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Abstract—One of the main challenges in delivering end-to-
end service chains across multiple Software Defined Networking
(SDN) and Network Function Virtualization (NFV) domains
is to achieve unified management and orchestration functions.
A very critical aspect is the definition of an open, vendor-
agnostic, and interoperable northbound interface (NBI) that
should be as abstracted as possible from domain-specific data
and control plane technologies. In this paper we propose a
reference architecture and an intent-based NBI for end-to-end
service orchestration across multiple technological domains. In
particular, we consider the use case of an Internet of Things
(IoT) infrastructure deployment and the corresponding cloud-
based data collection, processing, and publishing services with
quality differentiation. We also report the experimental validation
of the proposed architecture over a heterogeneous OpenFlow/IoT
SDN test bed.

I. INTRODUCTION

Following the recent innovations brought about by cloud
computing and resource virtualization, current advances in
communication infrastructures show an unprecedented cen-
tral role of software-based solutions [1], [2]. In particular,
the Network Function Virtualization (NFV) paradigm fosters
flexible and cost-effective service provisioning by deploying
network functions as pieces of software running on vendor-
independent hardware platforms, bringing the benefits of cloud
computing to network infrastructure management [3]. At the
same time, Software Defined Networking (SDN) decouples
software-based network control and management planes from
the hardware-based forwarding plane, turning traditional ven-
dor locked-in infrastructures into communication platforms
that are fully programmable via a standardized, open, south-
bound interface (SBI) [4]. The joint adoption of SDN and
NFV provides enhanced flexibility to service deployment: the
so-called service chain, i.e., the sequence of network functions
to be applied to data flows exchanged by a given customer (or
set of customers), can be dynamically controlled and modified
over a relatively small time scale, significantly reducing the
management burden compared to traditional networks [5].

End-to-end services provided to customers are typically
delivered across different network administrative and/or tech-
nological domains. Therefore, guaranteeing certain levels of
service has always been a challenging task in multi-domain
environments. This is even more complex in case of services
spanning multiple SDN/NFV domains, because of the more
advanced control features provided by these new paradigms

[6]–[8]. A very critical aspect to achieve unified manage-
ment and orchestration of end-to-end services across multiple
domains is the definition of an open, vendor-agnostic, and
interoperable northbound interface (NBI), through which ap-
plications are allowed to control the underlying heterogeneous
NFV and SDN infrastructures and take advantage of dynamic
service chaining. Although a standard NBI definition is not
available yet, a commonly accepted approach is to adopt a
so-called intent-based interface that allows to declare high-
level service policies rather than specify detailed networking
mechanisms [9].

In this paper we present a reference architecture and define a
related intent-based NBI for end-to-end service management
and orchestration across multiple technological domains. In
particular, we consider the use case of an Internet of Things
(IoT) infrastructure deployment and the corresponding cloud-
based data collection, processing, and publishing services with
quality of service (QoS) differentiation.

In line with the multiple software-defined infrastructure
scenarios foreseen by the 5G initiative, the IoT domain con-
sidered here is inspired by existing work aimed at extending
the SDN concepts to wireless sensor networks (WSNs) [10]–
[12]. The above papers represent important contributions to the
SDN literature as they provide convincing motivations for the
extension of the SDN paradigm to IoT domains. [13] presents
the idea of exploiting the OpenFlow technology to address the
reliability in WSNs, while [14] reports experimental results
showing advantages in using SDN approaches in WSNs.

In this paper, we extend the work in [12] and [15], where
a solution for separating the data and the control plane of
an IoT network is proposed, in order to virtualize the IoT
domain, allowing the IoT controller to program the network
with the aim of guarantee a specific QoS requested by the
consumer. Moreover, the framework has been integrated with
an OpenFlow-based SDN infrastructure. In particular, a het-
erogeneous test bed consisting of IoT, OpenFlow and cloud
domains has been set up and experimental results are reported
in this paper to validate the proposed architecture.

The remainder of the paper is organized as follows. We
propose our reference architecture and define the intent-based
NBI in Sections II and III, respectively. Then we provide
specific examples and technical details related to IoT and
OpenFlow/cloud domains in Sections IV and V. We report the
experimental validation in Section VI, and we finally conclude
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Fig. 1. Reference multi-domain SDN/NFV architecture, specialized for the use case of IoT data collection and related cloud-based consumption.

the paper in Section VII.

