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Γ-CONVERGENCE OF VARIATIONAL FUNCTIONALS

WITH BOUNDARY TERMS IN STEIN MANIFOLDS

ELEONORA CINTI, BRUNO FRANCHI, MARÍA DEL MAR GONZÁLEZ

Abstract. Let Ω be an open subset of a Stein manifold Σ and let M
be its boundary. It is well known that M inherits a natural contact
structure. In this paper we consider a family of variational functionals
Fε defined by the sum of two terms: a Dirichlet-type energy associ-
ated with a sub-Riemannian structure in Ω and a potential term on
the boundary M . We prove that the functionals Fε Γ-converge to the
intrinsic perimeter in M associated with its contact structure.

Similar results have been obtained in the Euclidean space by Alberti,
Bouchitté, Seppecher. We stress that already in the Euclidean setting
the situation is not covered by the classical Modica-Mortola Theorem
because of the presence of the boundary term.

We recall also that Modica-Mortola type results (without a bound-
ary term) have been proved in the Euclidean space for sub-Riemannian
energies by Monti and Serra Cassano.
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1. Introduction and statement of the results

It is well known that, roughly speaking, a contact manifold (M, θ) can
be viewed as “the boundary” of a symplectic manifold (Ω, ω). We refer for
instance to [13], Section 6.8. In particular, the Heisenberg group Hn can
be seen as the boundary of the upper half-space Un ⊂ Cn (see, e.g. [45],
Chapter XII).

The aim of this note is to show that – in the same spirit – the notion of
perimeter associated with the contact structure of (M, θ) (see [8]) can be
seen as a variational limit of “solid functionals” defined in the symplectic
manifold (Ω, ω) that has M as boundary (notice that similar approximation
“from within M” are already known, at least in the model case Hn: see
[37].)

More precisely, inspired by [5], we show that the perimeter in (M, θ) is the
Γ-limit of a family of “phase transition” functionals with “low dimensional
tension effect” in Ω.

Let us start by introducing the setting of our results. Let Ω be a bounded
open set in a Stein manifold of complex dimensionN = n+1, with symplectic
form ω. A complex manifold Σ, endowed with a complex structure J , is said
a Stein manifold if it admits an exhausting J-convex function φ. We recall
that Σ is endowed with a Riemannian metric g associated with ω and J . We
assume that Ω = {φ < c} is a sublevel set of φ. Then its boundary M = ∂Ω,
of real dimension 2n+ 1, inherits a natural contact structure (M, θ), where
θ is (roughly speaking) the restriction to M of the 1-form ξ, the contraction
of the symplectic form ω along the so-called Liouville vector field X0, that
plays the role of the normal vector to M (see Definition 2.4 below).

In turn, the kernel of ξ defines a distribution of hyperplanes H on Ω (not
of constant dimension). All precise definitions will be given in Section 2.1,
but the idea is that bounded open sets in Stein manifolds are the natural
generalization of domains of holomorphy in Cn, having a contact manifold
as boundary. We denote also by dy the volume element in Ω with respect to
the metric compatible with the symplectic form ω, and dvθ := θ ∧ (dθ)N−1

the volume element in M with respect to the contact form θ.
Let V be a double well potential, i.e, a function V : R→ R satisfying

V (0) = V (1) = 0, V > 0 in R\{0, 1}.

Given ε > 0 and λε > 0, we define (only formally for a while) the energy
functional in L1(Ω)

(1.1) Fε(u) := ε

∫
Ω
f(y,Du(y)) dy + λε

∫
M
V (Tru) dvθ,

where Du denotes the Riemannian gradient of u. The first term in the
functional Fε(u) is essentially the Dirichlet energy on Ω inherited from the
sub-Riemannian structure of (Ω,H), and it will be precisely written in Sec-
tion 2.1 after we have introduced all the necessary notations. In particular,
given an open set U ⊂ Ω, we can define in a standard way a family of Sobolev
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spaces W 1,p
H (U), 1 ≤ p < ∞. Thus Fε will be well defined if u ∈ W 1,2

H (Ω);
we assign it the value infinity otherwise. Note that functions in this space
have well defined traces Tru on M with respect to the normal X0.

The second term in the functional, coming from a double well potential
(on the boundary), creates a phase transition on the boundary M as ε →
0. Here the sub-Riemannian geometry of M plays an essential role in the
understanding of the Γ-limit of the functional as ε→ 0, and this is the main
innovation of the present paper.

The model we have in mind is M equal to the n-Heisenberg group Hn

and Ω = Hn × R+, which is the flat model in this geometry; Indeed, by
the Darboux Theorem, any (2n+ 1)-dimensional contact manifold is locally
contact-diffeomorphic to the n-Heisenberg group (see e.g. Theorem 5.1.5,
[1]). In this model case the functional reduces to (1.2).

For a general review on Heisenberg groups and their properties, we refer to
[11], [27], [45], and [46]. We limit ourselves to fix some notations, following
[23]. The Heisenberg group Hn is identified with R2n+1 through exponential
coordinates. A point p ∈ Hn is denoted by p = (η, t), with η ∈ R2n and
t ∈ R. If p and p′ ∈ Hn, the group operation is defined as

p · p′ =
(
η + η′, t+ t′ +

1

2

n∑
j=1

(ηjη
′
j+n − ηj+nη′j)

)
.

For fixed q ∈ Hn and for r > 0, left translations τq : Hn → Hn and not
isotropic dilations δr : Hn → Hn are defined as

τq(p) := q · p and as δr(p) := (rη, r2t).

We denote by h the Lie algebra of the left invariant vector fields of Hn. The
standard basis of h is given, for i = 1, . . . , n, by

WH
i := ∂ηi −

1

2
ηi+n∂t, WH

i+n := ∂ηi+n +
1

2
ηi∂t, T := ∂t.

The only non-trivial commutation relations are [WH
j ,W

H
j+n] = T , for j =

1, . . . , n.
The horizontal subspace h1 is the subspace of h spanned by WH

1 , . . . ,W
H
2n.

Coherently, from now on, we refer to WH
1 , . . . ,W

H
2n (identified with first order

differential operators) as to the horizontal derivatives, and we write

WH := {WH
1 , . . . ,W

H
2n}.

Let gH = gH(·, ·) be the Riemannian metric on Hn making WH
1 , . . . ,W

H
2n, T

orthonormal. We shall denote it by 〈·, ·〉H. We denote by ∇H the horizontal
gradient

∇H := (WH
1 , . . . ,W

H
2n).

Denoting by h2 the linear span of T , the 2-step stratification of h is expressed
by

h = h1 ⊕ h2.

The dual space of h is denoted by
∧1 h. The basis of

∧1 h, dual to the basis
{WH

1 , . . . ,W
H
2n, T} is the family of covectors {dη1, . . . , dη2n, θ0} where

θ0 := dt− 1

2

n∑
j=1

(ηjdηj+n − ηj+ndηj)
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is called the contact form in Hn.

In this particular case, the functional (1.1) is written as

Eε(u) := ε

∫
Hn×[0,∞)

( 2n∑
j=1

(WH
j u)2 + (∂zu)2

)
dvθ0dz + λε

∫
Hn
V (Tru) dvθ0 .

(1.2)

where dvθ0 = dη dt. Here we realize that our functional corresponds to a
hypoelliptic Dirichlet energy functional with a boundary phase transition
on a contact manifold.

In general throughout this paper, if u ∈ W 1,1
loc (Ω) is a real function on a

smooth manifold Ω and X is a smooth tangent vector field, we shall write

Xu := LXu,
to denote the Lie derivative of u along X.

Let us now state our main theorem, a boundary Γ-convergence result. For
the rest of the paper, we will assume that

(1.3) lim
ε→0

ε log λε = κ for some constant κ ∈ (0,∞).

We also define the limit functional on M as

(1.4) F (v) =

{
c ‖Sv‖θ if v ∈ BVθ(M, {0, 1}),
+∞ otherwise,

where c = κ/π. Here ‖∂A‖θ denotes the intrinsic perimeter measure of
the set A ⊂ M associated with the contact form θ, and Sv = ∂{v ≡ 1}
the singular set of v ∈ BVθ(M, {0, 1}). Precise definitions will be given in
Section 3.

Theorem 1.1. For ε > 0, consider the functional Fε : L1(Ω) → [0,+∞],
Under scaling (1.3) we have that:

i) Given a sequence {uε} such that Fε(uε) is bounded when ε→ 0, then
{Truε} is pre-compact in L1(M) and every cluster point belongs to
BVθ(M, {0, 1}).

ii) Lower bound inequality: for every v ∈ BVθ(M, {0, 1}) and every

sequence {uε} ⊂W 1,2
H (Ω) such that Truε → v in L1(M), there holds

lim inf
ε→0

Fε(uε) ≥ F (v).

iii) Upper bound inequality: for every v ∈ BVθ(M, {0, 1}) there exists a

sequence {uε} ⊂W 1,2
H (Ω) such that Truε → v in L1(M) and

lim
ε→0

Fε(uε) = F (v).

The inspiration for this theorem comes from the Riemannian case. The
classical theorem for phase transitions of Modica-Mortola states that a
Dirichlet energy functional with a double well potential (in the interior)
Γ-converges to the area functional, and thus, phase transitions happen at
a minimal surface (see the survey paper [3] or [33], for instance). Later,
Alberti, Bouchitté and Seppecher [5] considered an energy functional on do-
main Ω ⊂ R3 with a double well potential defined on the boundary of Ω,
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which is a closed surface M . In this case the Γ-limit leads to a phase tran-
sition problem on the boundary surface M . This problem comes in relation
to a model in capillarity with line tension effect.

Here we consider the sub-Riemannian version of [5], in which the phase
transition occurs at the boundary of a complex domain Ω, which is a sub-
Riemannian (contact) manifold M . Although the structure of the proof is
similar to the Riemannian case, the main difficulties, detailed below, come
precisely from the fact that the sub-Laplacian is a hypoelliptic, but not
elliptic, operator, and from the intrinsic geometry of a contact manifold.

The first Γ-convergence result in the sub-Riemannian setting is by Monti
and Serra Cassano [37], where they show the analog of the Modica-Mortola
theorem for interior phase transitions in a subdomain Ω in the framework of
Carnot-Carathéodory spaces. As a particular case, their result holds in the
case of the Heisenberg group, which is the flat model in contact geometry.

In contrast, looking at boundary phase transitions on complex domains
presents several difficulties that one needs to deal with. Therefore, we give
now an overview of the paper, stressing the points at which we cannot plainly
traslate Euclidean techniques to our geometric setting, but we have to use
new approaches or new technical arguments.

First, in order to follow the methods in [5] for the Riemannian setting,
one needs to compare our domain Ω to a product M × [0, σ) while still
preserving the complex structure. However, in the process of flattening one
needs to control the error in this procedure only by means of the derivatives
appearing in the functional (1.2) and not of the whole gradient. This is the
content of Section 2.2.

Second, while there is an extensive literature on sub-Riemannian geome-
try for the Heisenberg group, the Carnot-Carathéodory theory on a general
contact manifold has just recently been developed in [8]. In [8], the authors
developed the theory of perimeter and BV functions, but several results
needed in our proofs were not available. One of the missing concepts was
the Eikonal equation for the Carnot-Caratheodory (CC) distance, which we
address in Section 3.2. Of course, the Eikonal equation holds in the viscosity
sense in the CC setting (see Corollary 2.36 and Remark 2.37. in [14]), but
we need a pointwise identity.

Section 4 deals with the proof of the compactness and the lower bound
inequality for the model functional (1.2). This part essentially follows, as in
the Riemannian case, using a slicing theorem by [34] to reduce the problem
to a one dimensional one.

In Section 5, we prove point i) and ii) of Theorem 1.1. To do that, we need
to pass from the corresponding results for the flat model, established in Sec-
tion 4, to the ones for the original functional. In doing that, a crucial issue is
to compare our boundary contact manifold to the Heisenberg group near a
given point, in the spirit of the blow up theorems by [8]. Of course, the start-
ing point is Darboux theorem. Let us give now a list of the difficulties we
have subsequently to deal with. Precise technical features are described in
Remark 5.7. In the Euclidean setting, for a smooth hypersurface S basically
all reasonable notions of surface measure agree: De Giorgi perimeter, spher-
ical Hausdorff measure with respect to Euclidean balls, as well as Minkowski
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content. Because of this, in [5] the authors use systematically the spherical
Hausdorff measure. In a contact manifold the situation is different: indeed
it is natural to formulate our results in terms of perimeter and Minkowski
content, and we are forced to use the Carnot-Carathéodory distance on the
contact manifold, since it satisfies the Eikonal equation. On the other hand,
the proof of the liminf inequality (with exact constants) is reached in [5] by
means of the estimate of the density of a suitable measure associated with
the functional, yielding a comparison with the Carnot-Carathéodory spher-
ical Hausdorff measure. Unfortunately, an explicit representation formula
for the perimeter in terms of the Carnot-Carathéodory spherical Hausdorff
measure is not known, and we have to use an indirect comparison argument,
that is stated in Theorem 5.6.

Many of the results that are needed are summarized later in Section 7,
as an appendix for the paper (see also [24]). Finally, Section 6, mostly
analytical, concludes the proof of the main theorem, establishing the upper
bound inequality (point iii) in Theorem 1.1).

2. Reduction to a model problem

2.1. Geometric setting. We refer to [13], Section 1.1, and to [16] for an
introduction to the results in this section.

Among several equivalent definitions of Stein manifold (see [13], Section
5.3), we choose the following one (called in [13] J-convex definition). We
refer also to the classical paper [26], as well as to [19], Theorem 2.3.2.

Definition 2.1. A complex manifold Σ is said a Stein manifold if ad-
mits an exhausting J-convex function φ (sometimes called also exausting
plurisubharmonic function). To be a complex manifold means that:

i) Σ is a smooth manifold of real dimension 2N , endowed with an
endomorphism (the complex structure) J : TΣ → TΣ satisfying
J2 = −I on each fiber;

ii) J is integrable, i.e. J is induced by complex coordinates on Σ.

Let now φ : Σ → R be a smooth function. We say that φ is an exhausting
function if:

iii) inf φ > −∞;
iv) φ is proper, i.e. φ−1(K) is compact for any compact set K ⊂ R.

We denote by dC the operator defined by

〈dCφ|X〉 := 〈dφ|JX〉 for all smooth tangent vector fields X.

We can associate with φ the 2-form

ω = ωφ := dξφ, where ξ = ξφ := −dCφ.

Then the function φ is said J-convex if

(2.1) −ddCφ(X,X) = ωφ(X,JX) > 01

1Through this paper, we denote by 〈·|·〉 the duality between cotangent h-vectors and
tangent h-vectors. Moreover, for sake of simplicity we write sometimes ωφ(X,Y ) for
〈ωφ|X ∧ Y 〉 and ξφ(X) for 〈ξφ|X〉).
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for all smooth tangent vector fields X (see [13], p.19). We recall that

ddCφ = −2i
∑
i,j

∂2φ

dzi dz̄j
dzi ∧ dz̄j .

Remark 2.2. The first instance of Stein manifold is given by the Euclidean
complex space Cn endowed with the standard complex structure and an
exausting plurisubharmonic function φ (the simplest choice is, by the way,
φ(z) = |z|2.) In particular, an open set in Cn is a Stein manifold if and
only if it is a domain of holomorphy (see e.g. [19], Section 2.2.) On the
other hand, any properly embedded submanifold of a Stein manifold is a
Stein manifold, so that any properly embedded submanifold of Cn admits
at least a structure of Stein manifold. In fact, this example provides the
prototype of the class of Stein manifolds, since any Stein manifold Σ of
complex dimension n admits a proper holomorphic embedding into C2n+1

(see [13], Theorem 5.15.)
Other examples of Stein manifolds can be found in [19], Section 2.2.

Proposition 2.3 ([13]). Suppose Σ is a Stein manifold with respect to the
complex structure J and the exhausting J-convex function φ. Then:

i) ωφ is a symplectic form;
ii) ωφ is J-invariant, i.e. ωφ(JX, JY ) = ωφ(X,Y ) for all smooth tangent

vector fields X,Y ;
iii) the bilinear form on TΣ given by gφ(X,Y ) = g(X,Y ) := ωφ(X, JY ) is

a Riemannian scalar product and hence a Kähler metric. In particular
the Riemannian volume form dy coincides with the symplectic volume
form ωNφ ;

iv) J is a g-isometry;
v) if we denote by ∇φ = ∇g the gradient associated with the Riemannian

scalar product gφ, then the vector field Xφ := ∇φφ satisfies

(2.2) LXφωφ = ωφ or, equivalently, ξφ = ıXφωφ,

where ıX denotes the contraction along the vector field X.
vi) gφ(Xφ, Z) = 0 in M for all Z ∈ TM .

