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The Quest for Energy-Efficient I$ Design in
Ultra-Low-Power Clustered Many-Cores

Igor Loi, Alessandro Capotondi, Member, IEEE, Davide Rossi, Andrea Marongiu, Member, IEEE,
and Luca Benini, Fellow, IEEE

Abstract—High performance and extreme energy efficiency are strong requirements for a fast-growing number of edge-node Internet
of Things (IoT) applications. While traditional Ultra-Low-Power designs rely on single-core micro-controllers (MCU), a new generation
of architectures leveraging fully programmable tightly-coupled clusters of near-threshold processors is emerging, joining the
performance gain of parallel execution over multiple cores with the energy efficiency of low-voltage operation. In this work we tackle
one of the most critical energy-efficiency bottlenecks for these architectures: instruction memory hierarchy. Exploiting the instruction
locality typical of data-parallel applications, we explore two different shared instruction cache architectures, based on energy-efficient
latch-based memory banks: one leveraging a crossbar between processors and single-port banks (SP), and one leveraging banks with
multiple read ports (MP). We evaluate the proposed architectures on a set of signal processing applications with different executable
sizes and working-sets. The results show that the shared cache architectures are able to efficiently execute a much wider set of
applications (including those featuring large memory footprint and irregular access patterns) with a much smaller area and with much
better energy efficiency with respect to the private cache. The multi-port cache is suitable for sizes up to a few kB, improving
performance by up to 40%, energy efficiency by up to 20%, and energy × area efficiency by up to 30% with respect to the private
cache. The single-port solution is more suitable for larger cache sizes (up to 16 kB), providing up to 20% better energy × area
efficiency than the multi-port, and up to 30% better energy efficiency than private cache.

Index Terms—Instruction Cache, Parallel Architectures, Tightly Coupled Cluster, Near-Threshold Computing, Computer Architecture,
Energy Efficiency.
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1 INTRODUCTION

The Internet of Things (IoT) [1] is becoming pervasive in
our everyday life and it is expected to have an increasingly
higher impact in the coming decades. Several near-sensor
processing applications [2] such as security, video surveil-
lance and e-health rely on deeply embedded systems (end-
nodes) that wirelessly communicate data collected from
several high-bandwidth sensors including vital sign mon-
itors [3], low-power imagers [4], microphone arrays [5].
These smart, connected devices share the need for high
performance and extreme energy efficiency for operation
within power envelopes of only a few mW. In this context,
a promising approach to achieve major energy efficiency
improvements is Near-Threshold (NT) computing [6] on
parallel architectures [7] [8] [9].

A major challenge in NT operation is the increased sen-
sitivity of devices to Process, Voltage and Temperature (PVT)
variations, which leads to poorly controlled performance
levels and causes unreliable memory operation [10]. While
PVT variations can be effectively managed in the digital
cores by exploiting robust standard cell libraries or post-
fabrication compensation techniques, the supply voltage of
standard 6T SRAMs has to be kept at a higher value with
respect to the logic causing on-chip memory to form a
major bottleneck for energy efficiency of Ultra-Low-Power
(ULP) designs [10]. For this reason, SRAM often domi-
nates the overall SoC power consumption, especially in
platforms leveraging the tiny processors (≈30kGE) typical
of ULP computing platforms [11] [12] [8]. Several memory
architectures optimized for NT have been demonstrated to

operate at low voltage [13] [14] [15], overcoming the voltage
scaling bottleneck typical of 6T SRAMs. However, these
approaches significantly increase bit cell circuit complex-
ity, peripheral circuit complexity and bit-lines capacitance,
therfore increasing access energy for a given supply volt-
age [16]. A promising approach to deal with performance
degradation of memories at low voltage is to rely on latch-
based Standard Cell Memories (SCMs) [16] [17]. One of the
primary advantages that SCMs have over traditional SRAM
is their robustness, especially at low-voltage, since they are
constructed exclusively with standard cells. This comes at a
cost in area, as the basic SCM storage latch is much larger
than both standard 6T SRAM bit-cell and SRAMs optimized
for low-voltage. On the other hand, due to its architecture
and the capability to operate without bit-lines pre-charge
and sense amplifiers, SCM provides up to four times smaller
access energy [16] [17].

Focusing on the architecture of ULP multi-processor
systems-on-chip (MPSoC), it is common to design data
memories as explicitly-managed scratch-pads, rather than
HW-controlled caches. A shared design is often employed,
which eliminates the need for maintaining data consis-
tency [8]. Regarding instruction memory, caches are typ-
ically preferred to scratchpad memories (SPM), as their
explicit management is cumbersome [18] and their read-
only nature inherently limits the complexity of hardware
implementation. While in high-end MPSoCs, where the
area constraint is weak, big private instruction caches (I$)
are usually preferred, in the ULP domain cores are much
smaller and the area of replicated private caches (one per
core) becomes a major concern. Indeed, during the execution
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Fig. 1: Private cache configuration speedup (slowdown)
down-scaling the instruction cache (I$) capacity for the
seven applications used as benchmarks.

of parallel code, a large fraction of the cached instructions is
replicated in every private cache, leading to inefficient usage
of program cache capacity. This situation is exacerbated if
we consider a parallel program that relies on a parallel pro-
gramming model such as OpenMP [19]. Dedicated language
constructs or compiler directives for parallelism are ulti-
mately translated into function calls within runtime libraries
that implement the required parallel semantics (e.g., par-
allel loop iteration scheduling). This may silently break the
instruction locality typically found in computation-intensive
signal processing algorithms, thus increasing the instruction
cache miss rate during execution. The explicit use of external
or auxiliary libraries adds to the same problem.

Figure 1 depicts the performance degradation suffered
by a set of parallel applications1 executing on a private-
cache, 8-core ULP processor when the cache size is reduced
(x-axis). The applications can be grouped in three categories:
i) those that heavily rely on library calls (HOG, SRAD); ii)
those that contain a long instruction block within the parallel
loop(s) (FAST, SLIC, CT); iii) those that contain a short
instruction block within the parallel loop(s) (BFS, MD). The
figure shows that only short-instruction-block applications
are weakly sensitive to instruction cache size reduction
(as their execution kernels fits in cache), while the rest of
the applications suffer dramatic performance drops. In this
scenario, a shared cache can offer a lower miss rate and
better memory utilization (no copies) at the cost of increased
hardware complexity.