II. REFERENCE NETWORK ARCHITECTURE

The reference multi-domain SDN/NFV architecture consid-
ered in this paper is shown in Fig. 1. Although our approach
to intent-based orchestration could be generalized to any
SDN/NFV technology domain, the reference architecture is
specialized for the use case considered here, where data col-
lected from sensor and actuator devices of a software-defined
IoT domain are dispatched across a wired SDN infrastructure
to reach a set of suitable consumers, implemented by means
of virtual network functions (VNFs) and deployed within a
cloud computing domain.

Considering the purpose of our study and the nature of
the orchestration features we are interested in, our reference
architecture is inspired by the ETSI NFV specifications, with
particular reference to the Management and Orchestration
(MANO) framework [16], although our approach considers
an end-to-end service perspective. The rationale behind this
choice is that, on one hand, the proposed architecture has
the advantage to be consistent with the most relevant NFV
standard initiative to date; on the other hand, the architecture
itself can be seamlessly extended to include any further
SDN/NFV domain and technology as part of the underlying
virtualized infrastructure.

Each SDN/NFV domain in Fig. 1 consists of a technology-
specific infrastructure, including:

• data plane components, such as IoT nodes and gateways,
SDN switches, virtual machines running in cloud com-
puting nodes, physical and virtual interconnecting links;
these components provide the network, compute, and
storage resources to be orchestrated;

• control plane components, such as SDN and cloud con-
trollers with related data stores and interfaces; these

components are responsible for proper VNF deployment
and traffic steering across VNFs and domains;

• management plane components, such as Virtualized In-
frastructure Managers (VIMs) specialized for managing
resources in the IoT-based SDN infrastructure, the wired
SDN infrastructure, and the cloud infrastructure; based on
the available implementations, some of these components
could be in charge of multiple domains [17], as in the case
of the SDN/cloud VIM in Fig. 1.

The overarching VNF Manager (VNFM) and NFV Orches-
trator (NFVO) components are responsible for programming
the underlying VIMs and infrastructure controllers in order
to implement and maintain the required service chains in a
consistent and effective way, for both intra- and inter-domain
scenarios. While technology- and domain-specific northbound
(NBI) and southbound interfaces (SBI) are used inside each
domain to efficiently control and manage the relevant compo-
nents, the design of the overarching VNFM and NFVO should
be as technology-agnostic as possible, so that a service chain
to be deployed can be specified by a customer using a high-
level, intent-based description of the service itself. This would
also allow the proposed architecture to be more general and
capable of being extended to different SDN technologies and
domains.

In order to achieve such generality in the high-level man-
agement and orchestration components, we argue that the
act of decoupling service abstractions from the underlying
technology-specific resources should be performed mainly by
the VIMs. Therefore, we extend the concept of interactions
based on intents to the NBI offered by the VIMs, which should
be defined as an open and abstracted interface, independent of
the specific technology used in the underlying domains. This
approach could also allow different administrative domains to
expose only service abstractions without disclosing sensitive
details related to the underlying infrastructures.



III. VIM NORTHBOUND INTERFACE

In general, the definition of an open, vendor-agnostic, and
interoperable interface will foster improved and standardized
procedures for customer service specification to the underlying
multi-domain NFV and SDN platforms. In particular, the
powerful abstraction level offered by an intent-based NBI
allows to specify policies rather than mechanisms, by taking
advantage of formalisms that are close to the customer’s
natural language [9]. Therefore, in our architecture we assume
that some kind of intent-based interface is offered to the
customer by the overarching VNFM and NFVO components.

When a given service request is received, the high-level
management and orchestration functions must convert that
request into a set of suitable service chains and pass them to
the relevant VIMs in charge of the underlying infrastructures
and domains involved in the service composition. Then each
VIM must coordinate the respective controllers in order to:

• verify availability and location in the cloud infrastructure
of the VNFs required to compose the specified service,
instantiating new ones if needed;

• program traffic steering rules in the network infrastructure
to deploy a suitable network forwarding path.

The NBI exposed by the VIMs should allow an abstracted
yet flexible definition of the service chain, without knowl-
edge of the technology-specific details such as devices, ports,
addresses, etc. This means that a request sent to the VIMs
should specify not only the sequence, but also the nature of
the different VNFs to be traversed, which is strictly related
to the service component they implement, as well as other
peculiar characteristics of the service itself, such as quality of
service (QoS) metrics and thresholds. In particular, the NBI
should allow an abstracted representation of the QoS features
for the requested service and the topological characteristics of
each VNF to be applied in the service chain.

