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Abstract

We study the problem of scheduling passenger trains in a highly
congested railway double-track line with the aim of increasing the
number of scheduled trains. A feasible timetable of the trains cur-
rently scheduled in the network is given. Additional trains should be
scheduled to meet the increasing passenger demand. To achieve this
goal, we are allowed to increase the dwelling time of some trains at
some stations, to let them stop at some additional stations and even
to skip a few stops. Thereby, we need to take explicitly into account
the deceleration and acceleration times that are needed by the train
when it stops at a station. This problem integrates the choice of the
train schedule with the choice of the train stops, the latter being usu-
ally made in the Line Planning process. To solve this problem, we
propose a heuristic algorithm, extended from a previous method to
include the new features of the studied application, and show its per-
formance on real-world instances of the Chinese high-speed JingHu
corridor (between Beijing and Shanghai) involving up to 387 trains.

Keywords: Train Timetabling, Skip-stop planning, Heuristic algorithm, Real-
world case study.
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1 Introduction

Railway networks are more and more utilized due to the increase of passenger
demand. Therefore, it is very important to achieve a good utilization of
the infrastructure capacity. Train scheduling (or Train Timetabling) is a
fundamental step to obtain an efficient use of the railway networks. In this
paper, we focus on a real-world application arising in the high-speed JingHu
double-track line (corridor) between Beijing and Shanghai. Since it was put
into operation in 2011, the average increase of passenger volume has been of
about 30% every year. In 2014, more than one hundred million of passengers
travelled along this corridor. With the construction of new high-speed lines
linked to the JingHu corridor, the number of passengers is expected to go
up rapidly. In 2015, more than 300 trains ran every day along the corridor
between 6 a.m. and midnight. However, due to the increasing passenger
demand, especially coming from the linked lines, additional trains need to
be scheduled in this highly congested line. For these additional trains a
desired schedule is given by the operator, even though it can be changed
(e.g. by changing the desired departure time from the origin station). When
planning the new train schedule, the existing timetable can be changed by
increasing the dwelling time of some trains at some stations, stopping them
at some additional stations and even skipping a few stops, but for each train,
a maximum number of stops that can be cancelled is imposed. The goal is
to maximize the number of scheduled trains, while changing the desired and
the current schedules as little as possible. Important elements that must be
taken into account consist of the deceleration and acceleration times that
are needed by the train when it stops at a station. Since we are dealing with
a high-speed line in which trains run with a speed of 250 km/h or 300 km/h,
these times cannot be neglected. Furthermore, preliminary computational
experiments showed that simply adding these times to the travel time, even
if the train does not stop at the station, leads to solutions of poor quality.

The studied problem falls in the category of the so-called Non-Periodic
(or non-cyclic) Train Timetabling Problem (TTP), in which the train sched-
ules can be different in different periods of the day, although they are re-
peated every day. We consider a macroscopic level of detail of the railway
infrastructure, i.e., we take into account the stations and the tracks con-
necting them, but neglect the details on train routing inside stations or
at junctions. Several real-world constraints are imposed in our application:
headway times must be respected between consecutive trains along the same
track, station capacity (computed as maximum number of trains that can
be present at the same time in a station) must be satisfied, overtaking can
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only take place at stations (since the trains are assumed to travel on one
track from Beijing to Shanghai, and on the other track from Shanghai to
Beijing), minimum travel times, based on the train speeds, and minimum
dwelling times must be respected. In addition, no train can run between
midnight and 6 a.m. due to maintenance operations that completely block
the corridor. Furthermore, we need to consider the constraints related to
the changes that we can apply to the existing timetable and to the desired
schedules: there is a maximum global amount of additional dwelling time
(maximum stretch) that can be used by each train, and the departure time
of a train from its origin station can be changed earlier or later up to a given
maximum shift .

1.1 Related Works

A huge amount of research has been done on the TTP. In the following, we
describe the works that are more related to the studied problem, and refer
the interested reader to the surveys by Bussieck et al. [1997], Cordeau et al.
[1998], Törnquist [2006], Caprara et al. [2007], Lusby et al. [2011], Caprara
et al. [2011], Cacchiani and Toth [2012], Cacchiani et al. [2014], and to the
tutorials by Harrod [2012] and Cacchiani et al. [2015] for a more compre-
hensive overview on timetable planning, robust planning and rescheduling.

Most of the works that study which stops can be skipped and which
should be kept (stop-skipping pattern) concern the Line Planning Problem
(Schöbel [2012]) that determines, based on the passenger origin-destination
demand, the train stopping pattern, the frequency, and the scheduling of
the passenger train lines, but does not determine the train timetables (see
e.g. Jamili and Aghaee [2015], Chang et al. [2000] Fu et al. [2015]). How-
ever, some recent works deal with the possibility of skipping stops while
scheduling trains. In Niu et al. [2015], the goal is to minimize the passenger
waiting times by adjusting the existing train timetables for a rail corridor
with given time-varying origin-to-destination passenger demand matrices.
A quadratic integer programming model is proposed: it takes as input the
skip-stop patterns and determines the train schedule, in order to minimize
the total waiting passenger times at the stations, while taking into account
constraints on train capacity, headway times, departure and dwelling times.
The model is reformulated to be expressed in GAMS and tested on an in-
stance of the Shanghai-Hangzhou line in China, which comprises 9 stations
and 73 trains. In Yang et al. [2016], the combination of optimizing the
train scheduling and the train stop planning is considered. The goal is
to minimize the total dwelling time and the total time difference between
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the actual and the preferred departure times from the origin station for all
the trains. A Mixed Integer Linear Programming model is proposed: it
uses time variables to express the departure and arrival times of the trains
from/at the stations, binary variables to represent the train sequence and
additional binary variables to allow for the choice of stopping or not at a
station. Constraints are imposed to satisfy time windows at the departure
stations, headway and dwelling times, passenger demand at each station
over the entire planning horizon, and minimum number of stops at each
station. The times spent by the train for accelerations and decelerations are
not considered, i.e., the speed of trains of the same type is a constant on
each railway section. Every train is assumed to travel from the same origin
station to the same destination station. The model is formulated in GAMS
and tested on a real-world instance of the year 2014 with 38 trains traveling
on the Beijing-Shanghai high-speed corridor, and on additional instances
with up to 96 trains, by considering fixed or free order of the trains from
the initial station. In Yue et al. [2016], Integer Linear Programming models
and a column-generation-based algorithm are proposed to simultaneously
consider the train service plan and the train schedule. The authors assume
that the travel time includes the acceleration and deceleration times. The
decision variables correspond to the stopping patterns, specifying at which
stations each train stops, and the stopping times, specifying how long each
train stops at the intermediate stations. The goal is to maximize the total
profit of all the trains, where the profit of each train takes into account a
penalty for the global stopping time and a penalty for the number of stops
of the train. The constraints impose a minimum number of trains travelling
between given pairs of stations, require to respect minimum and maximum
dwelling times at the stations (if the train stops), headway times, station
capacity and overtaking constraints (the latter turn out to be not relevant
for the considered case study). A column-generation based algorithm is pro-
posed, in which each variable corresponds to a train trajectory. The models
and the algorithm are tested on the Beijing-Shanghai high-speed corridor
with 220 trains. The results show that the profit increases by 30%, with a
reduction of the average number of stops from 7.1 to 2.8.

We show in Table 1 a comparison of the problem studied in this work
with those studied in the literature. With respect to the described works
that integrate timetabling and stop planning, we identify some relevant dif-
ferences that appear in our application. First of all, Niu et al. [2015] and
Yang et al. [2016] consider different objective functions, while the objective
of Yue et al. [2016] is more similar to ours, even though not the same: in-
deed, our main goal is to maximize the number of scheduled trains while
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paper goal constraints acc/dec inst. size
Niu et al. [2015] min passenger passenger demand yes 73 trains

waiting times train capacity
min headway

min/max dwelling
dep time windows

Yang et al. [2016] min total dwelling passenger demand no 96 trains
time and min headway

total difference min dwelling
between timetables min #stops station

dep time windows
Yue et al. [2016] max profit: min #trains station no 220 trains

penalize stop time min headway
and #stops min/max dwelling

station capacity
overtaking

This work max profit: max canc stops yes 304
max #trains min headway +83 trains
penalize shift, min/max dwelling

stretch, skip-stop station capacity
overtaking

dep time windows
maintenance

Table 1: Comparison with works that integrate timetabling and stop plan-
ning.

avoiding stop cancellations (and other changes to the timetable), while in
Yue et al. [2016] the goal is to maximize the total profit reduced by penalties
for the stopping times and for the number of stops of each train. Both Niu
et al. [2015] and Yang et al. [2016] consider instances smaller than those
considered in our real-world case study. The instance used in Yue et al.
[2016] contains 220 trains: this is a large instance, but we deal with a more
congested setting, since we start with a timetable that already contains more
than 300 trains on the same corridor. In addition, acceleration and deceler-
ation times are directly summed to the travel times in Yang et al. [2016] and
in Yue et al. [2016], while taking them explicitly into account significantly
complicates the problem tackled in our application. While both Niu et al.
[2015] and Yang et al. [2016] take explicitly passenger demand into account,
in Yue et al. [2016] it is imposed that a minimum number of trains must
serve the passenger flow from an origin station to a destination station, ac-
cording to the train service plan. In our work, we do not explicitly consider
passenger demand but impose, for each train, a maximum number of stops
that can be cancelled: this number can be different for different trains and
can also be set to 0, according to the passenger demand at each station. In
addition, stop skipping is penalized. A discussion on passenger demand for
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the JingHu line is presented in Section 2.
The problem of inserting additional trains given an existing timetable

has been considered in several works. In Ingolotti et al. [2004], the goal
is to add new trains on a heterogeneous heavily loaded railway network,
minimizing the travel times of the new trains. Constraints to respect de-
parture time windows, minimum stopping times at stations, headway times,
precedences between trains, and station capacity are imposed. The authors
propose a sequential heuristic algorithm to schedule the new trains, and
test it on instances of the Spanish Railways. In Flier et al. [2009], the
risk of train delays when adding a new train to an existing timetable is
predicted, by using a series of linear regression models on the basis of ex-
tensive real-world delay data of trains. These models are integrated into
a combinatorial shortest path model to compute a set of Pareto optimal
train schedules with respect to risk and travel time. They test the proposed
model on instances of the Swiss Federal Railways. In Burdett and Kozan
[2009], the problem of scheduling additional trains is represented as a hybrid
job shop scheduling problem with time window constraints, and formulated
using a disjunctive graph model. A constructive algorithm and a simulated
annealing procedure are proposed for solving the considered problem. The
test instances were selected to be indicative of real life applications. First
the construction of an existing timetable from scratch is tested, then an ex-
isting schedule is considered and additional train services are inserted, with
the aim of minimizing the changes with respect to the existing schedule.
Finally, the insertion of the additional services is tested subject to the fixing
of the existing services. Cacchiani et al. [2010] consider a European network
with alternative routes and model the TTP by using a time-space graph.
A heuristic algorithm based on the Lagrangian relaxation of a set of com-
plex constraints is proposed. Additional freight trains have to be scheduled
while keeping the timetable of the passenger trains as fixed. In this paper,
we build upon this study, and extend the algorithm proposed in Cacchiani
et al. [2010] to additionally consider the possibility of skipping stops and
to take into account acceleration and deceleration times (instead of having
fixed travel times between consecutive stations). As we will explain in Sec-
tion 3, these additional features make the problem solving more difficult,
and several changes need to be performed. In Tan [2015], the problem of
adding trains to a cyclic timetable is studied. The initial timetable is cyclic,
but the possibility to change it to a non-cyclic timetable is considered. Ad-
ditional trains need to be scheduled according to a given frequency, but a
tolerance to deviate from the periodicity is allowed. The author proposes an
event-activity network to model the problem. Many real-world constraints
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are taken into account: minimum and maximum travel and dwelling times,
connections, headway times, departure time windows, acceleration and de-
celeration times, and station capacity. Various objectives are considered,
such as the minimization of the travel times of the additional trains, the
minimization of the adjustments to the initial train schedules, and the max-
imization of the robustness of the new timetable. In addition, the study is
extended to deal with the integration of the train-unit circulation problem
with the problem of scheduling additional trains. The proposed models are
tested on real-world instances of the Shanghai-Hangzhou line, which includes
9 stations and 159 trains. The results show that up to 20 additional trains
can be scheduled. This work shows some similarities with our application;
however, train stop planning is not considered, and the initial timetable is
cyclic. A preliminary version of this paper has been presented in Cacchiani
et al. [2016b]. In that work, we considered one of the real-world instances
used in this paper, but we neglected both the station capacity and the accel-
eration/deceleration times, i.e., we dealt with (minimum) fixed travel times
between consecutive stations. An iterative heuristic algorithm, based on a
two-phase approach, was proposed: the first phase was devoted to schedule
additional trains, while the second phase was used to improve the regular-
ity of the timetables, i.e., to define a schedule with regularity in the train
frequency at the main stations. We here focus only on the first objective,
as we want to keep the focus on the main goal of maximizing the number of
scheduled trains.