In this work we propose an extensive evaluation of
shared instruction cache architectures for ultra-low-power,
tightly coupled multi-processor clusters targeting end-node
IoT devices. The exploration considers a private cache archi-
tecture as baseline, [20], and a third novel architecture based
on a multi-ported SCM instruction cache. The proposed
cache architectures are then evaluated carrying out both
physical implementations (timing, area, and power) and an
architectural evaluations based on a set of real-life OpenMP
applications featuring different program access patterns.
The results are based on implementations of the Parallel
Ultra-Low-Power (PULP) [8] [9] in 28nm Ultra Thin Body
and Box Fully Depleted Silicon On Insulator (UTBB FD-SOI)
technology, while an extensive architectural exploration is
carried out with PULP prototypes in the Xilinx Zynq FPGA.

1. More details on the applications are provided in Section 4.1.

Results show that the proposed multi-port cache archi-
tecture can improve the performance with respect to the
private cache by up to 40% in throughput, 20% in energy
efficiency, and 30% in energy × area efficiency for sizes
of instruction caches of few kB (typical of the low-power
microcontrollers used in end-node IoT devices). While the
multi-port is most suitable for small cache configurations,
the shared cache architecture based on single-port SCM
banks provides a better scalability in terms of cache size
and number of cores, featuring 20% better energy × area
efficiency than the multi-port, and up to 30% better energy
efficiency than private caches.

The rest of the paper is organized as follow: Section 2
presents a review of the state of the art. Section 3 introduces
the system architecture and the architecture of the three
instruction caches explored in this paper. Section 4 shows
the implementation results and the performance of real-
life applications running on the three architectures. Finally,
Section 5 provides some concluding remarks.

2 RELATED WORK

2.1 Instruction Memory Hierarchy of ULP SoCs
Optimization of the instruction memory hierarchy is one
of the main concerns in programmable ULP architectures
because it can consume more than 50% of the overall system
energy [8]. A common way to reduce energy consumption of
the instruction memory hierarchy in ULP microcontrollers is
to couple a few lines of register- or latch- based instruction
cache with a bigger (up to few kB) instruction memory
integrated in a dedicated power domain at higher voltage (if
6T SRAMs are used) or implemented as dedicated memory
cuts optimized for near- or sub- threshold operation. Myers
et al. [21] presented a Cortex M0+ that fetches instructions
from a 4kB 10T SRAM optimized for sub-threshold oper-
ation. Sleepwalker [11] features a 64-bytes direct-mapped
instruction cache implemented with registers operating at
0.4V, which refills on an 8kB 6T SRAM integrated into a 1.0V
power domain. Almost 50% of the overall system power
is reported to be consumed in the instruction memory
hierarchy. REISC [12] features a more optimized instruction
memory hierarchy, consisting of a 128-bytes direct-mapped
instruction cache in the core power domain at 0.6V, that
refills on an 8T SRAM featuring 0.6V periphery and 0.4V
array. Still, the cost of the cache and memory on the overall
power consumption is relevant: 10% and 23%, respectively.

When moving to ULP multi-core platforms, instruction
memory hierarchy is confirmed to be a huge bottleneck for
energy efficiency. PULP [8] features 4 Open-RISC cores with
one kB of instruction cache, each implemented as 6T SRAMs
and instantiated in a different power domain at higher
voltage (+100 mV with respect to the logic), that refills on a
64kB program memory. The instruction memory hierarchy
consumes more than 50% of the overall SoC power. A
significant improvement has been achieved in PULPv2 [9],
where the introduction of SCMs instead of SRAMs in the
instruction cache increased the SoC energy efficiency by
38%. SCMs present extremely interesting features for low-
voltage and energy-efficient designs, since: i) they are able
to operate at a very low-voltage supply, even lower than
10T SRAMs optimized for low voltage [16]; and ii) their
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energy per access is significantly smaller (from 2× to 4×)
than both 8T [22] or 10T SRAMs optimized for low voltage,
and standard 6T SRAMs [17]. On the other hand, although
controlled placement of standard cells to build memory cuts
demonstrated the ability to reduce area overhead from 4× to
2.7×, the overhead remains huge. For example, in PULPv2
the area of the 1kB private instruction cache is nearly the
same as the area of the core [9].

2.2 Improving Energy Efficiency of Instruction Fetch
Subsystem

Many specialized instruction cache structures have been
studied in the past to reduce energy requirements while
keeping the miss-rate as low as possible to preserve perfor-
mance. Such structures include filter caches [23], loop caches
[24], L-caches [25], Zero-Overhead Loop Buffers [26] and
deterministic early miss detection [27]. These architectures
reduce the pressure on the instruction cache, relying on
small, energy-efficient buffers exploiting instruction locality.
Hence, they are effective to improve energy in applications
where the processor executes small critical kernels for most
of the time. On the other hand, when the instruction locality
is not fully exposed by the applications, and the instruction
cache size is on the order of hundreds of bytes per core
(typical of ultra-low-power computing platforms) [11] [12]
[28], these intermediate buffers become redundant, adding
a third level of memory hierarchy and inefficient because
small caches cause a high miss rate. Although few tens
of bytes of instruction cache can be sufficient for single-
core micro-controllers (MCU) executing compute-intensive,
bare-metal code, this might be insufficient for multi-core
computing platforms executing OpenMP programs on top
of a run-time library [19], because jumps to the run-time
library break the instruction locality of kernels causing a
huge miss rate and a drop of performance and energy
efficiency [9].

