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ABSTRACT

 

The objective of the present work is to optimize, by means of constructal design 

associated with exhaustive search and genetic algorithm, the geometry of morphing T-

shaped fins that remove heat from a semicircular basement. The fins are bathed by a steady 

stream with constant ambient temperature and convective heat transfer. The semicircular 

body that serves as a basement for the T-shaped construct generates heat uniformly and it is 

perfectly insulated on the outer perimeter. It is shown numerically that the global thermal 

resistance can be minimized by geometric optimization subjected to constraints, namely, 

the basement area constraint, the T-shaped fins area fraction constraint and the auxiliary 

area fraction constraint, i.e. the ratio between the area that circumscribes the T-shaped fin 

and the basement area.  The combination of the degrees of freedom values in the context of 

constructal design generated a search space with several “potential” local minima so that 

the classic technique, i.e. the exhaustive search, had to be substituted by the genetic 

algorithm method. In this context, the initial investigation regarding the degrees of freedom 

L1/L0 and t1/t0 was performed by means of the exhaustive search, while the parameters kp, , 

λ and ψ have been studied by employing GA technique. First achieved results indicate that 

when the geometry is free to morph then the thermal performance is improved according to 

the constructal principle named by Bejan “optimal distribution of imperfections”. Finally, a 
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comparative analysis between T-shaped constructs coupled with rectangular, trapezoidal 

and semicircular geometries has been carried out in terms of effectiveness in heat removal. 

The performance of the T-shaped morphing fin having semicircual basement (the case here 

treated) prooved to be considerably superior than the other tested geometries. 

  

Keywords: Constructal design, semicircular heat generating body, T-shaped morphing fins, 

thermal energy removal, convection heat transfer, exhaustive search, genetic algorithm 

 

Nomenclature 

Ab cross section area [m
2
] 

h heat transfer coefficient [W m
-2

 K
-1

] 

kb basement thermal conductivity [W m
-1

 K
-1

] 

kf fin thermal conductivity [W m
-1

 K
-1

] 

L0 stem length [m] 

L1 half length of the tributary [m] 

q’’’ heat uniformly at volumetric rate [W m
-3

] 

R radius of the semicircular basement [m] 

t0  stem thickness [m] 

t1  tributary  thickness [m] 

T  temperature [K] 

T∞  bulk temperature [K] 

W width [m]  

x, y      coordinates [m] 

 

Greek symbols  

  area fraction  

θ dimensionless temperature 

λ dimensionless parameter 

ψ   auxiliary area fraction  
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Subscripts  

b basement 

aux auxiliary 

m once minimized 

2m twice minimized 

max maximum 

o optimized 

2o twice optimized 

 

Superscripts  

(˜) dimensionless variables 

 

 

1       Introduction 

 

Constructal Theory, i.e. the view of design as science,  has been deeply reviewed in 

Refs. [1-3]. It is based on the Constructal Law, that states ‘‘For a finite-size flow system to 

persist in time (to live), its configuration must evolve in such a way that provides greater 

and greater access to the currents that flow through it’’. This line of inquiry began 

accidentally in engineering, with a 1997 analytical paper on the conductive cooling of a 

small electronic package (a heat generating volume) by using a point-size heat sink [4]. 

Constructal theory [5, 6] can be intended as the evolutionary design philosophy for 

developing flow architectures that offer greater flow access and system performance. 

Therefore, a great distinction has been set between the approach by fractals [7–9] and by 

the Constructal Theory [10]. While the former produces images with great resemblance of 

natural systems it does not rely on physics. The latter, on the other hand, claims that forms, 

patterns and configurations can be successfully determined and explained by physics [11]. 

Literature [12] shows that Contructal Law provides explanations for why a broader variety 

of designs, configurations, structures, patterns and rithms occurred in the natural and in the 

anthropic realms alike.  References [13, 14] illustrate that the most basic features of tree 

and forest architecture can be put on a unifying theoretical basis given by the constructal 
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law. Trees and forests are viewed as integral components (along with river basins, 

atmospheric and oceanic circulation, etc.) of the much greater global architecture that 

facilitates the cyclical flow of water and the flow of stresses between wind and ground. Ref. 