A possible definition of the VIM NBI is presented here,
considering the following service and function abstractions.

• A QoS feature is defined in qualitative terms relevant to
the specified service, e.g. guaranteed bit rate or limited
delay.

• A QoS threshold can be specified for the metric of
interest, e.g. a minimum bit rate or a maximum delay
value.

• A VNF can be terminating or forwarding a given traffic
flow. For instance, a deep packet inspection (DPI) func-
tion usually terminates a mirrored copy of a given flow,
whereas a network address translator (NAT) forwards
incoming flows.

• A forwarding VNF can be port-symmetric or port-
asymmetric, depending on whether or not it can be
traversed by a given traffic flow regardless of which
port is used as input or output. For instance, a NAT is
port-asymmetric, because it must receive inbound and
outbound traffic from a port connected to a public and
private network, respectively. A basic IP routing function

can be considered port-symmetric, as it forwards packets
based on the destination address.

• A VNF can be path-symmetric or path-asymmetric, de-
pending on whether or not it must be traversed by a given
flow in both upstream and downstream directions. For
instance, an intrusion detection system (IDS) is typically
path-symmetric, because it needs to analyze packets in
both directions of a given flow. A traffic shaper can
be considered path-asymmetric if it must limit only
outbound traffic.

In order to implement the aforementioned abstractions, we
define a service function chaining template adopting the well-
known JSON format. This template should be coupled with
other deployment templates defined by the ETSI MANO spec-
ifications in order to complete service provisioning. However,
in this work we focus only on the service function chaining
aspects of the NBI. A service chain is therefore defined as
follows:

{
"src": "node_value",
"dst": "node_value",
"qos": "qos_type",
"qos-thr": "qos_value",
"vnfList": [vnf],
"dupList": [dup]

}

where: src and dst represent the endpoint nodes of the
service chain, either global or limited to a given VIM domain;
node_value is a text string that contains a high-level unique
identifier of a node known to both orchestrator and VIMs, e.g.
by means of some form of mapping mechanism as defined
in [9]; qos represents the QoS feature to be provided with
the service chain; qos_type is a text string that contains
a high-level unique identifier of a QoS metric known to both
orchestrator and VIM; qos-thr represents the QoS threshold
to be applied to the specified metric; qos_value is the actual
value assigned to the threshold; vnfList is the ordered list
of VNFs to be traversed according to the specified service;
dupList is the list of VNFs towards which the traffic flow
must be duplicated.

Each VNF is described in terms of its topological abstrac-
tions with the following template:

vnf ::= {
"name": "node_value",
"terminal": "bool_value",
"port_sym": "bool_value",
"path_sym": "bool_value"

} | ε

where bool_value is a text string representing either a
Boolean or a null value, and the ε symbol indicates the
possibility that vnf is an empty element. Considering that
some network functions (e.g., DPI, IDS) require traffic flows
to be mirrored, the (possibly empty) list of VNFs towards
which the traffic flow must be duplicated is specified with the
following template:

dup ::= {"name": "node_value"} | ε



The NBI offered by VIMs can be implemented through the
mechanisms of a REST API, and should provide the following
methods:

• define a new service chain;
• update an existing service chain;
• delete an existing service chain.
These actions are basically in line with the operations

foreseen by the ETSI MANO specifications with reference to
the interface between NFVO and VIM. It is worth highlighting
that the NBI description given above is indeed based on
the concept of intent. QoS metric, VNFs and service chains
are specified in a high-level, policy-oriented format without
any knowledge of the technology-specific details. A non-
intent-based description of a service chain, e.g. using the
OpenFlow expressiveness to steer traffic flows and compose
the network forwarding path, would require the customer to
specify multiple flow rules in each forwarding device for each
traffic direction, involving technology-dependent details such
as IP and MAC addresses, device identifiers and port numbers.

The NBI defined above is used in the next sections to
specify an IoT data gathering service crossing two different
SDN domains and an NFV chain, as per the architecture
in Fig. 1. For the use case considered here, the high-level
QoS features offered by the SDN/NFV platform include “low
latency” and “high reliability” services, with the possibility to
specify a threshold for the relevant metric. Although the above
intent-based NBI definition is common to all VIMs considered
in our use case, the orchestrator must specify different content
for each VIM depending on the specific resources to be
programmed and the specific segment of the service chain to
be deployed in each domain.