In this work we propose an approach to join the benefits
of SCMs in terms of access energy and voltage scalability,
while reducing their area overhead by sharing the instruc-
tion cache among all the cores within a cluster. The idea of
sharing instruction memory is not new and has been mainly
exploited in high-end computing platforms such as General
Purpose Graphic Processing Units (GP-GPU). In GP-GPUs
all the compute units in each multiprocessor execute their
threads in lock-step according to the order of instructions
issued by the instruction dispatcher which is shared among
all of them [29]. The same approach has been proposed to
leverage the intrinsic SIMD nature of several signal process-
ing applications [7]. The presented architecture combines
a tightly coupled cluster of processors operating in near-
threshold with a shared instruction memory with broadcast
mechanism. This allows forwarding the same instruction to
all the processors within the cluster whenever they request
the same address on the same cycle, reducing instruction
fetch energy. Moreover, a hardware synchronization mech-
anism dynamically manages the lockstep execution of cores
during data-dependent program flows [7]. Although this
approach achieves 60% energy reduction, its applicability
is restricted to data-parallel code sequences, and it is in-
trusive from the software viewpoint, as it requires explicitly

activating and deactivating lock-step execution. Moreover, it
employs a single level of memory hierarchy (not an instruc-
tion cache) and all the program code has to be stored in L1
instruction memory implemented with SRAMs, leading to
bigger requirements and higher power with respect to the
hierarchical and heterogeneous memory architecture that
we present (i.e. SCM-based instruction cache that refills
from an SRAM-based L2 memory).

2.3 Exploiting Shared Instruction Cache in Tightly-
Coupled Clusters

An in-depth study of the private and shared cache ar-
chitectures based on a SystemC platform running micro-
benchmarks and few parallel applications [18] shows the
benefits of I$ sharing on a system architecture typical of a
high-end many-core platform (i.e. 16-32 cores per cluster,
50 to 150 cycles of refill latency typical of DDR memories).
Although this is the typical configuration for high-end clus-
tered many-core architectures [30] [31] and GP-GPUs [29],
a large number of processors per cluster causes the power
of the interconnect between the processors and the shared
memory banks to dominate [32], significantly reducing the
energy efficiency of the cluster. In this work, we focus on the
architectural exploration of an energy-efficient and low-cost
(area), tightly coupled cluster composed of 2 to 8 processors,
taking advantage of parallelism and near-threshold opera-
tion to improve energy efficiency rather than performance.
This cluster configuration is representative of most state-
of-the-art near-threshold clustered many-core architectures
[33] [8] [9]. Moreover, in [18] the exploration was conducted
on a SystemC model, hence not reflecting all the interac-
tions among architecture, micro-architecture and physical
implementation on a 4 processor PULP cluster. Loi et al.
[20] explored SCM-based shared cache, demonstrating the
benefits of the shared cache architecture on a 4 processors
PULP cluster. The main limits of the presented architecture
are the high timing pressure caused by the presence of
an interconnect between the cores and the shared memory
banks which causes significant power overhead with respect
to a private cache architecture, and the contention on the
shared memory banks that can cause a performance drop if
not properly managed.

In this work, we further extend this exploration by i)
introducing a novel multi-ported cache architecture that
exploits the benefits of the previously introduced shared
cache exposing a large memory map to each core while
eliminating contention and timing pressure of the previous
solution; ii) analyzing the performance, area and power im-
plications of the three architectures (private, shared, shared
+ multi-port) on a 28nm UTBB FD-SOI technology in near
threshold; iii) proposing an extensive evaluation of the three
solutions based on a wide set of real-life parallel applica-
tions implemented in OpenMP running on a cycle-accurate
FPGA emulator of the tightly-coupled multi-core cluster;
iv) extending the results to a wide range of configurations
typical of energy-efficient tightly coupled processor clusters,
both in terms of cache capacity (1kB, 2kB, 4kB, 8kB) and
number of processors within a cluster (2, 4, 8).
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3 ARCHITECTURE

This section presents the system architecture of the target
clustered many-core platform and the architecture of the
PULP tightly-coupled cluster [8] where the shared program
caches are deployed. Moreover, it provides a detailed de-
scription of the instruction cache’s micro-architecture and
their integration in the multi-core cluster.

SW SW

SW SW

SoC Domain

NI

Cluster #0

NI

Cluster #1

NI

Cluster #2

NI

Cluster #3

Fig. 2: SoC architecture with 4 PULP clusters. Inter-cluster
communication infrastructure is based on regular NoC.

3.1 SoC Architecture

PULP is a scalable clustered many-core system that defines
at design-time its configuration with as many computing
clusters as the applications require. As shown in Figure 2 the
PULP fabric is integrated in a SoC featuring L2 memory, SoC
peripherals and IOs shared among all clusters through a
fabric interconnect. In this work, we focus on a single cluster
PULP architecture [8], as shown in Figure 3.

The PULP cluster (see Figure 3), that we consider as
a baseline for the proposed exploration, includes a con-
figurable number of processing elements (PEs), based on
OpenRISC OR10N cores [34] [35], each featuring a private
instruction cache. The OR10N cores are based on an in-
order, single-issue, four stage pipeline micro-architecture
without branch prediction, improved with extensions for
higher throughput and energy efficiency in parallel signal
processing workloads [34]. No data caches are present,
therefore avoiding memory coherency overhead and ad-
ditional area penalties [30]. PEs share a ultra-low-latency
L1 multi-banked Tightly Coupled Data Memory (TCDM)
acting as a shared data SPM and a DMA tightly coupled to
the TCDM [36]. In the context of this work, the total amount
of TCDM we consider is 128kB [37], and a banking factor of
2 (i.e. the number of TCDM banks is twice the number of
cores). The refill ports of the instruction caches converge on
a common cluster instruction master port through an AXI4
instruction bus. SoC and cluster domains are clocked with
two different Frequency-Locked Loops (FLLs) and can oper-
ate with different supply voltages. Hence, while the supply
voltage of the SoC is limited to 0.8V by the presence of high-
density memory banks used to implement the L2 memory,
the supply voltage of the cluster, implemented with SCMs
and low-voltage SRAMs can scale down to near-threshold,
improving its energy efficiency. Both data and instructions

are routed in and out of the cluster through an AXI4 cluster
bus featuring dual clock FIFOs for clock domain crossing,
causing an overhead of approximately 3 clock cycles of
latency. On the SoC Domain, data/instructions are routed
to the L2 memory through a System BUS (AXI). In the
following, unless explicitly specified, we refer to a cluster
composed of 8 PEs and 128kB of TCDM.