[15] highlighted the oneness of animate and inanimate designs, the origin of finite-size 

organs on animals and vehicles, the flow of stresses as the generator of design in solid 

structures (skeletons, vegetation), the universality and rigidity of hierarchy in all flow 

systems, and the global design of human flows. Ref. [16] illustrates a model of heat 

transport on the earth surface that accounts for the solar and terrestrial radiation as the heat 

source and heat sink and with natural convection loops as the transport mechanism.    In 

this paper we consider the constructal theory in its original engineering focus, i.e. the 

geometric optimization of shapes in heat transfer. In this context, Bejan’s Constructal 

theory has been widely adopted in heat transfer optimization. Ref. [17] illustrates the 

constructal optimizations of H- and X-shaped heat exchangers by taking the maximum 

thermal efficiency (the ratio of the dimensionless heat transfer rate to the dimensionless 

total pumping power) as optimization objective. The advantage of constructal law in the 

engineering field is that the flow architecture is not assumed in advance, but it is the 

consequence of allowing the structure to morph [18-21]. Several applications of constructal 

theory have been reviewed by Feng et al. in Ref. [22].   

In this paper our focus is on the geometric study of T-shaped fins cooling a semicircular 

solid body with internal heat generation. The objective is to minimize, by means of the 

numerical investigation, the maximal excess of temperature between the solid body and the 

ambient. The fins are bathed by a steady stream with constant ambient temperature and 

convective heat transfer. The outer surfaces of the heat generating body are perfectly 

insulated.  

 

 

2       Mathematical model  

 

Consider the domain shown in Fig. 1. There is an adiabatic semicircular body 

(basement) with internal constant heat generation per unit volume q’’’ and constant thermal 

conductivity kb. Attached to the body is a T-shaped fin. The configuration is two-
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dimensional, with the third dimension (W) sufficiently long in comparison with the body 

radius R.  The heat transfer coefficient h is uniform over all the exposed surfaces of the T-

shaped fins and the temperature of the fluid (T∞) is known. The maximum temperature 

(Tmax) occurs into the basement and varies with the geometry of the T-shaped construct.  

The objective of the analysis is to determine the optimal geometry (L1/L0, t1/t0), that is 

characterized by the maximal excess of temperature (Tmax - T∞)/(q’’’Ab/kb). According to 

constructal design, this search can be subjected to constraints, namely, the cross section 

area, Ab, of the rectangular body constraint, 

 

                                                               2

2

1
RAb                                                   (1) 

where R is the radius of the semicircular basement. The T-shaped fin-material area 

constraint,  

                                                                Af = t0 L0 + 2t1 L1                                                (2)   

                                                                                                                                    

The area that circumscribes one T-shaped fins is given by 

 

                                                                        Aaux = 2L0L1.                                                  (3) 

Equations (2) and (3) can be expressed respectively as the T-shaped fins area fraction 

 

                                                                           
b

f

A

A
                                                       (4) 

 

and area fraction constraint given by the ratio between the area that circumscribes the T-

shaped fins and the basement area: 

 

                                                                          
 

b

aux

A

A
                                                    (5) 

The analysis that delivers the maximal excess of temperature as a function of the T-shaped 

geometry consists to solve numerically the heat conduction equation along the entire 

domain. The basement body is governed by the steady heat conduction equation with heat 

generation 
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2 2

2 2
1 0

x y

  
  

                                                    
(6)

 

while the steady heat conduction equation without generation  is applied in the T-shaped fin 

territory: 

                                                                    
2 2

2 2
0

x y

  
 

 
                                                      (7)                                                                                                          

 

where the dimensionless variables are      
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                                                              (8)                      
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and    

b

f

p
k

k
k                (10) 

The outer surfaces of the basement body are insulated and the boundary conditions are 

given by: 

                                                                          0
n





                                                       (11)                              

while the boundary conditions on the fin surfaces are:  

 

                                                    
y





 


       or       
x





 


                                        (12) 

 

where the parameter λ, according to Ref. [23], is defined as follows:  

 

                                                                    
f

b

k

hA
2/1

                                                       (13) 

The dimensionless form of equations (1) and (4) and (5) are      
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                                                            2~

2

1
1 R                                                                (14)    

 

 

