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ABSTRACT
Turbulence generated by large-scale motions during structure formation affects the evolution
of the thermal and non-thermal components of the intracluster medium. As enstrophy is a
measure of the magnitude of vorticity, we study the generation and evolution of turbulence
by analysing the Lagrangian history of enstrophy. For this purpose, we combine cosmological
simulations carried out with the ENZO code with our Lagrangian post-processing tool CRATER.
This way we are able to quantify the individual source terms of enstrophy in the course of
the accretion of groups on to galaxy clusters. Here, we focus on the redshift range from
z = 1 to z = 0. Finally, we measure the rate of dissipation of turbulence and estimate the
resulting amplification of intracluster magnetic fields. We find that compressive and baroclinic
motions are the main sources of enstrophy, while stretching motions and dissipation affect
most of the ensuing enstrophy evolution. The rate of turbulent dissipation is able to sustain the
amplification of intracluster magnetic fields to observed levels.
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1 I N T RO D U C T I O N

The intracluster medium (ICM) is a hot (T ∼ 107–108 K), dilute
plasma that hosts turbulent motions across all scales. Turbulence is
driven on cluster scales, ∼few Mpc, as gravitational energy is con-
verted into kinetic energy during the process of hierarchical struc-
ture formation (see Brüggen & Vazza 2015, and references therein
for a recent review). Accretion flows convert their kinetic energy
into turbulent motions through tangential flows, fluid instabilities
or baroclinic motions. The turbulence then cascades from driving
scales to dissipative scales and heats the plasma, (re-)accelerates
cosmic ray particles and amplifies magnetic field (e.g. Brunetti &
Lazarian 2007; Miniati & Beresnyak 2015; Schmidt et al. 2015).
Turbulence can also be driven on galactic scales, ∼10 kpc, for
example by outflows driven by active galactic nuclei (AGN) or
ICM-based magneto-thermal instabilities (e.g. Mendygral, Jones &
Dolag 2012; ZuHone et al. 2013).

In this work, we are tracking the turbulence associated with sub-
structures that are accreted by clusters at z < 1. These are typically
groups with typical masses of ∼1013 M�, and they are expected to
contribute up to ∼70 per cent to the total mass of massive galaxy
clusters (e.g. Berrier et al. 2009).

Current observations measure turbulence through the SZ-effect
or pressure fluctuations and line spectroscopy in X-ray (e.g. Pinto
et al. 2015; Khatri & Gaspari 2016; Zhuravleva et al. 2016). Future
X-ray observations should be able to detect the driving scale of
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turbulence directly due to the outstanding spectral resolution of the
new generation of telescopes (e.g. Athena). The analysis of the
turbulent motions is rendered difficult by the need to isolate un-
correlated flows from, both correlated flows on large scales (≥0.1–
1 Mpc) and small-scale velocity perturbations produced by shocks.
Turbulence is also dependent on the local gas conditions, as the com-
pressive turbulent energy can make up only a few per cent or up to
15–30 per cent of the total turbulent kinetic energy. This is important
for example, for the understanding of cosmic ray acceleration. The
compressive turbulent component, e.g. curl-free component, most
likely follows a Burgers-like spectrum, which reduces the power for
cosmic ray acceleration1 (Brunetti & Jones 2014; Miniati 2015).

Porter, Jones & Ryu (2015) simulated the properties of MHD
turbulence driven by various combinations of solenoidal and com-
pressive processes. Their objective was to understand the physical
sources of ICM enstrophy (see Section 1.1) and the associated tur-
bulent amplification of magnetic fields. Vazza et al. (2017) extended
this work by analysing a major merger cluster, finding that enstrophy
is generated by baroclinic and shock-related motions during accre-
tion and merger processes. In the cluster interior, vortex stretching
seeded by mergers is enhancing and generating enstrophy.

In this work, we use our post-processing tool CRATER to anal-
yse the Lagrangian evolution of enstrophy in eight different clus-
ters taken from the Itasca Simulated Clusters (ISC). The paper is

1 In the case, the magnetosonic waves, that are responsible for the accel-
eration of particles, are dissipated at shocks steepening the cascade and
reducing the effective energy transfer to the particles (Miniati 2015).
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structured as follows: After summarizing the most important points
of enstrophy generation and evolution in Section 1.1, we will give
detailed information on our simulations and numerical tools in
Section 2. In Section 3.1, we give an overview of the general prop-
erties of our cluster sample. Our results on the Lagrangian evolution
of enstrophy are presented in Section 3.2. We focus on the evolu-
tion of growth and decay times associated with the different source
terms that generate enstrophy in Section 3.3. In Section 3.4, we give
estimates on the turbulent energy dissipation and the corresponding
magnetic field amplification. Finally, we summarize our results and
conclude in Section 4. In the appendix, we further give an analytical
derivation of how the dissipation rate of turbulence can be estimated
in our simulation.

1.1 Evolution of enstrophy

The kinetic energy of turbulence in the ICM is mostly (60–90 per
cent Miniati & Beresnyak 2015) of solenoidal nature (divergence-
free) and its amount can be measured by the vorticity ω = ∇ × v.
However, the average vector vorticity tends to zero and other proxies
for solenoidal turbulence are needed. The enstrophy ε = 1

2 (∇ × v)2

is such a proxy as it measures the magnitude of vorticity. The
equation for the evolution of enstrophy is derived by taking the
dot-product of the vorticity and the vorticity equation (for more
details, see Porter et al. 2015). The evolution of enstrophy in a fixed,
Eulerian frame is determined by advective, compressive, stretching
and baroclinic motions2 as well as dissipation:(

dε

dt

)
euler

= Fadv + Fcomp + Fstretch + Fbaro + Fdiss. (1)

The individual sink and source terms (from here on we will refer to
them as source terms) are

Fadv = −∇ · (vε) = −(ε∇ · v + v · ∇ε), (2)

Fcomp = −ε∇ · v, (3)

Fstretch = 2ε(ω̂ · ∇)v · ω̂, (4)

Fbaro = ω

ρ2
· (∇ρ × ∇P ), (5)

Fdiss = νω · (∇2ω + ∇ × G
)
, (6)

with ω = ∇ × v. (7)

In the equations above, ρ and P are the gas density and pressure, ν

is the kinematic viscosity and G = (1/ρ)∇ρ · S, with the traceless
strain tensor S3 (Mee & Brandenburg 2006). A hat denotes a unit
vector. We notice that all derivatives are computed using a second-
order central difference.