Other approaches originally developed for the TTP could also be adapted
to tackle the problem of scheduling additional trains. Among the most suc-
cessful and recent ones we mention D’Ariano et al. [2007], Liebchen [2008],
Kroon et al. [2009], Bešinović et al. [2016], Lamorgese et al. [to appear].

1.2 Contributions

The main contributions of this paper are the following ones:

1. a real-world application is studied, that incorporates difficult aspects
that are studied separately in the existing literature (see Section 1.1):
indeed, the studied application combines train scheduling (and the in-
sertion of additional trains) with the possibility of adding and/or skip-
ping stops, while taking explicitly into account acceleration/deceleration
times;

2. a Lagrangian-based heuristic algorithm, extended from the method
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presented in Cacchiani et al. [2010] to deal with the additional real-
world features, is proposed;

3. real-world instances of the JingHu line are tested in different settings,
showing the effectiveness of the proposed algorithm both in improving
the existing timetable and in scheduling additional trains.

To highlight the contributions of this work, we provide the differences of
the objectives (in Table 2) and the constraints (in Table 3) of the problems
studied in this work and in the previous works we build upon. In Table 2,
we show that the goal of Caprara et al. [2002] was to change the desired
timetables of a given set of trains as little as possible: this was obtained by
penalizing shift and stretch changes. In Cacchiani et al. [2010], the goal was
to maximize the number of scheduled trains, while minimizing the changes
to the desired timetables. However, none of the two works considered the
possibility of skipping stops. In this work, we investigate this possibility:
thus, an additional goal is to penalize the stop cancellations.

paper max #trains shift pen stretch pen skip-stop pen
Caprara et al. [2002] no yes yes no

Cacchiani et al. [2010] yes yes yes no
This work yes yes yes yes

Table 2: Comparison on the objectives with previous works.

All the constraints considered in this work are listed in Tables 3: a depar-
ture time window (dep), minimum headway times (hw), minimum dwelling
times (dw), minimum travel times (tr), maximum shift (sh) and maximum
stretch (str) must be respected; the maximum station capacity and the main-
tenance schedule (maint) must be satisfied; the maximum number of stops
(canc) that can be cancelled is taken into account for each train. As it can
be seen, both Caprara et al. [2002] and Cacchiani et al. [2010] neglect some
of the considered constraints.

paper dep hw dw tr ov sh str cap maint canc
Caprara et al. [2002] yes yes yes yes yes yes yes no no no

Cacchiani et al. [2010] yes yes yes yes yes yes yes no no no
This work yes yes yes yes yes yes yes yes yes yes

Table 3: Comparison on the constraints with previous works.

Finally, in Table 4, we report the features considered in each of the
works: the possibility of scheduling additional trains in a network where
some trains are already planned, of rerouting trains, of skipping stops and
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of taking into account acceleration and deceleration times. As it can be
seen, the two latter features are not present in Caprara et al. [2002] and
Cacchiani et al. [2010]. Note that we do not consider rerouting in this work,
as we do not deal with a network but with a double-track line.

paper add trains rerouting skip-stop acc/dec
Caprara et al. [2002] no no no no

Cacchiani et al. [2010] yes yes no no
This work yes no yes yes

Table 4: Comparison on the considered features with previous works.

The main difference lies in considering skip-stop planning in the construc-
tion of the timetables. Indeed, this feature was not considered in Caprara
et al. [2002] nor in Cacchiani et al. [2010]. It affects the objective function
(that takes into account a penalty for skipping stops) and the constraints.
By allowing the possibility of skipping stops, acceleration and deceleration
times must also be taken into account, while fixed travel times were con-
sidered in Caprara et al. [2002] and Cacchiani et al. [2010]. To model the
problem including these two additional features, the graph representation
has been modified, as will be explained in Section 3.1, and the overtaking
constraints become more complex (see Section 3.2). The latter constraints
need to be relaxed in two steps to deal with the increased complexity (see
Section 3.3). Finally, in order to embed skip-stop planning together with
acceleration and deceleration times in the Lagrangian-based heuristic, a dy-
namic programming algorithm has been developed, that includes an addi-
tional condition to decide whether or not to stop at each station, as will be
illustrated in Section 3.4. Compared to the works we build upon, we have
combined skip-stop planning with timetabling, by simultaneously consider-
ing acceleration and deceleration times, and have extended the model and
the methodology to tackle these new aspects.

The paper is organized as follows: in Section 2 we report a formal descrip-
tion of the studied problem; Section 3 first describes a graph representation
for the problem and explains how to handle some classes of constraints when
acceleration and deceleration times must be considered, and then presents a
heuristic algorithm to solve the problem. In Section 4, we report computa-
tional results on real-world instances. We conclude summarizing our work
in Section 5. Finally, in the Appendix, we present an example to illustrate
the main steps of the proposed algorithm.
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2 Problem Description

We consider a double-track line represented as a sequence of stations or
important points where trains can stop. Each train travels along a track
in one direction, and trains can interact at stations. Let S = {1, . . . , ns}
be the set of stations. Each station is characterized by a capacity cs, which
corresponds to the number of platforms available at station s ∈ S, and by the
minimum departure and arrival headway times ds and as, respectively, that
two consecutive trains departing from or arriving at station s in the same
direction must respect for safety reasons. We consider a planning horizon
H of one day, discretized in time units (e.g. in minutes). More precisely,
since no train can run between midnight and 6 a.m. due to maintenance
operations that completely block the corridor, we consider a time horizon
H̄ ⊂ H as the planning horizon and avoid trains to be scheduled outside
H̄. A set T = {1, . . . , nt} of existing trains are scheduled to travel along
the line, in both directions, according to the current timetable. For each
train t ∈ T , a timetable, containing the departure time of train t from its
origin station, the arrival time at its destination station, and the arrival
and departure times at each intermediate station visited by train t, is given.
This is the current timetable that has been defined by the operator. From
this timetable, we know the subset of stations at which train t stops and
the subset of stations through which the train travels without stopping. A
minimum dwelling time dwts at each station s ∈ S (equal to 0 if train t
does not stop at s) is also known. Note that the stopping time of train t at
station s in the current timetable can be larger than dwts. In this case, we
say that the train has undergone a stretch, i.e., it has a stop longer than the
minimum required one. This can happen, for example, if the operator has
imposed a longer stop to allow an overtaking. In addition, for each train
t ∈ T , we are given its minimum travel time ls1,s2t between each pair (s1, s2)
of consecutive stations (s1, s2 ∈ S) visited by t, and the acceleration acct
and deceleration dect times that are needed if the train stops at a station.
Every train must accelerate from its origin station and must decelerate at its
destination station. At every station at which the train stops, it has both to
decelerate before the stop and to accelerate after the stop. When the train
does not stop at a station, we consider that it travels at its maximum speed,
i.e., we do not allow travel times longer than the minimum ones.

Beside the existing trains in the current timetable, we are also given a
set Tnew of new trains that we would like to schedule along the double-track
line. For each train t ∈ Tnew, we are given its origin station, its destina-
tion station, the set of stations at which the train should stop, with the
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corresponding minimum dwelling times, the minimum travel times between
each pair of consecutive stations visited by the train, the deceleration and
acceleration times that are needed if the train stops at a station, and a de-
sired departure time from its origin station. Note that, since we know, for
each train in Tnew, a desired departure time from the origin station, and the
minimum dwelling and travel times, we also know its desired schedule.

The main goal of the studied application is to schedule as many trains as
possible, but we also want to take into account the changes that are applied
to the current timetable and to the desired schedules, and perform as few
changes as possible. For each train, the allowed changes are the following
ones: (i) to increase the dwelling time of the train at one or more visited
stations, (ii) to stop the train at one or more additional stations (where it
was not planned to stop), (iii) to skip one or more stops of the train; (iv) to
change the departure time of the train from its origin station within a given
departure time window. Note that, by increasing the dwelling time of a train
at an intermediate station or by skipping the associated stop, the departure
time of the train from the station is also changed. These changes are subject
to limits, so as not to change the existing schedules too much, and possibly
follow the desired schedules for the new trains. In particular, for each train
t ∈ T ∪ Tnew, we are given the global maximum stretch maxstrt that the
train can undergo, i.e., the maximum global increase of the stopping time
throughout the train path: this limits the increase in the dwelling times, and
is imposed to avoid “very long” stops at the stations, which make the global
passenger travel time longer. Note that, as mentioned above, existing trains
t ∈ T can already be subject to a stretch in the current schedule: in this
case, the maximum stretch maxstrt is referred to the allowed additional
stretch that we can apply. Stop skipping is seen as a significant change:
therefore, it is highly penalized and, for each train t ∈ T ∪Tnew, a maximum
non negative number maxcanct of stops that can be cancelled is imposed.
Finally, we are allowed to shift (i.e. to anticipate or postpone) the departure
time of a train from its origin station, but a maximum change maxsht, for
each train t ∈ T ∪ Tnew, is allowed.

In order to apply as few changes as possible to the existing and to the
new schedules, each change is assigned a penalty, and each train is assigned
a profit that is decreased if a change occurs in its schedule. For each train
t ∈ T ∪Tnew, a profit pt is given, where pt is a large positive number so that
it is always favorable to schedule train t, if a feasible schedule exists, as our
main goal is to maximize the number of scheduled trains. In particular, we
consider a higher profit value for the existing trains and a lower value for
the new trains, so as to reduce the changes to the current schedule. The
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following penalties are considered for each train t ∈ T ∪ Tnew: a penalty
pstrt for each time unit of stretch, a penalty pskipt for skipping a stop and
a penalty psht for each time unit of shift. The goal is to maximize the sum of
the actual profits of the scheduled trains, which take into account the listed
penalties, so as to schedule as many trains as possible, and to minimize the
changes to the existing and to the desired schedules.