                                                           0011

~~~~
2 tLtL                                                         (15) 

 

                                                                      0 1
2L L                                                         (16)             

              

The maximal excess of temperature,
max
 , according to equation (8) is given by 

                                                                 
bb kAq

TT

/'''

max
max


                                                (17)                            

 

 

3      Exhaustive Search: Numerical Model and Optimal Geometry 

 

 The heat conduction equations for the basement with internal heat generation and for 

the T-shaped fin, given respectively by eqs. (6) and (7), can be solved numerically with the 

purpose to determine the function defined by eq. (17).  In this context, eqs. (6) and (7) were 

solved using a finite elements code based on triangular elements, developed in MATLAB 

environment, more precisely the PDE (partial-differential-equations) toolbox [24]. The grid 

was non-uniform in both x~ e y~  directions and varied from one geometry to the next. The 

appropriate mesh size was determined by successive refinements, increasing the number of 

elements four times from the current mesh size to the next mesh size, until the criterion 

  3-

max

1

maxmax 105.3/-  jjj 
 

was satisfied. Here 
j

max   represents the maximum 

temperature calculated using the current mesh size, and 
1

max

j  corresponds to the maximum 

temperature using the next mesh, where the number of elements was increased by four 

times. Table 1 gives an example of how grid independence was achieved. 
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Number of Elements 
j

max    jjj

max

1

maxmax /-  
 

994 0.5423 2.67E-02 

3976 0.5572 1.36E-02 

15904 0.5649 6.90 E-03 

63616 0.5688 3.48 E-03 

254464 0.5708  

Table 1. Numerical tests showing the achievement of grid independence ( = 0.3, kp = 200, 

ψ = 1, λ = 0.5). 

 

 

The numerical work consisted of determining the temperature field in a large number of 

configurations of the type shown in Fig. 1. Figure 2 exhibits the effect of L1/L0  on the 

maximum excess of temperature ,
max
 , for several values of the ratio t1/t0  (i.e. the second 

degree of freedom) when the parameters , ψ, λ, kp are fixed ( = 0.3, ψ = 1, λ = 0.5, kp 

= 200). For every value of t1/t0  investigated, there is an intermediate value of L1/L0  which 

minimizes
max
 .  The results of Fig. 2 have been summarized in Fig. 3. The once minimized 

maximum excess of temperature (θmax)m and the once optimized ratio (L1/L0 )o are 

highlighted as function of the ratio t1/t0. Based on pure observation, (θmax)m is practically 

insensitive to the variation of the ratio t1/t0 while (L1/L0 )o decreases monotonically with 

t1/t0.  Some of the shapes investigated in Fig. 3 are plotted in scale in Fig. 4 highlighting the 

temperature field.   

 

 

4      Genetic Algorithm for Design Optimization  
 

The combination of degrees of freedom values generated a search space with several local 

minima: the search for optimal shapes by means of the classic technique, called exhaustive 

search (described on paragraph 3), had to be continued by the employment of Genetic 

Algorithm (GA). The reason is that the exhaustive method with the evaluation of all cases 

of the problem domain is computationally expensive, not allowing the geometric 

optimization of numerous degrees of freedom and parameters. On the contrary, the GA 
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method is recommended for multivariable problems in which systems with complex 

architectures are involved according to constructal design. Thus, with reference to the case 

here treated, the initial investigation regarding the degrees of freedom L1/L0 and t1/t0 was 

performed by means of the exhaustive search (see paragraph 3) while the parameters kp, , 

λ and ψ have been studied in this section by employing GA technique. The GA begins with 

the definition of three basic components [25]: (i) the input variables, i.e. chromosomes or 

elements of population, represented by continuous or discrete values; (ii) the cost function 

used to evaluate the cost of each element of the population (it may be an algebraic function, 

an experiment or a simulation) and (iii) the cost: value returned by the cost function for 

each element of population. In this work, the degrees of freedom, the simulation and the 