Each source term represents a different physical process lead-
ing to the generation, amplification and destruction of enstrophy.
The advective, Fadv, source term describes conservative advection
of enstrophy across the cluster. The compressive, Fcomp, source
term accounts for both reversible compression and rarefractions as
well as enstrophy enhancements due to shock compression. The
net influence of shock compression on enstrophy is amplification,
although as discussed in Porter et al. (2015) creation of enstrophy
within shocks really comes from the strain term in equation (6),

2 Notice, Porter et al. (2015) include a magnetic term in their equation. This
term is neglected here as our simulations only use pure hydrodynamics.
3 Sij = (1/2)(uij + uji ) − (1/3)δij∇ × u.

combined with subsequent compression within the shock. The
stretching source term, Fstretch, accounts for the generation of enstro-
phy by vortex stretching. Baroclinic, Fbaro, generation of enstrophy
takes place in baroclinic flows, in which the pressure is not a func-
tion of density alone; that is, the flow is not barotropic. In our case,
where the gas equation of state is adiabatic, that corresponds to
flow with non-uniform entropy, which develops behind complex or
unsteady shock structures during cluster formation. The dissipa-
tion, Fdiss, term accounts for viscous dissipation of solenoidal flow.
The dominant component of the dissipation term corresponds to
the damping of turbulent eddies, although the second component
can also act as a source term in shocks. For the moment, we ignore
Fdiss since we have no explicit viscosity, ν, in our simulations. In
Section 3.4 and in Appendix B, we will estimate the effective vis-
cosity by looking at the dissipation of solenoidal turbulent energy.
Clearly, the baroclinic and the dissipation term (through its strain
tensor contribution) are the only source terms that are able to gener-
ate vorticity. The other source terms depend on the enstrophy itself
and therefore they cannot generate enstrophy from zero.

Equation (1) describes the Eulerian evolution of enstrophy. For
the tracer analysis we need to transform this into a Lagrangian
frame, moving with the ICM fluid, as the change of enstrophy
recorded by the tracers between two consecutive time-steps cor-
responds to the Lagrangian time derivative of the enstrophy. It is
computed from equation (1) by adding v · ∇ε and neglecting Fdiss,
giving(

dε

dt

)
lagrange

= 2Fcomp + Fstretch + Fbaro. (8)

Enstrophy has the dimensions of inverse time squared, so is intu-
itively best understood in terms of characteristic ‘turnover rate, or,
alternatively, eddy turn over time’ for the turbulence. Similarly, the
measurements of each source term in equations (2)–(6) are most
simply understood in terms of the turnover time. As a measurement
for the impact of each source term we compute the local, effective
and individual source growth/decay times as

teff (t) = ε(t)

�iFi(t)
, (9)

ti = ε(t)

Fi(t)
. (10)

In the equations above, the index i refers to the individual source
terms.

2 SI M U L AT I O N SE T U P

2.1 ENZO

In this work, we study eight galaxy clusters taken from the ISC
sample.4 The sample has been simulated with the ENZO code (Bryan
et al. 2014) using the piecewise parabolic method hydro solver
(Colella & Woodward 1984). We applied the WMAP7 	CDM
cosmology (Komatsu et al. 2011) in our simulations: 
0 = 1.0,

B = 0.0445, 
DM = 0.2265, 
	 = 0.728, h = 0.702, σ 8 = 0.8
and a primordial index of n = 0.961. Each cluster was extracted
from an initial cosmological volume, sampled with 4003 cells and
4003 dark matter particles, of the size ≈(63 Mpc)3 (comoving). The
central volume ≈(6.27 Mpc)3 around each cluster has been refined
further for a final resolution of dx ≈ 20 kpc. The adaptive mesh

4 http://cosmosimfrazza.myfreesites.net/isc-project
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Table 1. Main characteristics of our eight simulated clusters at z = 0: cluster ID, M200, r200, T200, sound speed, dynamical state of the cluster, number of
snapshots available between z = 30 and z = 0 Ns(z = 30), number of snapshots available between z = 1 and z = 0 Ns(z = 1) and the final number of tracers
Np(z = 0).

ID M200 (1014 · M�) r200 (kpc) T200 (106 · K) cs (km s−1) Major merger Ns(z = 30) Ns(z = 1) Np(z = 0)

IT90_0 0.77 881.37 6.88 308 no 187 156 2.80 · 106

IT90_1 2.45 1292.68 10.55 381 yes 194 164 7.75 · 106

IT90_2 1.10 998.89 8.29 338 no 196 166 5.05 · 106

IT90_3 0.72 861.78 6.26 293 yes 193 163 4.90 · 106

IT90_4 0.54 783.44 5.13 266 no 197 167 4.07 · 106

IT92_0 3.32 1429.78 19.37 516 yes 244 209 8.26 · 106

IT92_1 1.00 959.71 7.13 313 no 227 194 4.82 · 106

IT92_2 1.17 1018.47 8.74 347 no 241 206 4.73 · 106

refinement (AMR) method used in our simulations is the same as
described in section 2 of Vazza et al. (2017).

All simulations started at a redshift of z = 30 and about ∼190–
250 data dumps from each simulation, ∼160–220 between red-
shifts z = 1 and z = 0, were saved for further analysis. Our sim-
ulations are non-radiative and do not include any magnetic fields
nor non-gravitational heating, except an imposed temperature floor
of T = 3 · 104 K to mimic re-ionization at moderate redshifts,
e.g. 4 ≤ z ≤ 7.

