work focuses on 4 species with very different spatial configurations: Acalypha
diversifolia, Chamguava schippii, Inga pezizifera and Rinorea sylvatica. The
species identify the four categories of the variable of interest X, denoted as
xi, i = 1, . . . , 4. Each dataset is a point pattern consisting, respectively, of
N1 = 2678, N2 = 544, N3 = 311 and N4 = 3718 trees. The overall dataset has
a total number of N = 7251 points and is reported in Figure 1.

The theoretical aim of this paper is to illustrate a novel, rigorous method-
ology to exploit the properties of entropy based on bivariate distributions for
taking the influence of space into account. The practical aim is to apply it to a
case study for understanding to which extent space plays a role in the entropy
of the four chosen tree species.
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The paper is organized as follows. Section 2 introduces the basic concepts
of univariate Shannon’s entropy and reviews the approach based on Z. The
new proposal, that exploits the properties of entropy coming from bivariate
distributions, is described in Section 3. Then, the case study is analyzed via the
different measures in Section 4. Finally, Section 5 discusses the main findings
and outlines some concluding remarks.

2 Entropy and spatial entropy

The classic definition of entropy for a random variable X with I possible
categories was introduced in 1948 by Shannon in his seminal work on infor-
mation theory. Formally, Shannon’s entropy is the expected value of a func-
tion, called information function, measuring the amount of information re-
lated to each category xi, i = 1, . . . , I. The term information is associated
to the concepts of surprise and uncertainty: the greater the surprise (and,
thus, the uncertainty) in observing a value X = xi, the greater the infor-
mation it contains. The amount of surprise about an outcome value xi in-
creases as its probability decreases. In this spirit, the information function
is defined as I(p(xi)) = log(1/p(xi)), without any focus on the value of the
outcome itself. The information function I(pX) is a random variable, where
pX = (p(x1), . . . , p(xI))

′ is the univariate probability mass function (pmf) of
X. Shannon’s entropy is defined as

H(X) = E[I(pX)] =

I∑
i=1

p(xi) log

(
1

p(xi)

)
. (1)

Being an expected value, it measures the average amount of information brought
by the realizations of X as generated by the pmf pX . When entropy is high,
scarce information is available about the next realization, therefore the amount
of uncertainty and heterogeneity of X is large. On the other hand, when the
entropy is low, one is fairly sure about the next observation and thus un-
certainty and heterogeneity of X are small. The probabilistic properties of
entropy are often left apart in the applied literature, where entropy is seen
as a heterogeneity index, which can be computed without the contribution
of the value of the study variable for the different categories. Entropy H(X)
ranges in [0, log(I)], i.e. it is nonnegative and its maximum depends on the
number of categories of X. The maximum value of entropy is achieved when
X is uniformly distributed, while the minimum is only reached in the extreme
case of certainty about the outcome.

In case of spatial data, i.e. data collected over an area, the spatial loca-
tions of occurrences are relevant, as they may influence the realizations of
X over space. In particular, occurrences at certain locations may be related
to what happens at surrounding locations. When heterogeneity has to be as-
sessed, Shannon’s entropy H(X) is not able to discern the role of space. Hence,
datasets with identical pmf pX but different spatial distributions (e.g., strong
spatial association and complete spatial randomness) yield the same H(X).
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An intriguing starting point to build an entropy measure accounting for
space, namely a spatial entropy, consists in defining a new univariate cate-
gorical variable Z that identifies different types of couples of realizations of
X over space, usually called co-occurrences, i.e. (xi, xi′), with i, i′ = 1, . . . , I.
The consideration of co-occurrences underlies the idea of distance, which gives
Z a promising role in the introduction of space in entropy measures. An as-
sumption on whether to preserve the order within co-occurrences over space
is needed: the realization (xi, xi′), with i 6= i′, is different from (xi′ , xi) if
order is preserved; if order is neglected, such realizations coincide. This as-
sumption influences the number of categories of Z, denoted by R: when order
is preserved, R is Ro = I2; conversely, R is Rno = (I2 + I)/2. Under this
perspective, Shannon’s entropy (1) of Z, H(Z), can be computed, using the
pmf pZ = (p(z1), . . . , p(zR))

′, as

H(Z) = E[I(pZ)] =

R∑
r=1

p(zr) log

(
1

p(zr)

)
. (2)

When the order is not preserved, H(Z) does not depend on the spatial con-
figuration of co-occurrences, Z maintains all the information of X, and H(X)
and H(Z) quantify the same level of heterogeneity. Conversely, if order is
preserved, the spatial direction of realizations within co-occurrences is consid-
ered; as a consequence, different H(Z) can be obtained for different spatial
configurations of the same set of realizations of X.

