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ABSTRACT
The emergence of cosmic structure is commonly considered one of the most complex phenom-
ena in nature. However, this complexity has never been defined nor measured in a quantitative
and objective way. In this work, we propose a method to measure the information content of
cosmic structure and to quantify the complexity that emerges from it, based on Information
Theory. The emergence of complex evolutionary patterns is studied with a statistical symbolic
analysis of the datastream produced by state-of-the-art cosmological simulations of forming
galaxy clusters. This powerful approach allows us to measure how many bits of information
is necessary to predict the evolution of energy fields in a statistical way, and it offers a simple
way to quantify when, where and how the cosmic gas behaves in complex ways. The most
complex behaviours are found in the peripheral regions of galaxy clusters, where supersonic
flows drive shocks and large energy fluctuations over a few tens of million years. Describing
the evolution of magnetic energy requires at least twice as large amount of bits as required
for the other energy fields. When radiative cooling and feedback from galaxy formation are
considered, the cosmic gas is overall found to double its degree of complexity. In the future,
Cosmic Information Theory can significantly increase our understanding of the emergence
of cosmic structure as it represents an innovative framework to design and analyse complex
simulations of the Universe in a simple, yet powerful way.

Key words: chaos – MHD – plasmas – turbulence – methods: numerical – intergalactic
medium.

1 I N T RO D U C T I O N

How did the large-scale structure of the Universe come into shape?
Decades of study have suggested that this complex structure has
emerged from a hierarchy of interconnected processes, where sev-
eral mechanisms (e.g. the expansion of the space–time, gravity, hy-
drodynamics, radiative and chemical gas processes, etc.) have cou-
pled in a non-linear way, regulating the flow of energy across scales
and leading to the formation of cosmic voids, filaments, galax-
ies and galaxy clusters (e.g. Efstathiou et al. 1985; Peebles 1993;
Kauffmann et al. 1999; Springel et al. 2005; Vogelsberger
et al. 2014). This is arguably one of the most complex problems
in physics (if not the most complex). However, there has been to
date little attempt to define or measure what complexity in the for-
mation of cosmic structures really means.

This is not just a merely speculative question: According to In-
formation Theory (e.g. Prokopenko, Boschetti & Ryan 2009, for a
review) any physical system – including the Universe itself – can be
regarded as an information-processing device, which continuously
computes its own evolution. In this view, the set of physical laws
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relevant to evolve the system is analogous to the software (i.e. the
set of rules) used to advance the computation. Understanding where
the software behaves in a complex way has the potential to give us a
deeper insight on the emergence of self-organization in the Universe
around us.

Information theory is a very interdisciplinary and steadily grow-
ing research field, whose origin is commonly dated to the seminal
work by Shannon (1949) and Shannon & Weaver (1949) on sig-
nal processing in communications. We further refer the reader to
Crutchfield & Feldman (1997), Adami (2002), Shalizi, Shalizi &
Haslinger (2004) and Prokopenko et al. (2009) for a few reviews on
the topic. In several other fields of physics, there have been valuable
attempts to define and study complexity, based on Information The-
ory, including climate data analysis (e.g. Hoffman et al. 2011), cel-
lular automata (Wolfram 1984), limnology (Fernandez, Maldonado
& Gershenson 2014), epidemiology (Grassberger 2013) and many
more. Applications of Information Theory to astrophysics con-
cern the reconstruction of sparse signals (e.g. Ensslin, Frommert &
Kitaura 2009; Ensslin & Frommert 2011; Ensslin 2013), cosmology
(e.g. Hosoya, Buchert & Morita 2004; Li et al. 2012), extragalactic
surveys (e.g. Pandey 2013; Pandey & Sarkar 2015) and compact
stars (de Avellar & Horvath 2012). Crucial to these attempts is
the consideration that a physical phenomenon can be treated as
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an information-processing device, and its evolution can be studied
through ‘word’ (i.e. symbolic) statistical analysis.

To the best of our knowledge, Information Theory has never been
applied before to study the formation of cosmic structures, and in
this work we explore for the first time methods to quantify and de-
scribe the emergence of complexity in the Universe. In particular,
we first focus on the emergence of the largest self-gravitating struc-
tures of the Universe, i.e. galaxy clusters, by means of state-of-the-
art cosmological simulations. Indeed, the deep connection between
information processing and physical evolution is easily explored by
means of numerical simulations, because the two aspects are made
equivalent by construction. This allows us to measure complexity
in the simulated data (in bits) and to relate it with the underlying
gas-dynamical processes that are captured by the simulation.

This paper is organized as follows: in Section 2, we give a
schematic overview of the algorithms from Information Theory
that are relevant to our modelling of complexity and information
in cosmological simulations. In Section 3.1, we discuss the pre-
liminary application of these methods to a simple one-dimensional
simulation of structure formation, while in Section 3.2, we analyse
the complexity of three-dimensional simulations of galaxy clusters.
To best highlight the role of different processes (e.g. non-radiative
processes versus radiative cooling and galaxy feedback) in making
the intracluster medium (ICM) complex, we compare two resim-
ulations of the same object in Section 3.2.2. In Section 3.2.3, we
contrast the macroscopic and the microscopic views of complexity
in the ICM, while in Section 4, we give our conclusions. In the
appendix, we present additional tests on the algorithms used in the
main paper.

2 M E T H O D S

2.1 Information and complexity

We first give a basic overview of the methods used in this work
to measure the information content of numerical simulations. For
further details, we refer the interested reader to the excellent review
by Prokopenko et al. (2009).

2.1.1 Shannon’s information entropy

Information Theory states that the information content related to
the outcome of a probabilistic process, x, with probability P, can be
defined as log2[1/P] = −log2[P] (Shannon & Weaver 1949), whose
unit of measure is the bit. This measure is known as information
entropy and it measures the amount of freedom of choice (or the de-
gree of randomness) contained in the process. Intuitively, this states
that a process with many possible outcomes has high entropy and
this measure is suitable to quantify ‘how much choice’ is involved
in the selection of the event and/or of how uncertain we are of the
outcome. Therefore, according to this interpretation, the complexity
of a physical system equals to the amount of information needed to
describe its evolution.

2.1.2 The algorithmic complexity

The minimal information needed to perfectly describe the system
is measured by the algorithmic complexity (e.g. Kolmogorov 1968;
Chaitin 1995). In computer simulations, this is basically set by the
disk memory necessary to store every single digit produced by the
simulation itself or, alternatively, the entire source code and its

initial conditions. Qualitatively speaking, the inherent complexity
of structure formation is made evident by the fact that long and
complex algorithms are necessary to produce a realistic simulation
of how large-scale structures evolve.1

However, this representation of complexity poses some practical
problems, which are best explained by considering them as com-
pression problems.2 A simple periodic object requires very little
algorithmic complexity as it can be significantly compressed, i.e.
the necessary source code can be extremely short (e.g. the generator
of a sine function). Conversely, a total random sequence of digits
has no internal structure and cannot be described but by storing
every single element, i.e. the only possible lossless compression of
this data is the data itself.