The volume of passengers traveling along the JingHu line is very large
and is increasing from 2011, especially due to the newly built linked lines.
Since the passenger demand is very large, we do not explicitly take it into
account in the problem, as the main goal is to schedule as many additional
trains as possible. Recall that we are allowed to cancel stops in order to
schedule additional trains, but a limit maxcanct is imposed on the maxi-
mum number of stops that can be cancelled for each train t, and stop can-
cellation is highly penalized (through the parameter pskipt) in the objective
function. In this way, we can control the trade-off between stop-skipping
and scheduling of additional trains, even though the passenger demand is
not explicitly considered. Note that maxcanct can be set to 0 for selected
trains t ∈ T ∪ Tnew, if stop-skipping is not allowed for them.

We refer the reader to the following recent works that consider passenger
demand oriented metro or train scheduling and rescheduling: Canca et al.
[2016], Peer et al. [2016], Sels et al. [2016], Robenek et al. [2016], Zhou and
Teng [2016], Gao et al. [2016], Yin et al. [2016], Li et al. [2017], Yin et al.
[2017].

3 Solution Method

We modify the method proposed in Cacchiani et al. [2010] to deal with the
possibility of adding or removing stops and to take explicitly into account
acceleration and deceleration times. In this section, we present the main
changes that have been performed to extend this method.

3.1 Graph Representation

To represent the problem described in Section 2 we adopt a time-space
directed multigraph G = (V,A) that is very commonly used for non-periodic
TTP: see e.g. Caprara et al. [2002], Caprara et al. [2006], Cacchiani et al.
[2010] and Cacchiani et al. [2016a]. In these works, however, for each train,
the travel times between consecutive stations are considered as fixed, and
it is not allowed to skip stops. We here describe the graph structure and
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how it is extended to deal with acceleration and deceleration times as well
as stop skipping.

Set V contains departure nodes and arrival nodes: each node represents,
respectively, a time instant of departure or arrival of a train from/at a sta-
tion. Let R be the set of a mono-directional tracks between two consecutive
stations along the line. Each track is identified by r = (h, i) ∈ R, where h
and i are two consecutive stations in S. The track can be used by trains
travelling from h to i. The set of nodes V is defined as:

V = {σ, τ} ∪
⋃

r=(h,i)∈R

(U(i, r) ∪W (h, r)),

where σ and τ are fictitious source and sink nodes, respectively, U(i, r) is
the set of arrival nodes at station i along track r and W (h, r) is the set of
departure nodes from station h along track r. The set of arcs A is partitioned
into arc sets A1, . . . , A|T∪Tnew|, where arc set At contains the starting arcs,
the travel arcs, the station arcs and the ending arcs of train t ∈ T ∪Tnew. In
particular, a starting arc connects the source node σ to each departure node
of train t from its origin station, a travel arc (that connects a departure node
to an arrival node) represents the travel of a train between two consecutive
stations, a station arc (that connects an arrival node to a departure node)
represents the stop or the passing-through of a train at a station, and an
ending arc connects each arrival node of train t at its destination station
to the sink node τ . For each train t ∈ T ∪ Tnew, set V t contains the set
of nodes that can be visited by train t, based on the values of maxsht and
maxstrt that define the corresponding time windows in each station visited
by the train. In particular, for each train t ∈ T ∪ Tnew, set V t contains
σ, the departure nodes from the origin station of t, the arrival nodes at
the destination station of t, the arrival and departure nodes at/from each
intermediate station visited by t, and τ . Sets V t and At define a subgraph
Gt = (V t, At) for each train t ∈ T ∪ Tnew. We refer the reader to Cacchiani
et al. [2015] for more details on time-space multigraphs for the non-periodic
TTP.

When the travel times are fixed, a single travel arc exists from a de-
parture node at a station to an arrival node at the consecutive station: in
Caprara et al. [2002], Caprara et al. [2006] and Cacchiani et al. [2010], this
arc corresponds to the minimum travel time arc. Beside these arcs, we ad-
ditionally need travel arcs that correspond to the minimum travel time plus
the acceleration time, those that correspond to the minimum travel time
plus the deceleration time, and those that correspond to the sum of all the
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three times. Let a ∈ At be a travel arc representing the travel of train
t ∈ T ∪ Tnew between the two consecutive intermediate stations s1 and s2.
Four cases can occur: (i) train t neither stops at s1 nor at s2: in this case,
a represents the minimum travel time ls1,s2t ; (ii) train t stops at s1 but does
not stop at s2: in this case, a represents the travel time ls1,s2t + acct; (iii)
train t stops at s2 but does not stop at s1: in this case, a represents the
travel time ls1,s2t + dect; (iv) train t stops both at s1 and at s2: in this case,
a represents the travel time ls1,s2t + acct + dect. Note that, when s1 is the
origin station of train t we only consider a travel arc with time ls1,s2t + acct,
while, when s2 is the destination station of train t we only consider a travel
arc with time ls1,s2t + dect.

Standard station arcs, used in Caprara et al. [2002], Caprara et al. [2006]
and Cacchiani et al. [2010] when stop skipping is not allowed, represent the
different stopping time durations at a station: a train t can stop at station s
for the minimum dwelling time dwts or for at most dwts+maxstrt time units.
When stop skipping is allowed, we need to consider, for each intermediate
station s and each train t visiting s, an additional arc that represents the
passing-through of train t at s.

For each train t ∈ T ∪ Tnew, train profits and penalties are associated
with arcs of Gt. Let pta be the profit of arc a ∈ At, t ∈ T ∪ Tnew. In
particular, the train profit minus the shift penalty (psht for each time unit
of shift) is associated with each starting arc from σ to a departure node w
from the origin station of train t: pt(σ,w) := pt − psht ∗ νt(w), where νt(w) is
the shift of train t when it departs from node w. The stretch penalty (pstrt
for each time unit of stretch) is associated with each station arc of station
s ∈ S of duration larger than dwts. The penalty pskipt for skipping a stop
is associated with the station arcs corresponding to a passing-through of
train t without stopping. Therefore, the profit of a station arc (u,w) ∈ At
corresponding to a stop of train t at station s longer than the minimum
dwelling time dwts is defined as: pt(u,w) := −pstrt ∗ µt(u,w), where µt(u,w) is
the stretch of train t along arc (u,w) (i.e., the number of time units above
dwts. The profit of a station arc (u,w) ∈ At corresponding to skipping the
stop at station s is defined as: pt(u,w) := −pskipt. No profit or penalties are
associated with the travel arcs and with the ending arcs.

Minimum travel time constraints, minimum dwelling time constraints,
and maximum shift constraints are imposed directly by the graph defini-
tion. On the contrary, maximum stretch constraints and the acceleration
and deceleration times are handled in the dynamic programming algorithm,
described in Section 3.3. The constraints on the maximum number of stops
that can be cancelled are also handled in the dynamic programming algo-
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rithm, but in a heuristic way: the dynamic programming algorithm checks
that every computed maximum profit path for train t ∈ T ∪ Tnew has at
most maxcanct cancelled stops and, if this is not the case, computes the
maximum profit path without allowing stop skipping. Each feasible path of
a train t in Gt that satisfies all these constraints corresponds to a feasible
timetable for t. When stop skipping is allowed, the minimum dwelling time
constraints become soft constraints, and skipping a stop is penalized in the
objective function.

3.2 Modelling the Problem

We model the TTP as an Integer Linear Programming (ILP) model, by
using graph G and a binary variable xta for each train t ∈ T ∪ Tnew and
each arc a ∈ At that assumes value 1 if arc a is selected in the solution for
train t (and 0 otherwise), as in Caprara et al. [2002] and Cacchiani et al.
[2010]. The main difference with respect to the ILP models proposed in these
works derives from the different time-space graph, described in the previous
section, due to the acceleration and deceleration times. Consequently, the
constraints related to the train travel times, i.e., the overtaking constraints,
need to be modified.

In this section, we first briefly describe the constraints that are modelled
as in the previous papers (and refer the reader to Caprara et al. [2002] and
Cacchiani et al. [2010] for further information), and then explain in detail
the new way to handle the overtaking constraints. Finally, we present an
ILP model for the studied problem.

The headway departure (arrival, resp.) constraints are modelled as fol-
lows: for any time interval with duration shorter than the minimum depar-
ture (arrival, resp.) headway time, we impose to select in the solution at
most one travel arc among all the arcs (of any train) leaving (entering, resp.)
a node that belongs to such time interval. In this way, two consecutive de-
partures (arrivals, resp.) of trains from a station along a track will respect
the minimum departure (arrival, resp.) headway time. To make the for-
mulation of the departure and arrival constraints clear, an auxiliary binary
variable yv is introduced for each node v ∈ V which assumes value 1 if node
v is visited by any train (and 0 otherwise). The capacity constraints are ex-
pressed by imposing, for each time instant of the planning horizon, to select
in the solution at most a number of station arcs (of any train) equal to the
capacity of the station. Note that we also have station arcs corresponding
to the passing-through of a train at a station. The maintenance constraints
can be simply imposed by considering a shorter planning horizon, as ex-
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plained in Section 2. When stop skipping is allowed, the constraints on the
maximum number of stops that can be cancelled are expressed by imposing
an upper bound on the number of stops for which the minimum dwelling
time is not respected. Finally, the constraints on the minimum travel times,
minimum dwelling times and maximum shift are satisfied, for each train,
by its graph definition, while the constraints on the maximum stretch and
the acceleration and deceleration times are directly handled by the dynamic
programming algorithm (see Section 3.3).

The novelty in the problem modelling consists of the overtaking con-
straints. We first show an example to illustrate the overtaking constraints
in the case of fixed travel times, and then we explain how these constraints
have to be changed to take into account the acceleration and deceleration
times. In Figure 1, time grows from left to right. The two horizontal lines
correspond to two consecutive stations s1 and s2 along a track. Departure
nodes from s1 and arrival nodes at s2 are reported on these lines. The ar-
rows correspond to travel arcs with minimum fixed travel times. Arc (w1, v1)
represents the travel of train j from s1 to s2, while arc (w2, v2) represents
the travel of train k between the same two stations. Train j is the “slow”
train, while train k is the “fast” one. Since the two arcs cross, a forbidden
overtaking is occurring between k and j. To avoid it, at most one of the two
crossing arcs can be selected in a feasible solution. In Caprara et al. [2002]
and Cacchiani et al. [2010], the overtaking constraints were strengthened
by inserting, in the same constraint, additional travel arcs corresponding to
further overtakings of trains j and k, and imposing to select at most one
among all these arcs. In particular, let w3 be the first departure time of
train j from station s1 that is feasible with the departure of train k from
s1 at time w2, i.e., the minimum departure headway time between w2 and
w3 is respected. Let w4 be the first departure time of train k such that
the corresponding arrival time v4 at station s2 is feasible with the arrival at
time v1 of train j, i.e., the minimum arrival headway time between v1 and
v4 is respected. The strengthened overtaking constraint imposes to select at
most one arc among all the travel arcs of train j from time w1 up to time
w3 excluded, and of train k from time w2 up to time w4 excluded. Since the
travel times between consecutive stations are fixed, overtaking constraints
are expressed by imposing to select at most one node among the departure
nodes of train j in Wj := [w1, w3), and the departure nodes of train k in
Wk := [w2, w4). In particular, an auxiliary binary variable ztv is introduced
for each train t ∈ T ∪ Tnew and each departure node v ∈ V t which assumes
value 1 if train t visits node v. These variables are defined by equations as
the sum of the corresponding arc variables.
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Figure 1: Example of overtaking constraints in the case of fixed travel times.