In order to properly account for space in an entropy measure based on Z, a
definition of neighbourhood is needed. A way of representing a neighbourhood
is via an adjacency matrix, i.e. a square matrix whose elements indicate which
realizations of X are associated to form couples. In particular, for N spatial
units the adjacency matrix A = {auu′}u,u′=1,...,N is a symmetric N×N matrix
such that auu′ = 1 when spatial units u and u′ constitute a couple, and auu′ = 0
otherwise; in other words, auu′ = 1 if u′ ∈ N (u), the neighbourhood of spatial
unit u. The diagonal elements of A are usually all zero. Note that the spatial
units may be points, defined via coordinate pairs, or areas, identified via a
representative coordinate pair, such as the area centroid.

The definition of A implies that a variable Z|A is constructed, whose real-
izations form a subset of Z outcomes that only includes co-occurrences iden-
tified by non-zero elements of A, i.e. conditioning on a fixed neighbourhood.
Moreover, its conditional pmf pZ|A = (p(z1|A), . . . , p(zR|A))′ can be used to
compute Shannon’s entropy:

H(Z|A) = E[I(pZ|A)] =

R∑
r=1

p(zr|A) log

(
1

p(zr|A)

)
. (3)

When an adjacency matrix A, with all off-diagonal elements equal to 1, is
employed, expression (2) is a special case of (3). In all other cases, H(Z|A) is
indeed a spatial entropy measure. Most works which make use of the variable
Z focus on the contiguity matrix, i.e. the simplest adjacency matrix A (O’Neill
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et al, 1988; Li and Reynolds, 1993; Riitters et al, 1996; Parresol and Edwards,
2014).

Leibovici (2009) and Leibovici et al (2014) propose a spatial entropy like
(3) based on Z|A for a generic distance d, thus extending the idea of conti-
guity. The authors only develop the case of ordered co-occurrences, so that
the number of categories of Z is Ro = I2. The specific Z|A is obtained by
first fixing a distance d between occurences. Then co-occurrences are defined,
for each d, as simultaneous realizations of X at any distance d∗ ≤ d, i.e. dis-
tances are taken into account according to a cumulative perspective; this way
an adjacency matrix Ld is built and the variable which is constructed is Z|Ld.
Then, Leibovici’s spatial entropy is

H(Z|Ld) = E
[
I
(
pZ|Ld

)]
=

Ro∑
r=1

p(zr|Ld) log

(
1

p(zr|Ld)

)
. (4)

The probability p(zr|Ld) is, as occurs for all spatial entropy measures based on
Z, the element of a univariate pmf pZ|Ld

, i.e. it is computed for a distribution
conditional on Ld.

The approach just described is a first step for identifying a proper way to
define a spatial entropy measure; nevertheless, two main disadvantages must
be mentioned. Firstly, all such spatial entropies are not decomposable, while
additivity represents an appealing property in spatial statistics which follows
the idea of Local Indices of Spatial Association (LISA) proposed by Anselin
(1995). Secondly, they are based on conditional univariate distributions, so all
results refer to an arbitrary choice of A.

3 Additive spatial entropy measures

This paper proposes a new class of spatial entropy measures based on the
transformed variable Z, which exploits the properties of entropy based on
bivariate distributions by introducing an additional study variable W repre-
senting space. The novelty of passing to a bivariate perspective has several
advantages. In information theory, when two variables are jointly considered,
suitable measures of entropy can be introduced (Cover and Thomas, 2006;
Stone, 2015). In particular, mutual information is a measure of association
that quantifies the information shared by two variables, while residual entropy
measures the amount of information of one variable, when the effect of the
other variable is removed. In our spatial context, these two measures allow
to generalize previous spatial entropy measures, enjoy the desirable additivity
property and help to quantify the role of space. Moreover, they receive a novel
interpretation with respect to the tradition of information theory (Cover and
Thomas, 2006).