IV. IOT SDN DOMAIN

The IoT SDN domain included in the architecture of Fig. 1
is composed of: i) a VIM able to manage components and
resources in the IoT domain; ii) an IoT SDN controller (IoTC),
implementing the software-defined control plane of the IoT
domain; iii) a set of IoT networks, where different devices send
the measured data via multi-hop paths to a coordinator node
that forwards them to the final consumer. Since the different
IoT networks will possibly use different technologies (e.g.,
Zigbee, LoraWAN, 6LowPAN, etc.), each IoT coordinator
will be connected to a specific gateway (GW) in charge of
forwarding data outside the IoT domain.

When a service request is received from the high-level man-
agement and orchestration functions, the IoT VIM gets access
to the IoTC. As shown in the figure, one of the components
of the controller is a database, which stores information about
devices of the different networks, such as how to reach them
(i.e., the IP address of the corresponding GW), the service
provided, and the related QoS feature that could be guaranteed.
The VIM tries to map the incoming request with the resource
knowledge available in the database, in order to select the
proper IoT device(s) to forward the request to. According to
the decision taken, the IoTC will: i) program the selected IoT
network(s) to make sure that the requested QoS would be

guaranteed; and ii) forward the request to the identified GW(s).
More details about the different components are provided in
the rest of this section.

A. The IoT VIM and database

The VIM is capable of handling requests containing either
the particular IoT device to be queried, or a high-level descrip-
tion of the service requested by the customer, together with
some other possible specification related to the QoS (in terms
of reliability or maximum latency). Let us consider the case
of a customer that wishes to periodically collect temperature
values in a given room and monitor them by means of
a processing/publishing service called ServP running as a
virtual function in the cloud domain. Assume that the customer
is interested in having a complete record of the measured
temperature request, thus requiring a high-reliable service.
Then the intent-based request sent to the IoT VIM, expressed
according to the JSON format specified in Section III, could
be as follows:

{
"src": "ServP",
"dst": "Temperature Room X",
"qos": "SR",
"qos-thr": "90%",
"vnfList": "null",
"dupList": "null"

}

In the IoT domain, following the typical IoT device query
approach, src represents the source of the query, that is the
final consumer of the data to be collected. In our example,
this is the processing/publishing service in the cloud. dst
represents the final endpoint of the query, that could be one or
multiple IoT devices. This text string may contain i) a unique
identifier of a specific IoT device, or ii) a high-level intent-
based description of the requested service. The second option
is used in our example above. qos represents the requested
QoS feature either in terms of latency, expressed as data plane
round-trip time (see below), or reliability, that is the probability
of successfully receiving the data from that device. In our
IoT VIM implementation qos may assume the following
values: real time (RT), non real time (NRT), strictly reliable
(SR), and loosely reliable (LR). If needed, the user may also
provide qos-thr, representing either the maximum tolerable
latency or the minimum requested throughput/reliability. In
the example above, SR with a 90% threshold is requested.
Finally, vnfList and dupList are not specified in the
example because we assume that the orchestrator opted for
VNFs located in the cloud domain.

At this point the VIM checks in the database if the destina-
tion the user is looking for is present or not and if the requested
QoS (if any) could be satisfied. In particular, the database
contains an entry per IoT device and each entry includes:

• the unique MAC address (e.g., the IEEE 802.15.4 64-bit
address);

• the corresponding network address (i.e., the short address
used in IEEE 802.15.4 at 16-bit);



TABLE I
EXAMPLE OF QOS VALUES STORED INTO THE IOT DATABASE.

Node ID Service RTT1 R1 RTT2 R2 RTT3 R3

1 Smoke Detector Room X 12 ms 90% 24 ms 95% 36 ms 99%
2 Smoke Detector Room X null null 23 ms 96% 38 ms 98%
3 Light Room X null null null null 34 ms 98%

• the ID of the IoT network the device belongs to;
• the service provided by the device (e.g., temperature

sensor, light sensor, etc.);
• the value and timestamp of the last measurement gathered

from the device;
• the corresponding QoS in terms of latency and reliability:

these values are computed by averaging among different
measurements taken over time.