Proof. Assertions i) and ii) are proved in [13], Sections 2.1 and 2.2; asser-
tions iii) and v) are contained in [13], Lemma 2.20. As for iv), if X,Y ∈ TΣ

gφ(JX, JY ) = ωφ(JY, J2X) = −ωφ(JY,X) = ωφ(X, JY ) = gφ(X,Y ).

Finally, vi) follows from the identity gφ(Xφ, Z) = 〈dφ|Z〉. �

Definition 2.4. The vector field Xφ defined by (2.2) is called the Liouville
vector field for the symplectic form ωφ.

The symplectic structure induced by φ is independent of φ in the following
sense:

Theorem 2.5 ([16], Theorem 1.4.A). Let ψ : Σ → R be another smooth
function satisfying iii), iv) in Definition 2.1, and (2.1). Then (Σ, ωφ) and
(Σ, ωψ) are symplectomorphic.
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Let now Σ be a Stein manifold, and let φ be the associated exhausting
function. If c ∈ R is a regular value of φ, we set Ωφ,c = φ−1(] − ∞, c[).
Clearly Ωφ,c is a bounded open set in Σ with smooth compact boundary
Mφ. We assume here, for sake of simplicity, that Mφ has only one connected
component.

From now on, the exhausting function φ and the regular level c will be
fixed, and we drop the corresponding indices in our notations and thus we
write Ω := Ωφ,c and M = ∂Ω.

In addition, we shall write X0 for the Liouville vector field ∇φφ. We
notice that X0 6= 0 in a neighborhood M of M since c is a regular value of
φ and M is compact.

We denote by TΩ := (Ω, TΩ, π) the tangent bundle of Ω, and by TyΩ the
fiber of TΩ over y ∈ Ω. Coherently, we denote by gy the Riemannian metric
g on TyΩ, and by ξy and ωy the forms ξ and ω at the point y. However, as
customary in differential geometry, we drop the index y whenever this does
not lead to misunderstandings. An analogous notation will be used for TM ,
the tangent bundle of M .

Finally, we denote by d the Riemannian distance on Ω with respect to the
metric g.

Set now H := ker ξ = {X ∈ TΩ; ıXξ = 0} ⊂ TΩ. It is easy to see that H
defines a distribution (not of constant dimension) on Ω. Arguing as in [8],
Section 3.2, if 1 ≤ p < ∞ and given an open set U ⊂ Ω, we can associate
with H a Sobolev space W 1,p

H (U).
The next step consists in proving that H is a natural (2N−1)-distribution

associated with the Liouville form ξ in a neighborhood M of M .

Proposition 2.6. We have:

i) X0 ∈ H;
ii) dimH = 2N − 1 in M;

iii) H has a orthonormal basis of the form

B := {X0, Z1, JZ1, Z2, JZ2, . . . , ZN−1, JZN−1}

(in particular, Z1, JZ1, . . . , ZN−1, JZN−1 ∈ TM on M);
iv) ω(Zi, Zj) = 0 for all i, j = 1, . . . , N − 1, ω(JZi, JZj) = 0 for all i, j =

1, . . . , N − 1, ω(Zi, JZj) = 0 for all i, j = 1, . . . , N − 1, i 6= j, and
ω(Zi, JZi) = 1 for all i = 1, . . . , N − 1;

v) ξ([JZi, Zi]) = 1 for i = 1, . . . , N ;
vi) H+ [H,H] = TΩ, so that (H, g) is a regular sub-Riemannian structure

on Ω.

Proof. To prove i) we write

〈ξ|X0〉 = ıX0ω(X0) = ω(X0, X0) = 0.

Next, obviously dim ker ξ ≥ 2N − 1. Suppose ii) fails to be true. Then for
some y ∈M and for any Y ∈ TyΩ in M

0 = 〈ξy|Y 〉y = ωy(X0, Y ),

which contradicts X0 6= 0 since ω is symplectic.
8



To prove iii), we prove first that, if g(X,X0) = 0, then 〈ξ|JX〉 = 0.
Indeed

(2.3) 〈ξ|JX〉 = ω(X0, JX) = g(X0, X) = 0.

Consider now X⊥0 ∩ ker ξ, the g-orthogonal complement of X0 in ker ξ, that
has dimension 2N − 2, and take an unit vector Z1 ∈ X⊥0 ∩ ker ξ. Take now
JZ1, that is a unit vector by Theorem 2.3, part iv). By (2.3) JZ1 ∈ ker ξ.
We have also

g(X0, JZ1) = ω(X0, J
2Z1) = −ω(X0, Z1)

= −〈ıX0ω|Z1〉 = 〈ξ|Z1〉 = 0.

Thus JZ1 ∈ X⊥0 ∩ ker ξ. Finally

g(JZ1, Z1) = ω(JZ1, JZ1) = 0.

Summing up, Z1 and JZ1 are two orthonormal vectors in X⊥0 ∩ ker ξ. We
can take now an unitary vector Z2 ∈ span {X0, Z1, JZ1}⊥ ∩ ker ξ. Arguing
as above, Z2 and JZ2 are two orthonormal vectors in span {X0, Z1, JZ1}⊥∩
ker ξ. Repeating the argument, we achieve the proof of iii).

Let us prove iv). Let i 6= j be given. Thanks to the anti-commutativity
of ω, we can assume i < j. Then ω(Zi, Zj) = ω(JZi, JZj) = g(JZi, Zj) = 0,
by construction. In addition, if i 6= j, then ω(Zi, JZj) = g(Zi, Zj) = 0,
whereas ω(Zi, JZi) = g(Zi, Zi) = 1 for i = 1, . . . , N − 1. This achieves the
proof of iv).

To prove v), we have only to recall that, by classical Cartan’s formula

1 = ω(Zi, JZi) = dξ(Zi, JZi) = JZi〈ξ|Zi〉 − Zi〈ξ|JZi〉 − 〈ξ|[Zi, JZi]〉
= −〈ξ|[Zi, JZi]〉.

Finally, vi) follows from ii) and v). �

Remark 2.7. We can always take Zj and JZj , j = 1, . . . , N−1, that commute
with X0.

Let us remind now the following well-known definition.

Definition 2.8. Let M be a smooth (2n+1)-manifold. A 1-form θ is said a
contact form if θ∧ (dθ)2n 6= 0 on M . The set ker θ ⊂ TM is called a contact
distribution. Let M1 and M2 be two contact (2n + 1)-manifolds endowed
with the contact forms θ1 and θ2. A smooth diffeomorphism f : M1 → M2

is said a contact map if θ1 = f∗θ2 and hence f∗ ker θ1 = ker θ2.

The following result is well known:

Proposition 2.9. Denote by i : M → Ω the natural embedding. Then the
1-form θ := i∗(ıX0ω) is a contact form on M , and therefore ker θ defines a
contact distribution on M .

Remark 2.10. By the previous proposition, we can choose dvθ := θ∧(dθ)N−1

as the volume form in M . For sake of simplicity, if A ⊂ M we shall write
vθ(A) for

∫
A dvθ.

Moreover (see e.g. [10]) there exists a global vector field T on M satisfying
〈θ|T 〉 = 1 and orthogonal to ker θ with respect to the Riemannian metric
induced by g on TM (still denoted by g), that is called the characteristic
vector field or Reeb vector field of the contact structure.

9



Proposition 2.11. The contact distribution ker θ carries a natural sym-
plectic structure

dθ = di∗(ξ) = i∗(dξ) = i∗ω.

Proof. We have only to prove that i∗ω is non-degenerate on ker θ. To this
end, let X ∈ ker θ be such that i∗ω(X,Y ) = 0 for all Y ∈ ker θ. If x ∈ M ,
then, keeping in mind that i(x) = x, we have

0 = i∗ωx(X,Y ) = ωi(x)(di(X), di(Y )).

We remark now that any tangent vector Z to Ω at a point of M can be
written in the form Z = di(Y ) + λX0 with λ ∈ R and Y ∈ TM , since X0 is
normal to TM . On the other hand

ωi(x)(di(X), X0) = −ξi(x)(di(X)) = −θx(X) = 0,

and hence ωi(x)(di(X), Z) = 0 for all Z ∈ Ti(x)Ω, achieving the proof of the
proposition since di is injective. �

Proposition 2.12. The vector fields Zj and JZj, j = 1, . . . , N − 1 (that
belong to TΩ), being tangent to M at the points of M , can be identified
with vectors in ker θ ⊂ TM and are a symplectic basis of ker θ. Moreover,
ker θ inherits the Riemannian metric from the ambient space (denoted by
the same letter g) and Zj and JZj, j = 1, . . . , N − 1 give an orthonormal
basis of ker θ.

Proof. It is enough to apply Theorem 2.6, iv). �

We are ready now to introduce our main object of study. We write N =:
n+ 1. If p is a tangent vector of TyΩ, we denote

Λ(y, p) :=
n∑
j=1

gy(Zj(y), p)2 +
n∑
j=1

gy(JZj(y), p)2 + gy(X0(y), p)2.

Let now f : TΩ→ R be a smooth function such that:

H1. 0 ≤ f(y, p) ≤ C gy(p, p) for all y ∈ Ω and p ∈ TyΩ.;
H2. for any σ > 0 small enough there exists a neighborhood Uσ of M in

Ω, Uσ ⊂M, such that

(1− σ)Λ(y, p) ≤ f(y, p) ≤ (1 + σ)Λ(y, p)

for all y ∈ Uσ and p ∈ TyΩ.

If there is no way to misunderstanding, we denote by ∇ = ∇g the Rie-
mannian gradient in Ω. We notice that, if X is any vector field on Ω and
u ∈W 1,1

loc (Ω), then gy(X,∇gu)2 = |Xu|2. Keeping in mind that

gy(X,∇gu) = 〈du|X〉 = LXu = Xu,

we can write

(2.4)

∫
Uσ

Λ(y,∇u(y)) dy =

∫
Uσ

( n∑
j=1

(Zju)2 +

n∑
j=1

(JZju)2 + (X0u)2
)
dy.

10



2.2. Straightening the domain and freezing the functional. It is well
known that, straightening the integral curve of X0, we can transform the
neighborhood Uσ of M into the cylinder M × [0, σ). More precisely, we
consider the map

Φ = Φ(x, z) : M × [0, σ)→ Ω

defined by

(2.5)
∂Φ

∂z
= −X0(Φ) and Φ(x, 0) = i(x).

If σ > 0 is small enough, then Φ is a smooth diffeomorphism. We set now

Z̃j := (Φ−1)∗Zj , J̃Zj := (Φ−1)∗JZj , j = 1, . . . , n,

and

ξ̃ := Φ∗(ξ), ω̃ := Φ∗(ω), H̃ = ker ξ̃.

As before, we can associated with the distribution given by H̃, a family
of Sobolev spaces W 1,p

H̃ (Ũ) for an open set Ũ ⊂M × [0, σ). In addition, we

define the projection

π : M × [0, σ)→M

given by π(x, z) = x. We notice that, if α is a differential form on M , then
π∗α is its “natural” extension on M × [0, σ).

The following result follows straightforwardly by algebraic arguments.

Lemma 2.13. We remind that we have set θ := i∗ξ. Then we have:

i) ξ̃ = e−z π∗θ;
ii) ω̃ = d(e−z π∗θ);

iii) ker ξ̃ = ker θ × R.

Moreover, we have the following Lemma:

Lemma 2.14. We have:

i) (Φ−1)∗X0 = (0,−1) = −∂z;
ii) Φ∗(ωN ) = e−Nz π∗(dvθ) ∧ dz.

Proof. Point i) comes by the way we have defined Φ in (2.5). To prove ii),
we notice that, by Lemma 2.13,

Φ∗(ωN ) = ω̃N = (d(e−z π∗θ))N = e−Nz(−dz ∧ π∗θ + π∗(dθ))N

= −e−Nz dz ∧ π∗θ ∧ (π∗(dθ))N−1

= e−Nz π∗θ ∧ (π∗(dθ))N−1 ∧ dz
= e−Nz π∗

(
θ ∧ (dθ)N−1

)
∧ dz.

�

Remark 2.15. For sake of simplicity, from now on we shall write dvθ ∧dz for
π∗(dvθ) ∧ dz.

If we perform the change of variables y = Φ(x, z), keeping in mind that

X0u = ∂z(u ◦Φ) and Zju = Z̃j(u ◦Φ), and setting ũ := u ◦Φ, the functional
11



(2.4) becomes∫
Uσ

Λ(y,Du(y)) dy

=

∫
M×[0,σ)

( n∑
j=1

(Z̃j ũ)2 +

n∑
j=1

(J̃Zj ũ)2 + (∂zũ)2
)
e−Nzdvθ ∧ dz.

(2.6)

We recall now that the vector fields Z1, . . . , Zn and JZ1, . . . , JZn in Ω are
tangent to M in M , and hence can be identified with vector fields tangent
to M at the points of the form (x, 0) ∈ M × [0, σ). Thus in M × [0, σ) we
set:

Z̃0
j (x, z) := Z̃j(x, 0) = Zj(i(x))

and

J̃Z
0

j (x, z) := J̃Zj(x, 0) = JZj(i(x)).

The core of this Section is the following Proposition, that states basically
that our functional near the boundary M of Ω is equivalent – in a suitable
way – to a variational functional F̃ε,σ satisfying the following properties:

• F̃ε,σ is defined in a cylindric region M × [0, σ);

• F̃ε,σ is associated with the vector fields Z̃0
j and J̃Z

0

j (that are tangent

to M and are independent of the “vertical” variable) and to a purely
vertical vector field ∂z.

More precisely, we write

F̃ε,σ(ũ) :=

∫
M×[0,σ)

( n∑
j=1

(Z0
j ũ)2 +

n∑
j=1

(JZ0
j ũ)2 + (∂zũ)2

)
dvθ ∧ dz

+ λε

∫
M
V (Trũ) dvθ.

We use the following notation for the Dirichlet term in the energy F̃ε,σ:

F̃Dir
ε,σ (ũ) :=

∫
M×[0,σ)

( n∑
j=1

(Z0
j ũ)2 +

n∑
j=1

(JZ0
j ũ)2 + (∂zũ)2

)
dvθ ∧ dz.

Proposition 2.16. Using the above notations, we have

(1+O(σ))

∫
Uσ

Λ(y,∇u(y)) dy = F̃Dir
ε,σ (ũ)

provided we take σ small enough.

Obviously, the exponential e−Nz in (2.6) gives no trouble. The remaining
part of the proof of Proposition 2.16 is more delicate: in M × [0, σ) we have

to replace (e.g.) the vector fields Z̃j by their value frozen at z = 0 and to
control the error. However, a straightforward application of the mean value
theorem does not fit our purposes, because this estimate of the error would
involve all derivatives of ũ, that in turn are not controlled by the original
functional, where only derivatives along a particular distribution appear.
Thus, we have to show that we can control the error only by means of the
derivatives appearing in the functional. This is the aim of the following
technical lemma.

12



Lemma 2.17. If j = 1, . . . , n and 0 < s < z ≤ 1, then

∂zZ̃j(x, s) =
n∑
`=1

λ`, j(x, s, z)Z̃`(x, z)

+
n∑
`=1

λ`+n, j(x, s, z)J̃Z`(x, z) + λ0, j(x, s, z)∂z.

(2.7)

Similarly,

∂zJ̃Zj(x, s) =
n∑
`=1

λ′`, j(x, s, z)Z̃`(x, z)

+
n∑
`=1

λ′`+n, j(x, s, z)J̃Z`(x, z) + λ′0, j(x, s, z)∂z,

(2.8)

Moreover, there exists a geometric constant C > 0 such that |λ0, j | + · · · +
|λ2n, j | ≤ C and |λ′0, j |+ · · ·+ |λ′2n, j | ≤ C for any j = 1, . . . , n.

Proof. We prove (2.7); the proof of (2.8) is analogue. First, we prove that

for any j = 1, . . . , n, the vector fields ∂zZ̃j(x, s), ∂zJ̃Zj(x, s) belong to

ker ξ̃(x, s). Then the assertion follows since ker ξ̃(x, s) = ker ξ̃(x, z) for any
0 < s ≤ z, by Lemma 2.13, iii).

We show that for any j = 1, . . . , n

∂zZ̃j =
n∑
`=1

{
g([Zj , X0], Z`) ◦ Φ

}
Z̃`

+
n∑
`=1

{
g([Zj , X0], JZ`) ◦ Φ

}
J̃Z` +

{
g([Zj , X0], X0) ◦ Φ

}
∂z.

(2.9)

In order to prove (2.9), we notice preliminarily that

∂zZ̃j = [(Φ−1)∗Zj , ∂z] = [(Φ−1)∗Zj , (Φ
−1)∗X0] = (Φ−1)∗[Zj , X0],

where the last equality comes from [1], Proposition 4.2.23.
Let us prove now that [Zj , X0] ∈ ker ξ. Using Proposition 7.4.11 in [1],

we have

ω(Zj , X0) = dξ(Zj , X0)

= Zj〈ξ|X0〉 −X0〈ξ|Zj〉 − 〈ξ|[Zj , X0]〉 = −〈ξ|[Zj , X0]〉.