The random variable W defines intervals of all possible distances at which
co-occurrences take place: they are denoted by wk =]dk−1, dk], with k =
1, . . . ,K and dk representing distances between points. The corresponding pmf
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is pW = (p(w1), . . . , p(wK))′. Each distance category wk induces the definition
of a specific adjacency matrix Ak which identifies co-occurrences at distance
wk and thus defines the study variable Z|Ak with pmf pZ|Ak

. Therefore, Z|Ak

is from now on written as Z|wk, as well as pZ|Ak
is equivalent to pZ|wk

. Un-
der this perspective, K conditional univariate distributions cover the whole
range of possible distances. The number and width of distance classes wk is
determined arbitrarily according to the specific case study.

The order within co-occurrences is not considered here. The first reason
is that spatial neighbourhoods do not generally have a direction, thus co-
occurrences with the same realizations in different order are undistiguishable in
spatial statistics. The second reason is that neglecting the order of occurrences
ensures the one-to-one correspondence between H(X) and H(Z), as said in
Section 2.

3.1 Spatial residual entropy

Under the framework introduced above, K random variables Z|wk are consid-
ered, and the related conditional pmfs pZ|wk

are defined. Shannon’s entropies
H(Z|wk), computed on these variables, can be reinterpreted as spatial partial
entropies:

H(Z|wk) = E[I
(
pZ|wk

)
] =

Rno∑
r=1

p(zr|wk) log

(
1

p(zr|wk)

)
for k = 1, . . . ,K

(5)
and are the generalization of the previously described measures based on Z|A
in expression (3). For instance, if w1 = [0, d], then A1 = Ld and the two
entropiesH(Z|w1) andH(Z|Ld) only differ as regards the number of terms due
to order preservation. The term ‘partial’ refers to the fact that more than one
entropy can be computed by considering different classes wk covering the whole
range of distances at which co-occurrences take place. Each partial entropy
quantifies the amount of information brought by Z after the role of space
has been controlled, i.e. conditional on a distance range wk. This perspective
allows to investigate the heterogeneity of the studied phenomenon by exploring
the remaining entropy given the contribution of space at various levels. Indeed,
spatial associations across the realizations of X can arise at different distances.
Identifying these distances is a crucial topic for interpretation, and entropies
H(Z|wk) properly achieve this goal. Moreover, spatial partial entropies are
very flexible because distance classes wk can be chosen by aggregating the less
interesting ones and disaggregating the most informative ones.

The general meaning of the partial terms (5) is substantially different from
Leibovici’s entropy. TheK partial entropies are computed on different distance
ranges, considering K sets of couples which do not overlap with the others.
Partial terms, therefore, consider different distance levels separately, while
Leibovici’s entropy, given d, embodies all couples within the fixed distance
without distinction.
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A nice characteristic of spatial partial entropies H(Z|wk), which are ran-
dom variables, is that they can be summarized to obtain a well known global
measure via weighting them by the probabilities p(wk) associated to each dis-
tance:

H(Z)W = E[H(Z|W )] =

K∑
k=1

p(wk)H(Z|wk). (6)

This measure is called residual entropy in information theory (Cover and
Thomas, 2006; Stone, 2015). In a spatial context, it is redefined as spatial
global residual entropy, and has crucial features. First, unlike usual Shannon’s
entropies, H(Z)W enjoys the desirable property of additivity. Second, since it
exploits the joint distribution pZW of the two variables, H(Z)W is a measure
of entropy based on a bivariate distribution, as can be appreciated by the
following alternative formulation

H(Z)W = E[E
(
I
(
pZ|wk

))
] =

Rno∑
r=1

K∑
k=1

p(zr, wk) log

(
1

p(zr|wk)

)
. (7)

Third, spatial global residual entropy is able to quantify the residual entropy
of Z by weighting the spatial partial entropies with the probabilities of the
conditioning variable W . Thus, H(Z)W controls the contribution of space and
measures the amount of information still brought by Z after removing the
effect of the entire spatial configuration represented by W .

3.2 Spatial mutual information

In information theory, a measure of association of two variables in terms of
entropy is defined as mutual information (Cover and Thomas, 2006; Stone,
2015). This quantity measures the distance of the joint distribution of two
variables from the condition of independence, i.e. from the product of their
corresponding marginal distributions.