2.2 CRATER

We use our Lagrangian tracer code Cosmic-Ray Tracer (CRATER)
(which has already been applied in various works: Vazza
et al. 2016a,b; Wittor, Vazza & Brüggen 2016, 2017) to follow
the clumpy accretion of gas in post-processing. We use a Cloud-
in-Cell method to interpolate the velocity, gas density, temperature,
enstrophy and various source terms computed on the ENZO-grid to
the tracer’s position. The tracers are advected linearly in time.

Following the mass distribution of the ENZO-simulations, the trac-
ers were injected within a volume of 3203 cells on the finest grid
of the ENZO-simulation at z = 1. Using the same mass threshold we
injected additional tracers according to the distribution of the mass
entering the simulation box during run time. At z = 0 each cluster is
consequently populated by ∼106–107 tracers with a mass resolution
of mtracer ≈ 3 · 106 M�. We choose this mass resolution as it is high
enough to resolve structures accurately while the corresponding
number of tracers can be still handled computationally.

3 R E S U LT S O N I T 9 0 _ 3

3.1 Cluster properties

At a redshift of z = 0, our eight galaxy clusters cover a mass range
of M200 = 0.5–3.3 · 1014 M� (total mass) and a temperature range
of T200 ≈ 5.1–19.3 · 106 K, which corresponds to a sound speed
range of 266–516 km s−1. The dynamical and numerical properties
of our clusters are summarized in Table 1, and a closer look at the
dynamical histories and X-ray properties of each individual cluster
is given in Appendix A. The classification of each system based on
the presence of a major merger has been estimated based on the
analysis of the mass accretion history of each system.

The projected enstrophy overlayed with density contours at a
redshift of z = 0 is shown for all eight clusters in Fig. 1. The
red squares mark the ∼(320 kpc)3 volume centred around the peak
of enstrophy, which has been chosen in three dimensions and is
therefore not clearly visible in the projected maps. For our tracers

analysis we will focus on the tracers that are located in this region
at a redshift of z = 0.

Following the methods described in Section 2.2, we advected
tracer particles in post-processing for each cluster between redshifts
z = 1 and z = 0. Most of our discussion will revolve around the
merging cluster IT90_3, which has been already studied in great
detail in Vazza et al. (2017). We will point out differences and
similarities with the other ISC clusters where it is most instructive.

In Fig. 2, we show the projected enstrophy of cluster IT90_3 at
redshifts z = 1 and z = 0. At z = 1, the enstrophy already spans a
range of 10−6–10−1 Myr−2 and fine turbulent structures are visible.
Even at the earliest output from our simulation z = 30, enstrophy
is already at the level of about 1 per cent of what it is at z = 1 or
z = 0.

3.2 Evolution of enstrophy

In order to investigate the source of enstrophy, we selected all tracers
in the ∼(320 kpc)3 region centred around the peak of enstrophy
at z = 0 (see the yellow box in the last panel in Fig. 3 and red
squares in Fig. 1). Then we followed the tracer positions back to
their positions at z = 1. At that point, most of these tracers are
located inside of gas clumps or are entering the high-resolution
box inside of gas clumps at a later time. Only few tracers cannot
be associated with any gas clump (≈1–10 per cent). At z = 1, we
further divided the tracers into different families depending on their
position (see the different colours in the first panel in Fig. 3). We
selected eight different families of tracers in each cluster, each
associated with a gas clump and containing ∼103–104 tracers plus
one additional family that contains all tracers that were injected
at the boundaries by mass inflow into the refined volume after
z = 1.

This procedure mostly selects the gas component at z = 0 associ-
ated with the densest gas substructures in the ICM, which are mostly
associated with single self-gravitating gas clumps5 that are already
formed at z = 1 (see Fig. 3). The total gas masses of these clumps
are typically a few ∼1012 M�, corresponding to total masses (gas
and dark matter) of a few ∼1013 M� before ram pressure stripping
and tidal interactions detach their gas and dark matter components
(e.g. Tormen, Moscardini & Yoshida 2004).

In Fig. 3, we show the advection of the selected tracers across
cluster IT90_3. The enstrophy averaged over each individual fam-
ily of tracers and over all tracers as a function of time is plotted
in Fig. 4. The black line shows the results for all tracers, while the
colours correspond to the selection from Fig. 3. The mean ensemble

5 All the clumps have mclump > mjeans.
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Figure 1. Projected enstrophy overlayed with the density contours of the different clusters in the highest AMR region of size (6.27 Mpc)3 at z = 0. The red
square in each plot displays the (320 kpc)3 volume surrounding the peak of enstrophy. The red bar shows the length of 1 Mpc. (A coloured version is available
in the online article.)

Figure 2. Evolution of the projected enstrophy in the highest AMR region of size (6.27 Mpc)3 of cluster IT90_3 at z = 1 (left) and z = 0 (right). The red bar
shows the length of 1 Mpc. (A coloured version is available in the online article.)

enstrophy peaks three times: around t ≈ 6.7, 8.1 and 9.8 Gyr. The
times of the first two events correspond to two minor mergers be-
tween subclumps, while the time of the third event corresponds to
the major merger observed in the IT90_3 cluster. Using the tracers

we can cleanly isolate the different events. We see that peaks of
enstrophy (shown in Fig. 4) always occur when two or more tracer
families are colliding. As the tracers are following the gas, these
events are connected to the merging of clumps.

MNRAS 471, 3212–3225 (2017)
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Figure 3. Evolution of the projected gas density overlayed with the tracers position of the different selections in cluster IT90_3. The tracers have been
separated into groups from different subclumps, indicated by the different colours, at z = 1. The boxes are of the size (6.27 Mpc)3. The red bar shows the length
of 1 Mpc. (See https://dnswttr.github.io/index.html/it903mov.html for a movie. A coloured version is available in the online article.)