dimensionless maximum excess of temperature (θmax) correspond to each of these 

components, respectively.  First, the parameters of the GA have to be introduced [26–28] 

(selection function, crossover rate, mutation rate and stopping conditions) as well as the 

number of degrees of freedoms used in the problem (input variables). The next step consists 

of generation of the initial population with a defined size, where each individual has a 

random value. Afterwards, the cost of each element of population is calculated by applying 

the cost function (numerical simulation). At this moment, there is an association between 

elements of the population (geometries) and costs (maximum temperatures). From this 

point, the GA operators are applied. Initially, based on costs, a portion of the population 

(parents) is selected to be combined and to generate individuals (children) for the next 

generation. These steps are called selection and crossover. The next operator applied to 

create new individuals is the mutation, where new traits are introduced in the next 

generation, except on elite individuals. To summarize, GA convergence is verified by 

analysing the stop criterion. If the above mentioned stopping criteria are checked, the 

algorithm ends, otherwise, a new generation is created. The parameters used for the genetic 

algorithm calibration are shown in Table 2, next: 
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Table 2. Genetic algorithm parameters 

 

Parameter Value 

Population size 40 

Creation function Uniform 

Crossover function Scattered 

Mutation fraction 10% 

Crossover fraction 80% 

Generations 200 

Stall Limit 20 generations 

 

The numerical work continued, by means of GA, with the investigation of the effect of the 

parameter kp over the twice minimized maximum excess of temperature (θmax)2m and over 

the optimal shapes: (L1/L0)2o and (t1/t0)o. Figure 5 illustrates graphically that (θmax)2m 

decreases weakly as kp increases (no local minimum in the curve can be detected): the 

optimal shape for heat removal has to be found in correspondence to the upper bound of the 

tested domain. This observation is also confirmed in Fig. 6 where some of the topologies 

obtained in Fig. 5 are highlighted. It is worth to mention that (t1/t0)o is insensitive to the 

variation of kp while (L1/L0)2o increases monotonically with kp.  The same procedure is now 

applied in Fig. 7 for several values of the volume fraction  while the parameters ψ, λ and 

kp are fixed (ψ = 1, λ = 0.5 and kp = 200). Based on pure observation, even in this 

optimization procedure (θmax)2m decreases monotonically as  increases. In the superior 

limit of the domain, for  = 1, (L1/L0)2o becomes equal to 27.4: the T-shaped construct 

performs better, (θmax)2m = 0.3108, when the stem is robust and the tributary slender. Fig. 8 

highlights the temperature field in some of the configuration tested in Fig.7.    

Afterwards, the influence of the parameter λ is taken into account. It is worth mentioning 

that the range of variation of the parameter λ here tested is wide: the minimal value here 

considered (λ=10
-4

) is one order of magnitude inferior than the one suggested by Bejan et 

al. [23] in the case of a common forced convection of gas flow with h ~ 10² W/(m²K) over 

fin surfaces of aluminum and copper with a conductivity of k ~ 10² W/(mK) and 

considering a length scale A
1/2

 ~ 1 cm.  In Fig. 9 the effect of λ over the twice minimized 

maximum excess of temperature (θmax)2m has been produced with their respective optimal 

shapes: (L1/L0)2o and (t1/t0)o.  The results show that (θmax)2m decreases monotonically with 
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the augmentation of λ.  Concerning the optimal geometries, (L1/L0)o presents a minimum 

and a maximum respectively in the vicinity of λ=3x10
-4

 and λ=1.6x10
-2

 while (t1/t0)o is still 

insensitive to the variation of the tested parameter (λ). Fig. 10 is dedicated to show in scale 

the geometry and temperature distribution of some configurations tested in Fig.9. 

The final step of the present study consisted of a search for the best geometry varying the 

parameter ψ: as expected, (θmax)2m increases as ψ increases (see Fig.11). The augmentation 

of ψ (with consequent increase of the auxiliary area) does not allow the system more 

freedom to morph, so that the best performance is reached in the inferior limit. Figure 12 

shows some of the significant topologies found in Fig. 11. Figure 12(a) highlights the 