The mutual information for Z and W can be redefined as spatial mutual
information MI(Z,W ), which is obtained as follows

MI(Z,W ) = E

[
I

(
pZpW
pZW

)]
=

Rno∑
r=1

K∑
k=1

p(zr, wk) log

(
p(zr, wk)

p(zr)p(wk)

)
. (8)

Spatial mutual information, like spatial residual entropy, is based on the bi-
variate distribution of Z and W . It is null when pZW = pZpW and moves away
from 0 as the strength of association of Z and W increases.

The additivity property is also enjoyed by spatial mutual information, by
rewriting MI(Z,W ) in (8) as

MI(Z,W ) =

K∑
k=1

p(wk)

Rno∑
r=1

p(zr|wk) log

(
p(zr|wk)

p(zr)

)
, (9)
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where, analogously to (5), the k-th partial term, named spatial partial infor-
mation, represents the contribution of space at distance range wk:

PI(Z|wk) = E

[
I

(
pZ

pZ|wk

)]
=

Rno∑
r=1

p(zr|wk) log

(
p(zr|wk)

p(zr)

)
. (10)

This quantity measures the distance of each conditional distribution pZ|wk

from pZ . The additivity property is thus respected the same way as in (6) for
spatial residual entropy:

MI(Z,W ) =

K∑
k=1

p(wk)PI(Z|wk). (11)

The two syntheses MI(Z,W ) and H(Z)W can be summed to obtain the en-
tropy of Z (Cover and Thomas, 2006), that is

H(Z) = MI(Z,W ) +H(Z)W . (12)

This expression shows that Shannon’s entropy of Z can be decomposed into
spatial mutual information and spatial global residual entropy. As a conse-
quence, MI(Z,W ) receives a novel interpretation: it represents the part of
entropy of Z due to the spatial configuration W .

In order to better identify the role of space, spatial mutual information can
be presented in proportional terms as

MIprop(Z,W ) =
MI(Z,W )

H(Z)
, (13)

where it can be seen that H(Z) constitutes an upper limit for MI(Z,W )
(and also H(Z)W ). This is a relevant feature stating that, when order is not
preserved, H(Z) can always be seen as a reference value for interpretation.

Finally, by exploiting the decompositions (6) and (11) of H(Z)W and
MI(Z,W ) respectively, together with (12), the entropy of Z can be further
expressed as

H(Z) =

K∑
k=1

p(wk) [PI(Z|wk) +H(Z|wk)] . (14)

In other words, thanks to the bivariate perspective which introduces the ad-
ditional variable W , Shannon’s entropy H(Z) can also be decomposed while
respecting the additivity property, since the partial terms contribute to the
explanation of the relationship between Z and W .
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Table 1 Number of couples for each distance category (in thousands).

wk [0, 5] ]5, 10] ]10, 50] [50, 100] ]100, 250] ]250, 500] ]500, 750] ]750, 1118]

no. 60.1 182.1 380 1132.9 5505.1 11298.9 5845.5 1880.2

4 Measures’ performance on rainforest tree data

Even if hardly any example can be found so far, all mentioned entropy mea-
sures can be used on point data. Shannon’s entropy does not consider the
spatial location of the data, but only the probabilities associated to the cat-
egories, which in this case are the four tree species of the Barro Colorado
Island dataset. Therefore, Shannon’s entropy of X and Z is only computed as
a benchmark, and afterwards the measures considered in this work are com-
puted for the tree species: Leibovici’s spatial entropy, spatial residual entropy
and spatial mutual information. The aim of the application is to assess the het-
erogeneity of the tree species over the territory, and how this is related to the
spatial configuration via entropy measures. The computation of all measures
contributes to highlight their properties and their ability to achieve detailed
and interpretable results.

According to the observation window size of this case study, 8 distances
dk are considered in metres: d1 = 5, d2 = 10, d3 = 50, d4 = 100, d5 = 250,
d6 = 500, d7 = 750 and d8 = 1118, the latter being the maximum possible
distance inside the window (i.e. the rectangle diagonal). They are used both
for the computation of several Leibovici’s entropies (Section 4.2) and for the
partial terms of the novel set of measures (Section 4.3).