On the other hand

ω(Zj , X0) = ω(X0, J
2Zj) = g(X0, JZj) = 0,

since the basis {X0, Z1, . . . , Zn, JZ1, . . . , JZn} is orthonormal, hence [Zj , X0] ∈
ker ξ. Thus,

[Zj , X0] =

n∑
`=1

g([Zj , X0], Z`)Z` +

n∑
`=1

g([Zj , X0], JZ`)JZ` + g([Zj , X0], X0)X0,
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and hence

(Φ−1)∗([Zj , X0]) =

n∑
`=1

{
g([Zj , X0], Z`) ◦ Φ

}
Z̃` +

n∑
`=1

{
g([Zj , X0], JZ`) ◦ Φ

}
J̃Z`

+
{
g([Zj , X0], X0) ◦ Φ

}
∂z.

This proves (2.9) and concludes the proof of Lemma 2.17. �

For the sake of simplicity, sometimes we denote the vector fields

Z̃1, . . . , Z̃n, J̃Z1, . . . , J̃Zn by W̃1, . . . , W̃2n,

and we set

W̃ = {W̃1, . . . , W̃2n}.

Analogously we define the W̃ 0
j ’s by freezing the W̃j at z = 0 and we set

W̃
0

= {W̃ 0
1 , . . . , W̃

0
2n}.

With these notations, Lemma 2.17 reads as follows: for any j = 1, . . . , 2n,
and 0 < s < z ≤ 1, there exists 2n coefficients λ0, j , λ1, j , . . . , λ2n, j such that
|λ1, j |+ · · ·+ |λ2n, j | ≤ C, and

(2.10) ∂zW̃j(x, s) =
2n∑
`=1

λ`, j(x, s, z)W̃`(x, z) + λ0, j(x, s, z)∂z.

We can give now the proof of Proposition 2.16.

Proof of Proposition 2.16. By (2.10), we have that for any j = 1, . . . , 2n,
the following holds:

W̃j(x, z) = W̃j(x, 0) +

∫ z

0
∂zW̃ (x, s)ds

= W̃j(x, 0) +
2n∑
`=1

(∫ z

0
λ`, j(x, s, z)ds

)
W̃`(x, z) + zλ0, j(x, z)∂z;

so that

W̃j(x, z) = W̃j(x, 0) +

2n∑
`=1

λ̂`, j(x, z)W̃`(x, z) + λ̂0, j(x, z)∂z,

where λ̂0, j , . . . , λ̂2n, j = O(z) as z → 0 for j = 1, . . . , 2n. Setting, for any
j = 1, . . . , 2n:

W̃ 0
j (x, z) := W̃j(x, 0),

we have

(W̃j ũ)(x, z) = (W̃ 0
j ũ)(x, z) +

2n∑
`=1

λ̂`, j(x, z)(W̃`ũ)(x, z)

+ λ̂0, j(x, z)∂zũ(x, z).

(2.11)
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To conclude the proof we have to show that

2n∑
j=1

(W̃j ũ)2 + (∂zũ)2 −
( 2n∑
j=1

(W̃ 0
j ũ)2 + (∂zũ)2

)
=

2n∑
j=1

(W̃j ũ)2 −
2n∑
j=1

(W̃ 0
j ũ)2

= O(σ)
( 2n∑
j=1

(W̃j ũ)2 + (∂zũ)2
)
.

(2.12)

For any j = 1, . . . , 2n, we set:

aj := W̃j ũ, bj := W̃ 0
j ũ, c0 = ∂zũ,

so that (2.12) becomes

2n∑
j=1

a2
j −

2n∑
j=1

b2j =
( 2n∑
j=1

a2
j + c2

0

)
−
( 2n∑
j=1

b2j + c2
0

)
= O(z)

( 2n∑
j=1

a2
j + c2

0

)
.

(2.13)

By (2.11), we have that

aj = bj +

2n∑
`=1

λ̂`, ja` + λ̂0, jc0,

and hence

2n∑
j=1

(
aj −

2n∑
`=1

λ̂`, ja` − λ̂0, jc0

)2
=

2n∑
j=1

b2j .

We compute:

2n∑
j=1

(
aj −

2n∑
`=1

λ̂`, ja` − λ̂0, jc0

)2
=

2n∑
j=1

a2
j + c2

0

2n∑
j=1

λ̂2
0, j +

2n∑
j=1

( 2n∑
`=1

λ̂`, ja`
)2

− 2
2n∑
j=1

aj

2n∑
`=1

λ̂`, ja` − 2c0

2n∑
j=1

aj λ̂0, j − 2c0

2n∑
j,`=1

λ̂`, ja`λ̂0, j

=

2n∑
j=1

a2
j + I0 + I1 + I2 + I3 + I4.
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It remains to estimate Ii for i = 0, . . . , 4:

I0 = c2
0

2n∑
j=1

λ2
0, j ≤ O(σ)c2

0;

I1 ≤
2n∑
j=1

( 2n∑
`=1

λ̂2
`, j

) 2n∑
`=1

a2
` ≤ O(σ)

2n∑
`=1

a2
` ;

|I2| ≤ 2
( 2n∑
j=1

a2
j

)1/2( 2n∑
j=1

( 2n∑
`=1

λ̂`, ja`
)2)1/2 ≤ 2

( 2n∑
j=1

a2
j

)1/2( 2n∑
j,`=1

λ̂2
`, ja

2
`

)1/2
≤ O(σ)

2n∑
`=1

a2
` .

|I3| ≤ 2|c0|
2n∑
j=1

|λ̂0,jaj | ≤ O(σ)|c0|
( 2n∑
j=1

a2
j

)1/2
= O(σ)

( 2n∑
j=1

a2
j + c2

0

)
.

|I4| ≤ 2|c0|
2n∑
j,`=1

|λ̂`,ja`λ̂0,j | ≤ O(σ)|c0|
( 2n∑
j=1

a2
j

)1/2
= O(σ)

( 2n∑
j=1

a2
j + c2

0

)
.

This yields (2.13) and then achieves the proof of the proposition. �

Remark 2.18. Given an open set Ũ ⊂ M × [0, σ) we can define a family of

Sobolev spaces, that we denote by W 1,p
θ (Ũ), associated with the distribution

spanned by the vector fields {Z̃0
j , J̃Z

0

j , ∂z} (we use this notation for such

Sobolev spaces since the vector fields Z̃0
j , J̃Z

0

j , seen as vector fields tangent

to M , give a basis for ker θ). We observe that Proposition 2.16 implies that

the two Sobolev spaces W 1,p
H and W 1,p

θ are equivalent.

For ε > 0, the functional F̃ε,σ : L1(M × [0, σ))→ [0,+∞] reads as

F̃ε,σ(ũ) := ε

∫
M×[0,σ)

( 2n∑
j=1

(W̃ 0
j ũ)2 + (∂zũ)2

)
dvθ ∧ dz

+ λε

∫
M
V (Tr ũ) dvθ,

(2.14)

that, according to Proposition 2.16, is nothing but an approximation of the
original functional Fε in a neighborhood of M , written in the new “straight-
ened” coordinates.

Remark 2.19. From now on we shall work only on the straight cylinder M×
[0, σ), and hence, to avoid cumbersome notations, we shall drop everywhere
the tilde if there is no way of misunderstanding.

In addition, since the vector fields W 0
1 , . . .W

0
2n are independent of z ∈

[0, σ), we can identify them with vector fields in TM .

The proof of our Γ-convergence Theorem 1.1, at least parts i) and ii),
will follow from the following analogue result for the approximate functional
(2.14) using Proposition 2.16.
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Theorem 2.20. Assume that the scaling (1.3) holds. Then, for all σ > 0
small enough, we have:

i*) Given a sequence {uε} such that F̃ε,σ(uε) is bounded when ε → 0,
then {Truε} is pre-compact in L1(M) and every cluster point belongs
to BVθ(M, {0, 1}).

ii*) For every v ∈ BVθ(M, {0, 1}) and every sequence {uε} ⊂W 1,2
θ (M ×

[0, σ)) such that Truε → v in L1(M), there holds

lim inf
ε→0

F̃ε,σ(uε) ≥ F (v).

The scheme of this paper is the following: in Section 5 we shall prove
i*) and ii*) of Theorem 2.20. Finally, in Section 6 we shall prove iii) of
Theorem 1.1, thus completing the proof of of Theorem 1.1.

3. Sub-Riemannian structures

Although there is a wide literature on Carnot-Carathéodory spaces over
Rn, here we are looking at manifolds [8, 28], for which some of the theory
needs to be developed. We will briefly recall all the necessary ingredients.
Though several of the following results hold for general geometric structures,
for reader’s convenience we state them in our setting, i.e. in the contact
manifold (M, θ) endowed with the metric g. According to Remark 2.19, we
denote by

W0 = {W 0
1 , . . . ,W

0
2n}

our fixed orthonormal basis of ker θ, and by T the Reeb vector field.
We next define the distance dc on M . Recall that an absolutely continuous

curve γ : [0, T ]→M is a subunit curve with respect to W 0
1 , . . . ,W

0
2n if there

are real measurable functions c1, . . . , c2n, defined in [0, T ], such that

2n∑
j=1

c2
j (s) ≤ 1 and γ̇(s) =

2n∑
j=1

cj(s)W
0
j (γ(s)), for a.e. s ∈ [0, T ].

Then, if p, q ∈ M , the cc-distance (Carnot-Carathéodory distance) dc(p, q)
is

dc(p, q)
def
= inf {T > 0 : γ is subunit, γ(0) = p, γ(T ) = q} .

The set of subunit curves joining p and q is not empty, by Chow’s theo-
rem, since the rank of the Lie algebra generated by W 0

1 , . . . ,W
0
2n is 2n+ 1.

Moreover, dc is a distance on M inducing the same topology as the standard
distance on M as a differentiable manifold (cf. [8, 2]). (M,dc) is called a
Carnot-Carathéodory space.

We recall that, because the topologies induced by dc and the usual one
coincide, the topological dimension of M is 2n + 1. On the contrary the
homogeneous dimension of M is the integer Q := 2n+ 2.

We point out that the definition of Carnot-Carathéodory distance can be
stated in the same way in general contact spaces (M̂, θ̂) (not necessarily

compact). In the particular case that M̂ is the Heisenberg group, we write
the Carnot-Carathéodory distance by dHc .

Throughout the paper we will denote by Br(p) = B(r, p) the open ball
(centered at p of radius r ) in M associated with the distance dc and by
BH
r (p) = BH(p, r) the open ball in Hn associated with the distance dHc .
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3.1. Functions of bounded variation. The aim of this section is to re-
call some basic facts about BV -functions on a contact manifold M and, in
particular, the coarea formula, following [8] and [32]. Since the volume form
dvθ has been chosen once for all, if X ∈ Γ(M, ker θ) is a continuously differ-
entiable section of ker θ, we can define the function divX by the identity

(divX)dvθ := LX(dvθ) = d(iX(dvθ)).

Using properties of exterior derivatives and differential forms, we see that
divX satisfies

(3.1) −
∫
M
φ divXdvθ =

∫
M

(Xφ)dvθ for any φ ∈ C1
c (M).

Applying (3.1) to the product hφ, with h ∈ C1(M) and φ ∈ C1
c (M), using

Leibnitz rule and the identity

div(φX) = φ divX +Xφ,

we deduce that

−
∫
M
hdiv(φX)dvθ =

∫
M
φ(Xh)dvθ.

We use this identity to define now the derivative of h along X in the sense
of distributions. We say that a measure with finite total variation, that we
will denote by DXh, represents in an open set U ⊂ M the derivative of h
along X in the sense of distributions, if

−
∫
U
h div(φX) dvθ =

∫
U
φdDXh, ∀φ ∈ C∞0 (U).

In [8], Proposition 2.1, it is proved that for h ∈ L1
loc(M,dvθ), DXh is a

signed measure with finite total variation in U if and only if

(3.2) sup

{∫
U
hdiv(φX)dvθ, φ ∈ D(U), |φ| ≤ 1

}
<∞,

and if this happens the supremum above equals |DXh|. We can now define
the space BVθ.

Definition 3.1. Let U ⊂M be an open set. We say that h ∈ L1
loc(M,dvθ)

belongs to BVθ(U) if

sup{|DXh|(U) : X ∈ Γ(M, ker θ), g(X,X) ≤ 1} <∞.

If W0 := {W 0
1 , . . .W

0
2n} is the orthonormal basis of ker θ and f ∈ L1

loc(M,dvθ),
we define a vector-valued measure

W0h := (W 0
1 h, . . . ,W

0
2nh).

Proposition 3.2 (see [8], Theorem 3.1). If h ∈ BVθ(U), then

i) the total variation of W0h in U is finite. We denote it by |W0h|(U);
ii) h belongs to BV (U, dc, dvθ), the BV -space in metric measure space

(M,dc, dvθ) in the sense of [32]. We notice that (M,dc, dvθ) is a
“good” metric space in the sense of [32], as pointed out also in [8];

iii) |W0h|(U) = sup{|DXh|(U) : X ∈ Γ(M, ker θ) g(X,X) ≤ 1};
iv) |W0h|(U) = ‖Dh‖(U), where ‖Dh‖(U) is the total variation of h in

the sense of [32].
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Definition 3.3. If E ⊂M is a Borel set, we say that E has (locally) finite
perimeter in U if χE ∈ BVθ(U). Moreover we denote

‖∂E‖θ(U) := |W0χE |(U).

For h ∈ BVθ(U, {0, 1}), i.e., h = χE , we denote by Sh the set of points where
the upper and lower approximate limits of h differ. In this case we write
Sh = ∂E ∩ U , the jump set of h in U .

Next, from (3.2) we know that if χE ∈ BVθ(U), then for ‖∂E‖θ-a.e.
x ∈ U ,
(3.3)

lim inf
r↓0

min{vθ(Br(p) ∩ E), vθ(Br(p) \ E)}
vθ(Br(p))

> 0, lim sup
r↓0

‖∂E‖θ(Br)
vθ(Br(p))/r

<∞.

Definition 3.4 (see [8], Definition 3.2). (Dual normal and reduced bound-
ary). We write in polar decomposition:

W0χE = ν∗E |W0χE |,

where ν∗E = (ν∗E,1, . . . , ν
∗
E,2n) : M → R2n is a Borel vector field with unit

norm. We call ν∗E the dual normal to E.
We denote by ∂∗E the reduced boundary of E, i.e. the set of all points p

in the support of |W0χE | satisfying (3.3) and

lim
r↓0

1

|W0χE |(Br(p))

∫
Br(p)

|ν∗E(q)− ν∗E(p)|2d|W0χE |(q) = 0.

We know that if E has locally finite perimeter in U , then |W0χE |-almost
every point in U belongs to ∂∗E. Moreover,

Theorem 3.5 (Riesz Theorem: see [8], Theorem 3.3). Let h be a function in
BVθ(M). Then, there exists a Borel vector field νh, satisfying g(νh, νh) = 1
|W0h| − a.e. in M and

DXh = g(X, νu)|W0h|, for any X ∈ Γ(M, ker θ).

If E is a set of finite perimeter and u = χE, we call geometric normal the
vector field:

(3.4) νE := νχE .

In addition νE =
∑

i ν
∗
E,iWi.

Finally, combining Proposition 3.2 above and Remark 4.3 in [32], we
obtain

Proposition 3.6 (Coarea formula in M). If h ∈ BVθ(M) and f : M → R
is a Borel-measurable function, f ≥ 0, for any Borel set U ⊂M we have:∫

U
f d|W0h| =

∫ +∞

−∞

(∫
U
f d‖∂Et‖θ(x)

)
dt,

where Et = {h < t}.
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3.2. Carnot-Carathéodory distance and the Eikonal equation. The
aim of this subsection is to prove the Eikonal equation for the Carnot-
Carathéodory distance.

First we recall the following regularity result about geodesics (see the
survey [36], Theorem 4):

Theorem 3.7 (Theorem 4 in [36]). In contact manifolds any length mini-
mizing curve is smooth.

A function h : (M,dc)→ R is L-Lipschitz if

|h(p)− h(q)| ≤ Ldc(p, q)

for all p, q ∈ M . The infimum of such constants L is denoted by Lip(h).
Lipschitz functions are differentiable a.e. along the vector fields Wj , j =
1, . . . , 2n, as we see from the lemma below.

Lemma 3.8. If h : M → R is L-Lipschitz continuous with respect to dc,
then

h ∈ BVθ(M),

(3.5) |W0h|(U) ≤ Lvθ(U) for all open sets U ⊂M

and the Lie derivative

(3.6) LXh(x0) := lim
t→0

1

t

(
h(exp(tX)x0)− h(x0)

)
exists for all X ∈ ker θ and for almost every x0 ∈M .

