
28 September 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Davoli, G., Cerroni, W., Contoli, C., Foresta, F., Callegati, F. (2017). Implementation of service function
chaining control plane through OpenFlow. IEEE [10.1109/NFV-SDN.2017.8169852].

Published Version:

Implementation of service function chaining control plane through OpenFlow

Published:
DOI: http://doi.org/10.1109/NFV-SDN.2017.8169852

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/618088 since: 2020-12-11

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/NFV-SDN.2017.8169852
https://hdl.handle.net/11585/618088

This is the final peer-reviewed accepted manuscript of:

G. Davoli, W. Cerroni, C. Contoli, F. Foresta and F. Callegati, "Implementation of
service function chaining control plane through OpenFlow," 2017 IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-SDN), Berlin,
2017, pp. 1-4.

The final published version is available online at DOI:

https://doi.org/ 10.1109/NFV-SDN.2017.8169852

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

https://doi.org/
https://cris.unibo.it/
https://doi.org/10.1109/NFV-SDN.2017.8169852

Implementation of Service Function Chaining
Control Plane through OpenFlow

Gianluca Davoli, Walter Cerroni, Chiara Contoli, Francesco Foresta, Franco Callegati
DEI - University of Bologna, Italy

Email: {gianluca.davoli, walter.cerroni, chiara.contoli, francesco.foresta, franco.callegati}@unibo.it

Abstract—This papers describes a proof-of-concept implemen-
tation of the Service Function Chaining Control Plane, exploiting
the IETF Network Service Header approach. The proposed
implementation combines the OpenFlow protocol to control and
configure the network nodes and the NSH method to adapt the
service requirements to the transport technology. The manuscript
shows that the result of this combination is a very general
architecture that may be used to implement any sort of Service
Function Chain with great flexibility.

I. INTRODUCTION

With the recent widespread adoption of virtualization tech-
nologies and network overlays, many network components,
including forwarding devices, servers and applications, have
undergone significant changes. Nevertheless, the way services
are deployed into a network remained substantially unchanged,
impacting the speed at which critical applications can be
deployed, and significantly increasing operational costs for
network operators.

The expression Service Function Chaining (SFC) is gener-
ally used to describe the deployment of composite services that
are obtained from a concatenation, i.e., a chain, of one or more
basic services. In other words, a SFC1 is fundamentally the
series of service functions that a packet or flow must traverse.
Deploying a SFC in traditional infrastructures requires signifi-
cant configuration and management efforts on vendor-specific
appliances. As a consequence, Virtualized Network Func-
tions (VNFs) and the Network Function Virtualization (NFV)
paradigm [1] are attracting the interest of operators because
they promise a decoupling of the logical functionalities from
the underlying hardware, with potential significant reductions
in CAPEX and OPEX. At the same time, the deployment of
SFCs can make use of Software Defined Networking (SDN)
principles for efficient and flexible control and management
purposes [2].

SFC makes use of a service-specific overlay that creates the
required service topology. Therefore SFC inherently defines a
Service Plane, that is an intermediate plane between Appli-
cation and Control Planes. The Service Plane includes all the
processes that allow the infrastructure to provide services to
users and maintains state on those services, relying on Control
and Management Plane functions to suitably program the Data
Plane.

1In this manuscript the SFC acronym will be used to refer to both Service
Function Chaining and Service Function Chain, depending on the context.

Several aspects of SFC are currently being investigated by
the research community. SFC Orchestrators to deploy SFCs
as well as control their activity and make adjustments are
introduced in [3]. The problem of allocating physical resources
to data plane components of a SFC is addressed in [4], while
a solution for the trade-off between optimized performances
and resource cost in SFC deployments is presented in [5].

A very important problem in the implementation of the
SFC Orchestrator arises when the chain spans several network
domains with non homogeneous forwarding technologies. This
problem was addressed by the Internet Engineering Task Force
(IETF) in [6], where it is suggested that the service-specific
overlay can be obtained by applying packet encapsulation.
One option being considered by IETF is the so-called Network
Service Header (NSH) [7], which intends to provide a flexible,
dynamic, and transport-independent SFC solution for the data
plane. The NSH draft focuses on data plane aspects only, and
very little has been said about a possible SFC control plane
solution. To the best of our knowledge, the only document
that attempts to do so is another IETF draft that, at the time
of writing, has already expired [8].