Figure 4. Evolution of the enstrophy, averaged over each tracer family
selected in IT90_3 (colours). The black solid line displays the evolution
of enstrophy, averaged over all tracers in IT90_3. (A coloured version is
available in the online article.)

In the following, we will focus on the evolution of four tracer fam-
ilies whose collected enstrophy sharply increases at t ≈ 8.1 Gyr6. At
t ≈ 6 Gyr (z = 1) the four families are spatially separated. Their spa-
tial approach is shown in Fig. 5. We show the evolution of the group
enstrophies in Fig. 6(a). The enstrophy of each group always peaks
around the time of merging. After the four clumps have merged,
they all show the same evolution in enstrophy. The enstrophy peak

6 We notice that at the same time the enstrophy of two other families is
increased, yet those two families are in a different region at this time and
therefore they are related to a different, roughly simultaneous event.

at t ≈ 9.8 Gyr happens during another merger involving these now
combined clumps.

The thermal entropy7 (see Fig. 6b) increases significantly when
the enstrophy peaks, indicating dissipation either by shocks or by
numerical dissipation of turbulence8 itself. The apparent correlation
between enstrophy and entropy then suggests that the dissipation of
turbulent energy is the dominant mechanism for gas heating here.
The evolution of Mach numbers shows strong Mach numbers at the
jumps of entropy and enstrophy. This supports the idea that these
events happen during the occurrence of shocks.

We now examine the individual source terms of the enstrophy (see
equation 8) for the tracer family displayed in dark blue (see Fig. 7).
The enstrophy (top row) shows two maxima at t ≈ 8.1 Gyr and at
t ≈ 9.8 Gyr, marked by the vertical red lines. The green and purple
lines mark the local minima before and after the peak of enstrophy.
The compressive and baroclinic source terms (second and third row
in Fig. 7) are always the strongest before the enstrophy reaches its
maximum. On the other hand, the stretching source term (fourth row
in Fig. 7) peaks after the maximum enstrophy. The other selections
of tracers in cluster IT90_3 record the same sequence of events
when enstrophy is enhanced (see Fig. 8 for all recorded events).
The enstrophy and source terms are normalized to a unit time and
unit amplitude. We note that the double peaks in some enstrophy
lines (e.g. in the 14th column of Fig. 8) are numerical artefacts
caused by limited time resolution in the ENZO data.

In Fig. 9, we show the mean values of enstrophy and sources
terms for IT90_3 and the other clusters. The same analysis on
the other seven clusters gives consistent results: on average the

7 Represented as S = c T
ρ2/3 , where c is a constant.

8 For Kolmogorov turbulence it is easy to show from the Navier–Stokes
equations that the local turbulent energy dissipation rate scales as ε3/2 [see
equation (12) below].
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Figure 5. Spatial evolution of four tracer families across cluster IT90_3. The enstrophy is amplified at the time-steps displayed here due to the merging of the
clumps. The displayed regions are of the size (400 Mpc)2. (A coloured version is available in the online article.)

Figure 6. Evolution of enstrophy in panel (a) and entropy in panel (b) recorded by the four tracer families selected in cluster IT90_3 and that are shown in
Fig. 5. The black vertical lines mark the time-steps of local maximum enstrophy. (A coloured version is available in the online article.)

compressive and baroclinic motions are the strongest before the
peak of enstrophy, while the stretching source is the strongest after
the peak of enstrophy. However, some special cases are pointed out
in the following:

IT90_0 shows the biggest delay between the maximum of com-
pressive/baroclinic source terms (red and green lines in Fig. 9)
and stretching source term (blue line in Fig. 9). As it turns out,
the other clusters have much more violent and active histories
than IT90_0, which is our most relaxed cluster. The other clusters
have been exposed to a higher dynamical activity disturbing their
ICMs. Consequent stretching motions occur throughout the lives
of those clusters. Accordingly, the smaller time offsets between
the source terms and the less distinct peaks in Fstretch in IT90_2,
IT91_1 and IT92_2 compared to IT90_0 are the consequences of
cluster-scale evolutionary events rather than events related to local
clumps.

In the case of IT90_1, the mean baroclinic source term is signif-
icantly stronger than the mean compressive source term. Still the
compressive source term peaks before baroclinic source term. This
distinction from the other clusters points out that the spatial extent
of the compressive source term is much more sensitive to specific
structures, e.g. shocks, while the baroclinic source can cover a larger

volume since it reflects complex consequences of multiple events
in the relatively recent history of the cluster.

3.3 Growth and decay time-scales

Following equations (9) and (10), we estimate the enstrophy growth
and decay times9, related to the individual source terms and of the
effective change of enstrophy, measured by the tracers. We compute
the distributions of the different evolutionary times at the six times
marked in Fig. 7 (see Fig. 10).

At all times, the distributions of the effective evolutionary times
(left column in Fig. 10) show the same shape. Most of the trac-
ers recorded an effective evolutionary time in the range of teff ≈
10–100 Myr (∼60–80 per cent of the tracers) or in the range of
teff ≈ 102–103 Myr (∼20–40 per cent of the tracers). Furthermore,
we observe that during the events of maximum enstrophy the effec-
tive evolutionary times are decreased.

Comparing times for the individual source terms, we notice
that tcomp is the most variable. At the peak of enstrophy, the

9 In the following, we will refer to these characteristic growth and decay
time-scales only as evolutionary times.
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Figure 7. Evolution of ε, Fcomp, Fstretch and Fbaro of the first family of tracers in IT90_3 over the last ∼7 Gyr of the simulation. The red vertical, solid lines
mark the local peak of enstrophy, while the green, dashed and purple, dotted lines mark the local minima of enstrophy. (A coloured version is available in the
online article.)