When we take into account acceleration and deceleration times, we have
to consider not only the departure node but also the arrival node of each arc,
since the travel times are not fixed anymore. In particular, we must insert, in
the overtaking constraints, any arc of the slow train j that leaves from a node
before time w3 and arrives at or after time v1, and any arc of the fast train
k that leaves from a node after or at time w2 and arrives before time v4, and
select at most one among all these arcs. In the next section, we will explain
how we deal with these constraints in the proposed solution method. Stop
skipping, which was not considered in the ILP models of Caprara et al. [2002]
and Cacchiani et al. [2010], is easily handled by associating a penalty with
the station arcs that correspond to a passing-through and by minimizing
the sum of these penalties in the objective function.

We conclude this section by presenting an ILP model for the stud-
ied problem. Recall that the minimum travel time constraints, minimum
dwelling time constraints, and maximum shift constraints are imposed di-
rectly by the graph definition. Therefore, all these constraints do not appear
explicitly in the formulation. Let δ+

t (v) and δ−t (v) denote the sets of arcs in
At leaving and entering node v, respectively. Let θ(v) be the time instant
associated with a given node v ∈ V and ∆(u, v) := θ(v)− θ(u). We say that
node u precedes node v (i.e., u � v) if ∆(v, u) ≥ ∆(u, v). Analogously, we
will use the notation u ≺ v, u � v, u � v. Let Rt ⊆ R be the set of tracks
visited by train t ∈ T ∪ Tnew.

An ILP model for the considered problem reads as follows.

max
∑

t∈T∪Tnew

∑
a∈At

ptaxta (1)

∑
a∈δ+t (σ)

xta ≤ 1, t ∈ T ∪ Tnew, (2)
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∑
a∈δ−t (v)

xta =
∑

a∈δ+t (v)

xta, t ∈ T ∪ Tnew, v ∈ V t \ {σ, τ}, (3)

ztv =
∑

a∈δ−t (v)

xta, t ∈ T ∪ Tnew, v ∈ V t \ {σ, τ}, (4)

yv =
∑

t∈T∪Tnew:v∈V t
ztv, v ∈ V \ {σ, τ}, (5)

∑
v∈W (i,r):v�w,∆(v,w)<di

yv ≤ 1, i ∈ S, r = (i, h) ∈ R,w ∈W (i, r) (6)

∑
v∈U(h,r):v�u,∆(v,u)<ah

yv ≤ 1, h ∈ S, r = (i, h) ∈ R, u ∈ U(h, r) (7)

∑
t∈T∪Tnew

∑
r∈R

∑
a=(u,v):

u∈U(i,r)∩V t,
v∈W (i,r)∩V t,
θ(u)≤q̄, θ(v)≥q̄

xta ≤ ci, i ∈ S, q̄ ∈ H̄ (8)

∑
r∈R

∑
i∈S

∑
a=(u,v):

u∈U(i,r)∩V t,
v∈W (i,r)∩V t,
∆(v,u)>dwti

(∆(v, u)− dwti)xta ≤ maxstrt, t ∈ T ∪ Tnew (9)

∑
r∈R

∑
i∈S

∑
a=(u,v):

u∈U(i,r)∩V t,
v∈W (i,r)∩V t,
∆(v,u)<dwti

xta ≤ maxcanct, t ∈ T ∪ Tnew (10)

∑
a=(w,v)∈At:
w∈W (h,r)∩V t,
v∈U(i,r)∩V t:
w≺w3,v�v1

xta +
∑

a=(w,v)∈Ap:
w∈W (h,r)∩V p,
v∈U(i,r)∩V p:
w�w2,v≺v4

xpa ≤ 1, t, p ∈ T ∪ Tnew,

r = (h, i) ∈ Rt ∩Rp,
w1, w3 ∈W (h, r) ∩ V t, w2 ∈W (h, r) ∩ V p,

v1 ∈ U(i, r) ∩ V t, v2, v4 ∈ U(i, r) ∩ V p :

w1 � w2, v2 � v1,

(w1, v1) ∈ At, (w2, v2) ∈ Ap,
∆(w3, w2) = dh,∆(v4, v1) = ai

(11)

xta, ztv ∈ {0, 1}, t ∈ T, a ∈ At, v ∈ V t, (12)
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yv ∈ {0, 1}, v ∈ V. (13)

The objective (1) requires to maximize the total profit of all the selected
arcs. Recall the definition of the arc profits given in Section 3.1: the profit
of the starting arcs corresponds to the train profit pt and is decreased if shift
is applied; the profit of the station arcs is 0 if stretch or stop skipping are
not executed along the arc, and is decreased if they are applied. The profit
pt is chosen as a large positive number for every train t ∈ T ∪ Tnew: in this
way, the objective aims at maximizing the number of scheduled trains. In
addition, since the profit is decreased if shift, stretch and/or stop-skipping
are applied, the goal is also to minimize the changes to the existing train
timetables and to the desired timetables for the additional trains.

Constraints (2) ensure to select at most one timetable for each train t,
by imposing to choose at most one outgoing arc from the source σ. We do
not use equality constraints since it might be infeasible to schedule all the
trains. Constrains (3) are flow conservation constraints used to guarantee
that a path is chosen in the time-space graph Gt for train t ∈ T ∪ Tnew.
Constraints (4) and (5) are used to define the auxiliary variables. In con-
straints (6) we define the headway departure constraints. In particular, for
every station i ∈ S and every track r departing from the station, we define
one headway departure constraint for every departure node w ∈ W (i, r),
by imposing to choose at most one departure node v that succeeds w and
whose time distance from w is smaller than the minimum required headway
time di. The headway arrival constraints (7) are defined in a similar way.
Constraints (8) ensure to have at most ci trains simultaneously present at
station i ∈ S, where ci is the capacity of the station. There is one con-
straint for every station and every time instant q̄ in the time horizon H̄.
The constraint requires to select at most ci station arcs (u, v), such that the
arrival time θ(u) at station i is before or equal to q̄ and the departure time
θ(v) from station i is after or equal to q̄, among all arcs reaching station
i from every track. In constraints (9) and (10) we impose, for each train
t ∈ T ∪Tnew, a maximum global amount of stretch and a maximum number
of cancelled stops, respectively. In constraints (9) we consider all the station
arcs that correspond to a stop longer than the minimum dwelling time, while
in constraints (10) we consider all the station arcs that correspond to a stop
shorter than the minimum dwelling time (i.e. to a stop skipping). Finally,
constraints (11) are the constraints to avoid overtaking between a pair of
trains travelling between consecutive stations h and i along track r, when
acceleration and deceleration times are taken into account. We consider two
trains t and p travelling between stations h and i along track r. Train t
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departs from node w1 and arrives at node v1, while train p departs from w2

and arrives at v2, with w1 � w2. Since w1 � w2, v2 � v1, train t overtakes
train p, but this is not allowed, as we are considering one track r between
two consecutive stations. Therefore, we can select at most one travel arc
between (w1, v1) and (w2, v2). To strengthen the overtaking constraints, we
extend them by including additional incompatible arcs. In particular, we
consider w3 as the first departure time of train t from station h that is fea-
sible with the departure of train p at time w2 (∆(w3, w2) = dh), and v4 as
the first arrival time of train p at station i that is feasible with the arrival
at time v1 of train t (∆(v4, v1) = ai). Then, we include in the constraints
all the travel arcs of train t (between stations h and i), such that the train
departs before w3 and arrives at or after v1, and all the travel arcs of train
p (between stations h and i), such that the train departs after or at w2 and
arrives before v4. The variable domains are specified by constraints (12) and
(13).

3.3 Heuristic Algorithm

We generalize the heuristic algorithm proposed in Cacchiani et al. [2010]
to deal with the possibility of skipping stops and to manage acceleration
and deceleration times. The main changes concern the type of relaxation
considered, and the dynamic programming algorithm that is the key element
of the solution method, as it is used for determining both the relaxed and
the feasible solutions.

The heuristic algorithm is based on relaxing the ILP model as follows.
Headway constraints are relaxed in a Lagrangian way: the corresponding La-
grangian multipliers are associated with departure and arrival nodes. Over-
taking constraints concerning a slow train j and a fast train k are relaxed in
two steps. As observed in Section 3.2, these constraints cannot be expressed
by using only departure nodes, as in the case of fixed travel times, but rather
by using arcs. However, having expressed the overtaking constraints simply
by using the (departure) node variables, considerably speeds up the solu-
tion process based on Lagrangian relaxation, as observed in Caprara et al.
[2002], since the Lagrangian multipliers can be associated with the depar-
ture nodes. Therefore, we first relax these constraints by expressing them
only on the departure nodes: similar to the fixed travel time case, we use
two sets of departure nodes, say W ′j for the departure nodes of train j and
W ′k for those of train k. We must ensure that any type of travel arc leaving
from a node in W ′j is incompatible with any type of travel arc leaving from
a node in W ′k, i.e. at most one of these arcs can be selected in a feasible
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solution. To this aim we consider for the slow train j the minimum travel
time (i.e. the fastest arc) and for the fast train k the minimum travel time
plus the acceleration and deceleration times (i.e. the slowest arc), and define
the strengthened overtaking constraint based on these two arcs. In Figure
2, we show an example: dotted arrows represent two travel arcs: (w1, v1)
of the slow train j, and (w2, v2) of the fast train k, respectively, while solid
arrows correspond to the fastest travel time arc (w1, v

′
1) for the slow train j

and to the slowest travel time arc (w2, v
′
2) for the fast train k. Based on the

latter travel arcs, we define nodes w3 and w′4 (see the dashed arrows). The
overtaking constraint impose to select at most one departure node among
all the nodes of train j in W ′j := [w1, w3) (as before) and all the nodes of
train k in W ′k := [w2, w

′
4). Clearly, these constraints are less strong than

the corresponding ones when no acceleration or deceleration is taken into
account. However, they are still expressed by using only departure nodes.

Recall that lh,it and lh,ip represent the minimum travel time of trains t and
p, respectively, between stations h and i. In addition, recall that accp and
decp are the acceleration and deceleration times of train p. The overtaking
constraints expressed by using only departure nodes read as follows.

∑
w∈W (h,r)∩V t:w1�w≺w3

ztw +
∑

w∈W (h,r)∩V p:w2�w≺w′4

zpw ≤ 1, t, p ∈ T ∪ Tnew,

r = (h, i) ∈ Rt ∩Rp,
w1, w3 ∈W (h, r) ∩ V t, w2, w

′
4 ∈W (h, r) ∩ V p,

v′1 ∈ U(i, r) ∩ V t, v′2, v4 ∈ U(i, r) ∩ V p :

w1 � w2, v
′
2 � v′1,

(w1, v
′
1) ∈ At, (w2, v

′
2) ∈ Ap,

∆(v′1, w1) = lh,it ,

∆(v′2, w2) = lh,ip + accp + decp,

∆(v4, w
′
4) = lh,ip + accp + decp,

∆(w3, w2) = dh,∆(v4, v
′
1) = ai

(14)

We have one constraint for every pair of trains t and p travelling between
consecutive stations h and i along track r. Train t departs from station h at
time w1 and train p at time w2. As explained above and shown in Figure 2,
we consider for train t the fastest travel arc (∆(v′1, w1) = lh,it ) and for train p

the slowest one (∆(v′2, w2) = lh,ip +accp+decp). Since w1 � w2, v
′
2 � v′1, train
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t overtakes train p. To strengthen the constraints, we consider w3 as the first
departure time of train t from station h that is feasible with the departure of
train p from h at time w2 (∆(w3, w2) = dh). In addition, we consider w′4 as
the first departure time of train p such that the corresponding arrival time v4

at station i is feasible with the arrival at time v′1 of train t (∆(v4, v
′
1) = ai), by

considering for train p the slowest travel arc (∆(v4, w
′
4) = lh,ip +accp+decp).