This definition of complexity does not fully reflect our intuition
of what is really complex in nature. Indeed, even a manifestly more
complex sequence of elements like the sequence of pressure fluctua-
tions in a fluid, the ensemble of orbits of a planetary systems or even
a novel or a five-voices fugue by J. S. Bach can be more compressed
than a random sequence of digits. For this reason, other alternative
approaches to characterize complexity have been developed.

2.1.3 Statistical complexity

From a more physical viewpoint, what is relevant is to quantify
how much information is necessary to statistically describe the
evolution of a system. This is given by the statistical complexity
(e.g. Adami 2002), which measures how likely it is that a system
does many different things at a given time. The statistical complexity
also quantifies the similarity between different realizations of the
same process. A purely random process is not statistically complex
as it always repeats the same patterns in a statistical way. At the
same time, in many cases it is reasonable to expect that two different
numerical realizations of statistically similar initial conditions are
characterized by a similar level of complexity, even if their final
outputs are punctually different. This is often the case encountered
in cosmological simulations, which produce different sample of
objects (e.g. galaxies) with statistically similar properties if they
start from statistically similar sets of initial conditions.

The statistical complexity is usually measured by partitioning the
system into discrete levels (Ei, with 1 ≤ i ≤ Nbin, Nbin being the total
number of levels in the partition) and by calculating the conditional
probability distribution that elements at a given level at an epoch
t, Ei(t), transition to another level at the following epoch: t + �t,
Ej(t + �t). The Nbin × Nbin matrix of all possible transitions at
each epoch is directly measured in the datastream, and hence the
transition probability distribution P[Ej(t + �t)|Ei(t)].

Each spatial element of the system is therefore regarded as a
processing unit, responsible for the production of a stream of L
symbols (where L is the total number of epochs/time-steps) drawn
from a ‘vocabulary’ of Nbin words (i.e. energy levels). At any given

1 We give some examples from a few widely used codes in cosmol-
ogy: the Lagrangian smoothed particle hydrodynamics code GADGET-
2 (http://www.mpa-garching.mpg.de/gadget/) has a compressed size of
∼200 kb in its basic version, while for a similar amount of physical
routines, the Eulerian adaptive mesh refinement (AMR) method RAMSES

(http://www.ics.uzh.ch/teyssier/ramses/) has a compressed size of ∼600 kb.
The latest version of the AMR code ENZO (https://code.google.com/p/enzo/),
which we will use in this work, has a compressed size of ∼2.1 Mb, including
the numerical routines for magneto-hydrodynamics and radiative transfer.
2 http://www.ics.uci.edu/dan/pubs/DataCompression.html
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time-step, each spatial element in the system (identified by its three-
dimensional position xyz) is characterized by the transition proba-
bility associated with its evolution, Pxyz ≡ Pxyz[Ej(t + �t)|Ei(t)]. It
is worth stressing that such matrix of transitions is directly derived
from the datastream at every time-step, without requiring any prior
knowledge of the underlying dynamics. The Shannon entropy asso-
ciated with the probability of transition for each xyz element gives
its statistical complexity (in bits):

Cμ,xyz = −Pxyz log2 Pxyz, (1)

while the total of this over the domain gives the total statistical
complexity of the system:

Cμ =
∑

xyz

Cμ,xyz. (2)

In this view, every element of the system acts as an information-
processing unit producing a datastream of ‘symbols’, and the con-
ditional probability of transitions between symbols quantifies how
much complex is the evolution that the underlying system is com-
puting. The statistical complexity can also be seen as the typical
information needed to produce a sequence of symbols statistically
similar to the original sequence of symbols of the system being
studied. In the following, we will always refer our estimate of sta-
tistical complexity to the time lag that separates a given epoch from
the previous output of the simulation, i.e. �t will always be the time
separation between the two last time-steps considered.

2.1.4 Block entropy and source entropy rate

The entire sequence of L symbols/states in long time series carries
information that is accessible to an observer. To this end, one needs
to extract from the datastream the probability distribution of all
sequence of symbols verified in the system, WL ≡ W(XL), where
XL denotes the collection of all sequences of L symbols actually
occurring in the datastream (e.g. Larson, Briggs & Tobis 2011).
Therefore, the probability of occurrence of a specific sequence of
L symbols for any xyz element in the computing domain is drawn
from the entire XL collection of all sequences with the same L length,
which occur in the datastream. The complexity associated with a
given L sequence of symbols for each computing element xyz is
then given by the block entropy, Hxyz(L):

Hxyz(L) = −WL
xyz log2 WL

xyz, (3)

measured in bits, with WL
xyz ∈ WL. The total block entropy of the

system is therefore obtained by summing across the domain:

H (L) =
∑

xyz

Hxyz(L). (4)

In these specific cases of cosmological simulations, the sequence
of symbols is made by coarse graining the energy levels in the
resolution elements (i.e. cells) of the simulation as a function of
time. The block entropy is a monotonically increasing function of
the symbol length (e.g. Crutchfield & Feldman 1997; Crutchfield
& Feldman 2003), and the increase of the block entropy with L is
measured by the entropy gain:

hμ(L) = H (L) − H (L − 1), (5)

measured in bits per symbol.
This metric converges to the same estimate of H(L)/L in the limit

of large L, giving the source entropy rate:

hμ = lim
L→∞

hμ(L) = lim
L→∞

H (L)/L. (6)

The entropy gain is a good identifier of intrinsic randomness
in a sequence of symbols as it estimates the information-carrying
capacity in the L blocks that is not actually random, but is instead due
to correlations. In the practical applications explored in this work,
L is not arbitrarily large but is limited to the maximum amount of
time-steps, which is of the order of ∼300–400 (Sections 3.1–3.2),
and therefore our estimate of hμ from the previous equation is an
approximation.

2.1.5 Excess entropy and efficiency of prediction

As suggested by Crutchfield & Feldman (2003), the total apparent
memory of structure in a source of L symbols can be quantified
through the excess entropy:

E =
∑

L=1→∞
[hμ(L) − hμ]. (7)

The excess entropy measures the amount of information at a spe-
cific value of L that is ‘explained away’ by measuring correlations
over larger and larger blocks, i.e. it measures the intrinsic redun-
dancy in the sources of symbols. For practical applications, E can
be simplified into a finite partial sum for a length L:

E(L) = H (L) − L · hμ(L), (8)

as we will follow in this work.
Systems with a large dynamical range can be studied on different

scales. Most astrophysical objects have this property, and they can
be characterized on several different scales, by averaging or coarse
graining their internal states on different scales of interests. This
often leads to the natural question that whether there is a level that is
best to derive a workable model capable of quantitative predictions
for a system under analysis. Shalizi et al. (2004) suggested that this
is addressed by the efficiency of prediction:

e = E

Cμ

, (9)

simply computed as the ratio between the excess entropy and the
statistical complexity. The scales at which the ratio e is maximum
defines the scale at which making predictions of the future evolution
of the system is more efficient. Indeed, while the excess entropy E
gives the amount of information that can be used to predict the
future evolution of a system, given its past, the complexity Cμ

gives the amount of information needed to statistically reproduce a
process. Therefore, the ratio e = E/Cμ is a good estimate of ‘how
much can be predicted’ compared to ‘how much difficult it is to
predict’ (Prokopenko et al. 2009). The scale at which e is maximum
(by construction, e ≤ 1) defines the spatial or the temporal scale
at which the datastream originated from the system displays the
maximum emergence of coherent structures.