Figure 8. Summary of all enstrophy ‘events’ recorded by CRATER in IT90_3. Each column shows a single event recorded by one of the different families. The
plots show the evolution of enstrophy (top row), compressive source term (second row), baroclinic source term (third row) and stretching source term (bottom
row) around the peaks of enstrophy. The amplitudes (y-axis) of each quantity have been normalized to unity and the time range (width of x-axis) around each
has been normalized to the evolutionary time at the peak of enstrophy. The red line marks the time of the local peak of enstrophy. The black, dashed horizontal
lines show the zero level. (A coloured version is available in the online article.)

MNRAS 471, 3212–3225 (2017)
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Figure 9. Evolution of the means of enstrophy (black), compressive source term (red, diamonds), baroclinic source term (green, triangles) and stretching
source term (blue, squares) normalized to an unit amplitude of one and a unit time equivalent to one evolutionary time measured at the peak of enstrophy,
e.g. teff(εmax ) equals the evolutionary time when the enstrophy is at its maximum. Each panel shows the averages of all events recorded by the tracers in one
cluster. It is observed that the compressive and baroclinic source terms are always the strongest before the peak of enstrophy, while the stretching term shows
its maximum after the peak of enstrophy. (A coloured version is available in the online article.)

Figure 10. Distributions of the evolutionary times computed around the times of maximum enstrophy shown in Fig. 7. The top row corresponds to the first
peak at t ≈ 8.1 Gyr and the bottom row corresponds to the second peak at t ≈ 9.8 Gyr. The colours and linestyles match the time selections shown in Fig. 7. (A
coloured version is available in the online article.)

compressive time is mostly in the range of tcomp ≈ 10–100 Myr
while it is in the range of tcomp ≈ 102–103 Myr at other times.
The evolutionary times of the other source terms remain mostly
in a certain time range. The stretching time, tstretch, falls in the
range ≈10–100 Myr and the baroclinic time, tbaro, falls in the range
≈102–103 Myr.

The analysis of the average evolutionary times (see Fig. 11) shows
that stretching motions are dynamically most important for the evo-
lution of turbulence within the cluster. The compressive motions are
mostly subdominant throughout most of the clusters’ lifetime. Yet,
they become important during the shock-related amplification of
turbulence. The baroclinic source term on the other hand only has a

MNRAS 471, 3212–3225 (2017)
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Figure 11. Histories of the effective evolutionary times, see equation (9)
(black, solid), and the evolutionary times of the different source terms,
see equation (10), recorded by the same selection of tracers shown in
Fig. 10: baroclinic (blue, dash-dotted), compressive (red, dotted) and stretch-
ing (green, dashed). (A coloured version is available in the online article.)

small dynamical impact. While baroclinicity is an essential source
of enstrophy, it is mostly a minor contributor to the net growth of
enstrophy in comparison to compression and especially to stretch-
ing (see Fig. 11. At very late times, in this cluster the baroclinic
source term becomes competitive with the compressive source term
for a short amount of time (see 12 Gyr < t < 13 Gyr in Fig. 11), per-
haps because baroclinic contributions are more broadly distributed
in that era. This is because baroclinic sources are concentrated in
shocks, which are relatively weak after the last merger event. On
the other hand, the contribution from the baroclinic source term is
negligible in dense environments (as it is always smaller than the
solenoidal source term). However, in Vazza et al. (2017), we showed
that it gets very important for the enstrophy generation in cluster
outskirts, where flows following oblique shocks first inject vorticity
in the ICM.

The evolutionary times in the other clusters besides IT90_3 show
the same qualitative behaviour. The stretching source term always
shows the shortest evolutionary time, in the range of teff ≈ 10–100,
while the other source terms show a comparable evolutionary time
around the major events that amplify enstrophy and they show a
larger evolutionary time otherwise. We also notice that the more re-
laxed clusters, e.g. IT90_0, show large evolutionary times of around
teff ≈ 102–103 Myr.

In summary, our analysis shows that the fastest stage of enstrophy
evolution of the densest substructures in the ICM is dominated by
compression and shortly followed by stretching of vorticity. The
baroclinic generation of vorticity is less important in this density
regime, but it produces substantial vorticity at earlier times and
across outer accretion shocks.

3.4 Dissipation term and magnetic field amplification

In equation (8), we neglected the dissipation term since it is not
well defined in an ideal flow. However, the numerical dissipation
of turbulent motions is obviously present, as we are not employing
subgrid modelling of turbulence (e.g. Schmidt et al. 2015). Here, we
try to empirically constrain its amplitude from the offset between
the measured enstrophy change and the summed source terms in
equation (8). In Fig. 12(a), we plot the evolution of the right-hand

side (blue line) and left-hand side (black line) of equation (8) com-
puted with the same tracer family that we have studied in detail
in the previous sections and that is displayed in Fig. 7. The two
evolutions show a non-constant offset, which we plausibly ascribe
to the effect of dissipation. Especially at t ≈ 8.2 Gyr and t ≈ 10 Gyr,
the difference is not constant showing that turbulence is dissipated.
Hence, we compute the dissipation term as

Fdiss = �ε

�t
− (

2Fcomp + Fstretch + Fbaro

)
. (11)

The amount of dissipated enstrophy is the time-integrated abso-
lute value of equation (11) εdiss = ∫ |Fdiss|dt. In the Navier–Stokes
formalism (see Appendix B) the dissipation rate can be computed
without any knowledge on the explicit viscosity. In fact, to a first
approximation only a minimum turbulent scale is required (which
admittedly depends on the existence of an effective viscosity). In
our case, this minimum scale is set by the cell size of our grid cells.
Hence, we can compare the results of equation (6) with the net ef-
fective dissipation. Following the approach of Vazza et al. (2017),10

we compute this as

η̄i = 0.014 × ε
3
2
i × l2

turb, (12)

using a length scale11 of lturb = 2 · dx and the total amount of
enstrophy εi. In Fig. 12(b), we compare the mass-integrated values,
ηi, of both quantities computed using the tracers. We observe that
they are in general agreement (see Fig. 12a) and assume that Fdiss

in equation (11) is a reasonable proxy for the dissipation rate of the
turbulent cascade in our simulations.