In this paper we propose a possible implementation of a
NSH-aware control plane inspired by the concepts discussed in
[8]. Our approach is based on the use of SDN-like technology
inside NSH nodes and on the adoption of the OpenFlow
protocol for the communication between the SFC Control
Plane and the Service Plane components. We present here the
main idea and a preliminary proof of concept.

The rest of the paper is structured as follows. In Section II
we briefly recall the SFC Architecture. Then, in Section III we
propose our solution for the implementation of SFC Control
Plane functionality. In Section IV we show some experimental
validation of our proposal, before presenting our conclusions
in Section V.

II. SERVICE FUNCTION CHAINING ARCHITECTURE

The SFC architecture introduces some important concepts
that we briefly mention here [6]. The Service Function Path
(SFP) is a specification of the path to be followed by packets
assigned to a certain SFC. It is an abstraction of the sequence
of nodes the packets requiring a given service will traverse.
On the other hand, the SFC encapsulation (SFC-En) always
provides SFP identification and can optionally provide further
information. It is used by the SFC-aware functions to realize
the Service Plane functionalities, but it is not used for packet

forwarding through the underlying network topology. Carrying
the SFC-encapsulated traffic is the task of the chosen network
transport protocol.

The main components of the SFC Service Plane are:
• SFC Classifiers (SFC-Cl), which classify the incoming

traffic based on predefined policies, in order for the flow
to be steered through the required set of network service
functions; the main task for the SFC-Cl is to add the
SFC-En, which is then removed by the last node in
the SFP, or by a SFC-aware function that consumes the
packet;

• Service Functions (SF), which are the basic elements
of a chain, and are responsible for a specific treatment
of received packets; they can act at different levels of
the protocol stack, and they can be implemented either
as virtual elements hosted by a server, or as physical
equipment with specialized hardware; a SF can be either
SFC-aware (i.e., able to act on SFC-encapsulated packets)
or SFC-unaware (i.e., it must receive only packets without
SFC encapsulation);

• Service Function Forwarders (SFF), which are responsi-
ble for forwarding traffic to one or more connected SFs
according to information carried in the SFC-En; they can
also terminate the SFP;

• SFC Proxies (SFC-Pr), which remove and insert SFC-
En on behalf of SFC-unaware SFs, before and after their
action, respectively.

The reference architecture of the SFC Control Plane
(SFC-CP) described in [8] defines the following interfaces to
communicate with Data Plane components:

• interface C1, between SFC-CP and SFC-Cl, used to
manage SFC classification rules in classifiers;

• interface C2, between SFC-CP and SFF, used for
exchanging required information for SFC forwarding
decision-making, collect state information on SFPs, etc.;

• interface C3, between SFC-CP and SFC-aware SF, used,
for example, to collect output information resulting from
the processing of packets in the SF;

• interface C4, between SFC-CP and SFC Proxies, used
to communicate SFC instructions and to retrieve state
information.

The deployment of SFCs must take into account complex
aspects that must be handled carefully, as reported in [9]. Such
aspects include topological dependence, consistent ordering of
SFs, and dynamic SFC classification. Moreover, end-to-end
SFCs are typically deployed across multiple network admin-
istrative and/or geographical domains.

The SFC Architecture can be implemented by making use
of NSH, which defines a Service Plane protocol, specific for
the creation of dynamic SFCs. It provides SFP identification,
transport-independent chaining, and packet-based network and
service metadata. NSH is designed to be easy to implement
across a range of devices, both physical and virtual, including
hardware platforms.

The two most important fields in the NSH header are the
Service Path Identifier (SPI) and the Service Index (SI). The

SPI is a 24-bit integer number assigned to packets by the first
SFC-Cl in the SFP, and all nodes taking part in that SFP must
use the same SPI consistently. The SI, an 8-bit integer number,
is used to identify the location within the SFP. The SI must
be set by the initial SFC-Cl either to its maximum value (i.e.,
255) or to a value related to the length of the SFP, and it must
be decremented by one unit by all SFC-aware SFs and SFC
Proxies the packet traverses in the SFP.