In addition LXh is a distributional derivative, i.e. (with the notation of
[8] as in (3.2))

(LXh) dvθ = DXh.

Proof. The first two assertions follows straightforwardly from [32], keeping
in mind Theorem 3.1 of [8]. Let now x̄ ∈ M be a fixed point. Then, by
Darboux theorem there exists a neighborhood U of x̄ and a contact diffeo-
morphism Ψ : U → Hn. The map Ψ is bi-Lipschitz continuous with respect
to the Carnot-Carathéodory distance dc in U and the canonical Carnot-
Carathéodory distance dHc in Hn. In particular, h ◦ Ψ−1 is dHc -Lipschitz
continuous. By Pansu-Rademacher theorem (see [40]), for a.e. x0 ∈ U there
exist real numbers λ1(x0), . . . , λ2n(x0) such that, if we set Ψ(x0) := p0 for
p0 = (p0

1, . . . , p
0
2n+1) and p = (p1, . . . , p2n+1),

h ◦Ψ−1(p)− h ◦Ψ−1(p0) =
2n∑
j=0

λj(x
0)(pj − p0

j ) + o(dHc (p, p0))

as p→ p0 and hence, if Ψ = (Ψ1, . . . ,Ψ2n+1),

h(x)− h(x0) =

2n∑
j=0

λj(x
0)(Ψj(x)−Ψj(x

0)) + o(dc(x, x
0)),
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as x→ x0. Thus, keeping in mind that dc(exp(tX)x0, x0) = O(t) as t→ 0,
we have:

lim
t→0

1

t

(
h(exp(tX)x0)− h(x0)

)
= lim

t→0

1

t

2n∑
j=0

λj(x
0)(Ψj(exp(tX)x0)−Ψj(x

0))

+ lim
t→0

1

t
o(dc(exp(tX)x0, x0))

=
2n∑
j=0

µXj (x0),

(3.7)

where

µXj (x0) = λj(x
0)
d

dt
Ψj(exp(tX)x0) at t = 0, j = 1, . . . , 2n.

Finally, the last statement follows from (3.6) and (3.5) by standard argu-
ments.

�

Remark 3.9. We notice that, if γ : [0, 1]→M is a continuously differentiable
horizontal curve with γ(0) = x0 and γ̇(0) = X, then, arguing as in (3.7),

lim
t→0

1

t

(
h(γ(t))− h(x0)

)
= LXh(x0).

Lemma 3.10. Let K ⊂M be a compact set and let x ∈M . We denote by
dc,K(x) the Carnot-Carathéodory distance of x from K. Then

i) dc,K(x) is 1-Lipschitz continuous with respect to the dc-distance;
ii) for a.e. x0 ∈M and for all X ∈ ker θ, with g(X,X) ≤ 1∣∣Xdc,K(x0)

∣∣ ≤ 1,

and there exists X0 = X(x0) ∈ ker θ, with g(X0, X0) = 1 such that

X0dc,K(x0) = 1.

Proof. The first assertion is trivial. Moreover, it is well known that for any
x ∈ M , there exists x̄ ∈ K such that dc,K(x) = dc(x̄, x). Let now x0 be a
point where all horizontal Lie derivatives exist, and let γ : [0, dc(x̄, x

0)] →
M be a minimizing geodesic with γ(dc(x̄, x

0)) = x̄ and γ(0) = x0. By
Theorem 3.7, γ is smooth. Without loss of generality, we may assume that
dc(γ(t), x0) = t. Keeping in mind Remark 3.9, if we take X0 := X(x0) =
γ̇(0), we have

X0dc,K(x0) = lim
t→0

1

t

(
dc(γ(t), x0)

)
= 1.

This concludes the proof of ii). �

We can finally state the Eikonal equation for the distance dc:

Theorem 3.11 (The Eikonal equation). Let K ⊂M be a closed set and
let dc,K be the distance from K. Then

(3.8) |W0dc,K | = dvθ.
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Proof. Let x0 and X0 = X(x0) be as in Lemma 3.10. We can write X0 =∑2n
j=1 λjW

0
j . Since g(X0, X0) = 1 we have∑

j

λ2
j = 1.

Then  2n∑
j=1

(W 0
j dc,K)2

1/2

≥
2n∑
j=1

λj(W
0
j dc,K) = X0dc,K = 1.

The reverse estimate follows from (3.5) and Theorem 3.10, part i).

Finally, as in [8], page 20, we have that |W0dc,K | =
(∑2n

j=1(W 0
j dc,K)2

)1/2
,

which concludes the proof of the Theorem. �

3.3. Minkowski content and perimeter. Let E be an open set in M and
let dc,∂E(x) denote the Carnot-Carathéodory distance of the point x ∈ M
from the boundary of E. We define the tubular neighborhood of ∂E in M :

Ur(∂E) := {p ∈M : dc,∂E(p) < r}.

The upper and lower Minkowski content of ∂E in M are defined, respec-
tively, as follows:

M+(∂E) := lim sup
r↓0

vθ(Ur(∂E))

2r
,

M−(∂E) := lim inf
r↓0

vθ(Ur(∂E))

2r
.

When M+(∂E) =M−(∂E), we call the common value the Minkowski con-
tent of E and we denote it byM(∂E). The following theorem is the analogue
of Theorem 5.1 in [37].

Theorem 3.12. Let E ⊂⊂ M be a bounded open set with C∞ boundary.
Then M+(∂E) =M−(∂E) and we have

M(∂E) = ‖∂E‖θ.

Proof. We follow the proof of Theorem 5.1 in [37]. We prove separately the
two following inequalities:

(3.9) M−(∂E) ≥ ‖∂E‖θ,

(3.10) M+(∂E) ≤ ‖∂E‖θ.

We start by proving (3.9). Let us introduce the signed distance from ∂E:

(3.11) ρc(x) =

{
dc,∂E(p) if p ∈ E,
−dc,∂E(p) if p ∈M \ E.

For ε > 0 we define the function:

ϕε(p) =


1
2ερc(p) + 1

2 if |ρc(p)| < ε,

1 if ρc(p) ≥ ε,
0 if ρc(p) ≤ −ε.

22



Using that Theorem 3.11 on the Eikonal equation, we have

|W0ϕε| =
1

2ε

∫
{|ρc(p)|<ε}

|W0ϕε(p)| dvθ(p) ≤
1

2ε
vθ(Uε(∂E)).

By the lower semicontinuity of the total variation and since ϕε → χE in
L1(M), we deduce that

‖∂E‖θ ≤ lim inf
ε→0

|W0ϕε| ≤ M−(∂E),

which concludes the proof of (3.9).
It remains to prove (3.10). Here we use a Riemannian approximation

for Carnot-Carathéodory spaces (see e.g. [18] and [37]). We consider the
Carnot-Carathéodory distance dε in M associated with the vector fields
W0

ε = {W 0
1 , . . . ,W

0
2n, εT}. Notice that W0

ε is an orthonormal basis of TM
with respect to the Riemannian metric gε defined as follows: if X, Y ∈ TM ,
we write X = X ′ + X ′′, Y = Y ′ + Y ′′, with X ′, Y ′ ∈ ker θ and X ′′, Y ′′ ∈
span {T}, and we set

gε(X,Y ) := g(X ′, Y ′) +
1

ε2
g(X ′′, Y ′′).

Obviously dε is a Riemannian distance.
Define also dε,∂E(p) = minq∈∂E dε(x, y). We have that

(3.12) dε(p, q) ≤ dc,∂E(p, q) for all p, q.

In fact, dc,∂E(p, q) = supε>0 dε(p, q).
Define also ρε to be the signed ε-distance to ∂E as in (3.11). Then ρε is

C∞ near ∂E and it satisfies the Eikonal equation |W0
ε(ρε)| = 1.

We consider the usual upper and lower Minkowski content for ρε

M+
ε (∂E) := lim sup

r↓0

vgε({|ρε| < r})
2r

, M−ε (∂E) := lim inf
r↓0

vgε({|ρε| < r})
2r

.

From (3.12), |ρε| ≤ |ρ|, from which we immediately have

(3.13) M+(∂E) ≤M+
ε (∂E).

To achieve the proof of Theorem 3.12, we need the following technical result.

Lemma 3.13. If E ⊂ M is an open set with smooth boundary ∂E, that is
a compact 2n-dimensional submanifold without boundary, we have

(3.14) |W0
εχE |(M)→ |W0χE |(M) as ε→ 0.

Proof. Without loss of generality, in (3.14) we can replace M by an open set
U that is contained in the domain of a Darboux map Ψ : U → Hn ≡ R2n+1.
We denote by µ→ Ψ#µ the push-forward of a Borel measure µ, i.e.

Ψ#µ(B) = µ(Ψ−1(B)) for any B ⊂ R2n+1 Borel.

Moreover, we denote by Ψ∗g the pull-back metric on R2n+1. By [8], Propo-
sition 2.2, if X ∈ Γ(M,TM), then

(DXχE)(B) = Ψ#(DXχE)(Ψ(B)).
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Thus

|W0
εχE |(B) = sup

gε(X,X)≤1
|DXχE |(B)

= sup
gε(X,X)≤1

|Ψ#(DXχE)|(Ψ(B))

= sup
gε(X,X)≤1

|Ψ#(DΨ∗XχΨ(E)|(Ψ(B))

= sup
g∗ε (Ψ∗X,Ψ∗X)≤1

|Ψ#(DΨ∗XχΨ(E)|(Ψ(B))

= |Ψ∗(W0
ε)χΨ(E)|(Ψ(B)),

(3.15)

where

Ψ∗(W
0
ε) = {Ψ∗W 0

1 , . . . ,Ψ∗W
0
2n}.

As in [37], formula (5.5),

|Ψ∗(W0
ε)χΨ(E)|(Ψ(B))→ |Ψ∗(W0)χΨ(E)|(Ψ(B)).

Thus, repeating backward the arguments of (3.15), we conclude the proof
of the Lemma.

�

Let us go back to the proof of Theorem 3.12. We will prove soon that

(3.16) M+
ε (∂E) =M−ε (∂E) = |W0

εχE |(M).

Suppose for the moment that this is true. Then, by (3.13), (3.16), and
(3.14), we have:

M+(∂E) ≤ lim
ε→0
M+

ε (∂E) = lim
ε→0
|W0

εχε|(M) = |W0χε|(M),

which concludes the proof of the theorem. Therefore, it remains just to show
(3.16).

Let Es = {p ∈ M : ρε(p) > s}. Using the coarea formula (3.6) and the
Riemannian Eikonal equation, we have that

vθ({|ρε| < t}) =

∫
{|ρε<t|}

dvθ =

∫ t

−t

1

|W0
ερε|

d|W0
εχEs | ds

=

∫ t

−t
|W0

εχEs |(M) ds.

Thus, (3.16) will follow if we prove that

(3.17) the map s→ |W0
εχEs |(M) is continuous at s = 0.

This can be done using again the arguments of (3.15) to reduce ourselves to
the “flat” case of R2n+1, where (3.17) has been already established in [37]
(see the proof of Theorem 5.1 therein).

�
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4. Compactness and liminf inequality in Heisenberg groups

The aim of this Section is to prove a liminf inequality for the “model
case” where M × [0, σ) is replaced by Hn × [0, σ). To this end, for a subset

A of Hn × R+, we consider the Sobolev space W 1,2
H (A) associated with the

distribution spanned by the vector fields WH
1 , . . . ,W

H
2n, ∂z. Moreover, if

A′ = ∂A ∩ {z = 0}, and for a function u : A→ R, we consider the localized
functional:

(4.1) Eε(u,A,A
′) := ε

∫
A

(
|WHu|2 + |∂zu|2

)
dηdtdz+ λε

∫
A′
V (Tru) dηdt.

The following theorem is the analogue of Proposition 4.7 of [5]. It es-
tablishes a compactness result and a liminf inequality for the functional
Eε(uε, CR, B

H
R), where BH

R = BH(0, R) is the Carnot-Caratheodory ball in

Hn of radius R centered at 0, CR := BH
R×(0, R) ⊂ Hn×R+ and for simplicity

of notation we write BH
R in place of BH

R × {0}.

Theorem 4.1. Let {uε} ⊂W 1,2
H (CR) be a countable sequence with uniformly

bounded energies Eε(uε, CR, B
H
R). Then the traces Truε are pre-compact in

L1(BH
R) and every cluster point v belongs to BVθ0(BH

R, {0, 1}). Moreover, if

Truε → v in L1(BH
R), then

(4.2) lim inf
ε→0

Eε(uε, CR, B
H
R) ≥ c

∣∣∣∣∣
∫
BH
R

νv d‖∂{v = 1}‖θ0

∣∣∣∣∣ ,
where νv is the geometrical normal to the set {v ≡ 1} and c = k/π with k
given in (1.3).

The proof of Theorem 4.1 is articulated in several steps and requires a
good amount of preliminary results.

4.1. Slicing theorems. We recall a Fubini type Theorem in Carnot groups,
which is proven in [34]. Here, we state it for the case of the Heisenberg
group, but it holds in general Carnot groups. Let S ⊂ Hn be a C1 smooth
hypersurface. By the classical Implicit Function Theorem, we may assume
that S = ∂E, where E ⊂ Hn is an open set with finite H-perimeter. Suppose
that there exists an horizontal left invariant vector field WH which is globally
transverse to S, i.e. 〈

WH(p), ν(p)
〉
6= 0 ∀ p ∈ S,

where ν is the Euclidean unit inward normal along S. The Cauchy problem{
γ̇(t) = WH(γ(t))
γ(0) = p ∈ S,

has a unique smooth solution defined on all R, which we denote by γp(t) =
exp (tWH)(p) for t ∈ R and p ∈ S. We call this trajectory a horizontal line.
Now we consider the family of horizontal WH-lines starting from S and we
denote by RS the subset of Hn reachable from S moving along horizontal
WH-lines, that is

(4.3) RS := {q ∈ Hn : ∃ p ∈ S, ∃ t ∈ R s.t. q = γp(t) for some γp} .
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Assume moreover that γp(R)∩S = p for every p ∈ S. Since WH is transverse
to S, by the uniqueness of the solution of the Cauchy problem and by (4.3),
any subset D of RS has a natural projection on S along WH. We define the
map prS : D ⊂ RS → S in the following way: for q ∈ D and p ∈ S, we
set p = prS(q) if and only if there exists t ∈ R such that q = γp(t). Using
this projection, every subset D of RS can be foliated with one-dimensional
leaves that are horizontal WH-lines. We define now the partial perimeter
along a horizontal direction.

Definition 4.2. Let U be an open set in Hn. Let E be a measurable subset
of Hn. We say that E has finite WH-perimeter in U if

‖∂WHE‖θ(U) := sup

{∫
U
χE W

Hϕ dηdt : ϕ ∈ C1
0 (U), |ϕ| ≤ 1

}
<∞.

With this notions, we can now state the Fubini type result, which will be
used in the proof of the liminf inequality.

Theorem 4.3 (see Corollary 2.3 in [34]). Let S ⊂ Hn be a H-regular hy-
persurface and assume S = ∂E globally, where E ⊂ Hn is a suitable open
H-Caccioppoli set. Let as before, γp be the horizontal WH-line starting from
p ∈ S and assume that γp(R) ∩ S = p for every p ∈ S. Finally let D ⊂ RS
be a Lebesgue measurable subset of Hn that is reachable from S by means
of WH-lines. Then, for every function ψ ∈ L1(D), the following statement
holds:

(i) let ψ|Dp denote the restriction of ψ to Dp := D ∩ γp(R) and let us
define the mapping

ψp : γ−1
p (Dp) ⊂ R→ R, ψp(s) = (ψ ◦ γp)(s).

Then ψp is L1-measurable for ‖∂E‖θ0-a.e. p ∈ S or, equivalently,
the restriction ψ|Dp is H1

c-measurable for ‖∂E‖θ0-a.e. p ∈ S;
(ii) the mapping defined by

S 3 p 7→
∫
Dp

ψ dH1
c =

∫
γ−1
p (Dp)

ψp(s) ds

is ‖∂E‖θ0-measurable on S and the following formula holds

∫
D
ψ dvθ0 =

∫
prS(D)

[∫
Dp

ψ dH1
c

]
d‖∂WHE‖θ0(p)

=

∫
prS(D)

[∫
γ−1
p (Dp)

ψp(s) ds

]
·
∣∣∣∣〈WH, νE

〉
HHp

∣∣∣∣ d‖∂E‖θ0(p).

(4.4)

Later we will apply this result to the case in which S is a vertical hyper-
plane. We stress that the H-perimeter on any vertical hyperplane coincides
with the Lebesgue measure ([12]).