If the ICM is magnetized and the gas flow is turbulent enough
to produce a small-scale dynamo, a fraction of the turbulent energy
in the ICM is transferred to the intracluster magnetic fields (for
recent reviews see e.g. Subramanian, Shukurov & Haugen 2006;
Ryu et al. 2008, 2012). In a predominantly subsonic, non-stationary
and solenoidal turbulence the amplification of ICM magnetic fields
can substantially differ from what measured in the simulated ISM
(e.g. Pan et al. 2016; Kritsuk, Ustyugov & Norman 2017). Recently,
Miniati & Beresnyak (2015) estimated the efficiency of turbulent
energy that is transferred to magnetic fields to be in the range of
CE ≈ [4 per cent, 5 per cent]. Following their approach we compute
the evolution of the magnetic energy from the history of turbulent
dissipation as (see Appendix B)

EB(t) = B2

8π
= CE

∫ t

ρηi(t
′)dt ′. (13)

As an example, we estimate the evolution of magnetic energy based
on enstrophy evolution by one selection of tracers from IT90_3 in
Fig. 13(a). At t ≈ 13.1 Gyr, the magnetic energy is of the order of
EB ≈ 0.8–1.3 · 10−13 erg cm−3 using εdiss and of EB ≈ 0.3–1.4 ·
10−13 erg cm−3 using εtotal. This translates into magnetic fields
ranging around B ≈ 1.4−1.8 μG and B ≈ 0.85−1.05 μG, respec-
tively. The above estimates for the magnetic field strengths were
computed using the tracers that reside in the cluster core region at
z = 0. The values estimated in this way are in good agreement with
results from observations (e.g. Govoni et al. 2010). Both, the mag-
netic field and the magnetic energy are increased stepwise at t ≈
8 Gyr and t ≈ 10 Gyr tracing the evolution of the dissipation term.
The timing of these jumps coincide with the times of the merging

10 See also Appendix B.
11 This is the width of the stencil used to compute the vorticity and which
also represents an approximation to the minimum scale for the cascade.
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Figure 12. Panel (a) Evolution of the left-hand side (black, solid) and right-hand side (blue, dashed) of equation (8). The red line shows the difference of
the two, which we associate with viscous dissipation, see label Fdiss (red line, dash–dotted). (b) Comparison of ηdiss (red, dashed), computed with Fdiss from
equation (11), with the enstrophy dissipation rate computed from equation (12) (black, solid). (A coloured version is available in the online article.)

Figure 13. Panel (a) Integrated magnetic field energy fuelled by the dissipation of turbulence. Panel (b) The corresponding magnetic field strength. The dashed
lines give the lower and upper limit obtained with efficiencies in the range of CE ∈ [4 per cent, 5 per cent]. (A coloured version is available in the online article.)

events in IT90_3. During the mergers, enstrophy is quickly ampli-
fied and is then rapidly dissipated again. Part of this energy will
be transferred to the magnetic fields on eddy turnover time-scales.
The magnetic field growth becomes slower soon after the turbu-
lence subsides. For our estimates on the magnetic field amplifi-
cation, we neglected magnetic field dissipation that becomes im-
portant once the turbulence decays. Therefore, our results are an
upper limit.

We observe similar results in the other clusters of our sample.
In all clusters, we estimated the mass-integrated values of ηdiss

and ηtotal to be of the same order, which are both in the range of
1038–1040 erg s−1. Application of the above model for transfer of
solenoidal turbulent energy into magnetic energy produces magnetic
fields, this will produce magnetic fields of the order of a few μG.
In all cases, we observe the episodic jumps in the magnetic field
growth. These jumps are always connected to some kind of merging
activity.

4 D I S C U S S I O N A N D C O N C L U S I O N S

We studied the origin and history of enstrophy of the ICM in galaxy
clusters formed in Eulerian grid cosmological simulations. We did
this using Lagrangian tracer particles that tracked the evolution of
the enstrophy in their associated ICM mass along with the associ-
ated enstrophy sources and sinks. This way we could analyse the
accretion history of turbulence in eight clusters with different for-
mation histories and with different dynamical states at z = 0. In
the Lagrangian frame enstrophy sources and sinks can be decom-
posed into compressive, baroclinic, stretching and dissipative terms
derived from the compressible Navier–Stokes equations and as de-
fined in equation (8). We used the Lagrangian tracer code CRATER

to follow these different source terms and the relative timings of
cluster formation events at the peaks of enstrophy.

Close examination of the gas flow properties early in our sim-
ulations revealed that small amount of enstrophy, and therefore
turbulence in gas clumps, has already been generated at an early
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age of the cluster, z � 1. We have not determined the origin of this
very early enstrophy, yet we consider that at least some of it may
result from baroclinicity in the cosmologically based simulation
initial conditions. Our analysis showed that additional enstrophy is
later generated by baroclinic motions resulting from shocks during
the cluster evolution. The generated enstrophy is amplified by com-
pressive and stretching motions. Enstrophy, in association with the
turbulence, is dissipated on small scales, just as its turbulent kinetic
energy. This turbulent energy contribution contributes substantially
to heating of the ICM. Our tracer analysis showed that there is
a clear sequence of cluster formation events that lead to strong
amplification and decay of enstrophy. During merger events we ob-
served first an increase in the compressive source term, indicating
that compression that is mostly connected to shocks is amplifying
the enstrophy. Around the same time the baroclinic source term is
growing as well, supporting the connection to shocks, and addi-
tional enstrophy is generated. Following these two developments
the enstrophy reaches its maximum and then starts to decay again.
From the previous discussion and results in App. B, we see that
the enstrophy dissipation rate increases strongly as the enstrophy
increases (Fdiss ∝ ε3/2), so once Fbaro and Fcomp, which are the pri-
mary solenoidal turbulence drivers, diminish, the dissipation rate
overwhelms even a strong Fstretch source and ε decays along with
the solenoidal turbulent energy.