3 RESULTS

3.1 One-dimensional structure formation: the Zeldovich
pancake

We first test the above applications of Information Theory to the
study of structure formation in one dimension, using the Zeldovich
collapse test (also known as the ‘Zeldovich pancake’; Sunyaev &
Zeldovich 1972). Despite its simplicity, this one-dimensional prob-
lem gives a robust representation of the basic physics ruling the
growth of cosmic structures originating from a uniform smooth
density background. In this problem, a uniform density cold gas
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Figure 1. Statistical complexity at z = 0 for the Zeldovich collapse test
(measured using Nbin = 3, in black, or Nbin = 100, in blue) and gas energy
(red) at z = 0.

is initialized with a small converging velocity profile, which later
induces the formation of a self-gravitating centre of mass where gas
matter continues to accrete. The first evolutionary stage is adiabatic
and the temperature smoothly increases towards the centre due to
compression, while in a later stage the accretion velocity becomes
supersonic and strong accretion shocks are generated around the
central ‘pancake’, leading to the efficient thermalization of infall
kinetic energy. No dark matter and no dark energy are included in
this simple model, yet the final evolutionary stage of the pancake
gives a reasonable representation of the hot and overdense gas (ICM)
of a galaxy cluster. We used a 256-cells domain with a comoving
size of 128 Mpc and initial redshift of z = 30, for a flat Universe
made of only baryons �b = 1, simulated with the same code used
in the following sections, the cosmological three-dimensional grid
code ENZO (Bryan et al. 2014).

The collapse of the pancake is followed by supersonic
accretion around z ∼ 1 and at this epoch strong (M 	 10)
accretion shocks are formed marking the transition between the free-
falling gas and the thermalized pancake, at the critical cosmologi-
cal density. The final temperature of the pancake is ∼107−108 K,
with an innermost density peak that has a smaller tempera-
ture than the average to maintain pressure equilibrium with the
surrounding gas.

Here and in the following cosmological simulations, we focus on
the evolution of the simulated energy fields to measure the growth of
complexity as outlined above (Section 2). Our choice is to partition
the internal state of the simulated gas into energy levels: the co-
moving kinetic energy (EK), the comoving thermal energy (ET) and
the comoving magnetic energy (EB). The dynamical energy range of
these fields is so large across the cosmic volume, i.e. more than ∼10
orders of magnitude, that we must adopt a coarse binning in the log-
arithmic energy space. In this first test, we just discuss the evolution
of gas energy for clarity, while in the full three-dimensional case
(Section 3.2), we also consider the kinetic and the magnetic energy
fields. Fig. 1 gives the final energy configuration of the pancake at
z = 0 (red line), while the upper panel of Fig. 2 shows the evolution
of ET at different redshifts.

In detail, the gas energy is defined as ET = 3kBT ρdV /(2μmp),
where dV is the volume of the cell and μ is the mean molecu-
lar weight (here μ = 0.6). mp and kB are the proton mass and
the Boltzmann constant, respectively. We discretize the gas energy
into Nbin logarithmic energy bins, and tested the extreme cases of
Nbin = 3 and 100 (blue and black lines in Fig. 1).

The statistical complexity, Cμ (equation 1), is measured by re-
constructing the matrix of all measured transitions between two

Figure 2. Evolution of the gas energy and of the block entropy in the
Zeldovich collapse test.

simulated time-steps (�t ≈ 30 Myr). Based on this datastream, we
compute for each cell, x, the transition probability between ET(x,
t) and ET(x, t + �t), defined as P(ET(x, t + �t)|ET(x, t)). The
statistical complexity, Cμ, for the entire system is computed using
equations (1) and (2).

Fig. 1 gives the statistical complexity for each cell in the simu-
lated Zeldovich pancake at z = 0. Different choices of the energy
binning are expected to give the same information on the strongest
energy transitions in the system, but lead to an increased detail in the
more subtle energy transitions. On the other hand, smaller energy
bins also make the algorithm more prone to enhance spurious nu-
merical fluctuations of energy levels, which can also be connected
to the (de)refining of the grid in adaptive mesh calculation (see the
following section).

We find that the highest statistical complexity in the pancake
is at accretion shocks, where ET transitions in a few time-steps
from the extremes of the energy distribution. The results for
Nbin = 3 or 100 show that this behaviour is very robust against
the adopted energy binning. This suggests that the surface where
gas matter is being thermalized through strong accretion shocks
truly represents the most complex location in this cosmic structure.
On the other hand, only with a very fine coarse graining of the en-
ergy variable, a complex behaviour is also measured in the core of
the pancake, due to the fluctuations of gas thermal energy following
gas compression. With the finest binning of Nbin = 100, even the
rarefied outer wings of accreting gas display a small complexity, as
an effect of rarefaction waves in the gas. It shall be noticed that at
least a part of the complexity here actually measures fluctuations of
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numerical origin, which are expected in region undergoing strong
rarefaction.

The block entropy H(L) (Section 2.1.4) is built by analysing the
full sequence of Nstep = 322 time-steps of the simulation. For each
cell in the one-dimensional domain, we constructed the sequence
of Nstep symbols for the logarithmically binned values of ET (here
using Nbin = 3 to reduce the number of symbols). From this, we
draw the complete distribution of all possible sequences of symbols
with length L that occurred in the recorded datastream, XL. This
way we can compute the a posteriori probability of each sequence
of symbols that occurred in the datastream, W(XL), and from this
deriving the block entropy for each cell as a function of epoch
(equation 3). The evolution of the block entropy for each cell,
Hxyz(L), is given in the bottom panel of Fig. 2.

Only the late evolution of the pancake, z ≤ 1, shows a complex
enough sequence of symbols to be detected by our Nbin = 3 choice.
The evolution of outside of the pancake shows a simple behaviour
over time, while the maxima of block entropy are again found at
accretion shocks. Approximately 7.5 bits of information is neces-
sary to predict the average evolution of these regions. Due to its
time-based formulation, the block entropy can better highlight the
complexity that was involved in the formation of the pancake core,
where strong shocks were first formed at z ∼ 1. In comparison,
the statistical complexity view cannot access this information as
it only accesses transitions over a fixed time-scale. We give in the
appendix the results of different choices of Nbin, which show that all
most important features highlighted in the block entropy analysis
are also recovered if a different binning of energies is used.