The strengthened overtaking constraint imposes to select at most one arc
among all the travel arcs of train t from time w1 up to time w3 excluded,
and of train p from time w2 up to time w′4 excluded.
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Figure 2: Example of overtaking constraints in the case of acceleration and
deceleration times.

In a second step, the overtaking constraints are further relaxed in a La-
grangian way and the corresponding Lagrangian multipliers are associated
with the departure nodes of the trains involved in these constraints. Con-
straints imposing to respect the maximum station capacity are relaxed by
elimination: indeed, handling these constraints in a Lagrangian way would
lead to have Lagrangian multipliers on the arcs, and we prefer to keep mul-
tipliers on the nodes only. The constraints on the maximum number of
stops that can be cancelled for each train are also relaxed by elimination, as
preliminary computational results showed that they are usually satisfied in
the considered real-world instances, and thus do not significantly affect the
value of the relaxed problem solution. Finally, recall that the constraints
on the maximum stretch and on the acceleration and deceleration times are
taken into account in the dynamic programming algorithm, as explained in
Section 3.4.

By solving this relaxation, we can compute an upper bound on the value
of the objective function. The relaxed problem calls for finding, for each
train t ∈ T ∪ Tnew, the maximum Lagrangian profit path in subgraph
Gt = (V t, At). In particular, the Lagrangian profit of a path takes into
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account the initial profits and the penalties associated with nodes and arcs
(as described in Section 3.1) as well as the Lagrangian multipliers associ-
ated with the nodes for the headway/overtaking constraint violations. For
each train, the maximum Lagrangian profit path is computed by a dynamic
programming algorithm, as explained in Section 3.4. By executing, for each
train, the dynamic programming algorithm, the optimal solution of the re-
laxed problem is computed.

Since the number of relaxed constraints is very large, we dynamically
generate constraints when they are violated by the current Lagrangian so-
lution, and collect them in a pool. To check if, in the current Lagrangian
solution, overtakings occur, we consider every pair of consecutive stations
along the track (in each direction) and every pair of trains visiting these
stations. We identify the slow train and the fast one of the considered pair.
Then, we take for the slow train its fastest arc (i.e., the arc corresponding
to the minimum travel time) and for the fast train its slowest arc (i.e., the
arc corresponding to the minimum travel time plus the acceleration and
deceleration times). If these two arcs still cross, we create a constraint to
avoid this overtaking, strengthen it as explained in Section 3.2, and add it
to the pool. In order to determine good Lagrangian multipliers, a subgra-
dient optimization procedure is iteratively applied. Lagrangian multipliers
are initialized to zero. At each iteration, a new Lagrangian solution is com-
puted, the violated constraints are added to the pool, and the Lagrangian
multipliers are updated, taking into account whether the current Lagrangian
solution violates or not the constraints in the pool.

At each iteration of the subgradient optimization procedure, we also com-
pute a heuristic solution for the problem. The trains are ordered according
to a given criterion: in particular, preliminary experiments suggested that,
in the studied application, the best order corresponds to increasing values
of the maximum global stretch allowed for the considered trains. Indeed, in
our application, the trains have very different values of the maximum global
stretch, and using, as in Cacchiani et al. [2010], the order based on decreas-
ing Lagrangian profits leads to schedule a significantly smaller number of
trains. After ordering the trains, for each train t ∈ T ∪ Tnew in the given
order, the maximum Lagrangian profit path in Gt is computed (see Section
3.4) by taking into account the nodes occupied by the trains already sched-
uled. After scheduling a train in the heuristic solution computation, we set
as occupied all the nodes in G visited by the train and all the “nearby”
nodes that, if visited by a train, would cause violation of one of the imposed
(headway, overtaking or station capacity) constraints. Lagrangian profits,
instead of the initial arc profits, are considered in the heuristic computation
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in order to take into account the effect of scheduling the current train t on
the trains, conflicting with t, that still need to be scheduled.

At each iteration of the subgradient optimization procedure, a refinement
procedure is applied to the obtained heuristic solution: it consists of a local
search procedure that tries to improve, in turn, the path of a train t, which
received shift and/or stretch changes or was not scheduled. All the train
paths, except that of t, are kept as fixed and the maximum profit path
is recomputed, this time considering the initial arc profits (instead of the
Lagrangian ones). If a better path for train t is found, it replaces the previous
one in the current solution, otherwise the next train is considered.

3.4 Dynamic Programming Algorithm

The maximum profit paths of the trains (both considering the Lagrangian
or the initial profits) are computed by a dynamic programming algorithm.
When the dynamic programming algorithm is used to determine a heuristic
solution, we check that the constraints relaxed by elimination, namely the
station capacity constraints and the constraints on the maximum number
of cancelled stops, are satisfied. If the station capacity constraints are not
satisfied, the computed path is neglected and the corresponding train is
cancelled. If the constraint on the maximum number of cancelled stops is
not respected, we recompute a path for the same train without allowing
stop skipping. When the dynamic programming algorithm is used to solve
the relaxed problem, the optimal solution is determined, as we take into
account in the computation both the maximum stretch maxstrt, for every
train t ∈ T ∪ Tnew, and the possibility of choosing whether to stop or not
at a station. Note that, in a standard dynamic programming procedure to
compute a maximum-profit path from σ to τ in Gt, it is enough to store,
for each node v, a label with the maximum profit of a path from σ to v,
along with the predecessor of v along this path to be able to reconstruct it.
When a maximum stretch is imposed for every train, it is necessary to know
the stretch accumulated at a node v by a path from σ to v. To this aim, in
Cacchiani et al. [2010], for each train t, each node v ∈ V t is associated with
an array of labels lab(v, str), one for each value str of the stretch between
0 and maxstrt. Each label lab(v, str) of node v ∈ V t stores the maximum
profit of a path reaching node v with global stretch str, along with the
predecessor of node v in the path (used to reconstruct the path). One label
for each value of the stretch str (with 0 ≤ str ≤ maxstrt) is needed, as the
constraint on the maximum stretch is referred to the global amount of stretch
accumulated by the train along its path. On the contrary, the maximum shift
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constraint is managed by considering only the subset of departure nodes from
the origin station of the train that respect the maximum shift. Note that in
order to consider, in the dynamic programming algorithm, the constraints
on the maximum number of stops that can be cancelled, we would need to
know the number of cancelled stops at a node v in a path from σ to τ (as it
happens for the maximum stretch). Therefore, an additional level of labels
would be required for each value of the number of cancelled stops between 0
and maxcanct. Since preliminary computational results showed that these
constraints are usually satisfied for the considered real-world instances, we
decided to relax them by elimination in the relaxed problem and handle
them in a heuristic way in the computation of the heuristic solution (as
explained above).

When we consider the possibility of choosing whether to stop or not at
a station and we take into account acceleration and deceleration times, an
additional level of labels has to be included in the dynamic programming
algorithm (stop or not stop). More precisely, we need to have, for each
node v ∈ V t of train t, an array of labels (one for each value of the stretch
between 0 and maxstrt) both for the choice of stopping and for the choice
of not stopping at the station associated with node v. Therefore, a label
lab(v, str, status) is characterized by the node v, the global amount of stretch
str accumulated by the train along its path from σ to v and the status,
i.e. stop or not stop at the station corresponding to node v. The label
lab(v, str, stop) (lab(v, str, notstop), resp.) stores the maximum profit of a
path reaching node v with global stretch str by stopping (not stopping,
resp.) at node v, along with the predecessor of node v in the path (used to
reconstruct the path).

Clearly, this addition not only complicates the dynamic programming
algorithm, but also requires a longer computing time. However, it is impor-
tant to consider this additional level of labels, as shown in Figure 3. Two
alternative paths of the same train, departing from station s1, visiting sta-
tion s2 and arriving at station s3, are shown. The dashed path corresponds
to a stop at station s2, and the solid one corresponds to not stop there. Sup-
pose that both paths have zero stretch. The gray node of station s2 belongs
to both paths and can be labelled by both its predecessor nodes. When
stopping, deceleration is required to reach the gray node and acceleration is
required to leave it. Let us suppose that the profit of the fastest (solid) path
is higher than that of the slowest (dashed) one. Let us also suppose that
the node of station s3 shown in black cannot be used: for example, because
this node is occupied by a previously scheduled train (this can happen in a
heuristic solution computation) or has a very large Lagrangian penalty (this
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can happen in a Lagrangian solution computation). If we do not consider
the additional level of labels “to stop or not to stop”, only the fastest (solid)
path can be stored at the gray node, since it has a higher profit, but ac-
tually this path turns out to be infeasible, since the black node cannot be
used. Therefore, we need to store both paths. Note that, in general, several
intermediate stations are visited by the train, and the choice of stopping
or not has to be done at each of them. These choices can lead to feasible
or infeasible paths and to paths with different profits. Thus, in each node,
we take into account two arrays of labels, one for the condition of stopping
and the other one for not stopping at the station corresponding to the node.
Each array has, as in Cacchiani et al. [2010], one label for each possible value
of the stretch.

s
1

s

s

3

2

s
2

min travel+acc
min travel+acc+dec

min travel+dec
min travel+acc+dec

Figure 3: Example showing that it is important to have the additional level
of labels.

Given these arrays of labels, we next explain how the labelling operation
is executed for the travel arcs and for the station arcs. Consider the com-
putation of the maximum profit path for a given train t. When labelling
from a departure node v one of its successors u, we now have four types of
travel arcs (v, u). We need to verify which labels of v can be extended to
which labels of u and by using which types of travel arcs, since each label
is associated with a stop or to a not stop. Four examples, one for each type
of travel arc, are illustrated in Figure 4. Let s1 and s2 be two consecutive
stations and (v, u) a travel arc between these stations. We have two arrays
of labels (with values of the stretch from 0 to maxstrt) corresponding to
the condition of “stop” or “not stop” both for the departure node v and
for the arrival node u. We show in gray the condition stop/not stop of the
array of labels of v that we want to extend, and also in gray the condition
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stop/not stop of the array of labels of u that can be labelled according to
the considered travel arc. When we consider the travel arc with minimum
travel time (upper left part of Figure 4), we can only extend a label of v
corresponding to a not stop to a label of u also corresponding to a not stop:
indeed, no acceleration or deceleration times are taken into account. When
the travel arc with minimum travel time plus acceleration time (upper right
part of Figure 4) is considered, we can only extend a label of v corresponding
to a stop to a label of u corresponding to a not stop. The opposite happens
when we consider a travel arc with minimum travel time plus deceleration
time (lower left part of Figure 4): indeed, we can only extend a label of v
corresponding to a not stop to a label of u corresponding to a stop. Finally,
when the travel arc with minimum travel time plus acceleration and decel-
eration times is considered (lower right part of Figure 4), we can extend a
label of v corresponding to a stop to a label of u also corresponding to a
stop.

In other words, along travel arcs, labels can be extended by maintaining
the status of stop (or not stop, resp.), if the arc corresponds to the minimum
travel time (or to the minimum travel time plus acceleration and deceleration
times, resp.), while, for the other arcs, it can be extended by changing
the status (from stop to not stop if the arc corresponds to the minimum
travel time plus acceleration time, or vice versa if the arc corresponds to the
minimum travel time plus deceleration time).