III. OPENFLOW-BASED NSH CONTROL PLANE

The reference scenario for the proposed NSH control plane
is shown in Fig. 1. It is composed of a SFC-CP entity, a pair
of SFC-Cls, an intermediate node serving as both SFF and
SFC-Pr towards SFC-unaware SFs, a SFC-aware SF, and two
SFC-unaware SFs. In our reference implementation we assume
that each Service Plane entity is built around an OpenFlow-
capable switch (OF-S). Then, all SFC entities are intercon-
nected by means of a tunneling technology (e.g., VXLAN)
through an underlying network infrastructure, controlled by
one or multiple network operators through a generic control
plane paradigm. The network infrastructure can use either
SDN or non-SDN control, but this does not matter because the
proposed SFC-CP is separate from the network control plane.
Therefore, service providers and network providers can act
as completely independent entities, each adopting its favorite
control plane approach.

Mapping a SFP to the transport network requires to define
a relationship between a given position in the SFP (i.e., a
SPI/SI pair) and a certain next-hop in the underlying network.
While the former information belongs to the Service Plane, the
latter depends on the network’s topology and technology, as it
must point to an existing location in the underlying network,
typically expressed as an address (e.g., IP or MAC). How
to implement this mapping is not a matter of standardization
and different solutions may be adopted. This paper introduces
a mapping strategy that, to the best of our knowledge, has
not been proposed yet. It is a rather straightforward idea:
mapping the SFP-to-transport relationship onto the ports of
the employed OF-S.

In our implementation, each NSH interface, corresponding
to a specific SPI/SI pair, is bridged to a port on the node’s
internal OF-S. The working principle of the proposed imple-
mentation is the following: through the association of SPI/SI
pairs to ports on a OF-S, it is possible to have the node
acting as a NSH Service Plane component while controlling
it through the OpenFlow protocol from an SDN Controller,
which takes the role of SFC Control Plane entity (SFC-Co)
running applications that enforce Service Plane policies.

The NSH mapping tables are therefore implemented in the
form of flow tables inside the OF-S. As an example, assume
port N of the OF-S is bridged to interface nshM of the node.
Instructing the switch to send traffic out of port N will result
in the node sending NSH-encapsulated traffic out of interface
nshM with the corresponding SPI/SI values. Therefore, de-
pending on what kind of flow rules are installed in the internal
OF-S, a SFC node can be programmed to perform different

SFC Control Plane

SF SF
WEST

C1 / C2 C2 / C4

Legend

: Ethernet : NSH

: generic network

: OF-capable switch

C1 / C2

Service Plane entities

(1) : SFC Classifier / SFF

(2) : SFF / SFC Proxy and SFC-unaware SFs

(3) : SFC Classifier / SFF

(4) : SFC-aware SF

(1) (2) (3)

C3

(4)

(0)

EAST

SF

Fig. 1. Reference scenario: the role of Nodes (1) to (4) is shown in the upper left corner.

Service Plane entity functions. With reference to Fig. 1, the
entities are mapped to the nodes in the following way:

• Node (0) hosts the SFC-Co.
• Node (1) is responsible for adding the NSH tag

to packets coming from WEST hosts and forwarding
NSH-encapsulated packets to the first SFF in the SFP:
in this role, it acts as SFC-Cl. Additionally, this node is
also responsible for removing the NSH tag from packets
assigned to a SFP which ends at Node (1), such as packets
destined to WEST hosts, thus acting as SFF. Following
this approach, the SFC classification is as expressive as
OpenFlow matching is.

• Node (2) is responsible for handling the NSH encapsu-
lation on behalf of SFC-unaware SFs, as well as for for-
warding the NSH-encapsulated packets to the following
SF or SFF in the SFP. In those two tasks, Node (2) acts
as SFC-Pr and SFF, respectively.

• Node (3), similarly to Node 1, acts both as SFC-Cl and
SFF for the traffic exchanged with EAST hosts.

• Node (4) acts as a SFC-aware SF, as it is able to receive
NSH-encapsulated packets from the SFF and process
them, before sending them back to the SFF after updating
the SI.