When the IoTC receives a new measurement from a device,
the data is stored in the database, together with the instant
in which it was received. Once a new request for the same
device arrives the VIM checks the timestamp and decides
if the data should be updated or not (if not the value is
immediately returned). With reference to the QoS, it is im-
portant to underline that in case the same device could reach
the IoT coordinator via different paths (e.g., having different
number of hops), the corresponding QoS values are stored
in the database. A simplified example is reported in Table I,
where we are considering a room having two carbon monoxide
sensors detecting the presence of smoke (devices 1 and 2) and
a light sensor (device 3). Device 1 can reach the coordinator
via three different paths, characterized by 1, 2 or 3 hops, and
different resulting QoS values, namely round-trip time RTTi

and reliability Ri for i hops. Device 2 has two possible paths,
whereas device 3 has only one path. If a user asks for the
level of CO in room X and wants the data in real time, with a
maximum latency (qos-thr) of 15 ms, the VIM will select
device 1 and will notify to the IoTC the topology to be used
to trigger such node in order to guarantee the requested QoS
feature. Once the IoTC receives the request from the VIM,
it will program the IoT network according to the selected
topology.

B. The IoT controller and network

The main functionalities of the IoT controller are: gathering
information from devices, maintaining a representation of the
network and establishing routing paths.

In order to achieve the decoupling of the control plane from
the data plane, it is fundamental that each device can discover a
path toward the coordinator. This is done during the network
initialization, as follows. When the coordinator turns on, it
sends a Hello packet, containing the number of hops from the
coordinator (zero in this case). When a device A receives this
packet it performs the following operations: i) add the source
of the Hello and the received signal strength indicator (RSSI)
in the list of nodes (neighbors table) that are one hop distant
from A; ii) analyze the distance contained in the Hello and the
RSSI of the received message; iii) compare these values to the

corresponding stored values: if the number of hops is lower
and the RSSI is higher, the source of the Hello is elected
as the best next hop toward the coordinator, and the values
stored in A are updated. Hello packets are sent in broadcast by
all devices in order to update neighbors tables. Moreover, the
latter tables are periodically sent to the coordinator using the
best next hop selected in the initial phase, and then forwarded
to the controller to update the database, with the current map of
connected devices. Based on this network representation, the
controller may define paths. In our implementation topologies
are created by assigning to each link a cost having an inverse
proportionality w.r.t. the RSSI and by running a modified
Dijkstra algorithm, where we impose a maximum number of
hops equal to H , and we run the algorithm for different values
of H in order to obtain different topologies, corresponding to
possibly various performance levels in terms of latency and
reliability, as shown in Table I.

Requests coming from the VIM are forwarded by the IoTC
to the proper IoT coordinator, together with the information
about the selected path connecting the coordinator and the
intended device to be setup to guarantee the requested QoS.
This path is then forwarded by the coordinator to all devices
belonging to the route itself (through the transmission of a
packet called Path), in order to update the flow tables at
devices. In case a device receives a packet for handling which
it has no information, a RuleRequest packet is sent through the
route defined in the initial phase to the controller, that after
elaborating it, will reply sending a RuleResponse.

V. OPENFLOW AND CLOUD DOMAINS

In this section we consider both the wired SDN domain and
the cloud computing domain depicted in Fig. 1, assuming that
they are managed by a single SDN/cloud VIM. The data plane
topology assumed for the use case considered in this paper is
shown in Fig. 2. An OpenFlow-based SDN infrastructure is
assumed to be in charge also of the connectivity within the
cloud domain, thus providing programmable traffic steering
functionality to VNF chains. All the switches included in the
topology (s1, s2, . . . , s7) are OpenFlow-enabled devices
and are governed by an SDN controller (e.g., ONOS [18]),
whereas the computing infrastructure is managed through a
cloud platform (e.g., OpenStack [19]).

Switch s6 is an edge device connecting the IoT gateways
in the IoT SDN domain to the cloud network. Router vrl
is the (virtual) edge router of the (virtual) tenant network
responsible for the connectivity within the cloud domain of the
requested IoT data collection service. Switches s1 to s5 are
either physical or virtual switches used by the tenant network
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Fig. 2. Data plane topology of the OpenFlow and cloud domains considered
for the use case.

for VNF connectivity. Two VNFs are deployed in the cloud:
chk performs integrity and sanity check on the collected data
for improved reliability, whereas bck is used to store backup
copies of the collected data. Router vrr is the (virtual) edge
router of the (possibly different) tenant responsible for the IoT
data collection, processing, and publishing services. Switch s7
is a (virtual) switch in the latter tenant’s network, providing
layer-2 connectivity to the server ServP where collected data
are processed and published.