The labelling related to the station arcs is relatively easier. Two exam-
ples, one for stopping and one for stop skipping, are shown in Figure 5. The
figure shows station s1 and a station arc (v, u). Both for the arrival node
v and for the departure node u we show two arrays of labels as before, by
indicating in gray how the status is extended. When we consider the station
arc with minimum stopping time (left part of Figure 5), we can only extend
a label of v corresponding to a stop to a label of u also corresponding to
a stop. The same holds for station arcs corresponding to longer stops: for
these arcs, the value of the stretch, say str′, consumed at this station will be
summed to the current value of the stretch, say str, and a label lab(v, str)
(corresponding to a stop) will be extended to a label lab(u, str + str′) (cor-
responding to a stop). On the contrary, when we consider the station arc
corresponding to stop skipping (right part of Figure 5), we can only extend
a label of v corresponding to a not stop to a label of u also corresponding
to a not stop. In other words, along station arcs, the labels can be extended
only maintaining the status of stop or not stop.

In Figure 6, we report the pseudocode of the dynamic programming
algorithm for computing the maximum profit path for train t ∈ T ∪ Tnew
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Figure 4: Example of labelling for travel arcs.

in order to solve the Lagrangian relaxed problem. In Figures 7 and 8, we
show the pseudocodes of the procedures used by the dynamic programming
algorithm for initializing the labels and for labelling a node, respectively.

Let us consider a train t ∈ T ∪Tnew. Recall that each node is associated
with two arrays of labels (one for the stop case and one of for the not stop
case), each with length equal to maxstrt. In addition, recall the definition
of lab(v, str, status). The first step of the dynamic programming algorithm
is to initialize all the labels for all the nodes in V t ∪ {τ}. This is done by
executing the procedure INITIALIZE LABELS, shown in Figure 7. This
procedure scans all the nodes v ∈ V t ∪ {τ} and sets the profit of each label
in the two arrays equal to 0, unless v is the endpoint of a starting arc and
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Figure 5: Example of labelling for station arcs.

the stretch associated with the label is 0. In this case, the profit is equal
to the train profit decreased by the shift of node v. The predecessor of the
label is set equal to σ (or to NONE if the profit is 0).

Once that the labels have been initialized, the nodes v ∈ V t are scanned
in chronological order. For each node v, for each value of stretch str up
to maxstrt, and for the two cases of the status (stop or not stop), all the
successor succ nodes of node v are considered (in chronological order). Let
labv = (v, str, status) be the label of node v with associated stretch str and
status status. Then, three cases can occur: the first one is that (v, succ) is
a travel arc, the second one is that (v, succ) is a station arc, and the third
case is that (v, succ) is an ending arc. Let h and i denote, respectively, the
stations associated with nodes v and succ.

If (v, succ) is a travel arc, one of the four cases shown in Figure 4 occurs,
and the labelling is applied accordingly. For example (see the upper left part
of Figure 4), if the time difference ∆(succ, v) between node succ and node v is

equal to the minimum travel time lh,it of train t between station h and station
i, and the status is not stop, then the label labsucc := (succ, str, notstop)
of node succ has to be labelled. A similar behavior happens for the other
cases shown in Figure 4.

If (v, succ) is a station arc, then the train can stop for its minimum
dwelling time dwth (see the left part of Figure 5), can skip the stop (see the
right part of Figure 5), or it can stop for a longer time str′ provided that
str + str′ ≤ maxstrt. For example, if the train stops for a longer time str′

at station h, i.e. if the time difference ∆(succ, v) between node succ and
node v is equal to the minimum dwelling time dwth of train t at station h
plus str′, then the label labsucc := (succ, str+ str′, stop) of node succ has to
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be labelled. A similar behavior happens for the other cases shown in Figure
5.

If (v, succ) is an ending arc, then node τ has to be labelled. The labelling
is done by executing procedure LABEL(labv,labsucc), shown in Figure 8.
This procedure updates the profit of labsucc and its predecessor pred(labsucc),
if the profit of labv is greater than the profit of labsucc minus the cost of
(v, succ) and pen(v), i.e. the Lagrangian penalty of node v. The cost is 0,
unless (v, succ) is a station arc that corresponds to skipping the stop (and
in this case the cost is equal to the stop skipping penalty) or it is a station
arc that corresponds to a longer stop than the minimum dwelling time (and
in this case the cost is equal to the stretch penalty times the stretch str′

of arc (v, succ)). The penalty pen(v) takes into account the violation or
satisfaction of the constraints, relaxed in a Lagrangian way, that involve
node v.

Once that all the loops have been executed, the dynamic programming
algorithm finds the best label among all the labels of node τ . If all the labels
of node τ have profit 0, it means that no path has been found for train t and
the train cannot be scheduled. Otherwise, the maximum profit path for train
t is reconstructed by following the predecessor of each label until node σ is
reached. The station capacity is checked at each station visited by the path
and if it is not respected in at least one station, the path is neglected and the
train is not scheduled. Otherwise, the number of cancelled stops in the path
is counted and, if it is smaller or equal to maxcanct, the maximum profit
path is returned by the dynamic programming algorithm. If it is larger than
maxcanct, the path is recomputed without allowing stop skipping. Note that
if the algorithm is used for computing a heuristic solution, after computing
a path for a train t, the graphs of the remaining trains need to be updated
by removing all the nodes and the arcs that cannot be used, as they would
cause constraint violation. Finally, in the refinement procedure, since the
initial profits are considered instead of the Lagrangian ones, pen(v) is set to
0 for all nodes v ∈ V t.

4 Computational Experiments on the JingHu High-
speed Corridor

To show the performance of the proposed method, we consider real-world
instances of the double-track JingHu line between Beijing and Shanghai.
The timetable data are provided by the National Railway Train Diagram
Research and Training Center (Southwest Jiaotong University, Chengdu,
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INITIALIZE LABELS
for v ∈ V t (in chronological order) do

h := station of v
for str = 0, 1, . . . ,maxstrt do

for status ∈ {stop ∨ not stop} do
labv := (v, str, status)
for succ ∈ V t: (v, succ) ∈ At do

i := station of succ;
if (v, succ) travel arc then

if ∆(succ, v) = lh,it ∧ notstop then
labsucc := (succ, str, notstop)

end

if ∆(succ, v) = lh,it + acct ∧ notstop then
labsucc := (succ, str, notstop)

end

if ∆(succ, v) = lh,it + dect ∧ notstop then
labsucc := (succ, str, stop)

end

if ∆(succ, v) = lh,it + acct + dect ∧ stop then
labsucc := (succ, str, stop)

end
LABEL(labv ,labsucc)

end
if (v, succ) station arc then

if ∆(succ, v) = dwth ∧ stop then
labsucc := (succ, str, stop)

end
if ∆(succ, v) < dwth ∧ notstop then

labsucc := (succ, str, notstop)
end
if ∆(succ, v) = dwth + str′ ∧ stop ∧ str + str′ ≤ maxstrt
then

labsucc := (succ, str + str′, stop)
end
LABEL(labv ,labsucc)

end
if (v, succ) ending arc then

labτ := (τ, str, status);
LABEL(labv ,labτ )

end

end

end

end

end
BEST(labτ );
return maximum profit path of train t

Figure 6: Pseudocode for the dynamic programming algorithm for train t
(t ∈ T ∪ Tnew).
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for v ∈ V t ∪ {τ} do
for str = 0, 1, . . . ,maxstrt do

for status ∈ {stop ∨ not stop} do
if (σ, v) ∈ At ∧ str = 0 then

labv := (v, 0, status);
profit(labv):=pt − psht ∗ νt(v)
pred(labv):=σ

end
else

profit(labv):=0
pred(labv):=NONE

end

end

end

end

Figure 7: Pseudocode for the INITIALIZE LABELS procedure.

//labv := (v, str, status)
//labsucc := (succ, str′, status′)
cost:= 0;
if (v, succ) station arc then

h := station of v
if ∆(succ, v) < dwth then

cost:=pskipt
end
if ∆(succ, v) = dwth + str′ then

cost:=pstrt ∗ str′
end

end
if profit(labv)-cost(v, succ)-pen(v)>profit(labsucc) then

profit(labsucc):=profit(labv)-cost(v, succ)-pen(v)
pred(labsucc):=labv

end

Figure 8: Pseudocode for the LABEL(labv,labsucc) procedure.
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China). The high-speed line contains 29 stations, including 6 block sectors
connecting the JungHu line to the other lines. In Figure 9 we report a map
of the line.
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Figure 9: JingHu High-speed Corridor.
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We developed the solution method in C and tested it on a personal com-
puter with a i5-2400 3.1 GHz, 16 GB RAM. Time is discretized in minutes.
We refer to the timetable of 2015 in which 304 trains run every day in both
directions between 6 a.m. and midnight. The station capacities are set
equal to the number of existing platforms. The trains are of two different
categories: D trains with travel speed of 250 km/h and G trains with travel
speed of 300 km/h. For the D trains we consider an acceleration time of
2 minutes and a deceleration time of 2 minutes, while for the G trains the
acceleration time is 2 minutes and the deceleration time is 3 minutes. The
minimum headway times are different according to the station and can be
2, 3 or 4 minutes. In particular, three different railway bureaus are respon-
sible for the JingHu line: the Beijing railway bureau is responsible for the
stations between Beijing Southwest and Dezhou East and requires minimum
departure and arrival headways of 3 and 4 minutes, respectively; the Jinan
railway bureau is responsible for the stations between Jinan West and Za-
ozhuang and requires minimum departure and arrival headways of 2 and
3 minutes, respectively; finally, the Shanghai railway bureau is responsible
for the stations between Xuzhou East and Shanghai Hongqiao and requires
minimum departure and arrival headways of 2 and 3 minutes, respectively.

From the 2015 timetable, we know the minimum travel times of the
existing trains. We also know the stopping times, however, they can be
larger than the corresponding minimum ones, due to the changes that the
operator has done during the scheduling process. We set the minimum
dwelling time to 2 minutes unless it was set to 1 minute in the existing
timetable.

In Section 4.1 we report the results obtained on the 2015 timetable by
considering the parameters suggested by the operator. Section 4.2 presents
the results obtained with different parameter settings. Finally, in Section
4.3, we show the performance of the proposed algorithm on a larger instance.

4.1 Results with the Operator Parameters

To meet the suggestions of the operator, for all the trains, the shift penalty
is set to 1 for each minute of shift, while the stretch penalty is set to 10 for
each minute of stretch. Thus, we largely penalize longer stops at stations,
since these changes more significantly affect the passenger trip. In addition,
the penalty for stop skipping is set to 200, so as to have a good trade-
off between allowing to skip stops and avoiding that too many stops are
cancelled. After parameter tuning, the number of subgradient iterations
is set to 50 so as to have a good trade-off between solution quality and
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computing time. We emphasize that the shift, stretch and stop skipping
penalties are set based on the requirements of the operator. However the
operator does not need to decide the specific values of the penalties but
rather to choose which type of change (shift, stretch or stop skipping) is less
or more desirable. The operator suggested us that shift, stretch and stop
skipping should be penalized according to increasing penalties. The reason
for penalizing stretch more than shift is that stretch causes an increase
of the passenger travel time (due to the additional dwelling times) that is
usually perceived in a negative way by the passengers. On the contrary,
shift consists of changing the train departure time, while respecting the
departure time windows of the trains, and thus it only slightly influences
passenger satisfaction. Finally, the highest penalty is associated with stop
skipping, since this is a major change that should be used only if it allows to
schedule additional trains. Following these directions, we set shift, stretch
and stop skipping penalties as described above. In Section 4.2, we report
the results obtained with different numbers of iterations and different values
for the penalties.