The following result, which is contained in [34], allows to reduce the study
of BV functions on Carnot groups to the study of their one-dimensional
restrictions. First we introduce the following notation, concerning the one-
dimensional total variation along an horizontal vector field WH of a function.
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Let WH be a horizontal vector field, such that |WH|HHn = 1 and let γp be
a horizontal WH-line starting from p ∈ Hn. We set

var1
WH [f ](U) := sup

{∫
U
fWHϕdH1

c : ϕ ∈ C1
0 (B), |ϕ| ≤ 1,

where B ⊂ Hn, B open s.t. γp ∩ B = U} .
We give the statement for the specific case of the Heisenberg group.

Theorem 4.4 (Theorem 3.7 in [34]). Let S ⊂ Hn be a H-regular hyper-
surfaces and assume that S = ∂E globally, where E ⊂ Hn is a suitable
open Hn-Caccioppoli set. Let WH ∈ HHn, |WH|HHn = 1, be a unit hor-
izontal left invariant vector field which is transverse to S, and denote by
t → γp(t) := p · exp(tWH) the horizontal WH-line starting from p ∈ S. Let
D ⊂ RS be a Lebesgue measurable subset of Hn that is reachable from S by
means of WH-lines.

Then

(4.5) |WHf |(D) =

∫
prS(D)

var1
WH [fp](Dp)d‖∂WHE‖θ0(p),

where fp := f ◦ γp and Dp := γp ∩D.

Our next step will be to prove a compactness result in L1 for a fam-
ily of functions satisfying some kind of equicontinuity along 1-dimensional
horizontal lines (see Theorem 4.6). To this end, we must factorize an arbi-
trary displacement through a finite number of horizontal displacements of
controlled length. This is the content of the following Theorem 4.5.

Theorem 4.5 ([38], §3). There exist m ∈ N and three multi-indexes I, J
and ω of length m

I = (i1, . . . , im), in ∈ {1, . . . , 2n}
J = (j1, . . . , jm), jn ∈ {1, . . . , 2n+ 1}
ω = (ω1, . . . , ωM ) ωn ∈ {−1, 1}

and two geometric constants 0 < b < a < 1 such that, if we set

EI,J,ω : R2n+1 → Hn

EI,J,ω(t1, . . . , t2n+1) := exp(ω1tj1W
H
i1 ) · · · exp(ωmtjmW

H
im),

then for all R > 0

Bc(0, bR) ⊂ EI,J,ω(Q(0, aR)) ⊂ Bc(0, R),

where
Q(0, r) = {(t1, . . . , t2n+1) ∈ R2n+1, max

`
{|t`|} < r}.

In particular, if h ∈ Hn, then there exist t` = t`(h), ` = 1, . . . , 2n + 1,
max`{|t`|} < adc(0, h)/b such that

EI,J,ω(t1, . . . , t2n+1) = h.

The main idea of Theorem 4.5 is that each point in Hn can be reached by
integral curves of horizontal vector fields, and when a commutator of two
vector fields is needed, it can be approximated by a finite length ”square
path” along the two fields, taken successively with opposite sign. This is
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an important difference between this result and the classical result due to
Nagel, Stein and Wainger [39], Theorem 7, where instead the authors work
directly with integral curves of commutators.

The following result is the analogue of Theorem 6.6 in [5], and will be used
to deduce compactness of the Truε from the compactness of their restrictions
to the horizontal slices. We first fix some notations. Let e1, ..., e2n be the
first 2n unit vectors of the canonical basis of Hn. Let D ⊂ Hn and let Πi

be the vertical hyperplane orthogonal to ei. Obviously we have that WH
i is

globally transverse to Πi, and therefore we can consider the projection Di

of D on Πi along WH
i . We denote by γpi (s) the horizontal WH

i -line starting
from a point p ∈ Πi. For a function v defined on D, we consider the function
vpi (s) := v(γpi (s)) defined on the set Dp

i := {s ∈ R|γpi (s) ∈ D}. Accordingly,
for every family F of functions on D, we define the family Fpi := {vpi |v ∈ F}.

We say that a family F ′ is δ-dense in F if F lies in a δ-neighborhood of
F ′ with respect to the L1 topology. We have the following theorem:

Theorem 4.6. Let F be a family of functions v : D → [−L,L] and assume
that for every δ > 0 there exists a family Fδ δ-dense in F such that (Fδ)pi is
pre-compact in L1(Dp

i ) for |Πi|H- a.e. p ∈ Di for every i = 1, ..., 2n. Then
F is pre-compact in L1(D).

Proof. We can assume L = 1 and |Dp
i | ≤ 1 for every p ∈ Πi. Every func-

tion defined on D is extended to be zero outside D, and accordingly every
function defined Dp

i is extended to be zero outside Dp
i . Arguing as in [5],

Theorem 6.6, we have but to show that for any δ > 0

(4.6)

∫
Hn
|v(q · h)− v(q)| dq → 0

as dHc (h, 0)→ 0, uniformly for v ∈ Fδ.
If i = 1, . . . , 2n is fixed, p ∈ Di, r > 0, we set

ωpδ (r) = sup
{∫

R
|vpi (s+ σ)− vpi (s)| ds : v ∈ Fδ, |σ| ≤ r

}
.

By our assumptions, ωpδ (r) ≤ 2 for all r > 0 and, as in [5], by Fréchet-
Kolmogorov compactness theorem, ωpδ (r)↘ 0 as r ↘ 0.

By Theorem 4.5 we can write

h = EI,J,ω(t1, . . . , t2n+1),

with t` = t`(h), ` = 1, . . . , 2n + 1, max`{|t`|} < adc(0, h)/b. For sake of
brevity we write th = (t1, . . . , t2n+1). With the notations of Theorem 4.5,
for 1 ≤ k ≤ m we set

Ik = (i1, . . . , ik) , Jk = (j1, . . . , jk) and ωk = (ω1, . . . , ωk).

If we set E(I0, J0, ω0) = e, we have

v(x · h)− v(x) =

m∑
k=1

(
v(x · EIk,Jk,ωk(th))− v(x · EIk−1,Jk−1,ωk−1

(th))
)

=

m∑
k=1

(
v(x · EIk−1,Jk−1,ωk−1

(th) · exp(ωktjkW
H
ik

))− v(x · EIk−1,Jk−1,ωk−1
(th))

)
.
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Thus, keeping in mind that Lebesgue measure in Hn (that is unimodular)
is the group Haar measure and therefore is right invariant, we have∫

Hn
|v(q · h)− v(q)| dq

≤
m∑
k=1

∫
Hn
|v(q · exp(ωktjkW

H
ik

))− v(q)| dq.

Take now i = ik for a generic k = 1, . . . ,m, and set t := tjk and, for example,
ωk = 1. By (4.4), we have∫

Hn
|v(q · exp(tWH

i ))− v(q)| dq =

∫
Di

(∫
R
|vpi (s+ t)− vpi (s)| ds

)
dp

≤
∫
Di

ωpδ (t) dp ≤
∫
Di

ωpδ (adc(h, 0)/b) dp,

and (4.6) follows as in [5].
�

4.2. Fractional energy in R. In this Subsection we recall a liminf inequal-
ity for a one-dimensional fractional energy. We follow [4]. Let A ⊂ R be an
interval, v ∈ L1(A), we define

(4.7) Gε(v,A) :=
ε

2π

∫
A2

∣∣∣∣v(s)− v(s′)

s− s′

∣∣∣∣2 ds ds′ + λε

∫
A
V (v(s)) ds.

We recall two results that we will use in the proof of the liminf inequality,
and that are contained in [25] and [5]. The first one is a trace inequality in
rectangles with optimal constant.

Theorem 4.7 ([25], Theorem 19). Let u ∈ W 1,2((0, 1)× (0, 1)). Then, the

trace of u on (0, 1)×{0}, call it v, is a well defined function v ∈ H1/2(0, 1),
and we have

(4.8)

∫∫
(0,1)2

∣∣∣∣v(s)− v(s′)

s− s′

∣∣∣∣2 ds ds′ ≤ 2π

∫ 1

0

∫ 1

0
|∇u|2 ds dz.

The following theorem is a liminf inequality for the energy functional Gε.

Theorem 4.8 (Lemma 1 in [4] and Theorem 4.4 in [5]). We have:

(i) Every countable sequence {vε} ⊂ L1(A) with uniformly bounded en-
ergies Gε(vε, A) is pre-compact in L1(A) and every cluster point be-
longs to BV (A, {0, 1});

(ii) For every v ∈ BV (A, {0, 1}) and every sequence {vε} such that vε →
v in L1(A),

lim inf
ε→0

Gε(vε, A) ≥ c#(Sv),

where #(Sv) denotes the number of points of discontinuity of v and
c = κ/π with k given in (1.3).
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4.3. Proof of Theorem 4.1. With these preliminaries in hand, we can give
now the proof of our Theorem 4.1. By a standard truncation argument, we
can assume that 0 ≤ uε ≤ 1 for every ε > 0. We follow the proof of Proposi-
tion 4.7 in [5], which is based on a slicing argument. Let e be an horizontal
vector at the origin with |e| = 1, and let WH be a left invariant horizontal
vector field such that WH(0) = e. We denote by Π the (2n)-dimensional
vertical hyperplane orthogonal to WH(0) = e. We apply Theorem 4.3 above
with S = Π∩BH

R, D = BH
R, Dp = D ∩ γp, where as before γp is the integral

curve of WH starting from p ∈ S. Observe that if u ∈ W 1,2
H (CR), where as

before CR = BH
R× (0, R), then for a.e. p ∈ S = Π∩BH

R its restriction to Dp,
denoted by up, belongs to H1(Dp) (see Proposition 6.8 in [5]). Moreover,
using that |e| = 1 and WH is left invariant, a simple computation show that

2n∑
i=1

|WH
i uε|2 ≥ |WHuε|2.

Indeed, if we write e =
∑2n

i=1 cjW
H
i (0) with

∑2n
i=1 c

2
i = 1, by the left invari-

ance of WH we have

|WHuε|2 = |
2n∑
i=1

ciW
H
i uε|2 ≤

(
2n∑
i=1

c2
i

)(
2n∑
i=1

|WH
i uε|2

)
≤

2n∑
i=1

|WH
i uε|2.

Hence we have:

Eε(uε, CR, B
H
R) = ε

∫
CR

(
2n∑
i=1

|WH
i uε(η, t, z)|2 + (∂zuε(η, t, z))

2

)
dηdtdz

+ λε

∫
BH
R

V (Truε(η, t, 0))dηdt,

≥ ε
∫ R

0

∫
BH
R

(
|WHuε(η, t, z)|2 + (∂zuε(η, t, z))

2
)
dηdtdz

+ λε

∫
BH
R

V (Truε(η, t, 0))dηdt.

Set Dp = (γp)−1(γp(R)∩BH
R) = {s ∈ R | γp(s) ∈ BH

R}, and dLΠ the Lebesgue
measure on Π. Using (4.4), we obtain

Eε(uε, CR, B
H
R)

≥ ε
∫

Π∩BH
R

dLΠ(p)

(∫ R

0
dz

∫
Dp

(
|WHuε(γp(s), z)|2 + |∂zuε(γp(s), z)|2

)
ds

+ λε

∫
Dp
V (Truε(γp(s), 0))ds

)
.

Since γp is the integral curve of WH, setting

ũpε(s, z) = uε(γ
p(s), z),

we deduce that

WHuε(γ
p(s), z) = ∂sũ

p
ε(s, z) and ∂zuε(γp(s), z) = ∂zũ

p
ε(s, z).
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Therefore, we get

Eε(uε, CR, B
H
R) ≥

ε

∫
Π∩BH

R

dLΠ(p)

(∫ R

0
dz

∫
Dp

(
|∂sũpε(s, z)|2 + |∂zũpε(s, z)|2

)
ds

+λε

∫
Dp
V (Tr ũpε(s, 0))ds

)
.

We apply now the trace inequality (4.8) to get

Eε(uε, CR, B
H
R) ≥

∫
Π∩BH

R

dLΠ(p)

[
ε

2π

∫
(Dp)2

∣∣∣∣Tr ũpε(s′, 0)− Tr ũpε(s, 0)

s′ − s

∣∣∣∣2 dsds′
+ λε

∫
Dp
V (Tr ũpε(s, 0))

]
ds

=

∫
Π∩BH

R

dLΠ(p)Gε(Tr ũpε, D
p),

(4.9)

where Gε is defined as in (4.7). The proof of Theorem 4.1 follows from the
following two steps:

Step 1. Compactness: We first show that the sequence Truε is pre-
compact in L1(BH

R). In order to prove this, it is enough to show that the
family F := {Truε} satisfies the assumptions of Theorem 4.6. We choose a
constant C such that

(4.10) Eε(uε, CR, B
H
R) ≤ C.

Fix now δ > 0 and consider the sequence vε : BH
R → [0, 1] defined as follows:

vε(γ
p(s)) := vpε(s), where

(4.11)

vpε :=

{
Tr ũpε for all p ∈ Π ∩BH

R such that Gε(Tr ũpε, Ep) ≤ |Π ∩BH
R|C/δ,

1 otherwise.

Observe that vε is well-defined by the uniqueness of integral curves of hor-
izontal vector fields starting from a given point. Using (4.9), (4.10), and
(4.11) we deduce that vpε = Tr ũpε for all p ∈ Π ∩ BH

R apart from a subset

of measure smaller that δ/|Π ∩ BH
R|. Therefore vε = Tr ũε in BH

R minus a
set of measure smaller than δ and, since 0 ≤ Truε ≤ 1, we deduce that
‖vε −Truε‖L1(BH

R) ≤ δ. This implies that the family Fδ is δ-dense in F . By

(4.11) we have that Gε(v
p
ε , Dp) ≤ |Π ∩ BH

R|C/δ for every p ∈ Π ∩ BH
R and

every ε, and hence we can apply statement (i) of Theorem 4.8 to deduce
that the sequence (vpε) is pre-compact in L1(Dp). Thus the family F satis-
fies the assumption of Theorem 4.6 for any horizontal tangent vector e at
the origin, and thus in particular for e1, . . . , e2n, and we conclude that the
sequence (Truε) is pre-compact in BH

R.

Step 2. Liminf inequality: It remains to prove that if Truε → v in
L1(BH

R), then v ∈ BVθ0(BH
R, {0, 1}) and inequality (4.2) holds. Using (4.9)
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and passing to the limit as ε→ 0, by Fatou’s Lemma we deduce that

lim inf
ε→0

Eε(uε, CR, B
H
R) ≥

∫
Π∩BH

R

lim inf
ε→0

Gε(Tr ũpε, D
p) dLΠ(p),

and then lim infε→0Gε(Tr ũpε, Dp) is finite for a.e. p ∈ Π∩BH
R. Since Truε →

v in L1(BH
R), possibly passing to a subsequence, we have that Tr ũpε → vp in

L1(Dp) for a.e. p ∈ Π ∩ BH
R (see Remark 6.7 in [5]). Then, using Theorem

4.8 we deduce that vp ∈ BV (Dp, {0, 1}) and

(4.12) lim inf
ε→0

Eε(uε, CR, B
H
R) ≥

∫
Π∩BH

R

c#(Svp) dLΠ(p).

Finally, applying Theorem 4.4 we deduce that v ∈ BVθ0(BH
R, {0, 1}), that

Svp agrees with Sv ∩Dp for a.e. p ∈ Π ∩BH
R, and that

lim inf
ε→0

Eε(uε, CR, B
H
R) ≥ c

∫
BH
R∩Sv

〈νv, e〉 d‖∂{v = 1}‖θ0

=
〈 ∫

BH
R∩Sv

νv d‖∂{v = 1}‖θ0 , e
〉
.

We conclude the proof of Theorem 4.1 by choosing a suitable vector e.

5. Proof of the liminf inequality near the boundary M

In this Section we prove Theorem 2.20. To this aim, we need to pass from
the “flat case” Hn × [0, σ) to M × [0, σ). This will be the content of the
following Sections 5.1, 5.2 and 7.

Given A ⊂M × [0, σ), and A′ ⊂M , we define the localized energy

F̃ε,σ(u,A,A′) := ε

∫
A

( 2n∑
j=1

(W 0
j u)2 + (∂zu)2

)
dvθ ∧ dz

+ λε

∫
A′
V (Tru) dvθ

(compare with (2.14) and keep in mind Remark 2.19).

5.1. Flattening. Following [5] we give the definition of contact isometry
defect.

Definition 5.1. Let M1 and M2 be two contact (2n+1)-manifolds endowed
with the contact forms θ1 and θ2, and let gθ1 and gθ2 be fixed Riemannian
metrics on ker θ1 and ker θ2, respectively. If pi ∈Mi, i = 1, 2, we denote by
HO(Tp1M1, Tp2M2) the space of linear maps from Tp1M1 to Tp2M2 that are
isometries on ker θ1(p1) and are induced by contact maps.