SoC Domain

(SoC clk, SoC VDD) Cluster Domain

(cluster clk, cluster VDD)

DEMUX DEMUX

fetch en

clk gate

TCDM

. . . . . . . .

. . . 

Dual 
Clock
FIFOs

Fig. 3: Overall SoC (mono cluster depicted for the sake
of simplicity), where each processing element embeds a
private instruction cache.

3.2 Private Instruction Cache
Our baseline cluster features private instruction caches, with
a cache line of 32 bytes (8 Words), set-associativity of 4, and
a pseudo-random (PRAND) replacement policy. To define
the set of parameters we made a preliminary exploration on
private caches, analyzing the impact of the set-associativity
and replacement policy on different applications. Figure
4 shows the impact on the execution time of different
set-associativity values analyzed, normalized with respect
to the 4-way set-associative configuration. We can note
that increasing the associativity to more than 4 improves
performance by only up to 1%, while causing significant
power overhead. On the other hand, the direct mapped
and the two-way set-associative cache show a significant
degradation of performance. Even if caches with smaller
associativity consume less power, energy-wise the degra-
dation of performance is more significant, since this cause
the power of the whole cluster (i.e. not only of the cache)
to be integrated over a longer period. The chosen PRAND
replacement policy, which is simplest from the hardware
implementation point of view, doesn’t generate compulsory
misses during the execution of our benchmark set once the
cache is warmed up. These considerations led to the choice
of the described baseline parameters for exploration.

The DATA and TAG array, and the decoders are im-
plemented using conventional standard cells: the memory
elements are based on latches [17], while the periphery logic
is based on common cells gates. The processor fetch stage
has been deeply optimized to reduce the timing pressure
and dependency between the cache interface and the core
pipeline. The fetch interface is based on a request-grant
handshake protocol that relies on two channels: the request
and the response channel. Through the request channel, the core
issues a fetch request by asserting both the request and the
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fetch address, and the grant is used to regulate the flow of
requests. Once the instruction is available in the cache, the
core is notified through the response channel, and a 32 bits
instruction is moved into the core. In case of a hit, the fetch
response comes on the following cycle. In case of a miss, the
private cache controller blocks the core pipeline and creates
an AXI read request to the L2 to retrieve the missing cache
line (256 bits split into 4 burst data chunks since the AXI
infrastructure is 64 bits wide). The transaction first crosses
the AXI instruction bus, then the cluster bus and finally
crosses the cluster and reaches the L2 memory subsystem
(SoC Domain). Then it comes back as a 4-beat, burst-read
transaction. In case of no contention on the AXI L2 interface,
the request that generated the miss is concluded in 14 cycles
(assuming same clock cycle in the cluster domain and SoC
domain, and measured from fetch request to fetch response).

Data replication is the major drawback for private in-
struction cache multi-core systems, which leads to a de-
graded energy and area efficiency. In such systems (e.g.,
in [30]) processors work in parallel and execute the same
kernel on different data-sets. Hence several cores fetch the
same code segment, that is replicated in each private cache.
Therefore, multiple refill requests are asserted at the same
address, creating intense traffic to a remote L2 memory
subsystem.

3.3 Shared Instruction Cache

Instruction cache sharing is an attractive option to increase
the effective capacity of the instruction cache for a given area
budget, at the cost of a higher complexity. Hence, the main
challenges for shared instruction cache design successfully
addressed in this work are:

• do not introduce additional cycles of latency in
the processor fetch interface with respect to private
caches to keep the bandwidth as high as possible
(single-cycle latency).

• do not introduce additional timing pressure on the
processor fetch interface to operate at the same fre-
quency as the private cache architecture (100 MHz).

MP Cluster Domain

(cluster clk, cluster VDD)

DEMUX DEMUX

fetch en

clk gate

TCDM

. . . . . . . .

. . . 

CC CC. . . . . . . .

. . . . . . . . 

MP

. . . . w w
R R

. . . . 

SP Cluster Domain

(cluster clk, cluster VDD)

DEMUX DEMUX

fetch en

clk gate

TCDM

. . . . . . . .

. . . 

Dual 

Clock

FIFOs

L0 L0. . . . . . . .

. . . . . . 

SP

a)

b)Fig. 5: Cluster architecture for Single-Ported Shared instruc-
tion cache. Cache banks are shared through a fast read-only
interconnect, and a Cache filter (L0) is used to reduce the
pressure on the cache bank side.
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• do not introduce any additional cycle of latency in
the path between the instruction cache refill and the
L2 memory (14 cycles).

• minimize the area overhead.

Figure 5 illustrates the shared instruction cache micro ar-
chitecture, where private caches are removed from cores
and replaced by shared cache banks (CB) through a very
thin and fast crossbar interconnect based on logarithmic
trees [32]. This cache architecture is based on [20], and is
briefly described in the following. Since CBs are shared
among the cores, data replication is avoided, but two or
more cores may compete to fetch instructions stored on
the same cache line, or on the same cache bank. In such
a condition, a round-robin arbitration policy ensures that
only one core can access the CB while the others are stalled.



6

Hence, statistically every core has the same probability to
get access to the CB. To better spread access among multiple
CBs, the interconnect maps the CBs with an interleaved ad-
dress scheme (implemented by the Read-only interconnect)
at the granularity of a cache line. To reduce the pressure
(and contention) on the shared CBs we added an instruction
buffer (L0) which is capable of holding a cache line (256
bit or 8 instructions). To avoid any IPC penalty, this buffer
checks the local availability of the instruction, and in case of
a miss forwards in the same cycle the request to the target.

Figure 6 illustrates the internal architecture of the shared
instruction cache. DATA and TAG (SMC based) are identical
to the private cache, so every way has one read port and one
write port controlled by its own CB cache controller. Since
CBs are shared, they have been designed to support multi-
ple outstanding transactions and non-blocking behavior in
case of miss. If a miss happens, the CB asserts the respective
refill request, and then, while waiting for the refill response
from L2, processes incoming fetches for the other cores.
The shared cache controller is also able to track more than
one pending refill. This is translated in additional storage
resources to track pending misses and to restore the right
order from response coming from the AXI infrastructure.