Our first experiment concerns the improvement of the current timetable
to reduce the global stretch of all the trains. We want to determine an
optimized timetable with the proposed method. The schedule of 114 trains
(fixed trains) out of the given 304 trains cannot be changed. Therefore, we
impose their schedules as in the current timetable. We allow, for each other
existing train, a maximum stretch equal to the stretch it has undergone
in the existing timetable. The maximum stretch ranges between 1 and 64
minutes, and the average maximum stretch is 5.3 minutes. In addition, we
impose a maximum shift of 0 minutes, as we want to keep the computed
schedule as close as possible to the existing one. Each train profit of the non-
fixed trains is set to 5,000 in order to have a high possibility of scheduling all
the trains. The fixed trains are assigned a profit of value 0, as they are always
scheduled. In Table 5 we evaluate the quality of the existing schedule and
compare it with the results obtained by the proposed method in two cases:
in the first one, stop skipping is not allowed, while it is allowed in the second
one. In the latter case, for each of the 190 non-fixed trains, maxcanct is set
equal to 1. In the table, the first column indicates the considered instance
(where “exist” means the 2015 timetable), the second column is used to
define if stop skipping is allowed or not, the third column reports the number
of scheduled trains. Then, we report the total travel time (expressed in
minutes, and corresponding to the sum, over all the non-fixed trains, of the
differences between the arrival time at destination and the departure time
from the origin), the total stretch (i.e. the total additional stopping time
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of the non-fixed trains expressed in minutes) and the total profit. Finally,
we show the percentage gap computed as (UB − LB)/UB ∗ 100 (where
UB corresponds to the upper bound computed by solving the Lagrangian
relaxation, and LB is the profit of the best heuristic solution found), the
number of skipped stops and the computing time in seconds.

#trains skip #sched travel stretch profit gap% #skip time

304 exist no 304 46019 1012 939880 - 0 -
304 no 304 45797 709 942910 0.36 0 62
304 yes 304 45716 638 943020 0.37 3 190

Table 5: Comparison of the 2015 timetable with the computed timetable
without or with the possibility of skipping stops.

In all the cases, all the given 304 trains are scheduled. Both the total
travel time and the total stretch are reduced by the proposed heuristic al-
gorithm with respect to the corresponding values of the existing timetable.
While the total travel time decreases of less than 0.5% when stop skipping is
not allowed, and 0.66% when it is allowed, the total stretch is significantly
reduced of about 30% when stop skipping is not allowed and about 37%
when it is allowed. The percentage gaps between the upper and the lower
bounds are small, which means that the solutions obtained by the proposed
method are very close to the optimal ones. The computing times are very
short.

The second set of experiments deals with the scheduling of additional
trains. We are given by the operator a set of 42 new trains that should be
scheduled in the JingHu line. These trains are of type D. For each train, we
are given its origin and destination stations, the set of stations to be visited
with the corresponding minimum dwelling times, and the desired departure
time from the origin station. In addition, for each train we know the min-
imum travel time between each pair of consecutive stations visited by the
train in the corridor. Each of these trains is assigned a profit equal to 2,000
so that it is always better to schedule one of the existing trains than one of
the new trains. The maximum global stretch of each train depends on the
total distance from the origin station to the destination station. The maxi-
mum allowed global stretch is between 27 and 131 minutes, and its average
is 70.8 minutes, i.e., a much larger change is allowed for the additional trains
than for the existing ones. We consider different possibilities for the max-
imum shift allowed for each of the new trains: ±10, ±20 or ±30 minutes.
The parameters for the existing trains are set as in the previous experiment
(and 114 trains are kept as fixed). In this way, we are still allowed to improve
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the schedule of the existing trains, while trying to schedule the additional
ones. In Table 6, we report the results of the timetables computed by the
proposed heuristic algorithm when stop skipping is not allowed. The first
column shows the three considered settings for the maximum shift allowed.
Column “shift” reports the total shift used in the solution, and column
“#sched” the number of scheduled trains, where in brackets we report the
number of existing trains cancelled. In column “travel” we report the sum
of the travel times for the non-fixed existing trains, so that we can com-
pare it with the results reported in Table 5. In column “stretch”, we report
the total stretch of all the trains in the computed solution, and in brackets
the total stretch only for the non-fixed existing trains (to compare it with
the results in Table 5). Then, we show the total profit, the percentage gap
between the upper and the lower bounds and the computing time in seconds.

#trains shift #sched travel stretch profit gap% time

346 sh±10 109 328(0) 45829 1132(737) 986571 3.72 3857
346 sh±20 294 333(0) 45827 1142(740) 996286 2.98 6153
346 sh±30 415 336(1) 45681 1161(689) 998975 2.95 9732

Table 6: Results for the scheduling of the additional trains, when stop skip-
ping is not allowed.

From Table 6 we can observe that solving the problem becomes more
complex when additional trains need to be scheduled in an already very con-
gested line. In addition, the new trains are allowed to have more flexibility
for what concerns both the shift and the stretch operations. Therefore, we
need to deal with larger time-space graphs, and the dynamic programming
algorithm requires a longer computing time. We can see that additional
trains can be scheduled in all the cases, and that this number increases
as long as we allow to use larger departure time windows. Only for the
last instance one existing train was cancelled, but the overall profit is in-
creased. Finally, we can see that the percentage gaps, even though larger
than in the previous experiment, are always below 4%. When stop skipping
is not allowed, by comparing the total travel time and the total stretch of
the existing trains with those reported in Table 5, we can see that larger
travel times and stretches are required (except when one existing train is
cancelled). Indeed, the insertion of new trains affects the existing timetable
and more changes need to be performed.

We next show the results obtained by allowing stop skipping. We set
the parameters for the existing and new trains as for the results presented
in Table 6. The results are reported in Table 7, where the meaning of the
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columns is the same as in Table 6.

#trains shift #sched travel stretch profit gap% #skip time

346 sh±10 115 329(0) 45756 1096(662) 988525 3.66 2 4969
346 sh±20 279 334(0) 45731 1113(648) 997991 2.86 3 7510
346 sh±30 415 337(0) 45752 1192(664) 1003265 2.55 2 11112

Table 7: Results for the scheduling of the additional trains, when stop skip-
ping is allowed (with stop skipping penalty equal to 200).

As shown in Table 7, the computing time increases as additional flex-
ibility is available, because we are allowed to skip stops. The number of
cancelled stops is very small (at most 3), even though the stop skipping en-
ables to schedule additional trains. The overall profits increase with respect
to those reported in Table 6, and the percentage gaps are still below 4%.
We can also see that not only the number of scheduled trains is larger than
that shown in Table 6, but also no existing train has been cancelled.

4.2 Results with Different Parameter Values

In this section, we report the results obtained with different parameter set-
tings. In particular, we evaluate the performance of the proposed heuristic
algorithm by considering the following cases: (i) different number of itera-
tions, (ii) different values for the shift and stretch penalties, and (iii) different
values for the stop skipping penalty.

We performed a set of experiments by considering different numbers of
iterations of the proposed algorithm when stop cancellation is forbidden or
allowed. The results are shown in Table 8, where we report the maximum
shift allowed, the number of iterations considered, and, both when stop can-
cellation is forbidden or allowed, the number of scheduled trains (with in
brackets the number of existing trains cancelled), the profit, the percent-
age gap and the computing time (in seconds). In addition, we report the
number of cancelled stops when stop skipping is allowed. As expected, the
gap reduces while the computing time increases with the number of iter-
ations. When 200 iterations are executed, the percentage gap are rather
small, slightly larger for the case in which stop skipping is permitted. Since
the computing time is proportional to the number of iterations, one can
choose the appropriate number based on the available computing time.

In Table 9, we report the results obtained with different values for the
shift and stretch penalties, when stop skipping is not allowed, and compare
them with those reported in Table 6. In particular, we consider psht = 0 and
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no skip skip
#trains #iter #sch profit gap time #sch profit gap #sk time

10 326(1) 979998 4.81 821 327(1) 982100 4.62 3 891
50 328(0) 986571 3.72 3857 329(0) 988525 3.66 2 4969

346 sh±10 100 328(0) 986763 3.46 7977 329(0) 988525 3.51 2 10287
150 329(0) 988265 2.87 12107 330(0) 988742 3.59 13 15429
200 329(0) 988265 2.57 16169 331(0) 990911 3.11 11 20722
10 332(2) 987505 4.15 1226 334(2) 991708 3.73 4 1146
50 333(0) 996286 2.98 6153 334(0) 997991 2.86 3 7510

346 sh±20 100 334(0) 997624 2.71 12847 334(0) 997991 2.76 3 16361
150 334(0) 997624 2.42 19422 334(0) 997991 2.69 3 25246
200 334(0) 997624 2.11 25971 334(0) 997991 2.65 3 34165
10 334(1) 994924 3.60 1702 334(1) 995156 3.58 3 1727
50 336(1) 998975 2.95 9732 337(0) 1003265 2.55 2 11112

346 sh±30 100 337(0) 1002884 2.44 19310 337(0) 1003265 2.46 2 23167
150 337(0) 1002884 2.14 29272 337(0) 1003265 2.41 2 35245
200 338(0) 1004868 1.90 39009 337(0) 1003265 2.39 2 47794

Table 8: Results after different numbers of iterations.

pstrt = 0 (t ∈ T ∪Tnew), that corresponds to allow shift and stretch without
any penalty, psht = 5 and pstrt = 5 (t ∈ T ∪Tnew), that corresponds to give
the same importance to both changes, and the case psht = 10 and pstrt = 1
(t ∈ T ∪ Tnew), that corresponds to consider shift as more penalized than
stretch. Note that the profits shown in Table 9 can only be compared when
the same values of the shift and stretch penalties are used, since the values
of the penalties affect the value of the obtained profit.

The results show that small percentage gaps between upper and lower
bounds are obtained for all these cases. When no penalty is associated with
shift and stretch (psht = 0, pstrt = 0), larger shift and stretch changes
are applied to the timetables, and a larger number of trains is scheduled. In
addition, the computing times are shorter, since the problem becomes easier.
When the same penalty values are used for shift and stretch (psht = 5,
pstrt = 5), the number of scheduled trains and the computing times are
comparable to the case reported in Table 6, while smaller shift and larger
stretch changes are applied to the timetables. Finally, when a large penalty
is associated with the shift and a small one with the stretch (psht = 10,
pstrt = 1), we can see that the shift is significantly reduced, while the
stretch becomes larger. In this case, the number of scheduled trains is larger
than that in Table 6, meaning that if we accept to have a larger stretch in
the timetable, additional trains can be scheduled. Thus, depending on the
specific suggestions of the operator, different penalties can be associated
with the shift and stretch changes, and the proposed algorithm is able to
effectively adapt to the different settings.
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psht = 0, pstrt = 0

#trains shift #sched travel stretch profit gap% time

346 sh±10 143 329(0) 45854 1298(776) 1000000 3.08 2099
346 sh±20 392 338(0) 45877 1636(800) 1018000 1.36 3368
346 sh±30 521 340(0) 45855 1796(783) 1022000 1.16 5143

psht = 5, pstrt = 5

#trains shift #sched travel stretch profit gap% time

346 sh±10 103 328(1) 45548 1094(709) 989015 3.70 3902
346 sh±20 253 335(1) 45691 1222(703) 1001625 2.57 6306
346 sh±30 304 337(1) 45588 1390(724) 1004530 2.46 9615

psht = 10, pstrt = 1

#trains shift #sched travel stretch profit gap% time

346 sh±10 75 329(0) 45805 1201(718) 998049 3.06 4035
346 sh±20 163 335(1) 45554 1431(702) 1005939 2.33 6498
346 sh±30 227 338(1) 45590 1559(687) 1011171 1.97 9654

Table 9: Results for different shift and stretch penalties, when stop skipping
is not allowed.