Definition 5.2. Let M1 and M2 be two contact (2n+1)-manifolds endowed
with the contact forms θ1 and θ2, respectively, and let U1 ⊂M1 and U2 ⊂M2

be open sets. Let Ψ : U1 → U2 be a diffeomorphism. We call contact
isometry defect δ(Ψ) the smallest δ > 0 such that

dist(dΨ(p), HO(TpM1, TΨ(p)M2)) ≤ δ for a.e. p ∈ U1.
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Theorem 5.3. Let (M, θ) be the (2n+ 1)-dimensional contact manifold en-
dowed with the Riemannian metric g, as in Propositions 2.9 and 2.12. Let
p̄ ∈M be any fixed point. Let (W 0

1 , . . . ,W
0
2n) be the orthonormal symplectic

basis of ker θ(p̄) (see Remark 2.19), and let (WH
1 , . . . ,W

H
2n) be the orthonor-

mal symplectic basis of ker θ0 at the origin in Hn. Then there exist an open
neighborhood U of p̄ and a local diffeomorphism

Ψ : U → Hn,

such that

i) Ψ is a contact map (i.e. Ψ∗θ0 = θ);
ii) Ψ(p̄) = 0 and U0 := Ψ(U) is open;

iii) DΨ(p̄)W 0
j = WH

j , j = 1, . . . , 2n. In particular, DΨ(p̄) : ker θ(p̄) →
ker θ0 is an isometry when the horizontal fiber of ker θ0 at the origin
is endowed with the canonical Riemannian metric 〈·, ·〉H.

Proof. Darboux Theorem implies that there exists a neighborhood U of p̄
and a diffeomorphism Ψ0 : U → Hn such that Ψ∗0θ0 = θ, and thus Ψ∗0(dθ0) =
dθ = i∗ω. Hence

(Ŵ1, · · · , Ŵ2n) := ((Ψ0)∗W
0
1 , . . . , (Ψ0)∗W

0
2n)

is a symplectic basis of ker θ0. Then, in particular,

(Ŵ1(0), . . . , Ŵ2n(0))

can be identified with a symplectic basis of R2n, and therefore there exists
A ∈ Sp(n) such that

AŴj(0) = ej = WH
j (0) j = 1, . . . , 2n.

Put now

Ψ :=

(
A 02n×1

01×2n 1

)
Ψ0.

Obviously, Ψ satisfies i) by Lemma 5.4 below and ii). Moreover

DΨ(p̄)(W 0
i (p̄)) =

(
A 02n×1

01×2n 1

)
Ŵi(0) = WH

i (0),

and the assertion follows. �

Lemma 5.4 (see [20, 41]). If a > 0 and
1√
a
A ∈ Sp(n), then the (Euclidean)

linear map T : Hn → Hn

T :=

(
A 02n×1

01×2n a

)
belongs to GL(R2n+1,R2n+1) and is a contact map.

Then, for each p ∈M and any r > 0 (close to 0), there exists a neighbor-
hood U(p, r) ⊂M and a diffeomorphism Ψp such that the image Ψp(U(p, r))
is the dHc -ball of radius r centered at the origin in the Heisenberg group, de-
noted by BH

r , and

‖D(Ψp)− I2n+1‖ ≤ δ(r),
33



for some δ(r) → 0 when r → 0. Here In denotes the identity map in n-
dimensions. We also point out that, by Lemma 7.1 (which will be proven
later on in Section 7), we have that in M :

(5.1) U(p, r) ⊂ B(p, r(1 + o(1))) as r → 0.

Adding the normal variable z > 0, we may cover M × [0, r] by a finite

number of neighborhoods {Ũ(pj , r)}Kj=1, pj ∈M such that for each j, there
exists a diffeomorphism

Ψ̃pj : {Ũ(pj , r)}Kj=1 → Hn × [0, r]

satisfying

Ψ̃pj (Ũ(pj , r)) = CH
r ⊂ Hn × R+,

Ψ̃pj (U(pj , r)) = BH
r ⊂ Hn,

Ψ̃pj ((pj , 0)) = (0, 0),

and
‖DΨ̃pj − I2(n+1)‖ ≤ δ̃(r),

for some δ̃(r)→ 0 when r → 0.

Since

(5.2) |D(u ◦ Ψ̃−1
pj )| ≤ (1 + δ)|Du ◦ Ψ̃−1

pj |,

this in particular implies that the localized energy F̃ε(uε, Ũ(pj , r), U(pj , r))

can be replaced by the energy Eε(wε, C
H
r , B

H
r ), where wε = uε ◦ Ψ̃pj . More

precisely, arguing exactly as in [5], Proposition 4.9, we have that

(5.3) F̃ε(uε, Ũ(pj , r), U(pj , r)) ≥ (1− δ5)Eε(wε, C
H
r , B

H
r ).

5.2. Conclusion of the proof of Theorem 2.20. Let {uε} ⊂ W 1,2
θ (Ω)

be a countable sequence such that F̃ε,r(uε) is bounded independently of ε.
We have to prove that the sequence of the traces {Truε} is pre-compact
in L1(M). But since we have just shown that we can cover M × [0, r] with

finitely many neighborhoods {Ũ(pj , r)}Kj=1, it is enough to show that {Truε}
is is pre-compact in L1(U(pj , r)) for every j = 1, . . . ,K.

For every fixed j, let wε = uε ◦ Ψ̃−1
pj . In particular, (5.2) implies that

Eε(wε, C
H
r , B

H
r ) is uniformly bounded in ε. Hence the pre-compactness fol-

lows from Theorem 4.6. This proves statement i*) of Theorem 2.20.

Next, we would like to prove statement ii*) in Theorem 2.20. Then things
become more delicate.

Let us start by recalling some classical definitions. For m > 0, we denote

αm :=
Γ(1

2)m

Γ(m2 + 1)
,

being Γ the Euler function and

(5.4) βm := 2−mαm.

According to Federer’s notation [17], we define a centered density of an outer
measure µ on X:
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Definition 5.5. Let (X, d) be a separable metric space, and let µ be an
outer measure on X. If m > 0, the upper and lower centered m-densities of
µ at p ∈ X are

Θ∗m(µ, p) := lim sup
r→0

µ(B(p, r))

βm (diamB(p, r))m

and

Θm
∗ (µ, p) := lim inf

r→0

µ(B(p, r))

βm (diamB(p, r))m
.

If they agree their common value

Θm(µ, p) := Θ∗m(µ, p) = Θm
∗ (µ, p)

is called the m-density of µ at p.

The crucial step of the proof of the liminf inequality ii∗) is provided by
the following theorem that allows us to pass from an inequality between
densities to the corresponding inequality between measures. We point out
that this theorem is well known in the Euclidean setting, but fails to be true
in general Carnot-Carathéodory spaces, and its proof in our special setting
is postponed to Section 7.

We have:

Theorem 5.6. Let M be (2n + 1)-dimensional contact manifold endowed
with a contact form θ and a Riemannian metric g on the fibers of ker θ. Let
W0 := (W 0

1 , . . . ,W
0
2n) be an orthonormal basis of ker θ, and let E ⊂ M be

a set of locally finite sub-Riemannian perimeter associated with W0. We
denote by |W0χE | the associated perimeter measure. If µ is a σ-finite Borel
measure on Ω, then

(5.5) Θ∗ 2n+1(µ, p) ≥ Θ∗ 2n+1(|W0χE |, p) for H2n+1
d -a.e. p ∈ ∂∗E

yields

(5.6) µ ∂E(B) ≥ |W0χE |(B)

for any Borel set B ⊂ ∂E.

Remark 5.7. Let us explain why we do need Theorem 5.6 precisely in that
form, and then we have to go through all the arguments of Section 7.

Following [5], the proof of the liminf inequality ii∗) consists of two steps:

1) first we prove the following estimate:

(5.7) Θ∗ 2n+1(µ, p) ≥ c Θ∗2n+1(|W0χE |, p),
where µ is the limit measure of the energy distribution associated
with F̃ε and p ∈ Sv.

2) Then, if B is a Borel set, we derive from (5.7) the corresponding
inequality with the explicit constant c for the measures µ(B) and
|W0χE |(B).

Let us recall now the following definition: let µ be an outer measure on
the metric space (X, d). Then the m-Federer densities of µ at x ∈ X are

Θ∗mF (µ, x) := inf
ε>0

sup

{
µ(B(y, r))

βm diam (B(y, r))m
: x ∈ B(y, r), ρ0 r ≤ ε

}
.
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It is easy to see that

(5.8) Θ∗m(µ, x) ≤ Θ∗mF (µ, x) ≤ 2m Θ∗m(µ, x) ∀x ∈ X.

If X is a separable metric space endowed with a Radon measure µ, ab-
solutely continuous with respect to the m-dimensional spherical Hausdorff
measure Sm, in [29] Magnani proved the following area formula for µ with
respect to Sm:

(5.9) µ(B) =

∫
B

Θ∗mF (µ, x) dSm(x)

for any Borel set B ⊂ X. Thus, if X = Ω and (5.7) holds, in order to prove
Step 2) we could be lead to the following chain of inequalities.

µ(B) =

∫
B

Θ∗ 2n+1
F (µ, x) dS2n+1(x) ≥

∫
B

Θ∗ 2n+1(µ, x) dS2n+1(x)

≥ c

∫
B

Θ∗ 2n+1(|W0χE |, x) dS2n+1(x).

At this point, to recover |W0χE |(B), we could not go back to the integral
of Θ∗ 2n+1

F (|W0χE |, x) because of the factor 22n+1 in (5.8). On the other
hand, always in [29], it is shown that centered density must be handled with
care, since it may differ from the m-dimensional density Θ∗ 2n+1

F (µ, ·). To
be more precise, though in [30] the representation formula (5.9) has been
proved to hold in several general situations, as e.g. for the perimeter measure
in Carnot groups endowed with the so-called vertically symmetric distances
(see [30], Section 6), unfortunately, we do not know whether it holds for
contact manifolds endowed with the Carnot-Carathéodory distance, that
we use throughout the present paper (keep in mind its connection with the
Minkowski content).

Thus, we choose a slightly alternative approach, relying on the notion
of centered Hausdorff measure (see Definition 7.6 iii) below) and on the
associated area formula.

Assuming Theorem 5.6, we can complete the proof of Theorem 2.20 as
follows.

Let now {uε} be a sequence in W 1,2
θ (M × [0, σ)) such that {Truε} con-

verges to v ∈ BVθ(M, {0, 1}) in the L1(M) norm. We need to show that

lim inf
ε→0

F̃ε,σ(uε) ≥ F (v).

If we write v = χE , then F (v) = |W0χE |.
Without loss of generality, assume that this liminf is finite.
For every ε ∈ (0, 1), let µε be the energy distribution associated with F̃σ,ε

for uε, i.e., µε is the positive measure given by

µε(B) := ε

∫
B

 2n∑
j=1

(W 0
j uε)

2 + (∂zuε)
2

 dvθ ∧ dz + λε

∫
B0

V (Truε) dvθ

for every Borel set B ⊂ M × [0, σ), B0 = B ∩M . The total variation ‖µε‖
of the measure µε is equal to F̃ε,σ(uε).
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Without loss of generality, we can assume 0 ≤ F̃ε,σ(uε) ≤ C for every
0 < ε < 1, and therefore the {µε} is an equibounded family of Radon
measures in Ω. By De La Vallée Poussin’s Theorem ([7], Theorem 1.59),
there exist a subsequence (εh)h∈N and a Radon measure µ in Ω such that
µεh → µ in the sense of the convergence of measures. Then, by the lower
semicontinuity of the total variation we have

lim inf
ε→0

F̃ε,σ(uε) = lim inf
ε→0

‖µε‖ ≥ ‖µ‖ .

Similarly, we define

µ0(B) := |W0χE |(B).

We just need to show that

(5.10) µ ≥ µ0.

Take now a point p ∈ Sv. For r small enough, we choose a map Ψ̃ := Ψ̃p as

in the discussion right after Theorem 5.3. Set wε := uε◦Ψ̃−1 and v̄ := v◦Ψ−1.
Hence, Trwε → v̄ in L1(BH

r ) and v̄ ∈ BV (BH
r , {0, 1}). Moreover, if v = χE ,

then v̄ = χΨ(E) and νv(Ψ(z)) = DΨ−1(z) · νHv̄ (z), for any z ∈ Sv̄ (here νHv̄
denotes the geometric normal to Sv̄ in Hn) . Keeping in mind (5.1) and
(5.3), we have

µ(B(p,r(1 + o(1))) ≥ µ(U(p, r)) = lim
ε→0

µε(Ũ(p, r))

= lim
ε→0

F̃ε,σ(uε, Ũ(p, r), U(p, r))

≥ lim inf
ε→0

(1− δ(Ψ))5Eε(wε, C
H
r , B

H
r ).

Notice that δ(Ψ) → 0 as r → 0. On the other hand, by Theorem 4.1, we
have that

lim inf
ε→0

Eε(wε, C
H
r , B

H
r ) ≥ c

∣∣∣∣∣
∫
BH
r

νHv d|WHχΨ(E)|

∣∣∣∣∣ .
We have now, by Lemma 7.2, ii), and [22], Lemma 3.8, iii),

Θ∗ 2n+1(µ, p) := lim sup
r→0

µ(B(p, r))

β2n+1 (diamB(p, r))2n+1

= lim sup
r→0

µ(B(p, r))

α2n+1 r2n+1

≥ c lim inf
r→0

|WHχΨ(E)|(BH
r )

α2n+1 r2n+1

∣∣∣∣∣
∫
BH
r

νHv̄ d|WHχΨ(E)|

∣∣∣∣∣ .
(5.11)

Let us prove now the following approximation lemma.

Lemma 5.8.

(5.12) lim
r→0

|W0χE |(B(p, r))

|WHχΨ(E)|(BH
r )

= 1.
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Proof. In the notation from Section 3.1, the perimeter measure in M is
defined as

|W0χE |(B(p, r))

= sup{|DX(χE)|(B(p, r)) : X ∈ Γ(M, ker θ), g(X,X) ≤ 1}.

(5.13)

Note that from the definition of DX in (3.2), it is enough to restrict our
attention to vector fields X supported on B(p, r).

On the other hand, by Lemma 7.1 and with the notations therein, if we
put

ρ = ρ(r) := r(1 + Cr1/2), then B(p, r) ⊂ U(p, ρ).

Then

|WHχΨ(E)|(BH
r ) = |WHχΨ(E)|(δHr/ρ(B

H
ρ )) = (1 + o(1))|WHχΨ(E)|(BH

ρ ),

where δ is the standard group dilation in the Heisenberg group. We recall
now that

|WHχΨ(E)|(BH
ρ )

= sup{|DY (χΨ(E))|(BH
ρ ) : Y ∈ Γ(Hn, ker θ0), 〈Y, Y 〉H ≤ 1},

(5.14)

where again we can assume supp Y ⊂ BH
ρ .

It remains to compare the metrics g on M and 〈 , 〉H on Hn. Note that
Ψ is a contact map, so we can always write Y = Ψ∗X for X ∈ Γ(M, ker θ).
By the change of variables formula (14) in [8]

(5.15) Ψ#(DXh) = DΨ∗X(h ◦Ψ−1),

we have

(5.16) |DΨ∗X(h ◦Ψ−1)| = |Ψ#DXh|.

Using also the definition of push forward of a measure,

|DY (χΨ(E))|(BH
ρ ) = Ψ#|DX(χE)|(BH

ρ )

= |DX(χE)|(U(p, ρ)) ≥ |DX(χE)|(B(p, r)).

Finally, in order to compare the perimeter measures (5.13) and (5.14), we
notice that, by Theorem 5.3, iii) if 〈Y, Y 〉H ≤ 1, then g(X,X) ≤ 1 + o(1) as
r → 0.

This proves that

lim sup
r→0

|W0χE |(B(p, r))

|WHχΨ(E)|(BH
r )
≤ 1.

The proof of the reverse inequality can be carried out in the same fashion.
�

Before going back to the proof of the lower bound inequality, we need the
following last lemma.

Lemma 5.9. We have:

(5.17)

∣∣∣∣∣
∫
BH
r

νHv̄ d|WHχΨ(E)|

∣∣∣∣∣ = 1 + o(1) as r → 0.
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Proof. We use Lemma 7.1, with the notations therein, and we put
φ(r) := (1 + C

√
r)−1. We have

φ(r)(1 + C
√
rφ(r)) ≤ 1 and φ(r) = 1 + o(1) as r → 0.

Let us prove first that∣∣∣∣∣
∫
BH
rφ(r)

νHv̄ d|WHχΨ(E)|

∣∣∣∣∣
=

1

|WHχΨ(E)|(BH
rφ(r))

∣∣∣∣∣
∫

Ψ(B(p,r))
νHv̄ d|WHχΨ(E)|

∣∣∣∣∣+ o(1).

(5.18)

First of all, we notice that

(5.19) BH
rφ(r) ⊂ Ψ(B(p, r)), 0 < r < r0.