According to the QoS features of the use case considered
here, the connectivity service offers two different paths in the
OpenFlow domain. One path is characterized by minimum la-
tency, where switches are configured with small buffers being
continuously monitored by the SDN controller for possible
congestion, and such that no VNF processing is performed,
which could introduce additional delays. The other path is
dedicated to highly reliable traffic flows, where switches have
large buffers to reduce losses, and data are processed by chk
and duplicated at switch s2 in order to be stored in bck.

Therefore, depending on the QoS feature requested by
the customer, the high level management and orchestration
functions can specify two different service chains. Assuming
that, based on the interaction between the orchestrator and the
IoT VIM, incoming data will be collected from IoT network
k and then forwarded to ServP, according to the JSON
format specified in Section III the intent-based request to the
SDN/Cloud VIM NBI could be

{
"src": "IoT-GW[k]",
"dst": "ServP",
"qos": "Max delay",
"qos-thr": "10 ms",
"vnfList": "null",
"dupList": "null"

}

for the low latency QoS feature, or

{
"src": "IoT-GW[k]",
"dst": "ServP",
"qos": "Reliability",
"qos-thr": "99%",
"vnfList": [chk, bck]

"dupList": [bck]
}

chk ::= {
"name": "chk",
"terminal": "false",
"port_sym": "true",
"path_sym": "false"

}

bck ::= {
"name": "bck",
"terminal": "true",
"port_sym": "null",
"path_sym": "false"

}

for the high reliability QoS feature. The SDN controller must
implement a data plane monitoring service to make sure that,
in the former case, the minimum latency path guarantees the
requested maximum delay of 10 ms, whereas in the latter case
the VNFs inserted in the service chain and the high reliability
path ensure the required 99% accuracy.

We developed the VIM for the SDN/cloud domains as
an application running on top of the ONOS platform. It is
worth to note that ONOS already provides a built-in, intent-
based NBI that can be used to program the SDN domain
and deploy the required network forwarding paths. However,
in order to specify the ONOS intents, some knowledge is
required of the specific data-plane technical details, while in
our approach we prefer to expose only high-level abstractions
to the orchestrator. Therefore, one of the main functions of our
VIM is to implement new, more general and abstracted intents
that can be expressed according to the NBI specification given
above. Then the VIM takes advantage of the network topology
features offered by the SDN/cloud controllers to discover VNF
location in the cloud and relevant connectivity details, and
eventually it is able to compose native ONOS intents and build
more complex network forwarding paths.

The VIM can be instantiated as an ONOS service called
ChainService, which provides the capability of dynamically
handling the VNF chains through the abstracted NBI defined
in Section III. To achieve extensibility and modularity, the
implementation of ChainService is delegated to a module
called ChainManager, which is in charge of executing all the
required steps to translate the high-level service specifications
into ONOS-native intents. The input to ChainManager can
be given through either the ONOS command line interface
(CLI) or a REST API. The latter is preferable because it
allows remote applications to use standard protocols (e.g.,
HTTP) to access resources and configure services. In our
implementation, the REST API provides the following service
endpoints:

POST /chaining/{action}/{direction}
DELETE /chaining/flush

In the former endpoint, the action variable indicates
the operation that the orchestrator intends to perform on a
specified service chain (add, update, or delete), whereas
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in case of an update the direction variable (forth, back,
or both) defines whether the modified chain specification
refers to the existing forwarding path from src to dst, the
opposite way, or both directions. So the basic operations of
this endpoint are as follows:

• If the add action is given, this will result in defining a
new service chain, based on the JSON specification in-
cluded in the message body. This means that a forwarding
path will be created for traffic flowing from src to dst
and another one in the opposite direction. Note that the
two paths are not necessarily symmetric, based on the
topological abstractions defined by the NBI.

• If the update action is given, then the direction is taken
into account and the forward path, backward path, or both
paths of the specified existing service chain are changed.
In fact, a user may be interested in changing only a
segment of the forwarding path and only in one direction,
to reduce the control plane latency and limiting the impact
that a path change can have on the existing traffic flows.

• If the delete action is given, then both forwarding paths
of the specified existing service chain are removed.

