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Abstract. We proposed a novel framework for the representation of
goals and other mental-like attitudes in terms of degree of expected
outcomes, where an outcome is an order of possible alternatives. The
sequences of alternatives is modelled by a non-classical (substructural)
operator. In this paper we provide a modal logic based axiomatisation of
the intuition they propose, and we discuss some variants (in particular for
the notion of social intention, intentions that are compliant with norms).
Given that the outcome operator is substructural, we first propose a
novel sequence semantics (a generalisation of possible world semantics)
to model the outcome operator, and we prove that the axiomatisation is
sound and complete with respect to the new semantics.

1 Introduction and Background

Normative Multi-Agent Systems (NorMAS) proved a powerful abstraction for
the modelling of socio-technical systems [1]. A normative agent integrates two
components: a rational agent component, often inspired by the well known BDI
agent architecture, and the normative component to model the norms the agent
is subject to.

The BDI architecture is a prominent approach to model rational agents. As
is well-known, BDI agents are means-ends reasoners equipped with: (i) Desires,
Goals, Intentions (or Tasks); (ii) a description of the current state of the environ-
ment (Beliefs); (iii) Actions. The key tenet of this architecture is that the agent’s
behaviour is the outcome of a rational balance among different mental states.

The framework we developed in [9] considers goals, desires, and intentions
as facets of the same phenomenon (all of them being goal-like attitudes): the
notion of outcome, which is simply something an agent would like or is expected
to achieve. An advantage of the proposed framework is that it allows agents to
compute different degrees of motivational attitudes, and degrees of commitment
that take into account other factors, such as beliefs and norms.
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While different schemas for generating and filtering agents’ outcomes are
possible, the authors of [9] restricted themselves to schemas where they adopted
the following principles:

– When an agent faces alternative outcomes in a given context, these outcomes
are ranked in preference orderings;

– Mental attitudes are obtained from outcomes, which are ranked;
– Beliefs prevail over conflicting motivational attitudes, thus avoiding various

cases of wishful thinking [3,10];
– Norms and obligations are used to filter social motivational states (social

intentions) and compliant agents [3,6].

The motivational and deliberative components of agents are generated from
preference orderings among outcomes. As done in other research areas (e.g.,
rational choice theory), we move with the idea that agents have preferences and
choose which ones to attain the least of in given situations based on such prefer-
ences. Preferences involve outcomes and are explicitly represented in the syntax
of the language for reasoning about agents, thus following the logical paradigm
initially proposed in [2,5] for the representation of preferences as explicit orders
(sequences) of logical formulae and inference mechanisms to reason about them.

The combination of an agent’s mental attitudes with the factuality of the
world defines her deliberative process, i.e., the objectives she decides to pursue.
The agent may give up some of them to comply with the norms, if required.
Indeed, many contexts may prevent the agent from achieving all of her objectives;
the agent must then understand which objectives are mutually compatible with
each other and choose which ones to attain the least of in given situations by
ranking them in a preference ordering.

Consider, for instance, the following scenario. Alice is thinking what to do
on Saturday afternoon. She has three alternatives: (i) she can visit John; (ii) she
can visit her parents who live close to John’s place; or (iii) she can watch a movie
at home. The alternative she likes the most is visiting John, while watching a
movie is the least preferred. If John is not at home, there is no point for Alice
to visit him. In this case, paying a visit to her parents becomes the “next best”
option. Also, if visiting her parents is not possible, she settles for the last choice,
that of staying home and watching a movie.

Suppose that Alice knows that John is actually away for the weekend. Since
the most preferred option is no longer available, she decides to opt for the now
best option, namely visiting her parents.

To represent the scenario above, we need to capture the preferences about
her alternatives, and her beliefs about the world. To model preferences among
several options, we build a sequence of alternatives that are preferred when the
previous choices are no longer feasible. Normally, each set of alternatives is the
result of a specific context determining under which conditions (premises) such
a sequence of alternatives is considered.

Accordingly, we can represent Alice’s alternatives with the notation

Saturday → (visit John � visit parents � watch movie)



where the � operator is used to encode the preference of the agent over alterna-
tive outcomes. In this case visit John is the most preferred outcome, visit parents
is the second best outcome (we can see it as the plan B of the agent), and
watch movie is the least of the acceptable outcome for a Saturday afternoon.
Notice that do home chores is not an “acceptable” outcome for Alice.