3.4 Multi-port Instruction Cache

Another option to build a shared instruction cache is to
share only TAG and DATA memories, while keeping the
cache controllers private and close to the core fetch inter-
faces. Figure 7 illustrates the cluster architecture with the
multi-port shared instruction cache, while Figure 8 shows
the detailed view of this cache. To reduce memory com-
plexity, DATA and TAG are split into several banks, and
each bank is composed of 4 ways (TAG+DATA). Each of
these arrays has a single write port (used to populate the
cache after a miss), and 8 read ports, one for each private
cache controller (8 cores) and used for normal cache access
(hit/miss). By doing so, each cache controller has a direct
and private path (zero contention) to read TAG and DATA
memories, therefore this cache is similar to the private
one, with significant differences on the way the misses are
handled.

In case of a miss, the private cache directly sends the
refill request through the AXI instruction BUS. If all the
cores are trying to fetch the same address, then 8 refills
are generated. In the shared multi-ported cache, refills are
handled by a dedicated master cache controller, which is in
charge of offering global services (e.g. flush, enable, bypass),
of taking care of refill requests, and of dispatching to the
TAG and DATA arrays. In Figure 8 and Figure 9, we can
observe that after the cache controller issues a miss, the
address is pushed to the master cache controller, through
the read only interconnect (multiplexed with other possible
miss requests). Once it arrives in the master cache controller,
the miss address is stored in a CAM (Content Addressable
Memory), and the AXI refill request is generated and dis-
patched to the L2 memory.

Once the refill response comes back, the master cache
controller first clears the cache line valid bit (invalidate)
while it updates progressively the cache line in the DATA
memory. This operation is performed using the dedicated
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Fig. 7: Cluster architecture for multi-ported shared instruc-
tion cache.
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WRITE DATA and WRITE TAG channels. Finally, when the
last chunk of data arrives (each cache line is served with a 4-
beat burst-read transaction), then the master cache controller
sets the cache line to valid, and clears the relative miss entry
in the CAM. Finally, the master cache controller notifies the
private cache controllers that the pending miss is concluded,
and then the private cache controllers retry the fetch.

In case of multiple misses belonging to the same cache
line, a merging logic takes care of packing the AXI transac-
tions to L2. As shown in Figure 9, the address is pushed in
a special CAM that generates a unique AXI ID (entry ID),
and allows to push using the address as key. If that address
is stored in the CAM, no refill requests are generated, and
only the CORE ID field is updated (meaning that when
refill response comes back, the cores listed in the CORE ID
field will be notified). If the address is not listed, then the
first empty CAM entry is allocated and the refill request is
asserted to L2.
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4 RESULTS

This section presents the comparison of the presented cache
architectures. The results include both physical implemen-
tation metrics such as area, power timing and an extensive
benchmarking based on the execution of parallel signal
processing applications on the cluster.

4.1 Experimental Setup
To analyze the trade-offs between the discussed cache ar-
chitectures in terms of performance, energy and area, we
consider a single cluster with a configurable number of
processors (2 to 8), and a configurable size of the instruction
cache (1kB to 8kB), while the size of the TCDM is fixed to
128kB. Table 1 summarizes all the architectures used in our
experiments, where a 4-way set associative configuration
with a cache line width of 32 bytes (8 words) is used.
To obtain physical implementation results (i.e. frequency,
area, power) the design was synthesized and implemented
on a 28nm CMOS UTBB FD-SOI technology library. The
design was synthesized with Synopsys Design Compiler
J-2014.09-SP4, while the place and route was performed
with Synopsys IC compiler H-2013.03-SP4. To characterize
the power consumption of the proposed instruction cache
architectures, we assumed that the cluster domain operates
at the supply voltage of 0.6V, while the SoC domain operates
at 0.8V. To extract the average power consumption of the
cluster we simulated its post place-and-route netlist when
running a synthetic program able to achieve an IPC close
to 1. Then, we back-annotated the switching activity traces
in VCD (Value Change Dump) format, and we passed it,
together with the parasitic file (in SPEF format), to Synopsys
PrimePower H-2013.06-SP2 to achieve an accurate power
estimation.

To analyze in depth the behavior of each architecture
we used seven benchmarks based on full-fledged applica-
tions, each featuring a different behavior in terms of access
patterns to the instruction memory subsystem, as well as
diversified memory footprint and execution time. All the
applications are parallelized using an optimized OpenMP
implementation [40] and compiled with GCC 5.1. Table 2
shows in detail the characteristics of each application, their

Mnemonic TCCC Kind Description

8K-PR 8kB Private 1024B I$ bank per core
4K-PR 4kB Private 512B I$ bank per core
2K-PR 2kB Private 256B I$ bank per core
1K-PR 1kB Private 128B I$ bank per core
8K-SP 8kB Shared 8x 1024B I$ banks, single-port
4K-SP 4kB Shared 8x 512B I$ banks, single-port
2K-SP 2kB Shared 8x 256B I$ banks, single-port
1K-SP 1kB Shared 8x 128B I$ banks, single-port
8K-MP 8kB Shared 8x 1024B I$ banks, 8-port
4K-MP 4kB Shared 8x 512B I$ banks, 8-port
2K-MP 2kB Shared 8x 256B I$ banks, 8-port
1K-MP 1kB Shared 8x 128B I$ banks, 8-port

TABLE 1: Architectural configurations details

Mnem Size #Instr. Class Description

BFS 1.8KB 0.2M Short-Jump Breadth-First Search
[38]

MD 5.0KB 0.9M Short-Jump Motion Detection
CT 2.9KB 7.9M Long-Jump Color Tracking
FAST 2.7KB 2.7M Long-Jump Machine-generated

corner detection
algorithm [39]

SLIC 26.1KB 41.5M Long-Jump Simple Linear Itera-
tive Clustering for im-
age segmentation

HOG 31.1KB 103.9M Library Histogram of Oriented
Gradients

SRAD 30.2KB 1.5M Library Speckle Reducing
Anisotropic Diffusion
[38]

TABLE 2: Benchmark set details

code section sizes, expressed in kB, and the number of RISC
32-bit instructions needed for each execution. Since cache
performance and code locality are strongly influenced by
the control flow of each application2, we classified the seven
applications in three groups. Short-Jump class includes BFS
and MD, which are loop-based applications with most of
loop bodies smaller than two lines of cache. The second class
of applications, called Long-Jump, groups all the loop-based
applications with loop bodies greater than two lines of
cache, or based on extensive use of control flow instructions.
This is the case of CT, FAST, and SLIC. Finally, the Library
class includes all the benchmarks that extensively use exter-
nal libraries. In our benchmark suite, HOG and SRAD use
libraries to manage non-native data types, such as float, and
fixed point arithmetic, generating a big stress on caches. The
classification is coherent with the performance degradation
showed in Figure 1. To perform a fair comparison, avoiding
spurious advantages of shared configuration in case of cold
caches, our experimental results focus on the third execution
run of each application.