3.2 Cosmological simulations of galaxy clusters

The most important analysis of this work concerns the study of
the formation of galaxy clusters in cosmology. A large variety of
algorithms are available for numerical cosmology, including either
particle-based or grid-based methods to couple the evolution of the
gas and dark matter component (e.g. Dolag et al. 2009; Kravtsov
& Borgani 2012), often yielding a promising convergence in code
cross-comparisons (e.g. Frenk et al. 1999; Heitmann et al. 2008;
Vazza et al. 2011b; Scannapieco et al. 2012).

In this work, we based on the Eulerian representation of gas
physics in the expanding space–time, given by the cosmological
code ENZO (Bryan et al. 2014), which we already used in many works
(Vazza et al. 2011a; Vazza 2011; Vazza et al. 2014). ENZO is a highly
parallel code for cosmological (MHD)hydro-dynamics, which uses
a particle-mesh N-body method (PM) to follow the dynamics of the
DM and a variety of hydro-MHD solver to evolve the gas component
on a support uniform or adaptive grid (Bryan et al. 2014). Our
simulations include the effect of magnetic fields, radiative cooling
of gas and energy feedback from active galactic nuclei (AGN).
AMR was used to selectively increase the dynamical resolution
in the formation region of galaxy clusters, which is mandatory to
properly resolve magnetic field amplification (Xu et al. 2009). We
used the same set of initial conditions and cosmological parameters
in Vazza et al. (2011a) to resimulate one galaxy cluster with a total
mass of 1.12 × 1015 M� and a virial radius of Rvir = 3.2 Mpc at
z = 0. We started from a volume of 2603 Mpc3 (comoving) with an
initial root grid of 2563, additionally refined five times (with a two
times refinement, up to a maximum resolution of 31.7 kpc) inside
a sub volume of ∼253 Mpc3 centred on the cluster. In this work,
we use an aggressive AMR strategy and refine the grid wherever
local overdensities ≥10 per cent that of the surrounding are found,
as well as whenever velocity jumps ≥1.5 are detected. This ensures

that typically ∼80 per cent of the cluster volume is refined up to
highest resolution, which ensures a large enough dynamical range
to follow the turbulent accretion flows within the cluster (Vazza
et al. 2011a, 2014). More details on this simulation can be found in
Wittor, Vazza & Brüggen (2017).

To better disentangle gravitational and non-gravitational evolu-
tionary effects on the cluster evolution, we resimulated this ob-
ject twice: (i) including only gravity, hydrodynamics and magnetic
fields; and (ii) additionally including radiative gas cooling and ther-
mal/magnetic feedback from AGN. In the second case, we allowed
the release of thermal energy (1060 erg per event, starting from z =
4) and magnetic energy (1059erg per event, as a dipole structure) at
the location of high-density peak within the cluster volume. This
simplistic modelling of feedback AGN bypasses the problem of fol-
lowing prohibitively small scales involved in the accretion of gas on
to supermassive black holes and allows us to correctly describe the
interplay between cooling and feedback in these simulations.3 We
initialized the magnetic field uniformly in the volume of both runs,
to the comoving constant value of 10−10 G. For the following anal-
ysis of complexity, we saved ∼440 snapshots of both simulations,
by writing all physical fields with a constant time spacing of �t ∼
3.11 × 106 yr. We give the complexity analysis of the non-radiative
run in Section 3.2.1, while we study the extra-complexity resulting
from non-gravitational effects in Section 3.2.2.

Fig. 3 shows the spatial distribution of thermal, kinetic and mag-
netic energies for a slice crossing the centre of the cluster in our
non-radiative simulation at z = 0. While the kinetic energy domi-
nates the gas infall regions outside of the cluster volume, the thermal
energy is dominant within the cluster as a result of the thermaliza-
tion of infall kinetic energy via shock dissipation, starting at the
outer strong accretion shocks (e.g. Ryu et al. 2003). The kinetic
energy budget is, however, still significant within the cluster, ow-
ing to residual subsonic turbulent motions (e.g. Vazza et al. 2011a;
Miniati & Beresnyak 2015). The magnetic energy is small every-
where, and only in localized patches, it reaches a few per cent of
the thermal/kinetic energy within the cluster, while it is ∼10−4 in
most of the volume. However, the magnetic energy can be signifi-
cant compared to the thermal energy in supersonic flows where the
gas thermalization is inefficient, i.e in cluster outskirts and within
filaments connected to the cluster.4

3.2.1 Statistical complexity in the non-radiative run

The methods outlined in the previous sections allow us to compute
the cellwise complexity in the simulation and to treat this as an
additionally derived three-dimensional field characterizing the sim-
ulated ICM. The statistical complexity for each cell, Cμ, xyz (in units
of bits per cell), for the simulated cluster is given in Fig. 4 for each
energy field separately, and in the false colour image in Fig. 6 for
the whole fields combined. To achieve a very refined description
of the cluster volume, we employed here Nbin = 200 logarithmic

3 This simplified approach can properly reproduce the thermodynamical
properties of the observed ICM on ≥100 kpc, as shown in our previous
works (Vazza 2011; Vazza, Brüggen & Gheller 2013; Vazza et al. 2016).
4 It shall be noted that simulating the growth of ICM magnetic fields in a
small-scale dynamo is still a challenge, owing to the limited dynamical range
that can be reached even with high-resolution numerical simulations (e.g.
Vazza et al. 2014; Beresnyak & Miniati 2016). For this reason, the magnetic
field level reached in our runs is lower than suggested by observations (e.g.
Bonafede et al. 2013).
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Figure 3. Slice through the centre of an ∼1.1 × 1015 M� cluster at z = 0, showing the kinetic energy (left-hand panel), the thermal energy (middle panel)
and the magnetic energy (right-hand panel). Each panel is 15 × 15 Mpc2 across.

Figure 4. For the same selection of Fig. 3, shown are the maps of statistical complexity (in unit of bits) for the kinetic, thermal and magnetic energy
components, respectively.

energy bins and compared two snapshots separated by �t ≈ 7.3 ×
107 yr (i.e. a time-step at the root grid level).

The maps of statistical complexity show at the same time more
finer details than the input energy fields, and also noisy structures
of clear numerical origin. The time-based analysis of statistical
complexity is designed to focus on fast energy fluctuations at the cell
scale, and to highlight those that are more difficult to predict based
on the past evolution. In this respect, the statistical complexity filter
is very efficient to highlight both the signature or physical processes
such as shocks and turbulent motions and the small-scale numerical
noise associated with our aggressive mesh refinement strategy (e.g.
see discussion in Schmidt et al. 2015).