This intuition resembles the notion of contrary-to-duty obligations presented
by [5], where a norm is represented by an expression like

drive car → (¬damage ⊗ compensate ⊗ foreclosure)

where the symbol “⊗” separates the alternatives. In this case, each element of the
chain is the reparative obligation that shall come in force in case the immediate
predecessor in the chain has been violated. Thus, the meaning of the formula
above is that, if an agent drives a car, then she has the obligation not to cause
any damage to others; if this happens, she is obliged to compensate; if she fails
to compensate, there is an obligation of foreclosure.

In both examples, the sequences express a preference ordering among alterna-
tives. Accordingly, watch movie and foreclosure are the last (and least) accept-
able situations. Notice that while Alice’s alternatives come from a mental and
a (inner) deliberation process, the use of ⊗ describes situations of compliance
with regards the environment the agent is situated in, and as such is up to the
agent to comply with them, or not. Whilst both operators can be said to express
preferences, who those preferences belong to differ: in the � case, it is the agent’s
preferences, while in the ⊗ case, it could be argued to be the stated preference
of the institution/norms. These are not necessarily the same, as there are a
number of instances in the real world of organisations breaking laws knowing
that they will be fined: the institution prefers compliance over the fine, but the
organisation may prefer paying the fine over complying with the law.

Example 1. Alice settled for visit her parents who live downtown, but the down-
town part where they live is a traffic area restricted to residents and parking
for not resident is forbidden on weekends. Alice would prefer to take her car to
visit her parent to take public transports. The scenario can be represented by
the formulas:

visit parents → (parking downtown � public transport � pay fine) (1)
weekend → (¬parking downtown ⊗ pay fine) (2)

In this case Alice has to balance her preference for driving her car to visit her
parents and the prohibition to park downtown. But then she prefers to take a
bus instead of paying a parking fine.

In the rest of the section, we shall illustrate the principles and intuitions relat-
ing sequences of alternatives (that is, outcome rules), beliefs, obligations, and
how to use them to characterise different types of goal-like attitudes and degrees
of commitment to outcomes: desires, goals, intentions, and social intentions.



Desires as Acceptable Outcomes. Desires are acceptable outcomes independently
of whether they are compatible with other expected or acceptable outcomes. Let
us contextualise the previous example to better explain the notion of desire by
considering the following setting.

Example 2. Consider the following formulae:

Saturday (3)
John sick (4)

Saturday → (visit John � visit parents � watch movie) (5)
John sick → (¬visit John � short visit). (6)

The agent has both visit John and its opposite as acceptable outcomes.

Goals as Preferred Outcomes. We consider a goal as the preferred desire in a
chain.

In the situation described by Example 2, visit parents and short visit are the
goals we can obtain: a desire is a goal only if it is compatible with other desires.

1.1 Two Degrees of Commitment: Intentions and Social Intentions

The next issue is to clarify which are the acceptable outcomes for an agent
to commit to. Naturally, if the agent values some outcomes more than others,
she should strive for the best, in other words, for the most preferred outcomes
(goals).

Consider a formula b1 � b2 � b3. Let us examine a first case where the agent
should commit to the outcome she values the most, that is b1. But what if
the agent believes that b1 cannot be achieved in the environment where she is
currently situated in, or she knows that ¬b1 holds? Committing to b1 would
result in a waste of the agent’s resources; rationally, she should target the next
best outcome b2. Accordingly, the agent derives b2 as her intention. An intention
is an acceptable outcome which does not conflict with the beliefs describing the
environment.

Suppose now that b2 is forbidden, and that the agent is social (a social agent
is an agent not knowingly committing to anything that is forbidden [6]). Once
again, the agent has to lower her expectation and settle for b3, which is one of
her social intentions. A social intention is an intention which does not violate
any norm.