All these applications are fairly complex and long-lived
(millions of instructions in most cases), which makes their
use impractical for architectural exploration based on RTL
simulation. For this reason, the performance analysis is
based on measures coming from RTL-equivalent, fully cycle
accurate FPGA implementations, mapped on Xilinx Zynq
ZC720 FPGA using Vivado 2015.1. This approach allows to

2. not only frequency of conditional statements and displacement in
memory of their branches’ code, but also frequency of function calls,
size of these functions, etc.
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Fig. 10: Area and Power implementation results for the different architectural configurations.

execute at up to 80 MHz, enabling near-to-real-life execution
time. The performance analysis is based on statistics col-
lected by hardware counters implemented inside the cluster.
Energy figures are extracted combining results coming both
from the FPGA emulation (performance) and post place-
and-route analysis (power extraction) in different workload
conditions (e.g. 1-core active, 2-cores active, etc.). All the
power models (coming from an accurate power character-
ization) and the statistics collected in the FPGA emulation
have been combined together in Matlab to estimate the total
energy requirements of the different applications.

4.2 Implementation results

To characterize the performance of the various instruction
cache architectures, we first performed a wide physical
exploration in terms of timing, area, power. For comparison,
we have implemented several variants of a baseline cluster
with 8 cores, considering the three I$ designs and the
size configurations listed in Table 1. For each Total Cluster
Cache Capacity (TCCC) we consider the overall number of
instruction cache bits within the cluster. In other words, in
case of a shared cache architecture the TCCC represents the
real cache capacity seen by the processors, while in case of
private cache architectures the actual cache capacity seen by
each core is 1/8 of the TCCC. For example, if we consider
a TCCC of 1kB we have 1kB of shared cache, or 8x128B
of private cache, assuming an 8-processors cluster. In the
following, we will refer to the private, shared and multi-
ported shared cache designs with the following acronyms:
PR, SP, MP.

From a timing perspective, the cache interface is usually
one of the most critical blocks in embedded processors due
to the complexity of the instruction fetch stage. Tightly cou-
pled clusters of processors [30] feature a shared scratchpad
memory (TCDMs) directly plugged to the load store unit of
the processors through a single-cycle-latency interconnect,
which is often critical as well. In case of a shared instruction
cache, the additional delay of the interconnect increases
the (already critical) delay of the instruction fetch stage,

making the paths toward cache banks even more critical.
For those devices in which high frequency operation is
a requirement (e.g., ARM Cortex A-class processors), this
large delay is typically managed by pipelining the paths
from the instruction fetch stage of the processors to the
instruction cache, and by adding a large branch prediction
table to the core to minimize the probability of mis-predicted
branches (and the related stalls).

In this work we focus on IoT end-nodes optimized for
energy efficiency (lower operating frequency, high IPC, e.g.,
Cortex M-class processor). For this type of design, we can
employ tiny cores without branch prediction table, which
enables single-cycle response latency for the shared I$ de-
sign and maximizes the IPC. To balance the delays on the
data and instruction paths of the processors, the proposed
caches have been optimized in a close loop fashion with
the core fetch interface to reduce the pressure timing-wise.
Despite the latency from core to instruction cache being
close to the one across the load store unit, the optimizations
adopted allow the cluster to achieve the target frequency
of 100 MHz at 0.6V for all the explored configurations
(the most critical path being the one between the cores’
LSU and the TCDM). This is an important milestone in
our exploration since any improvement in the application
execution time and power consumption with respect to the
private cache configuration directly translates into a better
system energy efficiency.

Figure 10a illustrates the silicon area costs for both
private and shared configurations. For every TCCC the
private cache configurations are smaller than the shared
cache configurations, thanks to their simpler architecture. It
is important to remember that for the private configurations
the actual capacity seen by each core is 1/8 of the TCCC,
hence the shared caches are ”virtually” 8 times bigger. The
equi-TCCC analysis presented in Figure 10a also shows that
for small cache sizes (e.g. 1kB) the SP memory is bigger
than the equivalent MP, since in this condition the area of
the SP is dominated by the interconnect and the master
cache controller which form a significantly higher offset
with respect to the 8 read ports of the MP. On the other
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Fig. 11: Throughput of each applications normalized to 8K-PR configuration. Charts group equi-capacity architectures.
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achievable by an ideal instruction cache.

hand, increasing the TCCC (e.g. see 8kB) causes the area of
the MP configuration to increase, mainly due to congestion
problems when dealing with big arrays coupled with a
large number of ports. Following these considerations, the
first intuition is that the MP provides better area results for
smaller TCCC, while the SP provides better area results for
large TCCC.

Figure 10b illustrates the power numbers for clusters
with both private and shared configurations, when running
a synthetic program at the operating frequency of 100MHz
and supply voltage of 0.6V. The first observation is that,
as opposed to SRAM-based instruction cache, the power
cost of the SCM design is almost insensitive to their size,
due to the careful design of the latch-based memory banks,
which are always clock gated unless a write operation (refill)
is being performed [17]. Hence, in case of read operation
(typical of a fetch from processor) only the read address
decoder and the output multiplexer consume power. This
can be seen by looking at the flat behavior of the SP and
PR configurations when increasing the size. Even for power,
as expected, the lowest figures are achieved for the private

configurations, since the design complexity is smaller than
that of the shared cache architectures. Between SP and
MP, we note that the MP power is smaller than SP, and
despite the 4K-MP and 8K-MP are bigger (area) than SP, the
MP benefits from lower switching activity (no interconnect
between cores and cache) and clock-gating control (private
cache controllers, simpler and smaller). On the other hand,
the power exploration confirms the suitability of the MP for
small TCCC, consuming 11% less power than the SP for the
1kB configuration, while for large TCCC (e.g. 8kB) the power
advantage of the MP over the SP is only 4%. This is caused
by the previously highlighted congestion problems of the
MP solution when scaling up the size of the array, which
also slightly increases the power of other components of the
cluster (i.e. processors).