However, most of the ‘complexity patterns’ inside the cluster are
manifestly associated with physical jumps of the energy fields, with
each energy field displaying its distinct complexity pattern. The
complexity of the kinetic and thermal energies is mostly increased
in narrow zones connected to shocks. Both ET and EK are modified
by shock jump conditions on this short time-scale. ET requires ∼5–
10 times more information because at strong non-radiative shocks
the jump of thermal energy is much larger than that of kinetic
energy. Although each shock is described by the ‘simple’ Rankine–
Hugoniot jump conditions, at every time-step, only a small fraction
of the cells in a given energy bin are crossed by shocks. Hence, ad-
ditional information is needed to predict the occurrence of shocks
in cluster outskirts at any given time, of the order of ≥10 bits/cell at

this redshift. It is worth recalling that in the framework outlined in
Section 2, the notion of complexity describes the amount of infor-
mation necessary to predict the evolution of the system at a given
time/spatial location. In this respect, predicting the occurrence of
shocks in the ICM depends on a number of factors, which requires a
significant amount of information to compute, even if the underly-
ing physics is ‘simple’. Compared to the thermal energy, the kinetic
energy EK is complex in a larger volume fraction and also closer
to the cluster centre. The ICM is known to host volume-filling sub-
sonic turbulence at all epochs, as a result of gravity-driven random
motions (e.g. Vazza et al. 2011a; Miniati & Beresnyak 2015; Vazza
et al. 2017). The kinetic energy is thus subject to complex fluctua-
tions due to turbulence even on the ≈7.3 × 107 yr time-scale. The
magnetic energy, EB, outnumbers the complexity budget of the other
two fields by ∼10–100 times. The magnetic energy is sub-dominant
compared to the thermal/kinetic energy of the ICM, which means
that the magnetic field lines are continuously subject to the violent
stirring gas motions, which drive fluctuations of the magnetic en-
ergy on short time-scales. Moreover, the predominantly solenoidal
turbulent motions are responsible for small-scale dynamo amplifi-
cation of ICM magnetic fields over time (e.g. Xu et al. 2009; Vazza
et al. 2014; Beresnyak & Miniati 2016), which makes the evolution
of the magnetic energy even more complex.

A more systematic view of the distribution of Cμ, xyz as a function
of the gas density (normalized to the mean matter density, nM)
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Figure 5. Phase diagram comparing the statistical complexity of the thermal
(top panel), kinetic (middle panel) and magnetic (bottom panel) energy as
a function of the gas density relative to the total mean density. The colour
coding gives the volume fraction of cells in a certain phase.

is given in the phase diagram on Fig. 5. While the complexity
associated with the thermal gas energy is larger at the low gas
overdensity typical of outer accretion shocks (n/nM ∼ 0.1–1), the
complexity of the kinetic energy has a distribution that extends
more towards higher overdensities. Finally, the magnetic energy

has a peak of complexity extending to n/nM ∼ 10–102, i.e. in the
innermost cluster regions where the stirring by turbulent motions is
more volume filling.

It is worth stressing once more the powerful capabilities of com-
plexity analysis. The symbolic analysis of the datastream can iden-
tify the most complex pattern arising from the hydro and MHD
dynamics of the system, which are in great majority shocks and tur-
bulent motions in this case. Standard approaches to identify these
important ingredients for the evolution of the ICM require resorting
to ad hoc numerical filters or finding schemes, specifically tailored
to identify shocks (e.g. Ryu et al. 2003; Vazza et al. 2011b) or disen-
tangle laminar from turbulent components (e.g. Vazza, Roediger &
Brueggen 2012; Miniati & Beresnyak 2015; Vazza et al. 2017). In-
stead, all complexity patterns found by our algorithm are the result
of an entirely symbolic analysis of the datastream, i.e. the patterns
are recovered with high accuracy just by comparing the statistics
of energy transitions Ej(t + �t)|Ei(t) between two time-steps. In a
sense, this operation is performed blindly over the data, meaning at
no level there is a physical description of the underlying dynamics
or physical laws that the system is subject to. This means that in
general the complexity filter has the potential to unveil interesting
flow patterns even in unexpected regions, which can be neglected
in the absence of proper numerical filters.

3.2.2 Complexity from gravitational versus non-gravitational
effects

The application of Information Theory can highlight the additional
role of non-gravitational physics in generating complex evolution-
ary patterns in the simulated ICM.

The false colour maps of Fig. 6 compare the distribution of statis-
tical complexity in the non-radiative (left-hand panel) and radiative
(right-hand panel) runs, for a one-cell thick slice through the cluster
centre at z = 0. This comparison well highlights, both, the large-
scale similarities of the two runs and the additional differences due
to non-radiative physics. In both cases, the magnetic complexity (in
red) is always found to dominate within the cluster volume, with
maxima downstream of merger shock waves moving outwards. The
kinetic complexity is second in relevance. It is more closely associ-
ated with shock jumps than the magnetic complexity, and appears
to be dominant in the outer shell approaching accretion shocks. Fi-
nally, the thermal energy has prominent maxima of complexity at
accretion shocks, marking the sharp transition between the smooth
and the structured gas at the periphery of the cluster. Similar pat-
terns are observed also within filaments connected to the simulated
cluster (i.e. right and bottom sectors of the image). The radiative
simulation displays an ∼5–10 per cent higher level of complexity
in all energy fields, across most of the cluster volume. The relative
trend between the three fields is similar, yet in the radiative run
the magnetic complexity is found to be more volume filling and to
extend more towards cluster outskirts (e.g. lower half of the clus-
ter volume in Fig. 6). The extra complexity in the radiative run is
also evident in the proximity of an active AGN source in this slice,
which we mark with a white arrow in the right-hand panel. Close to
these regions, the powerful output of thermal/magnetic energy and
the outflow it drives produces patterns of complexity that are not
present in the non-radiative simulation.

The relative trend of complexity in the two runs is visualized
also by the radial profiles of Fig. 7 (with or without a logarithmic
stretch of the x-axis, to alternatively focus on the trends in the core
or in the outskirts of the cluster), together with the radial profiles of
the energy fields. As observed above, cooling and AGN feedback
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Figure 6. False colour rendering of the complexity (in bits/cells) of our simulated cluster in the non-radiative (left-hand panel) and in the radiative (right-hand
panel) setups. The red colour shows the magnetic complexity, the green the thermal complexity and the blue the kinetic complexity. The white arrow in the
right image marks the location of a central AGN in the radiative run.

have a strong effect on the energetics of the cluster core and on
its complexity level as well. In the innermost ∼300 kpc of the
radiative simulation, both the thermal and the kinetic energies are
approximately two to five times larger as a result of the increased gas
density and of the extra heating from the AGN. The magnetic energy
is even ∼102 times larger than in the non-radiative case, because
the extra magnetization from AGN dominates the contribution from
primordial fields. However, on scales larger than ∼Mpc, the energy
profiles of the radiative run are extremely similar to the non-radiative
case. Cooling is increasingly less significant at lower gas densities,
and simulated sources of feedback have overall a small impact on
very large volumes. This is radically different in the case of the
complexity profiles, even outside of the virial radius of the cluster,
consistently with what shown in Fig. 6.