Indeed, take z ∈ BH
rφ(r). Since Ψ is a diffeomorphism, we can assume that

z = Ψ(ζ), with ζ ∈M , provided r is small enough. Therefore

dc(p, ζ) = dΨ
c (0, z) ≤ rφ(r)(1 + C

√
rφ(r)) ≤ r.

Analogously

Ψ(B(p, r)) ⊂ BH
r/φ(r), 0 < r < r0.

Therefore, in order to prove (5.18), we have to show in the first place that

1

|WHχΨ(E)|(BH
rφ(r))

∣∣∣∣∣
∫

Ψ(B(p,r))\BH
rφ(r)

νHv̄ d|WHχΨ(E)|

∣∣∣∣∣ = o(1).

On the other hand, keeping in mind the homogeneity of |WHχΨ(E)| with

respect to group dilations δH, by (5.19) we have:

1

|WHχΨ(E)|(BH
rφ(r))

∣∣∣∣∣
∫

Ψ(B(p,r))\BH
rφ(r)

νHv̄ d|WHχΨ(E)|

∣∣∣∣∣
≤
|WHχΨ(E)|(Ψ(B(p, r)))− |WHχΨ(E)|(BH

rφ(r))

|WHχΨ(E)|(BH
rφ(r))

≤
|WHχΨ(E)|(BH

r/φ(r))− |W
HχΨ(E)|(BH

rφ(r))

|WHχΨ(E)|(BH
rφ(r))

=
|WHχΨ(E)|(BH

1/φ(r))− |W
HχΨ(E)|(BH

φ(r))

|WHχΨ(E)|(BH
φ(r))

= o(1).

This yields (5.18).
Take now Y := Ψ∗X, with 〈Y, Y 〉H = 1. By the change of variable formula

(5.15),

Ψ#(DX(χE)) = DΨ∗X(χΨ(E)),
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and thus 〈
Y,

∫
Ψ(B(p,r))

νv̄ d|WHχΨ(E)|
〉
H

=

∫
Ψ(B(p,r))

〈Y, νv̄〉 d|WHχΨ(E)|

= DY χΨ(E)(Ψ(B(p, r))) = Ψ#(DXχE)(Ψ(B(p, r)))

= DXχE(B(p, r)) = g
(
X,

∫
B(p,r)

νv d|W0χE |
)

≤ ‖X‖g
∥∥∥∫

B(p,r)
νv d|W0χE |

∥∥∥
g
.

(5.20)

As in the proof of previous lemma, ‖X‖g = 1 + o(1). On the other hand,
keeping in mind that p belongs to the reduced boundary of E,

lim
ρ→0

1

|W0χE(B(p, r))|

∥∥∥∫
B(p,r)

νv d|W0χE |
∥∥∥
g

= 1.

But by the previous formula (5.12), and the fact that

lim
r→0

|WHχΨ(E)|(BH
rφ(r))

|WHχΨ(E)|(BH
r )

= 1

using a rescaling argument by dilations in the Heisenberg group, we conclude
from (5.20) that

lim
ρ→0

〈
Y,

1

|WHχΨ(E)|(BH
rφ(r))

∫
Ψ(B(p,r))

νHv̄ d|WHχΨ(E)|
〉
H ≤ 1.

A standard argument taking the sup among all Y (or equivalently, all X)
with norm less than one, looking back at (5.18), completes the proof of the
Lemma. �

We can go back to the proof of (5.10). Replacing both (5.12) and (5.17)
into (5.11) we conclude that

Θ∗,2n+1(µ, p) ≥ c Θ∗,2n+1(|W0χE |, p).
The proof of the lower bound inequality is completed by Theorem 5.6.

6. Proof of the main theorem - limsup

Now we show statement iii) of Theorem 1.1. Given v ∈ BVθ(M, {0, 1}),
we need to construct a sequence {uε} in W 1,2

H (Ω) such that Truε → v in
L1(M) and

lim sup
ε→0

Fε(uε) ≤ F (v).

The proof of the limsup inequality will be divided into several steps:

Step 1: It is enough to assume that Sv is a smooth closed submanifold in
M . This fact follows from the next two results. The first one is a reduction
Lemma. It is valid for general metric spaces, and the proof is only a minor
variant of the one given in [33], Lemma IV (see also [3]), hence we shall
omit such a proof.

Lemma 6.1. Let (X ,d) be a metric space, let Fk, F : X −→ [−∞,+∞]
with k ∈ N; consider D ⊂ X and x ∈ X . Let us suppose that
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1) for every y ∈ D there exists a sequence (yk)k∈N ⊂ X such that yk → y
in X and

lim sup
k→∞

Fk(yk) ≤ F (y);

2) there exists a sequence (xk)k∈N ⊂ D such that xk → x and

lim sup
k→∞

F (xk) ≤ F (x);

then there exists a sequence (xk)k∈N ⊂ X such that lim sup
k→∞

Fk(xk) ≤ F (x).

The following approximation result is the analogue of Corollary 2.3.6 in
[21] for the case of contact manifolds.

Lemma 6.2. Each v ∈ BVθ(M, {0, 1}) may be approximated in L1(M) by
a sequence {vk} in BVθ(M, {0, 1}) such that Svk is a smooth closed subman-
ifold and

‖Svk‖θ → ‖Sv‖θ.

Proof. The result follows by standard arguments from the Meyers-Serrin
type result, Theorem 2.4 in [8], and the coarea formula (Proposition 3.6). �

Next, possibly modifying v on a negligible subset, we can assume that it
is constant in each connected component of M \ Sv.

Step 2: (Preliminary calculations). Following the idea in [5], we take
a function defined as follows: consider the half-plane R2

+ with coordinates
s ∈ R, z > 0. Let (ρ, ϑ), ρ > 0, ϑ ∈ [0, π] be the polar coordinates in R2

+.
We set

w̄ε(ρ, ϑ) :=


ρ
λε
ε

(1− 2
πϑ) if 0 ≤ ρ ≤ ε

λε
,

1− 1
πϑ if

ε

λε
≤ ρ,

and wε(s, z) = w̄ε(ρ, ϑ). A straightforward calculation gives:

(6.1) |∂swε|, |∂zwε| ≤


C
λε
ε

if 0 ≤ ρ ≤ ε

λε
,

C

ρ
if
ε

λε
≤ ρ,

and

(6.2) |∂sswε|, |∂zswε| ≤


C

ρ

λε
ε

if 0 ≤ ρ ≤ ε

λε
,

C

ρ2
if
ε

λε
≤ ρ.

In the sequel we will use the following notation: for aε, bε > 0 we write
aε � bε if aε/bε → 0 as ε→ 0.

The following estimates hold:
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Lemma 6.3. Let tε → 0 as ε→ 0 and σ > 0 in such a way that ε
λε
� tε �

σ. Then, as ε→ 0,

ε

∫
{ρ<tε}

|∇wε|2 dsdz =
1

π
ε log

λε
ε

(1 + o(1)),

ε

∫
{tε<ρ<σ}

|∇wε|2 dsdz = ε log tε(1 + o(1)) = o

(
ε log

λε
ε

)
,

λε

∫
{z=0}∩{ρ<tε}

V (Trwε) ds = O(ε), λε

∫
{z=0}∩{ρ>tε}

V (Trwε) ds = O(ε).

Proof. While the first two identities follow from straightforward calculation
from the previous estimates, for the third one we use that V ≡ 0 unless 0 ≤
ρ ≤ ε

λε
. Also, from the proof it follows that these estimates are independent

of the choice of σ. �

Step 3: (Set up). As we saw in Section 2.2, given σ > 0 small enough,
there exists a diffeomorphism Φ such that a tubular neighborhood of M in
Ω may be written as M × [0, σ), with coordinates p ∈ M and z ∈ [0, σ). In
the product M × [0, σ) we shall define the distance

d((p′, z′), (p′′, z′′)) =
√
dc(p′, p′′)2 + (z′ − z′′)2.

For each r small consider the following subset of M × [0, σ):

Ãr = {(p, z) ∈M × [0, σ) : d(p, Sv) < r},
and set

∂0Ãr = Ãr ∩M.

In coordinates (p, z) ∈ Ãσ where p ∈M and z > 0, let

uε(p, z) := wε(dc(p, Sv), z),

and transplant it back to Ω by

uε = ũε ◦ Φ−1, Ar = Φ(Ãr), .

for each 0 < r < σ. Note that Φ can be defined independently of ε. Next,
because of hypothesis H2. for f in Section 2.1, and Proposition 2.16, in the
calculation of the energy functional Fε in a neighborhood of M we have

(6.3) Fε(uε, Aσ, ∂
0Aσ) ≤ (1 +O(σ))F̃ε,σ(ũε, Ãσ, ∂

0Ãσ),

so it is enough to estimate the integral in the right hand side.
Now, the phase transition should happen at scale ε. For this, let tε be as

in Lemma 6.3, actually it is enough to take tε = ε. Then,

F̃ε,σ(ũε, Ãσ, ∂
0Ãσ) = F̃ε,σ(ũε, Ãσ \ Ãtε , ∂0(Ãσ \ Ãtε)) + F̃ε,σ(ũε, Ãtε , ∂

0Ãtε).

The last term in the right hand side above will be considered in Step 4,
while the first one will be handled in Step 5.

On the other hand, it is not important how we define uε in the set Ω\Aσ,
as long as uε = v in Ω\∂0Aσ and its Lipschitz constant is bounded by C

σ .

Recall that v is a function that only attains the values 0 or 1 on M \ ∂0Aσ,
so that for the potential energy we have∫

M\∂0Aσ

V (Truε) dvθ = 0.
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Then we immediately have that

(6.4) lim sup
ε→0

Fε(uε,Ω\Aσ,M\∂0Aσ) = 0.

Step 4. (Construction near the singular set). We follow the ideas of [37]

to estimate the value of F̃ε,σ(ũε, Ãtε , ∂
0Ãtε). Let s = dc(p, Sv). Then, using

Fubini’s theorem,

F̃ε,σ(ũε, Ãtε , ∂
0Ãtε)

=

∫
∂0Ãtε

ε∫ √t2ε−s2
0

2n∑
j=1

|W̃j ũε(p, z)|2 dz + λεV (Tr ũε(p))

 dvθ.(6.5)

Using the coarea formula from Theorem 3.6 and the Eikonal equation for dc
(3.8) we have

F̃ε,σ(ũε, Ãtε , ∂
0Ãtε) =

∫ tε

−tε
hε(s) d‖∂Hs‖θ ds,

where we have set

(6.6) hε(s) := ε

∫ √t2ε−s2
0

[
(∂swε(s, z))

2 + (∂zwε(s, z))
2
]
dz+λεV (Trwε(s))

and Hs = {p ∈ M : dc(p, Sv) > s}. Next, notice that for all s ∈ [−tε, tε],
hε(s) = hε(−s), so that

F̃ε,σ(uε, Ãtε , ∂
0Ãtε) ≤

∫ tε

0
hε(s) (d‖∂Hs‖θ + d‖∂H−s‖θ) ds.

We can rewrite this expression as follows: let

Z(t) =

∫ t

−t
‖∂Hs‖θ ds, Z ′(t) = ‖∂Hs‖θ + ‖∂H−s‖θ,

so that

(6.7) F̃ε,σ(ũε, Ãtε , ∂
0Ãtε) ≤

∫ tε

0
hε(s)Z

′(s) ds = −
∫ tε

0
h′ε(s)Z(s) ds

after integration by parts. Note that we have used that hε(tε) = 0.
Next, by Theorem 3.12 we have

lim
t→0+

Z(t)

2t
= L := ‖∂H‖θ,

and thus, there exists a function δ : [0,∞)→ R such that

(6.8) Z(t) = 2Lt+ δ(t)t, with lim
ε→0+

sup
t∈[0,tε]

|δ(t)| = 0.

Substituting the above into (6.7) we obtain that

F̃ε,σ(ũε, Ãtε , ∂
0Ãtε) ≤ −

∫ tε

0
sδ(s)h′ε(s) ds− 2L

∫ tε

0
sh′ε(s) ds.

=: Iε + Jε.

(6.9)

In order to estimate the term Jε above, we use again integration by parts

Jε = 2L

∫ tε

0
hε(s) ds = L

∫ tε

−tε
hε(s) ds.
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From the estimates in Lemma 6.3, using our initial hypothesis on λε from
(1.3), we may conclude

Jε−→
κ

π
L as ε→ 0.

Finally, we need to show that the remaining term Iε has limit zero when
ε→ 0. But

|Iε| ≤ sup
t∈[0,tε]

|δ(t)|
∫ tε

0
s|h′ε(s)| ds.

From the behavior of δ in (6.8), it is enough to show that the integral

(6.10) Ĩε :=

∫ tε

0
s|h′ε(s)| ds

is bounded independently of ε. Differentiating in (6.6), h′ε(s) = h1
ε +h2

ε +h3
ε

for

h1
ε(s) = ε

[
(∂swε(s,

√
t2ε − s2))2 + (∂zwε(s,

√
t2ε − s2))2

]
·

(
− s√

t2ε − s2

)
,

h2
ε(s) = 2ε

∫ √t2ε−s2
0

[∂swε∂sswε + ∂zwε∂zswε] dz,

h3
ε(s) = λεV

′(Trwε(s))∂swε(s, 0).

Since we know that tε � ε
λε

, using the estimates in (6.1), we deduce

|h1
ε(s)| ≤ C

ε

t2ε

s√
t2ε − s2

,

so we may conclude∫ tε

0
s|h1

ε(s)| ds ≤ C
ε

t2ε

∫ tε

0

s2√
t2ε − s2

ds

≤ C εtε
t2ε

∫ tε

0

s√
t2ε − s2

ds

≤ C εtε
t2ε

[√
t2ε − s2

]tε
0
≤ C

(6.11)

independent of ε. For the second integral, note that the estimates in (6.1)-
(6.2) give∫ tε

0
s|h2

ε(s)| ds ≤ Cε

[∫
{0<ρ< ε

λε
}
s

(
λε
ε

)2

dρ+

∫
{ ε
λε
<ρ<tε}

s

ρ2
dρ

]
≤ Cε log λε <∞

(6.12)

by our initial hypothesis (1.3). Finally, looking again at the estimates (6.1)
for ∂swε, we have

(6.13)

∫ tε

0
s|h3

ε(s)| ds ≤ Cλε
∫ ε

λε

0
s
λε
ε
ds <∞.

Putting together (6.11), (6.12) and (6.13) we conclude that the integral

Ĩε from (6.10) is uniformly bounded independently of ε. This shows that,
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looking at (6.9) and (6.3),

(6.14) lim sup
ε→0

Fε(uε, Atε , ∂
0Atε) ≤ (1 +O(σ))

κ

π
L,

as desired.

Step 5: (Construction in Aσ \ Atε). This argument is very close to that
of [5].

First we set uε ≡ v on M \ ∂0Atε (recall that v is a function that only
attains the values 0 or 1 on M \ ∂0Atε), so that∫

M\∂0Atε

V (Truε) dvθ = 0.

To conclude the proof we need the following extension lemma, which is a
much simplified version of Lemma 4.11 in [5].

Lemma 6.4. Let A be a domain in R2N and A′ ⊂ ∂A. Let ε ∈ (0, 1),
and v a Lipschitz function v : A′ → [0, 1]. Then v admits an extension
u : A→ [0, 1] such that its Lipschitz constant satisfies

Lip(u) ≤ 1

ε
+ Lip(v)

and

ε

∫
A
|∇u|2 ≤ (εLip(v))2(|∂A|+ o(1)),

and o(1) is a function of ε which does not depend on v.

From the previous steps we have constructed a function uε that has a
smooth transition from 0 to 1 along ∂Atε and along Aσ, so at most its
Lipschitz constant is C

tε
(recall that tε � σ). Thus, using the previous

Lemma, we may extend uε to Aσ\Atε in a Lipschitz fashion while
(6.15)

Fε(uε, Aσ\Atε , ∂0(Aσ\Atε)) = ε

∫
Aσ\Atε

f(y,Duε(y)) dy ≤ C(1 + o(1))O(σ).

as ε→ 0 because of our hypothesis on f .

By construction, it is clear that Tuε → v in L1(M). Putting together
(6.4), (6.14) and (6.15), the proof of the lim sup is completed by taking σ
small enough.

7. Appendix: Densities and measures

In this Appendix we prove Theorem 5.6, which was a crucial ingredient
in the proof of the liminf inequality. In order to do that, we need some
preliminaries on densities and measures.

As in Theorem 5.3, let (W 0
1 , . . . ,W

0
2n) be an orthonormal symplectic basis

of ker θ(p̄), and let (WH
1 , . . . ,W

H
2n) be the canonical orthonormal symplectic

basis of ker θ0 (θ0 being the canonical contact form of Hn). Let now U ⊂M
and, for p̄ ∈ U , let Ψ : U → Hn be the contact diffeomorphism constructed in
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Theorem 5.3. In Ψ(U), consider now the vector fields Ψ∗W
0
i , i = 1, . . . , 2n.