IV. EXPERIMENTAL VALIDATION

A. Test bed setup

As a proof of concept, we developed a test bed to implement
the proposed solution, based on the reference scenario illus-
trated in Fig. 1. The test bed comprises a total of five Virtual
Machines (VMs) and the interconnecting virtual networks. The
VMs are deployed on a single physical server, and virtual-
ization is managed through libvirt/KVM. All of the involved
VMs run Ubuntu 14.04 LTS. One of them hosts an instance
of the ONOS SDN Controller [10], while the remaining four
VMs implement NSH-capable nodes. The choice of ONOS
as SDN Controller (therefore, in this test bed, as SFC-Co)

is motivated by its availability of Java and REST APIs, as
well as of a well-documented Command Line Interface (CLI)
and Graphical User Interface (GUI), which allow for easier
monitoring of the controller’s activities. However, this choice
does not affect the generality of the implementation.

On each NSH node we installed and enabled the open-
source NSH kernel module [11]. We assigned a SPI/SI pair to
each NSH interface, and mapped each of them to a transport-
level next-hop (i.e., an IP address), instructing the node to
use VXLAN as encapsulation protocol to obtain the overlay
topology. This is equivalent to adding an entry in the NSH-
to-transport mapping table specifying that all traffic addressed
to the endpoint with that SPI/SI should be encapsulated in
VXLAN packets and sent to the specified remote IP address.
Similarly each NSH interface was made aware of the inbound
SPI/SI values it is meant to receive. Thus the mapping was
achieved for outgoing and incoming traffic.

The transport network infrastructure will be traversed by as
many VXLAN tunnels as the number of SPI/SI pairs defined.
Each packet sent out by the VMs over one of their NSH
interfaces will be intercepted by the NSH kernel module and
encapsulated in a NSH/VXLAN packet, obtaining the SPI/SI
pair assigned to the NSH interface. Similarly, when a packet
is received on one of the NSH interfaces, the kernel module
will intercept it and remove the NSH/VXLAN encapsulation,
before handling the packet to the traditional IP forwarding
module of the VM.

As outlined above the NSH nodes were created exploiting
the Open vSwitch bridge (OvS) as internal OF-S, programmed
by the SFC-Co. We attached the previously defined NSH
logical interfaces to the OvS ports. The WEST and EAST
hosts as well as the SFC-unaware SFs were implemented as
logically isolated virtual entities by means of Linux network
namespace technology. We implemented the full set-up de-
picted in Figure 1. As SFC-unaware SFs, we deployed a Deep
Packet Inspector (DPI) and a Traffic Controller/Shaper (TC),

the latter configured with two Layer-2 interfaces (inbound
and outbound). The SFC-aware SF is an Integrity Checker
(IC). The WEST hosts represent users wishing to communicate
with the EAST hosts with different priorities and the following
service policies:

• traffic coming from user WEST1 should be first checked
by the DPI and then copied in the IC;

• traffic coming from user WEST2 should be first checked
by the DPI and then limited in bandwidth by TC.

Therefore, three possible SFCs are needed with their respec-
tive SFPs:

• SFC1, from any WEST user to the destination EAST user,
duplicating the traffic towards the DPI;

• SFC2, from a high-priority WEST user to the destination
EAST user, passing through the IC;

• SFC3, from a low-priority WEST user to the destination
EAST user, passing through TC for bandwidth limitation.

B. Proof-of-Concept validation

We deployed a basic orchestrator (implemented as a script
emulating an orchestrator’s interaction with ONOS) in the
SFC-Co node, which accomplishes the desired dynamic SFC
behavior. The orchestrator installs proactive flow rules in the
OF-S internal to relevant SFC entities, so as to apply chain
SFC1. Then, it waits for any WEST user to start a flow of
traffic towards the destination EAST user. When the flow
starts, the orchestrator starts the DPI, and after a small time
period, it retrieves information from it. If the inspected traffic
contained data from WEST1, the script installs rules applying
SFC2, otherwise, if the traffic contained data from WEST2,
the script installs rules applying SFC3. It should be noted that
traffic flows are steered to a different SFP without stopping
them, thus achieving dynamic SFC.