Close to the central source of feedback in the cluster core (white
arrow in Fig. 6), the additional thermal and magnetic energies from
the AGN dominate the energy evolution on the root grid time-
scale, leading to an ∼10 times larger complexity for the magnetic
energy, and an approximately three to five times larger complex-
ity for the other two energy fields. Even at larger distances from
the central AGN, the complexity is still on average larger by ∼50–
100 per cent compared to the non-radiative run. Although the energy
profiles (left-hand panels) are quite similar at large radius, in the
non-radiative case the, profiles are the result of a global balance
of cooling losses, enhanced compression and AGN feedback (from
the central cluster AGN and but also from several others associ-
ated with substructures accreted by the main cluster), which makes
the global evolution of the ICM more complex at all radii. At the
physical level, this is expected because each energy field evolves
according to additional physical mechanisms in addition to gravity
and hydrodynamics – this is also easily understood at the numerical
level, for the presence of additional source (i.e. AGN feedback) and
loss (i.e. cooling) terms in the hydrodynamical equations solved by
the code at every time-step.

Where did these differences in complexity originate? The block
entropy analysis introduced in Section 2.1.4 allows us to monitor
how complexity has grown over the cluster lifetime. In addition,
we can relate the emergence of complexity to specific events that
affected the global energetics of the ICM at different redshifts. To
compute the block entropy, H(L), and its source rate term, hμ(L),
we analysed the evolution of the EK, ET and EB energy fields from
z = 30 to 0 within a fixed reference volume. For each simulated
cell, we computed the symbol statistics as a function of the in-
creasing length L of the data stream, using Nbin = 5 logarithmic
energy bins. We remark that a complete analysis of the full sim-
ulated sequence of symbols in the cluster volume, X(L), is made
challenging by the enormous amount of data that are required: Fol-
lowing ∼8003 high-resolution cells over 440 × time-steps, even by
binning the energy values in five energy bins, requires to keep in
memory ∼1.8 Tb of data, for each energy field separately. This is
prohibitive and in this first exploratory work we restrict ourselves
from computing the block entropy of a smaller data set, which still
can give a representative sampling of the evolution of cosmic gas.
In detail, we used a two-dimensional selection of 440 × 440 ×
1 = 193 600 cells through the cluster centre, corresponding to a
15.2 × 15.2 Mpc2 region, and sampling the datastream at every five
root grid time-steps (∼3.6 × 108 yr). The choice of such selection
is motivated by the fact that, given a maximum number of cells
to follow, a wide two-dimensional selection can better statistically
follow, both, the evolution of the central cluster region as well as of
the cluster outskirts, which are equally important for the growth of
complexity.

The top panel of Fig. 8 gives the evolution of the integrated values
of EK, ET and EB, as well as of the enclosed gas mass (which is about
approximately one-sixth of the total gas + dark matter mass), for
such two-dimensional selection. The evolution of the non-radiative
run (solid line) is here contrasted to the evolution of the radiative
run with feedback (dot–dashed line). Although the global evolution
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Figure 7. Radial profiles of the thermal, magnetic and kinetic energies (left-hand panels) and of the statistical complexity (right-hand panels) for our simulated
cluster at z = 0, for the non-radiative (solid lines) and the radiative (dashed lines) runs. The top panels use a logarithmic stretching of the x-axis to better
highlight the profile in the cluster core.

of the energy fields is quite similar, the usual differences appear: (i)
in the radiative case, ET is always lower than in the non-radiative
case, due to the loss of energy via cooling. This effect is particularly
important in the first evolutionary stage ≤4 Gyr, while after this the
energetics is dominated by the heating of infall kinetic energy and
then it slowly approaches the same level in both runs. In addition,
AGN are compensating the radiative losses via thermal feedback,
at least globally in the ICM volume. (ii) The magnetic feedback by
AGN and the extra compression by cooling increase the magnetic
energy within the volume compared to the non-radiative case. By the
end of the simulation, the final magnetization level again becomes
comparable in both cases, meaning that the magnetic field in the
volume is dominated by the amplification of primordial fields.

The differences in block entropy are more spectacular. As ex-
pected, H(L) increases in a monotonic way and flattens over time,
reaching a maximum of H ∼ 12−16 bits/cell by the end. In gen-
eral, we observe that the block entropy of all energy fields is sharply

increased in correspondence of all important mergers and matter
accretions experienced by the cluster (t ∼ 4, ∼6, ∼9, ∼10 and
∼12 Gyr, see grey lines in the top panel). However, at early times
the cooling-feedback loop adds significant block entropy to the gas
in the radiative run. In particular, for t ≤ 6−7 Gyr (z ≥ 1), the block
entropy of all fields in the radiative runs is already significantly
larger than in the non-radiative setup. At this epoch, the medium is
far from virialization, and the balance of cooling and AGN feedback
dominate the energetics of ICM on small spatial and time-scales.

Although the final block entropy level of ET is similar in the
two setups (≈15 versus ≈16 bits/cell when the non-radiative and
radiative runs are compared), these complexity levels have been
produced at very different epochs. For example, in the non-radiative
case, ET has reached 90 per cent of the final block entropy level at
t ≈ 11 Gyr, while in the radiative case this level has been already
reached by t ≈ 7 Gyr. The reason of these differences is better
highlighted by the entropy gain, h(L), which computes the increase
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Figure 8. Top panel: evolution of energy fields and of the total gas mass
(grey lines), for a selection of 193 600 cells in the central regions of our runs.
Middle panel: evolution of the block entropy and of the total gas entropy
for the same selection of cells. Bottom panel: evolution of the entropy gain
for the same selection of cells. In all panels, the solid lines show the trends
of the non-radiative run, while the dot–dashed lines are for the radiative run
with feedback.

of the block entropy as a function of the symbol length L (in this case,
the elapsed time). The lower panel of Fig. 8 shows that the ‘extra’
complexity in the radiative run is acquired very early, t ∼ 1−5 Gyr,
i.e. before the cluster assembled. The maximum of h(L) is found at
t ∼ 2 Gyr, i.e. close to z = 4 epoch, which marks the beginning of
the AGN feedback in our numerical setup (Section 3.2). The other
energy fields (EB and EK) display a maximum production of block
entropy with a delay of ∼2 Gyr. We link this to the outflows driven
by AGN, which is observed to drive turbulence and magnetic field

Figure 9. Evolution of ratio between the block entropy of the different
energy fields and the total block entropy, for the same region of Fig. 8. The
black lines are for the non-radiative run while the blue lines are for the
radiative run.

amplification in excess to the non-radiative case at the same epoch
(Vazza et al. 2013).

In a second stage, we observe a second significant peak of entropy
gain in all energy fields (∼1.5−2.5 bits/cell), after the bulk of the
cluster mass has been assembled and the virialization process is still
ongoing. This shortly follows to a sharp mass increase experienced
by the cluster at this epoch (t ∼ 6 Gyr), which is marked by a peak
in the total mass distribution (upper panel). At this epoch, all energy
fields in the non-radiative run are significantly less complex than in
the radiative case, and the chaotic motions following merger events
add proportionally more complexity to the ICM.