4.3 Benchmarking

This section evaluates the main metrics relevant for low-
cost, low-power processor clusters, namely performance,
energy, and energy-area, which is the most significant eval-
uation parameter for the presented instruction cache archi-
tectures.

Figure 11 resumes the throughput of applications mea-
sured on the different architectural configurations, normal-
ized over the 8K-PR configuration, that we consider as a
baseline. If we consider equi-TCCC, shared cache architec-
tures always show better performance when compared to
the related private configurations. Clearly, for big cache
capacities, the benefit of having a shared cache is only
visible on applications not completely fitting in the private
cache size (i.e. TCCC/8) such as SRAD. On the other hand,
when moving to the small side of TCCC (i.e. 1kB), the
benefit of employing shared instruction cache architectures
is significant also for applications featuring frequent jumps,
leading to more than 40% better performance on average.
If we look at the graphs globally, the best performance is
achieved by bigger instruction caches. The only application
showing a degradation of performance with respect to the
baseline (i.e. 8K private) when implemented with shared
cache is HOG, due to the bigger execution time among the
selected benchmarks and highly divergent threads which
run concurrently on different cores and cause pollution of
cache lines in the shared cache, requiring some extra refills,
especially for small configurations (e.g. 1kB). However, it is
interesting to note that globally, shared instruction caches
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Fig. 13: Inverse of Energy consumption of each applications normalized to 8K-PR configuration. Charts group equi-TCCC
architectures.
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Fig. 14: Inverse of Energy-Area product of each applications normalized to 8K-PR configuration. Charts group equi-TCCC
architectures.

provide significantly better robustness with respect to pri-
vate instruction caches, when considering all the different
classes of applications proposed for benchmarking.

Figure 12 shows the average bandwidth requested by
the processors on the whole benchmark set (ideal BW) and
the bandwidth delivered by the instruction cache for the
different architectural configurations. Ideal BW is equivalent
to the bandwidth delivered by an ”ideal” instruction cache
featuring one cycle of latency and infinite size. The non-
idealities of the instruction caches cause a reduction of band-
width degrading the performance and energy efficiency of
the cluster. Figure 12 also shows the normalized amount of
stalls caused by the non-idealities of the instruction caches:
refills and contention (only for the SP). For each TCCC
shared caches show up to 10× less refill stalls due to the
smaller number of refills due to capacity miss. Moreover,
in this scenario all the private caches within the cluster
likely issue a refill at the same time, creating congestion on
the AXI4 bus and L2 memory. This effect can be noted by
looking at the 8K-PR and 1K-MP configurations. In these
two cases each core has the visibility of the same cache
capacity (1kB), but the 1K-MP configuration features almost
50% fewer stalls just by avoiding congestion on the AXI
bus and L2 memory. Finally, if we compare the SP and
MP configurations, we can note that effect of congestion
on the shared memory banks in the SP cache, leading to
a degradation of performance by less than 2% on average.

Figure 13 shows the energy efficiency (Energy−1) for the
different applications normalized to the 8K-PR configura-
tion. The graphs show the same trend as the performance,

due to the high correlation between the execution time of
applications and the energy spent at cluster level to execute
the application. The main difference here is related to the
slightly better energy efficiency of the MP cache with respect
to the SP, caused by the higher power consumption of the
latter due to the presence of the interconnect between the
cores and the memory banks. On the other hand, the energy
efficiency of both SP and MP solutions is better than the
one of the private cache for every TCCC, while if we look
at the graphs globally the MP provides the best average
energy efficiency (4K-MP), surpassing by 2% the baseline
configuration (8K-PR). Globally, shared cache architectures,
in particular the MP, have a comparable energy consump-
tion among all the configurations, even for small caches,
which is not the case for the private architecture. This is
a tremendous drawback of the private cache architecture
when it targets highly constrained domains such as parallel
ULP architectures.

Given the described proportionality of performance and
energy efficiency with the size (area), in case of private
caches, and the importance of silicon area (cost) in the
domain of ULP tightly-coupled clusters of processors -
especially when speculating on area-expansive latch-based
instruction caches to get an energy return - we propose
an evaluation metric that takes into account performance,
power and area. Based on the area implementation results
shown in the previous section and the energy results pre-
sented in the latest paragraph, the charts in Figure 14 show
the inverse of Energy-Area product ((energy × area)−1),
normalized to the baseline configuration (8K-PR). When we
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Fig. 15: Scalability analysis of the cache architectures increasing the number of core inside the cluster.

introduce this metric, for large TCCC (i.e. 4K-* and 8K-
*) we can note that the private cache performs better on
average, since for these configurations the shared caches
are oversized for the chosen applications, while paying
significant area overhead with respect to the private cache.
On the other hand, when moving to small TCCC (i.e. 2K-
* and 1K-*) the applications start to suffer from capacity
misses, and the overhead of the MP with respect to the
PR memory is much smaller. As a consequence, the 1K-
MP configuration provides the best absolute energy × area
metric, surpassing by 15% all the other configurations. It
is interesting to note that, comparing the SP with the MP
solution, the former provides a better energy × area metric
for large configurations, while the latter provides a better
metric for small configurations. Hence, for large, library
based applications that do not fit even the largest instruction
cache explored (e.g. SRAD), the best absolute instruction
cache architecture is represented by the SP.