Notice that

span {Ψ∗W 0
1 , . . . ,Ψ∗W

0
2n} = ker θ0 = span {WH

1 , . . . ,W
H
2n}.

Remember that Ψ(p̄) = 0. By the same theorem, Ψ∗W
0
i (0) = WH

i (0) for
i = 1, . . . , 2n. We denote by dΨ

c the Carnot-Carathéodory distance in Ψ(U)
associated with the Riemannian metric (Ψ−1)∗g, and by dHc the standard
Carnot-Carathéodory distance in Hn. We denote also by BΨ and BH the
closed balls associated with dΨ

c and dHc , respectively.
It is easy to see that for p, q ∈ U

dc(p, q) = dΨ
c (Ψ(p),Ψ(q)).

In the sequel, BΨ will be the open balls with respect to dΨ
c .

Lemma 7.1. For z in a neighborhood of 0 ∈ Hn, the following estimates
hold:

(7.1) dH(z, 0) ≤ dΨ
c (z, 0)(1 + CdΨ

c (z, 0)1/2);

(7.2) dΨ
c (z, 0) ≤ dH(z, 0)(1 + CdH(z, 0)1/2).

Proof. We denote by WΨ and WH the (2n × 2n)-matrices whose columns
are Ψ∗W

0
1 , . . . ,Ψ∗W

0
2n and WH

1 , . . . ,W
H
2n, respectively. If we set

A := (aij)i,j=1,...,2n :=W−1
H WΨ,

we obtain thatA transforms the coordinates with respect to (Ψ∗W
0
1 , . . . ,Ψ∗W

0
2n)

of a generic point in ker θ0 into its coordinates with respect to (WH
1 , . . . ,W

H
2n).

If we denote by z a generic point of Ψ(U), by Theorem 5.3,

A(z) = Id +O(|z|) as z → 0.

Let now z ∈ K ⊂⊂ Ψ(U) be fixed, and let γ : [0, 1] → Hn a (smooth)
dΨ
c -geodesic connecting 0 and z. If t ∈ [0, 1], we can write

γ′(t) =
∑
i

γi(t)(Ψ∗W
0
i )(γ(t)) and dΨ

c (z, 0) =

∫ 1

0

(∑
i

γ2
i (t)

)1/2
dt.

Thus, if t ∈ [0, 1], we have

γ′(t) =
∑
i

{∑
j

ai,j(γ(t))γj(t)
}
WH
i (γ(t)),
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and hence

dH(z, 0) ≤
∫ 1

0

(∑
i

{∑
j

ai,j(γ(t))γj(t)
}2
)1/2

dt

=

∫ 1

0

(∑
i

{∑
j

(δi,j +O(|γ(t)|))γj(t)
}2
)1/2

dt

=

∫ 1

0

(∑
i

{
γi(t) +O(|γ(t)|2)

}2
)1/2

dt

≤
∫ 1

0

(∑
i

γi(t)
2
)1/2

dt+

∫ 1

0
O(|γ(t)|3/2) dt

= dΨ
c (z, 0) +

∫ 1

0
O(|γ(t)|3/2) dt.

On the other hand, since the Euclidean distance may be locally bounded by
dΨ
c ,

|γ(t)| ≤ C1d
Ψ
c (γ(t), 0) ≤ CdΨ

c (z, 0),

so that (7.1) follows. We can carry out the same argument interchanging
the roles of dH and dΨ

c , and we get (7.2).
�

To keep our paper as self-contained as possible, we gather here few more
or less known results about Hausdorff measures in metric spaces. This part
is taken almost verbatim from [24].

We recall first the definition of a centered density for an outer measure µ
on X from Definition 5.5. In Euclidean spaces (and more generally in Carnot
groups) we can replace in this definition the diameter diamB(x, r) by 2r.
This “elementary” statement fails to be true in general metric spaces, but
still holds in contact manifolds endowed with their Carnot-Carathéodory
distance. This will follow from the following results.

Lemma 7.2. Let M be a (2n + 1)-dimensional contact manifold endowed
with the contact form θ, with the volume form vθ := θ ∧ (dθ)n, and the
Riemannian metric g on ker θ as introduced in Propositions 2.9 and 2.12.
We denote by dc the associated Carnot-Carathéodory distance. Let p̄ ∈ M
be a fixed point. We have:

i) if c0 is the volume of the unit ball in Hn for the Carnot-Carathéodory
distance associated with the canonical basis (WH

1 , . . . ,W
H
2n) of Hn

(see Theorem 5.3), then

lim
r→0

vθ(B(x, r))

r2n+2
= c0;

ii) Moreover,

lim
r→0

diamB(x, r)

2r
= 1.

Proof. Take a ball Br := B(p̄, r) ⊂ M with r > 0 sufficiently small. For
sake of simplicity, in Lemma 7.1, put φ(t) := t(1 +C

√
t). Obviously, φ(r) =

r + o(r) and φ−1(s) = s+ o(s) as s→ 0.
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By (7.1) and (7.2)

BH(0, φ−1(r)) ⊂ Ψ(Br) = BΨ(0, r) ⊂ BH(0, φ(r)).(7.3)

We recall now that for ρ > 0

c0ρ
2n+2 = L2n+1(BH(0, ρ)) =

∫
BH

dvθ0 ,

and that

vθ(Br) =

∫
Br

θ ∧ (dθ)n =

∫
Ψ(Br)

(Ψ−1)∗(θ ∧ (dθ)n)

=

∫
Ψ(Br)

(Ψ−1)∗θ ∧ (d(Ψ−1)∗(θ)n) =

∫
Ψ(Br)

θ0 ∧ (dθ0)n

=

∫
BΨ(0,r)

dvθ0 = vθ0(BΨ(0, r)),

so that

c0(φ−1(r))2n+2 ≤ vθ(Br) ≤ c0φ(r)2n+2.

Then i) follows straightforwardly.
Let us prove ii). If r > 0 By [22], Proposition 2.4, there exist zr, ζr ∈

BH(0, φ−1(r)) such that dH(zr, ζr) = 2φ−1(r). Arguing as above, if γ :
[0, 1]→ Hn is a dΨ

c -geodesic connecting zr and ζr, then

dH(zr, ζr) ≤ dΨ
c (zr, ζr) +

∫ 1

0
O(|γ(t)|3/2) dt.

On the other hand, γ(t) ∈ BH(0, 3φ−1(r)), and hence, if r > 0 is sufficiently
small,

O(|γ(t)|3/2) ≤ C1|γ(t)|3/2 ≤ C2dH(0, γ(t))3/2 ≤ C(φ−1(r))3/2 = Cr3/2(1+o(1)),

so that

2φ−1(r) = dH(zr, ζr) ≤ dΨ
c (zr, ζr) + Cr3/2(1 + o(1)).

Therefore

dΨ
c (zr, ζr) ≥ 2r(1 + o(1)).

By (7.3), zr, ζr ∈ BΨ
r , so that

Ψ(zr),Ψ(ζr) ∈ Br.

Hence

1 ≥ diam (Br)

2r
≥ dc(Ψ(zr),Φ(ζr))

2r
=
dΦ
c (zr, ζr)

2r
≥ 1 + o(1),

and ii) follows. �

Lemma 7.2 immediately yields the following equivalent definition of den-
sities in contact manifolds:

Corollary 7.3. Let M be (2n + 1)-dimensional contact manifold endowed
with a contact form θ and a Riemannian metric g on the fibers of θ as
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introduced in Propositions 2.9 and 2.12. We denote by dc the associated
Carnot-Carathéodory distance. Let µ be an outer measure on M . Then

Θ∗m(µ, x) := lim sup
r→0

µ(B(x, r))

αm rm

and

Θm
∗ (µ, x) := lim inf

r→0

µ(B(x, r))

αm rm
.

Remark 7.4. In Corollary 7.3 we can replace closed balls B(x, r) by open
balls B(x, r) (see [9], Remark 2.4.2).

Keeping in mind Corollary 7.3 and Remark 7.4, the following result can
be proved by the same arguments used in the proof of Theorem 3.1 in [24].

Proposition 7.5. Let M be (2n+1)-dimensional contact manifold endowed
with a contact form θ and a Riemannian metric g on the fibers of θ as
introduced in Propositions 2.9 and 2.12. We denote by dc the associated
Carnot-Carathéodory distance. Let µ be a σ-finite regular Borel measure on
M . Then the map

Θ∗m(µ, ·) : X → [0,+∞]

is Borel measurable.

We give now the following:

Definition 7.6. Let A ⊂ X, m ∈ [0,∞), δ ∈ (0,∞), and let βm be the
constant (5.4).

(i) The m-dimensional Hausdorff measure Hm is defined as

Hm(A) := lim
δ→0
Hmδ (A)

where

Hmδ (A) = inf

{∑
i

βmdiam (Ei)
m : A ⊂

⋃
i

Ei, diam (Ei) ≤ δ

}
.

(ii) The m-dimensional spherical Hausdorff measure Sm is defined as

Sm(A) := lim
δ→0
Smδ (A)

where

Smδ (A) = inf
{∑

i

βmdiam (B(xi, ri))
m : A ⊂

⋃
i

B(xi, ri),

diam (B(xi, ri)) ≤ δ
}

(iii) The m-dimensional centered Hausdorff measure Cm is defined as

Cm(A) := sup
E⊆A
Cm0 (E) .

where Cm0 (E) := limδ→0+ Cmδ (E), and, in turn, Cmδ (E) = 0 if E = ∅ and for
E 6= ∅,

Cmδ (E) = inf
{∑

i

βmdiam (B(xi, ri))
m : E ⊂

⋃
i

B(xi, ri),

xi ∈ E, diam (B(xi, ri)) ≤ δ
}
.
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Notice that the set function Cm0 is not necessarily monotone (see [43, Sect.
4]) while Cm is monotone.

For reader’s convenience we collect a few results about the measures Cm.
Most of these results are taken from [15] and [24].
Let

dist(E,F ) := inf {d(x, y) : x ∈ E, y ∈ F}
denote the distance between E and F . Recall that an outer measure µ on
X is said to be metric if

µ(A ∪B) = µ(A) + µ(B) whenever dist(A,B) > 0 .

Being obtained by Carathëodory’s construction, Hm and Sm are metric
(outer) measures (see [17, 2.10.1] or [31, Theorem 4.2]). Also the measures
Cm are metric measures in any metric space, but this fact is not as immediate
as for Hm and Sm.

Lemma 7.7 ([15], Proposition 4.1). Cm is a Borel regular outer measure.

Remark 7.8. The measures Hm, Sm and Cm are all equivalent measures.
Indeed, it is well known that (see, for instance, [17, 2.10.2])

Hm ≤ Sm ≤ 2mHm

and, by definition,

Hm ≤ Sm ≤ Cm .
The opposite inequality between Hm (or Sm) and Cm is less immediate:

it was proved in [43, Lemma 3.3] for the case X = Rn. See also [44], but for
a differently defined centered Hausdorff-type measure. The comparison in a
general metric space is contained in [15].

Lemma 7.9 ([15], Proposition 4.2). Hm ≤ Cm ≤ 2mHm .

By Lemma 7.9, it follows in particular that the metric dimensions induced
by Hm or Sm or Cm are the same.

The estimates needed to relate the m-dimensional density Θ∗m(µ, ·) with
the centered Hausdorff measure Cm are the following ones.

Theorem 7.10 ([15], Theorem 4.15). Let (X, d) be a separable metric space,
let µ be a finite Borel outer measure in X and let B ⊂ X be a Borel set.
Then

(i)

µ(B) ≤ sup
x∈B

Θ∗m(µ, x) Cm(B),

except when the product is ∞ · 0;
(ii)

inf
x∈B

Θ∗m(µ, x) Cm(B) ≤ µ(B) .

By easy modifications of the proof of Theorem 7.10, one gets the fol-
lowing density estimates involving Θ∗m(µ, x) and Cm. These estimates are
analogous to Federer’s ones involving Θ∗mF (µ, x) and Sm (see [17]).

Theorem 7.11. Let (X, d) be a separable metric space, let µ be an outer
measure in X and t > 0.
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(i) If µ is Borel regular and

Θ∗m(µ A, x) < t, ∀x ∈ A ⊂ X
then

µ(A) ≤ t Cm(A) .

(ii) If V ⊂ X is an open set and

Θ∗m(µ, x) > t, ∀x ∈ B ⊂ V
then

µ(V ) ≥ t Cm(B) .

Remark 7.12. If µ is supposed to be a Radon measure, approximating from
above by open sets, we can strengthen the conclusion in Theorem 7.11 (ii)
getting the inequality µ(B) ≥ t Cm(B).

Using Lemma 7.2 (i.e. relying on the equivalence of the two notions of
density) and Proposition 7.5, the following result can be proved following
step by step the proof of Theorem 3.1 in [24].

Theorem 7.13. Let M be (2n+ 1)-dimensional contact manifold endowed
with a contact form θ and a Riemannian metric g on the fibers of θ as
introduced in Propositions 2.9 and 2.12. We denote by dc the associated
Carnot-Carathéodory distance. Let µ be a σ-finite regular Borel measure on
M , and let A ⊂ X be a Borel set. If Cm(A) < ∞ and µ A is absolutely
continuous with respect to Cm A, then for each Borel set B ⊂ A,

µ(B) =

∫
B

Θ∗m(µ, x) dCm(x).

Remark 7.14. Since Cm and Sm are equivalent, then Cm(A) < ∞ if and
only if Sm(A) < ∞ and µ A is absolutely continuous with respect to Cm
if and only if µ A is absolutely continuous with respect to Sm.

Now we can give the proof of Theorem 5.6.

Proof of Theorem 5.6. Since |W0χE | is supported on ∂∗E, without loss of
generality we may assume that (5.5) holds for all x ∈ ∂E.

Suppose first

(7.4) µ ∂E � H2n+1 ∂E,

and denote byA ⊂ ∂E the set of points where (5.5) holds, so thatH2n+1(∂E\
A) = 0. We remind also that |W0χE | � H2n+1 ∂E, by [6], Lemma 5.2.
Thus, if B ⊂ ∂E is a Borel set, we can apply Theorem 7.13 to get

µ ∂E(B) = µ(∂E ∩B) =

∫
∂E∩B

Θ∗,2n+1(µ, x)dC2n+1(x)

≥
∫
∂E∩B

Θ∗,2n+1(|W0χE |, x)dC2n+1(x) = |W0χE |(∂E ∩B)

= |W0χE |(B).

Let us drop now the assumption (7.4). We can write

µ ∂E = µac + µs
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with

µac � H2n+1 ∂E and µs ⊥ H2n+1 ∂E

(see [42] Theorem 6.10), i.e. there exists K ⊂M such that

µs = µs K and (H2n+1 ∂E)(K) = 0.

Set now

S0 := {x ∈M ; Θ∗2n+1(µs, x) = 0}.
Notice that S0 is a Borel set, since Θ∗2n+1(µs, ·) is a Borel function.

If x ∈ S0, then

Θ∗2n+1(|W0χE |, x) ≤ Θ∗2n+1(µ, x)

≤ Θ∗2n+1(µs, x) + Θ∗2n+1(µac, x)

= Θ∗2n+1(µac, x).

Thus, as above, we can apply Theorem 7.13 to get for any Borel set B

|W0χE |(B ∩ S0) ≤ µac(B ∩ S0) ≤ µ(B ∩ S0) ≤ µ(B).

To complete the proof of (5.6), we shall prove that

(7.5) (H2n+1 ∂E)(Sc0) = 0,

that yields

|W0χE |(Sc0) = 0,

by [6], Lemma 5.2 (here Sc0 denotes the complement of S0).
In order to prove (7.5), we can write

Sc0 = ∪∞n=1{x ∈M ; Θ∗2n+1(µs, x) > 1
n} := ∪∞n=1Tn.

Then

(H2n+1 ∂E)(Sc0) = (H2n+1 ∂E)(Sc0 ∩K) + (H2n+1 ∂E)(Sc0 ∩Kc)

= (H2n+1 ∂E)(Sc0 ∩Kc),

(7.6)

since

(H2n+1 ∂E)(Sc0 ∩K) ≤ (H2n+1 ∂E)(K) = 0.

On the other hand

(H2n+1 ∂E)(Sc0 ∩Kc) = lim
n→∞

(H2n+1 ∂E)(Sc0 ∩Kc ∩ Tn).(7.7)

The set ∂E∩Sc0∩Kc∩Tn is a Borel set, so that, by Federer’s differentiation
theorem (see, e.g., [9] Theorem 2.4.3)

(H2n+1 ∂E)(Sc0 ∩Kc ∩ Tn) ≤ nµs(Sc0 ∩Kc ∩ Tn)

= n (µs K)(Sc0 ∩Kc ∩ Tn) = 0.
(7.8)

Combining (7.6), (7.7) and (7.8) we obtain eventually (7.5). This completes
the proof of the theorem.

�
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