While the absolute value of block entropy at a specific epoch is
dependent on the specific choices of the binning of energy levels
and on the time-sampling frequencies (see the appendix), the rela-
tive growth of block entropy in the energy fields is robust to model
variations. We give in Fig. 9 the ratio between the block entropy
of each field and the total block entropy of each run, which high-
lights the shift in the relative complexity of the various fields, when
radiative physics is included. Cooling and feedback have overall a
little impact on the relative complexity of the energy fields after the
cluster is assembled, t ≥ 4 Gyr. The role of cooling and feedback
is more marked at earlier times. For example, in the radiative case,
we observe a larger relative importance of the magnetic and kinetic
complexity as an effect of gas compression and outflows released
by the onset of AGN feedback. This stresses once more that, longer
before contributing to the mass of the ∼1015 M� cluster that will
dominate this region at late redshift, the cosmic gas in a realis-
tic simulation has been subject to a very complex evolution in its
thermal, kinetic and magnetic properties. In the appendix, we also
present additional tests showing how the above trends are robust
against sampling variance, i.e. if different slices through the cluster
volume are used to measure the growth of block entropy. While
some scatter is present, the variations are in general much smaller
than the relative difference in block entropy of the different fields.

3.2.3 Efficiency of prediction: which scales are best to predict the
evolution of the ICM?

The volume comprising galaxy clusters is so large that it is possible
to study plasma processes of the ICM on many different scales.
Following Section 2.1.5, we investigate which is the best scale to
produce a predictive model for the ICM, based on the efficiency
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Figure 10. Relation between the efficiency of prediction (Section 2.1.5)
at different interpolation scales, for the same two-dimensional selection of
Section 3.2.2. The dashed lines connect the values of e measured in the
simulation, with the e values estimated from plasma physics on unresolved
scales (see text for explanation).

of prediction, e = E/Cμ, which we measured by interpolating our
simulated fields on coarser scales. In detail, we computed H(L),
E(L) and Cμ for the same two-dimensional slice of 440 × 440 × 1
cells through the cluster centre used in Section 3.2.2, after linearly
interpolating the energy fields on increasingly coarser resolutions,
from the original resolution of 31.7 kpc up to 634 kpc (20 cells).
Through this procedure it is possible to investigate at which scale
the self-organization of the ICM is most emergent and its evolution
most efficient to compute. For simplicity, we limit our analysis to the
non-radiative run, and consider the efficiency of prediction at z = 0,
using Nbin = 10 logarithmical energy bins to compute E(L) and Cμ.
Fig. 10 shows the trend of e measured in our simulation as a function
of scale, which displays a similar behaviour for all energy fields.
The maximum efficiency of prediction is somewhere in the range
∼63–95 kpc, with e ≈ 0.15 for the kinetic and magnetic energies,
while e ≈ 0.08 for the thermal energy5. Although we have predicted
that the evolution of the kinetic and magnetic energies is more
efficient for ≤300 kpc, on larger scales, the thermal energy offers
the largest efficiency of prediction. These results can be interpreted
by noticing that the scale at which the efficiency of prediction of the
simulated ICM is maximum is tentatively close to the typical scale
of turbulent eddies in the simulated ICM (e.g. Vazza et al. 2011a,
2012; Miniati & Beresnyak 2015; Vazza et al. 2017), to the typical
correlation scale of observed and simulated magnetic fields (e.g.
Xu et al. 2009; Bonafede et al. 2013), as well as to the scale of
measured projected density fluctuations in X-ray (e.g. Zhuravleva
et al. 2015). Therefore, it is reasonable that e gets maximum on
scales where the ICM flows have the largest degree of dynamical
organization.

As an important caveat to our analysis, it shall be noted that in
general the entropy gain (equation 5) is systematically underesti-
mated when the sequence of symbols (and hence the block length) is
large. Together with more extensive tests of the efficiency of predic-
tion with a larger data set of objects (including different dynamical

5 It shall be noticed that even the maximum measured e is quite far from
the theoretical maximum of 1. However, considering the number of ap-
proximations in our modelling and the somewhat limited volume that we
can presently analyse with these algorithms, the estimates given here are
expected to give at least a robust relative trend of e with scale.

histories), including future tests, we will assess the dependence of
this preliminary result on the finite size of the analysed sample of
data.

The limited numerical resolution of our runs prevent us to directly
compute the efficiency of prediction for smaller scales. However, the
classic hydro-MHD picture of the ICM must break for 
 kpc scales,
in a regime where wave–wave, particle–wave and particle–particle
interactions are important (e.g. Schekochihin et al. 2005; Brunetti
& Lazarian 2011). In this regime, to estimate the efficiency of pre-
diction at such ‘microscopic’ scales we can resort to the same argu-
ments by Shalizi et al. (2004) and Prokopenko et al. (2009), adapted
to the ICM conditions. The dynamics of particles in the ICM can be
assumed to be Markovian at first order (i.e. the thermodynamical
value of a single particle only depends on the last microstate), hence
E = Cμ − Lhμ ≈ Cμ − hμ because L ≈ 1. In a perfect gas, the
thermodynamic entropy gives the statistical complexity, and for the
thermal particles in the ICM this is S ∼ 10 keV/particle for a M ∼
1015 M� cluster (e.g. Kravtsov & Borgani 2012). The entropy rate
crucially depends on the mode of energy/entropy exchange between
particles on short time-scales, which drastically diverges if differ-
ent models of the ICM are assumed. Two extreme scenarios can
describe the exchange of energy (and hence information) between
particles of the ICM (e.g. Sarazin 1988; Schekochihin et al. 2005;
Brunetti & Lazarian 2011; Kunz et al. 2011): a classic collisional
view in which Coulomb collisions between thermal particles are
the channel to exchange energy (with a typical collision time of
∼3.3 × 105 yr for electron–electron collisions and ∼1.4 × 107 yr
for proton–proton collisions), or a more realistic weakly collisional
view, in which energy is exchanged via the mediation of collective
plasma effects (with enormously smaller time-scales, approximate-
lyin seconds).

In the first scenario, from the proton–proton Coulomb col-
lision frequency, we can estimate an entropy rate of h ≈
10−7 keV/particle/yr, which implies that the efficiency of predic-
tion approaches unity only at very small time-scale (i.e. e ∼ 0.99
for ≤105 yr), while for astronomically relevant time-scales it drops
to zero. In the second scenario, the extremely fast action of plasma
collective implies that on microscopic scales the efficiency of pre-
diction is ≈1 only in the scale of seconds, while it rapidly drops to
zero for any other longer time-scale.

This exercise quantitatively shows the obvious fact that a detailed
thermodynamical view of single particle interactions in the ICM is
irrelevant to predict the evolution of the ICM on astronomically
relevant scales, given the enormous difference in scale between
microscopic and macroscopic processes involved.6

4 D I S C U S S I O N A N D C O N C L U S I O N S

In this work, we presented the first application ever of Information
Theory to the study of cosmic structures. We succeed in quantifying
the complexity associated with the formation of galaxy clusters and
to relate its growth to the dynamical evolution of the ICM gas as a
function of time and in response to different physical mechanisms.