In order to obtain a more quantitative view of the dynamical im-
portance of each source term over time, we computed the effective
and individual evolutionary time of the source terms. Throughout
the whole cluster history, the stretching source term has on aver-
age the shortest evolutionary (the fastest enstrophy amplification)
time with tstretch < 103 Myr and therefore enstrophy amplification
is largely controlled by stretching. This seems natural as vortex
stretching and energy dissipation are independent of the fluid vis-
cosity, e.g. the dissipative anomaly, in incompressible turbulence.
On the other hand, the compressive and baroclinic evolutionary
times range between tbaro, comp > 103 Myr during most of the cluster
lifetime making them weak compared to the stretching source term.
They only become competitive, when they are tbaro, comp < 103 Myr
during dynamical events when shocks and other compressions are
strong, such as during mergers. This is consistent with our results
that the stretching motions are dynamically most important for the
evolution of turbulence in galaxy clusters. Yet, baroclinic motions
are needed to initially generate turbulence and compressive motions
are, once they are acting, a strong booster for enstrophy. The above
results are consistent for all clusters that we examined.

The enstrophy dissipation rate peaks when the enstrophy peaks, as
already noted. This situation also corresponds to the most rapid am-
plification of ICM magnetic field and, quite possibly, the peak rate
of turbulent acceleration of cosmic rays (see Brunetti & Jones 2014,
and references therein). In the case of magnetic fields, using mag-
netic field behaviours from existing MHD turbulence simulations
we estimated peak ICM magnetic field strengths ∼μG in our sim-
ulated clusters, consistent with estimates from current radio obser-
vations (e.g. Govoni et al. 2010).

As a final remark, we notice that the study of the internal dynamics
of gas substructure is very relevant to model high-resolution X-ray
observations of groups falling on to larger clusters (e.g. Marke-
vitch et al. 2000; Randall et al. 2008; Eckert et al. 2014; Ichinohe
et al. 2015; De Grandi et al. 2016) and their implication to un-
derstand plasma processes in these environments. More work is
also need to investigate the effects of cooling, feedback (e.g. Dolag
et al. 2009) and gas viscosity (e.g. Roediger et al. 2015), which
were not included in this work.
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Brüggen M., Vazza F., 2015, in Lazarian A., de Gouveia Dal Pino E. M.,

Melioli C., eds, Astrophysics and Space Science Library, Vol. 407, Mag-
netic Fields in Diffuse Media. Springer-Verlag Berlin, p. 599

Brunetti G., Jones T. W., 2014, Int. J. Mod. Phys. D, 23, 30007
Brunetti G., Lazarian A., 2007, MNRAS, 378, 245
Bryan G. L. et al., 2014, ApJS, 211, 19
Colella P., Woodward P. R., 1984, J. Comput. Phys., 54, 174
De Grandi S. et al., 2016, A&A, 592, A154
Dolag K., Borgani S., Murante G., Springel V., 2009, MNRAS, 399, 497
Eckert D. et al., 2014, A&A, 570, A119
Gotoh T., Fukayama D., Nakano T., 2002, Phys. Fluids, 14, 1065
Govoni F. et al., 2010, A&A, 522, A105
Ichinohe Y., Werner N., Simionescu A., Allen S. W., Canning R. E. A.,

Ehlert S., Mernier F., Takahashi T., 2015, MNRAS, 448, 2971
Khatri R., Gaspari M., 2016, MNRAS, 463, 655
Komatsu E. et al., 2011, ApJS, 192, 18
Kritsuk A. G., Ustyugov S. D., Norman M. L., 2017, New J. Phys., 19,

065003
Landau L., Lifshitz E., 2013, Fluid Mechanics, No. Bd. 6. Elsevier Science,

Oxford
Markevitch M. et al., 2000, ApJ, 541, 542
Mee A. J., Brandenburg A., 2006, MNRAS, 370, 415
Mendygral P. J., Jones T. W., Dolag K., 2012, ApJ, 750, 166
Miniati F., 2015, ApJ, 800, 60
Miniati F., Beresnyak A., 2015, Nature, 523, 59
Pan L., Padoan P., Haugbølle T., Nordlund Å., 2016, ApJ, 825, 30
Pinto C. et al., 2015, A&A, 575, A38
Porter D. H., Jones T. W., Ryu D., 2015, ApJ, 810, 93
Randall S., Nulsen P., Forman W. R., Jones C., Machacek M., Murray S. S.,

Maughan B., 2008, ApJ, 688, 208
Roediger E. et al., 2015, ApJ, 806, 104
Ryu D., Kang H., Cho J., Das S., 2008, Science, 320, 909
Ryu D., Schleicher D. R. G., Treumann R. A., Tsagas C. G., Widrow L. M.,

2012, Space Sci. Rev., 166, 1
Schmidt W., Schulz J., Iapichino L., Vazza F., Almgren A. S., 2015, Astron.

Comput., 9, 49
Subramanian K., Shukurov A., Haugen N. E. L., 2006, MNRAS, 366, 1437
Tormen G., Moscardini L., Yoshida N., 2004, MNRAS, 350, 1397
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Figure A1. Radial density profiles of the clusters at z ≈ 0. The solid lines
give the results of the Eulerian, unweighted grid average and the dashed
lines give the Lagrangian tracer particle-weighted average. The red lines
show the average over all clusters. (A coloured version is available in the
online article.)

APPENDI X A: CLUSTER DYNAMI CS

In Fig. A1, we compare the radial density profiles computed with the
ENZO and CRATER data at z ≈ 0. In light grey we show the profiles for
each cluster, while the red lines show the average of the profiles over
all eight clusters. On the whole the tracers are able to retain the shape
of the ENZO profile. In Fig. A4, we show the M–T relation of each
cluster. The dynamics of the various clusters differ substantially. For
example, IT90_3 hosts a major merger at t ≈ 10.2–10.3 Gyr (z ≈
0.3), while IT90_0 stays very relaxed until the end of the simulation.
Some clusters, e.g. at the end of the simulation IT90_0 or IT92_1
are on the verge of a major merger, thus accreting a lot of mass,
while other clusters, e.g. IT90_1 or IT92_0, are only accreting small
clumps.