temperature distribution with reference to the inferior limit of the tested domain, previously 

mentioned, whose coordinates are:  = 0.3, ψ = 0.05, λ = 0.5, kp = 200, (t1/t0)o = 0.1, 

(L1/L0)2o = 174.6 and (θmax)2m = 0.4011. 

 

5       Concluding Remarks and Comparative Analysis 

This paper used constructal design in association with exhaustive search and genetic 

algorithm to optimize the complete geometry of convective T-shaped fins cooling a 

semicircular basement with internal heat generation whose outer surfaces are adiabatic. The 

objective is to minimize the maximal excess of temperature between the semicircular body 

and the ambient. Therefore, the initial investigation regarding the degrees of freedom L1/L0 

and t1/t0 was performed by means of exhaustive search (see paragraph 3), while the 

parameters kp, , λ and ψ have been studied by employing GA technique (see paragraph 4). 

First, constructal design delivered the best shape: for every value of t1/t0  investigated, there 

is an intermediate value of L1/L0  which minimizes the maximum excess of temperature 

max
 . Therefore, the variation of all the parameters was taken into account.  Particular 

interest has to be ascribed to the study of the twice minimized maximum excess of 

temperature:  (θmax)2m decreases weakly as kp increases (no local minimum in the curve can 

be detected) so that the optimal shape for heat removal has to be found in correspondence 

to the upper bound of the tested domain. Afterwards, the same procedure has been applied 

(see Fig. 7)  for several values of the volume fraction  while the parameters ψ, λ and kp are 



 12 

fixed (ψ = 1, λ = 0.5 and kp = 200). Even in this optimization procedure (θmax)2m decreases 

monotonically as  increases. In the upper limit of the domain, for  = 1, (L1/L0)2o becomes 

equal to 27.4: the T-shaped construct performs better, (θmax)2m = 0.3108, when the stem is 

robust and the tributary slender.  Finally, many ideas even regarding possible comparative 

studies emerged from this work: Figures 13(a), 13(b), 13(c) and 13(d) anticipate some 

results by considering the performance of rectangular, trapezoidal and semicircular heat 

generating bodies coupled with the same T-shaped fins. Figure 13(a) highlights the effect of  

the parameter kp over the maximum excess of temperature θmax while the influence of the 

area fraction  and of auxilliary area fraction ψ has been contemplated respectively in 

figure 13 (b) and 13(c). Similarly, Figure 13(d) shows the effect of  the parameter λ over 

the maximum excess of temperature θmax. From visual observation, the T-shaped morphing 

fin for heat removal having semicircular basement (the case here treated) performs 

considerably better than the other tested geometries; the performance of the same cooling 

fin coupled with trapezoidal geometry is also superior than the rectangular one (the wost 

configuration). This assumption is confirmed in the following table, in which we notice 

how much (in percent) the trapezoidal geometry performs better than the rectangualar one 

(column 2) and how much in percent the semicircular geometry performs better than the 

trapezoidal one (column 3).  

 

λ 

Performance of the 

trapezoidal configuration 

versus the rectangular 

geometry  

Performance of the 

semicircular configuration 

versus the trapezoidal 

geometry 

0.001 20.8 % 1414.9 % 

0.01 15.9 % 331.1 % 

0.1 12.1 % 105.7 % 

0.5 3.6 % 68.2 % 

1 31.0 % 23.9 % 

Table 3. Comparative analysis with reference to the heat transfer removal capability 

between semicircular, trapezoidal and rectangular configuration ( = 0.3, kp = 200, ψ = 1). 
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All the results here obtained emphasize that given a flow system freedom to morph, i.e. 

allowing changes in its degrees of freedom, it will improve the system performance in heat 

removal. This corroborates the constructal thinking that “freedom is good for design”.  As a 

consequence, all the best configurations proved to be the ones that distribute better the hot 

spots, according to the constructal principle of “optimal distributions of imperfections”. 
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Figure 1 – Semicircular heat generating basement coupled with a morphing convective T-

shaped fin. 
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Figure 2 – Optimization of the maximum excess of temperature θmax as function of L1/L0 

for several values of the ratio t1/t0. 