In summary, our study shows the following:

(i) The algorithms from Information Theory implemented in
Section 2.1 can easily detect the emergence of hydrodynami-
cal structures in the simulated ICM, just based on the symbolic

6 However, we notice that in the case of fast growing instabilities the above
picture might further change (Kunz et al. 2011), and consequently the effi-
ciency of prediction might have a different trend with scale.
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analysis of the output of the simulation and without knowing any-
thing about the underlying dynamics. This is possible because com-
plexity analysis can read out the emergence of complex behaviours
directly from the symbolic data stream generated by the simulation.

(ii) Shocks and turbulent motions are very well captured by this
analysis, as well as the footprints of AGN activity in the ICM. Be-
sides identifying ‘expected’ important hydrodynamical features in
the ICM, complexity analysis has the potential to unveil unexpected
complex pattern in simulations (which might also be of spurious
numerical origin).

(iii) When only gravitational effects are concerned, the most
complex evolutionary patterns in the ICM follow the crossing of
shock waves (where the thermal and kinetic energies change sig-
nificantly on a short time-scale) and turbulent motions (where the
magnetic energy rapidly changes). Since the shock energy is more
widely distributed than the turbulent energy in typical clusters at
z = 0, the profile of complexity is steeper in the case of magnetic
energy than in the other two energy fields.

(iv) The magnetic energy displays the most complex behaviour
across most of the simulated cluster volume. Both in radiative and
non-radiative simulations, describing the evolution of the magnetic
field requires approximately two more informations (in bits) than
to describe the evolution of the thermal or of the kinetic energy, due
to the presence of small-scale dynamo amplification in turbulent
flows.

(v) Radiative cooling and AGN feedback add significant com-
plexity to the evolution of the ICM at all epochs. By using the block
entropy statistics and the entropy gain, we identify the emergence
of extra complexity at high redshift (z ≥ 1), before the virialization
process of the gas in-falling on to the forming cluster proceeds.
While the global energy statistics of the ICM at lower redshift are
similar in the two cases, the block entropy carries memory of the
complexity associated with each different process, acting on differ-
ent epochs.

(vi) The efficiency of prediction (Section 2.1.5) of the simulated
ICM is largest at scales of ∼63–95 kpc, consistent with the fact that
turbulent and magnetic eddies in the simulated ICM have typical
scales of this order. Future work will investigate in detail the de-
pendence of this result against the data sampling strategy and the
variety across the distribution of cluster dynamical states.

In conclusion, this first exploratory work shows that Information
Theory has the enormous potential of highlighting where, when
and how cosmic structures become complex, and which physical
ingredients are more responsible for this. In particular, through
this powerful tool the complexity of a simulated Universe can be
regarded as a well-defined and measurable field, which can be even
visualized and followed in time. While cosmological simulations
will continue to increase the number of interconnected physical
ingredients that can be simulated at the same time, the development
of the techniques suggested here will represent a powerful way for
a deeper understanding of how structures emerge at all scales in the
simulated Universe, and possibly in the real one.
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A P P E N D I X A : VA R I AT I O N S O F T H E
A L G O R I T H M S

The choice of the number of logarithmic energy bins and of the
temporal and volume sampling of the datastream to compute statis-
tical complexity and the block entropy are free parameters in our
method. Here we give additional tests where we vary the fiducial
parameters used in the main text, in order to show how the main
conclusions of the work are overall unaffected by different choices.

Fig. A1 shows the profile of block entropy for the thermal energy
in the Zeldovich pancake (Section 3.1) using different number of
bins for the coarse graining of log10(ET). The complexity within the
pancake is a very robust measure against different choices for the
number of bins, and in particular the three peaks mentioned above
are independent of this. On the other hand, the degree of complexity
in the rarefied gas outside of the pancake increases if the energy
levels get Nbin ≥ 5, because of the adiabatic decrease in ET. As also
noted in Section 3.1, a larger number of energy bin can also highlight
spurious fluctuations of numerical origin, which mostly occur in
(energetically unimportant) regions undergoing rarefaction, and/or
are associated with the mesh de-refining procedure (Section 3.2.1).
We conclude that in general the specific choice of the energy binning
strategy do not affect the most prominent maxima of block entropy
identified by our method.

In Fig. A2, we study the block entropy for the three energy fields,
as well as the ratio between the block entropy of the different energy
fields and the total block entropy for our non-radiative run, for
four different spatial domains and/or choices of the time sampling

Figure A1. Evolution of the block entropy in the Zeldovich collapse test,
for different energy bins to compute H(L).

Figure A2. Evolution of the block entropy of all simulated energy fields,
for four different choices of energy binning and spatial domain (see text for
details).

of the datastream: (i) 10 energy bins, 193 600 cells (fiducial run
used in the main paper); (ii) 10 energy bins, 65 536 cells ; (iii) 10
energy bins, 48 400 cells, temporal distribution sampled at every
two root grid time-steps (the run was stopped at ≈9 Gyr for memory
requirements); (iv) 10 energy bins, 4096 cells.

Although the global trend of the block entropy for the various
energies is similar for these parameters variations, significant dif-
ferences are present in the absolute value of block entropy at a
given time. For example, the run with the most refined time sam-
pling (run C) gives the fastest increase in block entropy, owing
to the larger variations in symbol statistics measured already at
early times. While the absolute level of block entropy can vary
by a factor of ∼2–3 at any specific epoch depending on the sam-
pling strategy, we find that the ratio of block entropy between the
different fields gives a more robust view on the relative complex-
ity of processes in different epochs (Fig. A3), as discussed in the
main paper (Section 3.2.2). In particular, the ratios converge to the
values for t ≥ 6 Gyr, i.e. after the cluster is fully formed, while
show some small ±1 Gyr shift at earlier epochs, depending on
how well is the forming cluster volume sampled by the different
choices of volume.

Overall, we conclude that while the absolute level of the block
entropy of each field obviously depends on the energy binning and
on the adopted sampling, the ratios of complexity in the investigated
energy fields is rather insensitive to this and the findings of the main
paper are therefore robust.
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Figure A3. Evolution of the ratio between the block entropy of each energy
field and of the total block entropy, for the same energy fields of Fig. A2.

Figure A4. Evolution of the block entropy of all simulated energy fields,
for six different two-dimensional slices through the centre of the simulated
cluster, with data binned to the spatial resolution of 63 kpc.

Finally, we estimated the error associated with the block entropy
in our runs, due to the sampling variance inside the volume. To
this end, we followed the block entropy for six independent two-
dimensional slices through the cluster centre in the radiative run and
using the interpolation to the resolution of 63 kpc, which gives the
best efficiency of prediction (Section 3.2.3). The results are given
in Fig. A4; while there are small variations due to the different sam-
pling from slice to slice, the general trends are robust and are little
affected by the sample variance. More importantly, the difference
in complexity between the fields are in general much larger than
the sample variance, and the trends discussed in the main paper are
robust against this.
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