Figure 15 illustrates the performance, energy and
energy × area metrics of the cache architecture when
scaling down the number of processors within the cluster
from 8 to 2. The data in each plot is normalized to the
related private cache configuration (number of cores,
TCCC). Hence, in this figure, each graph has to be co

considered independently from the others. If we consider,
like in the previous plots, an equi-TCCC analysis, it
is possible to see that the benefits of the shared cache
architectures in terms of throughput scales down with the
number of cores. This is caused by the fact that the cache
is shared among a smaller number of cores. In the MP
configurations, the actual cache capacity seen by each core
increases with smaller clusters. More precisely, in a 4-core
cluster PR configuration, the cache capacity seen by the core
is TCCC/4, while it is TCCC/2 for a 2-core cluster. Moreover,
the replication of code within the private caches, causes less
overheads, since having fewer cores implies less contention
upon refills. As highlighted in previous experiments, the
benefits of the shared cache configurations increases when
decreasing the TCCC. When we consider the energy and
energy × area metrics, for small TCCC configurations (e.g.
1KB-*) the MP provides better performance in all cases,
thanks to the smaller overhead in terms of area and power
with respect to the SP. When we increase the TCCC beyond
4KB, the SP configuration provides better results for any
number of cores, confirming the better suitability of the SP
configuration for large cache sizes and number of cores.

Until this point, we always considered the different
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Fig. 16: Energy-Area Pareto charts. Each chart groups the measured Energy-Area coordinates for the benchmarks within
the same class of application, while the curves show the trend for each architectural configuration. To provide a complete
coverage of I$ Area% span, additional architectural configurations were considered too: 32K-PR and 16K-SP3.

instruction cache architectures in terms of throughput, area,
or energy in a constant benchmark set scenario. If we now
take the point of view of hardware architects, who are
usually less concerned about benchmarks and more focused
on designing systems with fixed and strict area constraints
and where - sometimes - the target application domain is
not well-defined, flexibility and architectural robustness to
various types of applications is crucial. With this idea in
mind, Figure 16 shows three Pareto charts, one for each class
of application. The x-axis shows the percentage of cluster
area dedicated to the instruction cache. The different mark-
ers show on the y-axis the normalized energy consumption
(over the 8K-PR instance) for each application, while the
curves group the average energy consumption trends for
the three instruction cache architectures, differentiated by
colors: blue for PR, yellow for SP, and red for the MP.

The plots show that while private instruction caches
are highly sensitive to area constraints, shared architectures
show a robust responsiveness to locality variations. PR
cache can be a good solution in case of applications with
high locality, but this is not the case when more complex
applications are taken into account, or when strict area
constraints are in place. For parallel workloads, shared
instruction caches improve hit rate by avoiding data repli-
cation. This becomes key when the cache size is small (10%
of the cluster area) and applications rely on library calls
(shared caches can host a larger portion of such applications
compared to private caches, which partition the available
space). Focusing on shared cache architectures, we can
conclude that MP architectures always dominate SP when
the area constraint is strict. Small cache instances increase
the probability of incurring a bank conflict on SP archi-
tectures, generating stalls and performance loss compared
to a conflict-free architecture such as MP. The opposite is
true when the area constraint is less severe (bigger than
30%). In such case, SP can provide better capacity scaling
by hosting nearly twice as much the cache lines in the
same silicon area, and consequently, be more tolerant to
application variability. This is clearly visible for the Library

Application Class I$ Area Budget (% of total cluster area)
Tolerance 10% 20% 30% 40%

Short-Jump 2K-PR 2K-PR 2K-PR 2K-PR
Long-Jump 1K-MP 8K-PR 8K-PR 8K-PR
Library 1K-MP 2K-MP 8K-SP 16K-SP

TABLE 3: Dominant architecture configurations given an
increasing instruction cache area budget.

class application SRAD, which provides the best energy
results for larger cache sizes. Table 3 summarizes these
findings, showing the dominant architecture configuration
in term of energy × area for each area budget constraint
for the three different application class. Considering an
application class with high-locality, such as the Short-Jump
class of benchmarks, small private caches are able to achieve
the best trade-off in area and energy due the fact that a
large instruction cache capacity is not a requirement for
this class of applications. Thus, a really simple and small
private program cache is sufficient to tolerate that kind of
program flow requirement, without introducing any bot-
tlenecks. As soon as the scenario becomes more complex
- this is the case of Long-Jump class of benchmarks - when a
highly constrained area budget is considered (10%), the 1K-
MP provides the most efficient solution. Compared to the
private cache configuration, it enables better hit-rate and it
avoids replications, while compared to the SP solution, it is
not affected by conflicts and requires less power. Obviously,
if the area constraints are looser, big private caches are effec-
tive also for Long-Jump class of benchmarks. Finally, when
Library based applications are considered, shared caches are
always the best solution for all the configuration evaluated.
Considering that for this class of applications the instruction
cache can be a real bottleneck, and that the capacity of the
caches has major impact on the performance, the SP is able
to provide the best energy×area trade-off when the I$ area
portion inside the cluster is bigger than 20%.

3. Respectively, 4kB private I$ per core configuration (32K-PR), and
8x 2048B single port shared I$ banks configuration (16K-SP)
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5 CONCLUSION

In this work, we explored instruction cache architectures for
energy efficient and cost effective tightly coupled clusters
of processors for end-node IoT devices. Although a large
private instruction cache based on latches provides good
performance and energy efficiency, it is not an effective
solution for low-cost, area-constrained designs, due to the
large area overhead of latch-based memories with respect
to SRAMs. We thus studied two different cluster architec-
tures based on shared instruction caches: one featuring a
crossbar between the processors and the memory banks,
and one exploiting memory banks with multiple ports. We
conducted an exploration running several signal processing
applications featuring diverse instruction memory access
patterns on the same cluster configured with different in-
struction cache architectures. The results of this exploration
show that the shared cache configurations can execute in
a more energy efficient way for a much wider class of
applications with much less silicon area when compared to
private caches. The multi-port cache architecture improves
the performance with respect to the private cache by up to
40% in throughput, 20% in energy efficiency, and 30% in
energy × area efficiency for sizes of few kB (typical of ultra-
low-power architectures). While the multi-port solution is
optimal for small sizes, the one based on shared single-
port banks is more suitable for large cache configurations,
providing better scalability with the size and number of
cores, especially in area, providing 20% better energy × area
efficiency than the multi-port, and up to 30% better energy
efficiency than private caches.
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