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Figure 3 – The behavior of the once minimized maximum excess of temperature (θmax)m 

and the corresponding optimal ratio (L1/L0)o as function of t1/t0. 
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Figure 4 – The shapes of Fig. 3 as function of t1/t0. (a)  = 0.3, ψ = 1, λ = 0.5, kp = 200, t1/t0 

= 0.1, (L1/L0)o = 12.3 and (θmax)m = 0.4329. (b)  = 0.3, ψ = 1, λ = 0.5, kp = 200, t1/t0 = 1, 

(L1/L0)o = 1.6 and (θmax)m = 0.5676. (c)  = 0.3, ψ = 1, λ = 0.5, kp = 200, t1/t0 = 9, (L1/L0)o = 

0.1 and (θmax)m = 0.6239. 

 

 

 

 

 

 

 

 

 

 

 



 20 

 

Figure 5 – Trend of the two times optimized (θmax)2m, (L1/L0)2o, and (t1/t0)o as function of 

the parameter kp. 
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Figure 6 – The shapes of Fig. 5 as function of kp. (a)  = 0.3, ψ = 1, λ = 0.5, kp = 1, (t1/t0)o = 

0.1, (L1/L0)2o = 3.9 and (θmax)2m = 0.6606. (b)  = 0.3, ψ = 1, λ = 0.5, kp = 10, (t1/t0)o = 0.1, 

(L1/L0)2o = 4.7 and (θmax)2m = 0.5220.  (c)  = 0.3, ψ = 1, λ = 0.5, kp = 100, (t1/t0)o = 0.1, 

(L1/L0)2o = 9.6 and (θmax)2m = 0.4439. (d)  = 0.3, ψ = 1, λ = 0.5, kp = 200, (t1/t0)o = 0.1, 

(L1/L0)2o = 12.3 and (θmax)2m = 0.4329. 
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Figure 7 – The effect of the T-shaped fin area fraction  over the twice minimized 

maximum excess of temperature (θmax)2m and the corresponding optimal shapes (L1/L0)2o 

and (t1/t0)o.  
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Figure 8 – The optimal shape of Fig. 7 as function of .  (a)  = 0.01, ψ = 1, λ = 0.5, kp = 

200, (t1/t0)o = 0.1, (L1/L0)2o = 5 and (θmax)2m = 0.7099. (b)  = 0.1, ψ = 1, λ = 0.5, kp = 200, 

(t1/t0)o = 0.1, (L1/L0)2o = 8.8 and (θmax)2m = 0.5429. (c)  = 0.3, ψ = 1, λ = 0.5, kp = 200, 

(t1/t0)o = 0.1, (L1/L0)2o = 12.3 and (θmax)2m = 0.4329. (d)  = 1, ψ = 1, λ = 0.5, kp = 200, 

(t1/t0)o = 0.1, (L1/L0)2o = 27.4 and (θmax)2m = 0.3108. 
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Figure 9 – The twice minimized maximum excess of temperature (θmax)2m and the 

corresponding optimal shapes (L1/L0)2o and (t1/t0)o as a function of the parameter λ.  
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Figure 10 – The shapes of Fig. 9 as function of λ. (a)  = 0.3, ψ = 1, λ = 10
-4

, kp = 200, 

(t1/t0)o = 0.1, (L1/L0)2o = 4.7 and (θmax)2m = 0.8045. (b)  = 0.3, ψ = 1, λ = 10
-3

, kp = 200, 

(t1/t0)o = 0.1, (L1/L0)2o = 7.5 and (θmax)2m = 0.8016. (c)  = 0.3, ψ = 1, λ = 0.1, kp = 200, 

(t1/t0)o = 0.1, (L1/L0)2o = 38.7 and (θmax)2m = 0.5591. (d)  = 0.3, ψ = 1, λ = 0.5, kp = 200, 

(t1/t0)o = 0.1, (L1/L0)2o = 12.3 and (θmax)2m = 0.4329. 
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Figure 11 – The effect of the T-shaped fin auxiliary area fraction ψ over the twice 

minimized maximum excess of temperature (θmax)2m and the corresponding optimal shapes 

(L1/L0)2o and (t1/t0)o.  
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Figure 12 – The shapes of Fig. 11 as function of ψ. (a)  = 0.3, ψ = 0.05, λ = 0.5, kp = 200, 

(t1/t0)o = 0.1, (L1/L0)2o = 174.6 and (θmax)2m = 0.4011. (b)  = 0.3, ψ = 0.1, λ = 0.5, kp = 200, 

(t1/t0)o = 0.1, (L1/L0)2o = 88.6 and (θmax)2m = 0.4032. (c)  = 0.3, ψ = 1, λ = 0.5, kp = 200, 

(t1/t0)o = 0.1, (L1/L0)2o = 12.3 and (θmax)2m = 0.4329. (d)  = 0.3, ψ = 10, λ = 0.5, kp = 200, 

(t1/t0)o = 0.1, (L1/L0)2o = 4.1 and (θmax)2m = 0.5240. 
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Figure 13 (a) – Comparative analysis between rectangular, trapezoidal and semicircular 

heat generating body coupled with the same T-shaped fins: the effect of  the parameter kp 

over the maximum excess of temperature θmax. 
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Figure 13 (b) – Comparative analysis between rectangular, trapezoidal and semicircular 

heat generating body coupled with the same T-shaped fins: the effect of  the area fraction  

over the maximum excess of temperature θmax. 
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Figure 13 (c) – Comparative analysis between rectangular, trapezoidal and semicircular 

heat generating body coupled with the same T-shaped fins: the effect of  the auxiliary area 

fraction ψ over the maximum excess of temperature θmax. 
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Figure 13 (d) – Comparative analysis between rectangular, trapezoidal and semicircular 

heat generating body coupled with the same T-shaped fins: the effect of  the parameter λ 

over the maximum excess of temperature θmax. 
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