In Table 10, we report the results obtained with different values for the
stop skipping penalty, and compare them with those reported in Table 7.
In particular, we consider pskipt = 150, t ∈ T ∪ Tnew, and pskipt = 250,
t ∈ T ∪Tnew. Note that the profits shown in Table 10 can only be compared
when the same value of stop skipping penalty is used, since the values of the
penalty affects the value of the obtained profit.

As we can see, the total shift, the total stretch and the number of can-
celled stops are comparable for all the considered values of pskipt. By com-
paring the results obtained with pskipt = 150 with those reported in Table
7 (where pskipt = 200), we can observe that the global number of scheduled
trains is increased by one when the maximum shift is ±10, but an existing
train is cancelled. When the maximum shift is ±20, the same global num-
ber of trains is scheduled, but an existing train is cancelled, and when the
maximum shift is ±30, a smaller number of trains is scheduled (335 trains
instead of 337). By comparing the results obtained with pskipt = 250 with
those reported in Table 7, we can see that, when the maximum shift is ±10,
one train less is scheduled, while, with maximum shift ±20 or ±30, the same
number of trains is scheduled. In all the considered cases, the obtained per-
centage gaps are rather small and the computing times are similar to those
shown in Table 7. The results reported in Table 10 suggest that the best
parameter choice for the considered real-world application is pskipt = 200
(t ∈ T ∪ Tnew), since it corresponds to the best performance by considering
different values of the maximum shift.
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pskipt = 150

#trains shift #sched travel stretch profit gap% #skip time

346 sh±10 129 330(1) 45482 1082(629) 987151 3.83 6 5678
346 sh±20 298 334(1) 45387 1139(649) 994712 3.20 4 9291
346 sh±30 361 335(0) 45740 1142(673) 999619 2.94 4 12439

pskipt = 250

#trains shift #sched travel stretch profit gap% #skip time

346 sh±10 114 328(0) 45763 1069(674) 985946 3.88 5 5026
346 sh±20 283 334(0) 45768 1145(693) 997767 2.89 2 7673
346 sh±30 397 337(0) 45764 1172(689) 1003383 2.53 2 11623

Table 10: Results for different stop skipping penalties.

By considering the presented analysis of the performance of the algo-
rithm with different values of the parameters, we can conclude that, based
on the available computing time and on the choice of the operator on the
inconvenience caused to the passengers if shift, stretch or stop skipping are
performed, we can set a higher or lower number of iterations, and higher or
lower penalty values for psht, pstrt and pskipt (t ∈ T ∪Tnew), and the algo-
rithm will effectively compute a heuristic solution, while taking into account
the given parameter values.

4.3 A larger instance

In order to further evaluate the performance of the proposed algorithm, we
generated a larger instance and tested it when stop skipping is forbidden or
allowed. This instance contains the 304 existing trains, the 42 additional
trains given by the operator, and other 42 trains with the same desired
timetable as the 42 additional trains but shifted of one hour later. Since
one of these trains cannot be scheduled because its timetable is during the
maintenance period, we end up with an instance containing 387 trains. We
consider the same parameters used for the results shown in Table 6, and set
pskipt = 100 and maxcanct = 4, since this is a larger instance and more
flexibility is needed in order to schedule additional trains. The obtained re-
sults are reported in Table 11. As we can see, the computing times increase,
as we are dealing with a larger number of trains, but are still acceptable for
planning purposes. Although the average percentage gaps are larger than
those reported in Tables 6 and 7, we can see that several additional trains
can be scheduled, and that stop skipping is very effective, as it allows the
scheduling of more trains and the cancellation of a smaller number of ex-
isting trains. Therefore, we can conclude that the proposed algorithm can
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be used for timetable planning in practical applications even when a large
number of trains is involved.

no skip
#trains shift #sched travel stretch profit gap% time

387 sh±10 256 352(1) 45692 1546(708) 1027284 6.68 6556
387 sh±20 546 361(3) 45405 1706(669) 1037394 6.18 11618
387 sh±30 848 361(2) 45442 1610(686) 1041052 6.16 18506

skip
#trains shift #sched travel stretch profit gap% #skip time

387 sh±10 296 356(2) 45070 1491(620) 1029994 6.68 28 8763
387 sh±20 551 361(1) 45283 1568(623) 1041969 5.65 28 15308
387 sh±30 795 362(1) 45591 1574(632) 1045265 5.83 12 24307

Table 11: Results for the scheduling of the additional trains with a larger
instance (83 additional trains).

5 Conclusions

We have studied a real-world application of Train Timetabling in which we
are allowed to stop at additional stations or to skip stops (Stop Planning) in
order to schedule additional trains along a double-track line. In addition, we
have explicitly taken into account the deceleration and acceleration times,
associated with the stop of a train at a station. We have extended an
existing heuristic method, based on Lagrangian relaxation, to deal with
these additional features. In particular, several changes were performed to
model the overtaking constraints, and the solution method was modified
both in the way to relax these constraints and in the dynamic programming
algorithm. The proposed method has been tested on a real-world instance of
the JingHu corridor connecting Beijing and Shanghai. The obtained results
show that the proposed method is able to improve the current timetable
within very short computing times, obtaining solutions with an optimality
gap smaller than 0.4%. Furthermore, additional trains can be scheduled
with a small impact on the existing timetable and with optimality gaps
below 4%. When stop skipping is allowed, more trains can be scheduled by
cancelling only a few stops. We evaluated the performance of the algorithm
with different parameter values: the results show that, based on the available
computing time and on the choice of the operator, different parameters can
be selected and the algorithm will effectively compute a heuristic solution.
Finally, we tested a larger instance containing 387 trains, and showed that
the algorithm is able to schedule additional trains and is especially effective
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when stop skipping is allowed.
Future research will be devoted to improve the regularity of the timeta-

bles, i.e., to define a schedule with regularity in the train frequency at the
main stations. Although this is a secondary goal, it can significantly improve
the perception that the passengers have of the service. Another direction of
research consists of including additional constraints related to rolling stock
circulation, so as to define schedules that more likely will be easily managed
in the rolling stock planning phase.
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Appendix

In this Appendix we illustrate the main steps of the proposed algorithm by
using a simple example consisting of a line with 4 stations where 3 trains
should be scheduled. We consider psht = 1, pstrt = 10, pskipt = 100,
maxsht = ±2, maxstrt = 5, maxcanct = 1, pt = 2000, t ∈ {train 1,
train 2, train 3}. For each station i ∈ {s1, s2, s3, s4}, we consider capacity
ci = 3, minimum departure headway time di = 3, and minimum arrival
headway time ai = 4. For each train, the minimum travel times between
pairs of consecutive stations, the minimum dwelling time at each station,
and the acceleration and deceleration times are reported in Table 12. If
the train does not visit a station, we indicate ’-’ in the table. The desired
timetables of the trains are shown in a time-space graph in Figure 10. Recall
that acceleration and deceleration times must be considered when the train
accelerates (if it starts from its origin station or after it stops at a station)
or decelerates (if it arrives at its destination station or before it stops at
a station), respectively. There is one line representing the departure nodes
from station 1, and one line representing the arrival nodes at station 4. In
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addition, there are two lines representing the arrival and departure nodes
at station 2 and station 3, respectively. We show only the used nodes (each
with the corresponding scheduled time) and use arrows of different types
(continuous for train 1, dashed for train 2, dotted for train 3) to represent
the timetable for each train (i.e. its path in the time-space graph). As
we can see, a conflict occurs between train 1 and train 3 at station 2, as
the minimum departure headway is violated. In addition, train 1 overtakes
train 3 between station 2 and station 3. A conflict occurs between train 2
and train 1, as they both depart from station 3 at the same time. Finally,
a conflict occurs between train 2 and train 3, as train 3 overtakes train 2
between station 3 and station 4.

ls1,s2t ls2,s3t ls3,s4t dwts2 dwts3 acct dect
train 1 8 2 3 2 0 2 2
train 2 - 6 9 - 4 2 2
train 3 - 3 3 - 1 2 2

Table 12: Data used in the example.

train 1

train 2

train 3

09:00

09:12

09:04 09:14

09:13

09:14 09:18

09:18

09:20

09:21

09:23 09:28 09:31

station 1

station 2

station 3

station 4

Figure 10: Desired timetables.

The proposed algorithm is iteratively executed for 50 iterations. At it-
eration 1, it computes the solution of the Lagrangian relaxed problem and
obtains a heuristic solution, by applying the dynamic programming algo-
rithm presented in Section 3.4. The obtained solution is shown in Figure
11. The profit of this solution is 3970 and trains 1 and 2 are scheduled.
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Train 1 is scheduled according to its desired timetable, while train 2 un-
dergoes a stretch of 3 minutes at station 3 (consequently, the train stops 7
minutes, but the travel times are not changed as train 2 was required to stop
at station 3). Several constraints are dynamically added to the constraint
pool during the following iterations and the Lagrangian multipliers are up-
dated accordingly by the subgradient optimization procedure. Meanwhile
the dynamic programming algorithm is used to compute the solution of the
corresponding Lagrangian relaxed problems and heuristic solutions. We do
not report the details of this updating as it would require several steps.

train 1

train 2

09:00

09:12

09:04 09:14

09:14 09:18

09:18

09:23

station 1

station 2

station 3

station 4

09:21

09:34

Figure 11: Solution at iteration 1.

The next improvement in the heuristic solution is obtained at iteration
11. The obtained solution is shown in Figure 12. The profit of this solution
is 3996 and trains 1 and 3 are scheduled. Train 1 undergoes a shift of 2
minutes in advance, and train 3 a shift of 2 minutes in delay.

The process is executed iteratively by solving, at each iteration, the La-
grangian relaxed problem and computing a heuristic solution, and updating
the constraint pool and the Lagrangian multipliers, until the last iteration
is reached. In Figure 13, we show the best solution found. The profit of this
solution is 5885, and all the three trains are scheduled. Train 1 undergoes
a shift of 2 minutes in delay and a stretch of 1 minute at station 3 (conse-
quently, since the stop at station 3 was not planned in its desired timetable,
the travel time from station 2 to station 3 is increased to 6 minutes, as the
train has to decelerate before stopping at station 3, and is increased to 7
minutes between stations 3 and 4, since the train has to accelerate after
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train 1

train 3

09:10

09:1509:12

09:16

09:16

09:22
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08:58

Figure 12: Solution at iteration 11.

stopping at station 3). Train 2 undergoes a shift of 1 minute in advance,
while train 3 undergoes a shift of 2 minutes in advance. In addition, the stop
of train 2 at station 3 is cancelled: consequently, the travel time between
stations 2 and 3 is decreased to 8 minutes, since the train does not need to
decelerate before station 3, and is decreased to 11 minutes between stations
3 and 4, since the train does not need to accelerate after station 3.

train 1

train 2
train 3

09:02

09:14

09:03 09:16

09:11

09:11 09:18

09:19

09:22

09:23

09:26 09:30

station 1

station 2

station 3

station 4

09:11

09:22

Figure 13: Solution at the last iteration.
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