The WEST-to-EAST throughput measured at the OF-S
within Node (2) while applying the different SFCs is shown in
Fig. 2. At first, SFC1 is applied to traffic from WEST1 (from
t = 8s to t = 20s), then after inspection SFC2 is applied (from
t = 21s to t = 38s). Later on, traffic from WEST2 is subject
to SFC1 (from t = 53s to t = 65s), then after inspection
SFC3 with shaping is applied (from t = 66s to t = 84s). This
outcome proves the correct implementation of dynamic SFC
in our test bed.

V. CONCLUSION

The SFC Control Plane solution proposed in this paper is
based on the SDN paradigm. In particular, assuming SFC
entities that are built around an OpenFlow-capable switch
we can take advantage of SDN’s inherent dynamicity and
programmability also in the Service Plane, while keeping
it independent of the underlying network infrastructure. An
interesting by-product is that network providers and service
providers can adopt completely separate Control Plane so-
lutions. We validated our approach on a test bed emulating
multiple SFC entities interconnected by non-SDN networks
under dynamic chaining scenarios.

0 10 20 30 40 50 60 70 80 90
Time [s]

0

10

20

30

40

50

60

70

80

90

100

110

120

T
h
ro

u
g
h
p
u
t

[M
b
it

/s
]

SFC1

SFC2

SFC3

Fig. 2. WEST-to-EAST throughput measured at the OF-S within Node (2)
while applying dynamic SFC.

ACKNOWLEDGMENT

The authors would like to thank Ms. Chiara Di Nenno, for
her contribution in the development of a shared knowledge on
the NSH Control Plane. This work has been partially supported
by project “GAUChO - A Green Adaptive Fog Computing and
Networking Architecture,” funded by the Italian Ministry of
Education, University and Research (MIUR) under the “PRIN
Bando 2015” program, grant no. 2015YPXH4W 004.

REFERENCES

[1] “Network Functions Virtualisation (NFV); Architectural Framework,”
The European Telecommunications Standards Institute (ETSI), October
2013. [Online]. Available: http://www.etsi.org/technologies-clusters/
technologies/nfv

[2] F. Callegati, W. Cerroni, C. Contoli, R. Cardone, M. Nocentini, and
A. Manzalini, “SDN for dynamic NFV deployment,” IEEE Communi-
cations Magazine, vol. 54, no. 10, pp. 89–95, October 2016.

[3] A. M. Medhat, G. A. Carella, M. Pauls, M. Monachesi, M. Corici, and
T. Magedanz, “Resilient orchestration of Service Functions Chains in
a NFV environment,” in 2016 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), Nov 2016,
pp. 7–12.

[4] M. T. Beck, J. F. Botero, and K. Samelin, “Resilient allocation of Service
Function Chains,” in 2016 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), Nov 2016,
pp. 128–133.

[5] T. Soenen, S. Sahhaf, W. Tavernier, P. Skldstrm, D. Colle, and M. Pick-
avet, “A model to select the right infrastructure abstraction for Service
Function Chaining,” in 2016 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), Nov 2016,
pp. 233–239.

[6] J. M. Halpern and C. Pignataro, “Service Function Chaining
(SFC) Architecture,” RFC 7665, Oct. 2015. [Online]. Available:
https://rfc-editor.org/rfc/rfc7665.txt

[7] P. Quinn and U. Elzur, “Network Service Header,” Internet Engineering
Task Force, Internet-Draft draft-ietf-sfc-nsh-12, Feb. 2017, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-ietf-sfc-nsh-12

[8] M. Boucadair, “Service Function Chaining (SFC) Control Plane
Components,” Internet Engineering Task Force, Internet-Draft draft-
ietf-sfc-control-plane-08, 2016, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-control-plane-08

[9] T. Nadeau and P. Quinn, “Problem Statement for Service Function
Chaining,” RFC 7498, Apr. 2015. [Online]. Available: https://rfc-editor.
org/rfc/rfc7498.txt

[10] ONOS: Open Network Operating System. [Online]. Available:
http://onosproject.org

[11] Network Service Header Linux kernel module implementation. [Online].
Available: https://github.com/upa/nshkmod