ChainService provides also the flush operation through
another endpoint, thus offering the possibility of deleting in
a single step the forwarding paths of all the service chains
previously created.

VI. EXPERIMENTAL VALIDATION

A. Test bed setup

As a demonstration of the feasibility of the multi-domain
SDN/NFV management and orchestration solution proposed
here, we developed a test bed to implement the reference
architecture of the cloud-based IoT data collection service with

quality differentiation illustrated in Fig. 1. The complete test
bed setup, including the components discussed in Sections IV
and V, is shown in Fig. 3. The customer on the top-right
corner requests the service to the high-level management and
orchestration functions, specifying the desired QoS feature.
The orchestrator then forwards the request to the VIM REST
NBIs of the relevant domains using the JSON format described
in the previous sections. Each VIM performs the operations
required in the respective domain and programs the underlying
controllers according to the requested service and QoS feature.
Data generated by the IoT devices are sent by the relevant gate-
way via HTTP POST to the collecting/processing/publishing
server in the cloud, where the customer can retrieve it (the
case of high reliability QoS feature is shown in the figure).

In the test bed, the OpenFlow SDN domain and the cloud
domain were emulated using Mininet running in a virtual
machine [20]. The data plane topology in Fig. 2 was built with
a customized Mininet script specifying the required OpenFlow
switches, as well as routers and VNFs as separated network
namespaces. Additional virtual machines were instantiated to
deploy the data collection/processing server and the ONOS
platform components. In order to provide the two paths
with different latency, chk was configured to introduce an
additional random delay uniformly distributed between 25 and
35 ms, with 25% correlation between consecutive samples.

As far as the IoT domain is concerned, in our implementa-
tion we setup an IoT network using the “European Laboratory
of Wireless Communications for the Future Internet” (EuWIn)
platform and, in particular, the flexible topology test bed
(Flextop) facility [21], [22]. The lab was composed of 53 TI
CC2530 devices, compliant with IEEE 802.15.4 [22] on top
of which our SDN protocol stack was running. Nodes were
located into boxes on the walls of a corridor at the University



TABLE II
AVERAGE RTT AT THE IOT DATA PLANE (DP), CONTROL PLANE (CP)

AND VIM, FOR IOT DEVICES CONNECTED TO THE COORDINATOR ACROSS
1, 2 OR 3 HOPS.

No. of hops RTT at DP RTT at CP RTT at VIM
1 12.6 ms 516.7 ms 522.2 ms
2 26.2 ms 530.2 ms 536.4 ms
3 40.4 ms 545.7 ms 550.5 ms

of Bologna. Thirteen boxes were deployed in the corridor,
and four nodes per box were deployed at fixed positions. The
map with the corresponding identifiers of nodes is shown in
the bottom-right part of Fig. 3, where nodes marked with
circles are those selected for the experiments. In particular,
in the figure we show an example of topology, when setting
H = 3 (maximum three hops to reach the coordinator): nodes
with blue circles were connected via one hop, nodes in green
via two hops, and nodes in yellow via three hops. IoT data
gathered by the gateway were then duplicated and sent to: 1)
the IoTC and then to the IoT VIM; 2) to the Mininet virtual
machine and then to the cloud, from which the user could read
the measured data.

Because of the technological heterogeneity of our test bed,
we were able to directly measure the performance of each
domain separately. However, the results obtained allow us to
reasonably infer the assessment on the end-to-end service.

B. IoT domain performance

We first considered an application where the user asks for
the data measured by each IoT device (that could be at 1, 2
or 3 hops from the coordinator), one by one, and waits for the
reply. In the IoT network, both the request and the reply data
frames have a payload of 10 bytes, and queries were generated
by the user every second. For each query we measured: i)
the RTT at the IoT data plane, that is the interval of time
between the reception of the query coming from the IoTC at
the application layer of the IoT coordinator, and the reception
of the reply from the target node, again at the application layer
of the coordinator; ii) the RTT at the control plane, that is the
interval of time between the reception of the query coming
from the VIM at the IoTC, and the reception of the reply
coming from the intended GW, again at the IoTC; iii) the
RTT measured taking the time stamp at the IoT VIM.