For Leibovici’s entropies, these distances are used to define classes of type
[0, dk]. Each class generates a N ×N adiacency matrix Ldk

, where N = 7251,
for k = 1, . . . , 8. For the computation of spatial global residual entropy and
spatial mutual information, distance classes are built using the same values d1
to d8 as extremes: wk =]dk−1, dk], with d0 = 0. Each distance class corresponds
to an adiacency matrix Ak with the same size as Ldk

. Such choice of number
and width of the classes wk follows the general idea of spatial analysis that
the most interesting distances are the small ones, therefore the first classes
cover a smaller range than the last ones. The number of couples employed
for the computation of the partial terms is considerably high for all classes,
as shown in Table 1. If requested by the specific investigation, classes can be
tuned accordingly. This choice of dk allows the measures of entropy presented
in Section 3 to be compared to Leibovici’s entropies in terms of informativity
and interpretability.

4.1 Shannon’s entropy of X and Z

As regards the computation of Shannon’s entropy (1) of X, the estimated
probabilities p̂(xi), reported in Table 2, are the proportions of observed points
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Table 2 Proportions of tree species (variable X).

xi 1 2 3 4

p̂(xi) 0.369 0.075 0.043 0.513

Table 3 Proportions of unordered couples of tree species (variable Z).

zr (1,1) (1,2) (1,3) (1,4) (2,2) (2,3) (2,4) (3,3) (3,4) (4,4)
p̂(zr) 0.136 0.055 0.032 0.379 0.006 0.006 0.077 0.002 0.044 0.263

Table 4 Shannon’s entropy of X and Z.

H(X) H(Z) H(X)norm H(Z)norm

1.040 1.668 0.750 0.725

of type xi, i.e. p̂(xi) = Ni/N for i = 1, . . . , 4, where Ni is the number of trees
of species i described in Section 1. The corresponding entropy is H(X) = 1.04,
that is a relatively large value if compared to the maximum observable entropy,
equal to log(4) = 1.386. The departure from the uniform distribution is due to
species 1 and 4, which are much more frequent than 2 and 3. The heterogeneity
measured by H(X) is only due to the frequency distribution of species, and
does not account for the spatial configuration.

When the transformation Z of the study variable X is considered, the
analogous non-spatial entropy measure is Shannon’s entropy (2) of Z without
order preservation. In such case, the number of categories of Z is Rno = 10,
and H(Z) is computed by means of the estimates p̂(zr) reported in Table
3. The number of couples over the observation window, considered for the
computation of H(Z), is over 26 millions. The entropy value for the data is
H(Z) = 1.668, with a maximum equal to log(10) = 2.303. The departure from
the uniform distribution of Z is again due to the inhomogeneous presence of
the tree species.

For comparison purposes, entropy measures may be normalized, i.e. divided
by their maximum value. Table 4 shows that Shannons’ entropy of Z maintains
the same proportion with respect to its maximum value as Shannon’s entropy
of X: the normalized values are very similar, as expected from the theory.

4.2 Leibovici’s spatial entropy

Values for Leibovici’s spatial entropy at distances d1 to d8 are shown in Figure
2. The relative frequencies of the co-occurrence categories are used as estimates
p̂(zr|Ldk

) for each H(Z|Ldk
) by considering Ro = 16 ordered couples of tree

species. Due to the way adjacency matrices Ld1 to Ld8 are built, the entropy
value at each distance is computed including all the couples considered at pre-
vious distances. Values in Figure 2 are not constant along distances, showing
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Fig. 2 Leibovici’s entropy values at distances d1 to d8.

that the spread of the different tree species does not follow a spatially random
pattern. Leibovici’s entropy is able to detect some role of space, but the chained
entropy values (linked by a line in Figure 2) are less and less informative as
distance increases. Therefore, the contribution of a large distance compared
to a small one can only be indirectly appreciated, by considering the variation
with respect to the previous values. Small distances are sensible to variation,
but, as they increase, the relative weight of the previously considered couples
becomes large and overwhelms innovations; therefore, after distance d5, the
entropy ’path’ in Figure 2 tends to flatness. This means that the variation
in the contribution of space at the greatest distances cannot be captured any
longer: a different investigation should be carried on. Another disadvantage
of Leibovici’s spatial entropy is that it may not be compared to a reference
value in order to understand the strength of the role of space in the dataset.
The actual reference value for Leibovici’s entropy would be Shannon’s entropy
of Z, which is not a proper benchmark here due to order preservation, being
influenced by the specific spatial configuration.