The X-ray surface brightness maps of each cluster are shown in
Fig. A2. The cluster centres show an X-ray surface brightness in
the range of LX = 1040–1042 erg s−1 (20 kpc)−2. We show images of
the projected turbulent energy dissipation rate [see equation (12)]
of the clusters in Fig. A3 at z = 0 (t ≈ 13.72 Gyr) in a (6.4 Mpc)3

volume.

Figure A2. Projected X-ray surface brightness along the line of sight of all the clusters of our sample. Each box is of the size ≈(6.27 Mpc)3 with a resolution
of dx ≈ 20 kpc. The red line in the panel of IT90_4 shows the length of 1 Mpc. The red bar shows the length of 1 Mpc. (A coloured version is available in the
online article.)
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Figure A3. Projected turbulent energy dissipation rate along the line of sight of the clusters contained in our sample. Each box is of the size ≈(6.27 Mpc)3

with a resolution of dx ≈ 20 kpc. The red bar shows the length of 1 Mpc. (A coloured version is available in the online article.)

Figure A4. Mass–temperature relation measured in the central (1.44 Mpc)3

of each cluster. The solid lines show the evolution of the major merger
clusters and the dashed lines show the evolution of the clusters without a
major merger. (A coloured version is available in the online article.)

APPENDIX B: SIMPLE MODELS FOR
T U R BU L E N T D I S S I PAT I O N R AT E S

Under the assumption that a turbulent flow with a power-law power
spectrum can be described as isotropic, solenoidal turbulence, it is
possible to express both the kinetic energy dissipation rate, ηd, and
the enstrophy dissipation rate, Fdiss, in forms that do not depend

explicitly on the kinematic viscosity, ν. These provide simple and
convenient means to estimate the dissipation of turbulence in our
simulations, where the viscosity is not well defined.

We start from equation (1), which provides an expression for
dε/dtEuler = ∂ε/∂t obtained from the curl of the compressible
Navier–Stokes equation (Porter et al. 2015). The various physi-
cal contributions to dε/dtEuler; that is, its source terms, are listed in
equations (2)–(6). We focus here on the dissipative source term,

Fdiss = νω · (∇2ω + ∇ × G
)
. (B1)

Ignoring the strain tensor element ∇ × G, whose predominant role
is inside shocks (Porter et al. 2015), we then look for a simple way
to estimate

Fdiss ≈ νω · ∇2ω. (B2)

To obtain estimates of the right-hand side of equation (B2) it is
useful to utilize the Fourier representation of the turbulent motions.
Assuming for simplicity isotropic, Kolmogorov turbulence in the
range [�1, �o], it has been shown by many authors (e.g. Gotoh,
Fukayama & Nakano 2002; Beresnyak 2011, and references therein)
that the turbulent kinetic energy power spectrum can be expressed
in the Fourier domain as

E(k) = Coη
2/3
d k−5/3 = 1

2
v2

k , (B3)

for ko = 2π/�o ≤ k ≤ k1 = 2π/�1, where ηd is the turbulent kinetic
energy dissipation rate (per unit mass) and Co ∼ 1.5 is the so-called
Kolmogorov constant. Given that our intent is primarily to establish
simple scaling relations, it is not critical whether or not the inner
and outer scales in the turbulence are constant across the cluster.
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The standard expression for viscous kinetic energy dissipation is
(e.g. Landau & Lifshitz 2013)

ηd = 2ν
∑
i 
=j

(
∂vi

∂xj

)2

. (B4)

In terms of the Fourier power spectrum, we can then write

ηd = 4ν

∫ k1

ko

k2E(k)dk. (B5)

Applying the form for E(k) in equation (B3) we can then obtain a
relation for the viscosity, ν in terms of quantities defining the tur-
bulent power, namely, Co, ηd and the range of scales characterizing
the turbulence,

ν ≈ 1

3Co

η
1/3
d

k
4/3
1 [1 − ( ko

k1
)4/3]

. (B6)

Similarly,

Fdiss ≈ ν

∫ k1

k0

k2ω2
kdk ≈ 4

5
νεk2

1

1 − ( ko
k1

)10/3

1 − ( ko
k1

)4/3
, (B7)

where ωk = k × vk. Using equation (B6), equation (B7) can be
written as

Fdiss ≈ 1

5

(
4

3Co

)3/2

ε3/2
1 − ( �1

�o
)10/3

[1 − ( �1
�o

)4/3]5/2

−−−−→
�o � �1

∼ 0.17ε3/2 [1 + (5/2)(�1/�o)4/3]. (B8)

In the final expression we assumed Co ≈ 1.5. Evidently, the enstro-
phy dissipation rate is simply Fdiss ∝ ε3/2, scaled by a factor that is
only moderately sensitive to the ratio of the outer and inner turbu-
lent scales, �o/�1. Our empirical estimate for this relation from the
IT90_3 cluster gives Fdiss ≈ 0.35ε3/2, corresponding to �o/�1 ∼ 31.
Combining equations (B4) and (B6) we can also write the turbulent
energy dissipation rate in terms of ε without explicit reference to
the viscosity, ν; namely,

ηd =
(

4

3Co

)3/2 1

k2
1

ε3/2

1 − ( ko
k1

)4/3

−−−−→
�o � �1

∼ 0.02ε3/2�2
1[1 + (�1/�o)4/3]. (B9)

This is also consistent with our empirical estimate for ηd in the
IT90_3 cluster given in equation (12). Note, further, according to
equations (B8) and (B9) that the ratio ηd/Fdiss ∝ �2

1 with a constant
that depends on the ratio of the outer to inner turbulence scales. We
note, finally, that even when the turbulence is not truly Kolmogorov,
these relations can still provide a useful, if approximate, guide to
estimates for the dissipation rates.
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