Performance were evaluated by averaging over 10,000
queries generated by the user toward nodes with distance 1
hop, 2 hops and 3 hops. Results are shown in Table II. The
average RTT at the IoT data plane is mainly influenced by
the number of hops, giving latency values in the order of tens
of milliseconds that can be considered acceptable depending
on the required QoS. As for the RTT measured at the control
plane and VIM, results demonstrate that the most significant
contribution depends on the IoTC response time, which is
around half a second, a relatively small value.

It is important to underline that paths in the IoT network
were refreshed periodically and not at every query received.
In particular, in our implementation we sent one Path packet

TABLE III
AVERAGE AND STANDARD DEVIATION OF DATA PLANE (DP) ONE-WAY

LATENCY COMPUTED AT THE EMULATED CLOUD NETWORK.
CORRESPONDING RTT MEASURED AT THE IOT CONTROL PLANE.

QoS feature Average lat. Stdev RTT at IoTC
Min Latency 0.3 ms 0.28 ms 1.8 s

High Reliability 31.7 ms 2.41 ms 1.8 s

per device to be queried (all the nine nodes switched on in
this case) every 250 s. As a result, the control plane RTT
is not constant, but presents some peaks when a new Path
packet is generated. We measured the standard deviation of
such control plane RTT that was equal to 280 ms (considering
all measurements taken).

C. OpenFlow domain performance

We measured the performance within the emulated cloud
network when the customer requested the service specifying
two traffic classes, according to the QoS features offered by the
OpenFlow SDN domain: minimum latency and high reliability.
In this case, one-way latency in the emulated cloud network
was measured by comparing timestamps of each packet cap-
tured at switches s6 and s7. The capture was performed
in the server hosting the Mininet virtual machine, so the
same reference clock was used for the sake of accuracy. The
measurements were made by averaging over 10,000 requests.

Results are reported in Table III in terms of average and
standard deviation of the data plane one-way latency. The
numbers show the correct behavior of the OpenFlow domain
with respect to the requested QoS feature: very limited delays
were measured in the minimum latency case, whereas in the
high reliability case no packet was lost and bck successfully
stored a copy of the entire data set transmitted by the IoT GW.

In the table we also report the RTT measured at the IoT SDN
controller when setting up the complete end-to-end path from
an IoT device to the collecting server in the cloud. With respect
to the values reported in Table II, the significant increase in
the IoTC response time is due to the controller that must
wait for an HTTP OK message from the collecting server
in the cloud before considering the data gathering service as
successfully established. However, such an increased response
time is caused mainly by the IoT GW, a node with limited
processing power that must setup an HTTP session with the
collecting server.

Finally, we measured the NBI response time at the VIM
implemented in ONOS, i.e. the time required by the VIM
to process a JSON service chain specification. To assess the
scalability of the NBI, we generated an increasing number of
requests (from 5 to 200) sent in a batch to the VIM. Each
measured response time was obtained as an average over 20
runs with the same number of requests. Figure 4 shows the
average NBI response time with 95% confidence intervals. The
numbers show that the VIM is very responsive, in the order of
tens of milliseconds. The setup of high-reliable service chains
takes slightly longer than the minimum latency ones because
of the relatively more complex service chain to be processed.



 10

 12

 14

 16

 18

 20

 22

 0  50  100  150  200

S
D

N
/C

lo
u

d
 V

IM
 N

B
I 
R

e
sp

o
n

se
 T

im
e

 (
m

s)

Number of service chain requests

High Reliability
Minimum Latency

Fig. 4. Average NBI response time and 95% confidence interval at the
SDN/cloud VIM with increasing number of service chain requests.

VII. CONCLUSION

In this paper we proposed a reference architecture, inspired
by the ETSI MANO framework, and an intent-based NBI
for end-to-end service management and orchestration across
multiple technological domains. In particular, we considered
the use case of a software-defined IoT infrastructure con-
nected, by means of an OpenFlow-based SDN domain, to
the related cloud-based services. We validated the proposed
architecture over a heterogeneous OpenFlow/IoT SDN test
bed, demonstrating the feasibility of the approach and the
potentials of the NBI. The latency values measured at both
data and control/management planes allowed us to get a
first insight to the performance levels of the overall system,
resulting in reasonable response times for service setup and
QoS requirement satisfaction. Scalability tests on the ONOS-
based VIM also gave promising results. The use case reported
here represents a working example of a more general approach
to properly define high-level interfaces and develop the related
control and management components to unify orchestration
capabilities across multiple SDN/NFV domains.
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