4.3 Spatial residual entropy and spatial mutual information

As for spatial residual entropy and mutual information, for each distance class
wk the relative frequencies of the unordered co-occurrences are computed as
estimates p̂(zr|wk).

Spatial partial entropies (5), computed at distance ranges w1 to w8 and
shown in Figure 3, are the quantities to be compared to Leibovici’s entropies of
Section 4.2 and Figure 2 at distances d1 to d8. Comparison requires some cau-
tion. First of all, spatial partial entropies consider unordered couples; as a con-
sequence, even at the shortest distance H(Z|w1) differs from H(Z|Ld1) for the
number of categories of Z. At successive distance categories, each H(Z|Ldk

)
considers all couples employed for buildingH(Z|w1) up toH(Z|wk), except for
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Fig. 3 Spatial partial entropy values at distance ranges w1 to w8, plus spatial global residual
entropy (star on the right).

order preservation. This means that ’jumps’ between entropy values at differ-
ent distances in Figure 2 may not be simply explained using the partial terms of
Figure 3, as they measure entropy on a different variable. Partial terms in Fig-
ure 3 consider different distance levels separately, while Leibovici’s entropies
count all couples within each fixed distance without distinction. Therefore,
variability in the residual information offered by (5) can be appreciated over
large distance ranges as well as small ones.

Spatial partial entropies are built in a way that allows straightforward
interpretation: they express the residual amount of entropy of Z (and conse-
quently of X) after taking space into account. Therefore, they can identify the
distance ranges at which residual entropy is high (or low), i.e. at which the role
of space is weak (or strong). It is to remember that the partial terms are able
to detect any departure from a random pattern. Results at short distances are
very similar to the ones of Leibovici’s spatial entropy. This accordance sug-
gests that the main spatial pattern identified at short distances is a clustered
one. This is likely due to the spatial configuration of x4, which presents many
small clusters, and of x1, which has one main core of small size with respect
to the whole observation window. At distances w6 and w8, the partial terms
highlight a decrease in residual entropy, which is not detected by Leibovici’s
measures. The decrease at large distances in Figure 3 identifies a repulsive
configuration: most trees tend to have neighbours of the same species at short
distances, and neighbours of different species at large distances. The increase
in spatial residual entropy at distance w7 may be imputed to a higher number
of neighbours of the same species for x4. The ’star’ point in Figure 3 represents
the spatial global residual entropy (6), which is a weighted mean of all other
values and returns the general level of residual entropy of the four tree species.

The most informative quantities in this proposal are the partial terms,
while spatial global residual entropy becomes crucial in order to obtain the
part of entropy due to space, i.e. spatial mutual information MI(Z,W ), which
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Fig. 4 Spatial partial information at distance ranges w1 to w8, plus spatial mutual infor-
mation (star on the right).

subtractsH(Z)W fromH(Z) as in (12). Spatial mutual information at a global
level is 0.027 (star in Figure 4); its proportional version (13) is about 2% of
the entropy of Z, representing the percentage of entropy due to the spatial
configuration. Thus, spatial global residual entropy approaches Shannon’s en-
tropy of Z. This shows that the global value may carry little information, and
that exploring the spatial partial information terms is crucial.

Spatial partial information terms (10) in Figure 4 allow to understand
in more detail how much space affects entropy, and at which distance ranges.
They are coherent with spatial partial entropies. As already said for the partial
terms of spatial residual entropy, these measures also have the advantage of
being easily interpretable: for instance, they say that at distance w1 56% of
entropy is due to the influence of space in tree presence.

Table 5 highlights the necessary ingredients for all computations and shows
how the additivity property works for all quantities: MI(Z,W ) as in (11),
H(Z)W as in (6) and H(Z) as in (14). Being expectations, they all are com-
puted as weighted sums of partial expectation terms at local distance ranges.
The first column reports the weights, i.e. the estimate for pW , obtained as
the proportion of couples within each distance range wk with respect to the
total number of couples. A close look at the partial terms and weights p̂(wk)
explains why spatial mutual information is so low at the global level: in this
particular dataset there is a high number of associations of X occurring at
distances w5, w6 and w7 apart, which therefore receive the greatest weights
at the distances with the lowest role of space. The values of Table 5 support
the importance to focus on the partial terms in order to achieve the correct
conclusions, without being misled by the global result alone. This is a great
advantage of the spatial entropy measures here proposed.
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Table 5 Partial terms and additivity property.

W p̂(wk) PI(Z|wk) H(Z|wk) PI(Z|wk) +H(Z|wk)

w1 0.002 0.556 1.121 1.677
w2 0.007 0.414 1.325 1.739
w3 0.014 0.167 1.734 1.901
w4 0.043 0.062 1.797 1.859
w5 0.209 0.012 1.678 1.690
w6 0.430 0.006 1.604 1.610
w7 0.222 0.023 1.705 1.728
w8 0.072 0.100 1.498 1.598

MI(Z,W ) H(Z)W H(Z)

0.027 1.642 1.668

5 Discussion and conclusions

This work illustrates a new approach to measure spatial entropy on data as-
sociated to a finite number of categories. It provides a toolbox for analyzing
spatial data where distance is believed to play a role in determining the hetero-
geneity of the outcomes. As a first step of this analysis, Shannon’s entropy of
the transformed variable Z is computed and used as a reference value. It rep-
resents the level of heterogeneity of the study variable X, suitably transformed
to account for space. The second step defines distance classes and computes
spatial mutual information, in order to identify the strength of the overall role
of space in determining the data distribution. Thirdly, the partial information
terms are computed in order to investigate the contribution of space to the
data behaviour. In particular, they help to understand whether space plays a
relevant role at each distance class. Then, spatial partial entropies are built, in
order to focus on the heterogeneity of the study variable due to other sources.
The comparison of partial terms across distances is also helpful to grasp the
spatial behaviour of the study variable.

In particular, for the rainforest tree data of Barro Colorado Island, the
proposed measures identify a very low influence of space in determining the
tree species distribution at a global level. This should not make one jump
to conclusions before analyzing the partial terms. Indeed, the global result is
due to the high weights given to distances w5 to w7 (Table 5), where many
different associations of trees occur, yielding low spatial partial information
terms. Nevertheless, two different kinds of space influence may be detected. At
the shortest distance ranges (w1 to w4), the tree species distribution is partially
ruled by space. This can be ascribed to a clustering behaviour, especially due
to species x2, x3 and x4. Moreover, at the greatest distance (class w8) the role
of space becomes relevant again, due to the repulsive behaviour of species x1

and the multicluster distribution of species x4. The sign of association may be
assessed by visual interpretation (looking at Figure 1) and/or by looking at the
p̂(zr|wk). If couples of type (xi, xi) are more frequent, a clustering behaviour
is detected. Conversely, repulsion takes place when the presence of couples of
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type (xi, xi′), i 6= i′, is higher. If needed, spatial correlation indices may be
computed at the most interesting distances.

As for the theoretical properties of the approach proposed in this work, a
substantial innovation with respect to all previous measures available in the
literature is that this proposal successfully exploits the properties of entropy
based on bivariate distributions. Therefore, it allows the entropy of the cat-
egorical variable Z to be decomposed in two terms: the first term, spatial
mutual information, accounts for the role of space in determining the data
configuration, while the second term, spatial residual entropy, is a noise term
summarizing the remaining information carried by the data. Another advan-
tage of this approach comes from neglecting the order of the associations of
X that build the categories of Z. First of all, this is sensible because spatial
phenomena are not usually assumed to have a direction, as the interest lies
in capturing the spatial heterogeneity of data over a specific area considering
neighbourhood in any direction. Secondly, the proposal allows to compute a
single Shannon’s entropy of Z, which is a reference value for understanding
the amount of spatial and of residual information.

As for the practical advantages, Section 4 shows how each Leibovici’s mea-
sure does not allow any deeper inspection within the obtained entropy value,
whereas (6) and (11) can investigate what happens at any desired distance
range. Moreover, even though Leibovici’s entropy may be computed at different
d values, results are too chained to carry substantial information. Conversely,
partial terms of the residual entropy and mutual information may assume very
different values, as they reflect the data behaviour at non-overlapping distance
intervals. They are very informative and allow straightforward interpretation
about the phenomenon under study.
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