1.2 The Contribution of This Paper

The above notions have been formalised by [9] in the context of Defeasible Logic.
That model was motivated by computational concerns: the proposed logic for
agents’ desires, goals, and intentions has in fact linear complexity. However, the
approach was only proof-theoretic whereas no semantic model-theoretic analysis
of the operators ⊗ and � has been provided. In this paper, we work on the com-
bination of these operators in the context of classical propositional logic and fill



the gap by defining a suitable possible-world semantics for them. Such semantics
is a sequence-based non-normal one extending and generalising neighbourhood
models for classical modal logics.

The layout of the paper is as follows: Sect. 2 presents the language of our
logic; Sect. 3 discusses some axiom schemata governing the behaviour and the
interactions of the various operators; Sect. 4 describes an account of the seman-
tics for the logic while Sect. 5 offers some relevant completeness results. Some
conclusions end the paper.

2 Language

The language consists of a countable set of atomic formulae. Well-formed-
formulae are then defined using the typical Boolean connectives, the n-ary con-
nectives ⊗ and �, and the modal (deontic) operators O for obligation, B for
beliefs, D for desires, G for goals, I for intentions, and SI for social intentions.
The intended reading of ⊗ is that it encodes a sequence of obligations where,
each obligation is meant to compensate the violation of the previous obligation.
The intuition behind � is to model ordered lists of preferred outcomes.

Let L be a language consisting of a countable set of propositional letters
Prop = {p1, p2, . . .}, the propositional constant ⊥, round brackets, the boolean
connective →, the unary operators O, B, D, G, I, and SI, the set of n-ary operators
⊗n for n ∈ N

+ and the set of n-ary operators �n for n ∈ N
+.

Definition 1 (Well Formed Formulae). Well formed formulae (wffs) are
defined as follows:

– Any propositional letter p ∈ Prop and ⊥ are wffs;
– If a and b are wffs, then a → b is a wff;
– If a is a wff and no operator ⊗m, �m, O, B, D, G, I, and SI occurs in a, then

Oa, Ba, Da, Ga, Ia, and SIa are a wff;
– If a1, . . . , an are wffs and no operator ⊗m, �m, O, B, D, G, I, and SI occurs

in any of them, then a1 ⊗n · · · ⊗n an and a1 �n · · · �n an are wffs, where
n ∈ N

+;1

– Nothing else is a wff.

We use WFF to denote the set of well formed formulae.

Other Boolean operators are defined in the standard way, in particular
¬a =def a → ⊥ and � =def ⊥ → ⊥.

We say that any formula a1 ⊗ · · · ⊗ an is an ⊗-chain, while a1 � · · · � an

is an �-chain; also the negation of an ⊗-chain (resp. �-chain) is an ⊗-chain
(resp. �-chain). The formation rules allow us to have ⊗-chain and �-chain of
any (finite) length, and the arity of the operator is equal to number of elements
in the chain; we hence drop the index m from ⊗m and �m. Moreover, we use
the prefix notation

⊗n
i=j ai for aj � · · · � an and

⊙n
i=j ai for aj � · · · � an.

1 We use the prefix forms ⊗1a and ⊕1a for the case of n = 1.



In addition, we use the following notation:
⊗n

i=j ai ⊗ b ⊗ ⊗m
k=l ck, where

j, l ∈ {0, 1}. The “a” part and “c” part are optional, i.e., they are empty when
j = 0 or l = 0, respectively. Otherwise the expression stands for the following
chain of n+1+m elements: a1 ⊗· · ·⊗an ⊗ b⊗ c1 ⊗· · ·⊗ cm. The same reasoning
holds for

⊙n
i=j ai � b � ⊙m

k=l ck.

3 Axiomatisation for Norms, Beliefs and Outcomes

The aim of this section is to discuss the intuitions behind some principles govern-
ing the behaviour and the interactions of the various operators. These principles
are captured by axioms or inference rules.

3.1 Basic Axioms and Inference Rules

In this paper, we assume classical propositional logic, CPC, as the underlying
logic. The first principle is that of syntax independence or, in other terms, that
the operators are closed under logical equivalence. To this end, all the logics have
the following inference rules:

a ≡ b

�a ≡ �b
(�-RE)

with � ∈ {O,B,D,G, I,SI}.

∧n
i=1

(
ai ≡ bi

)

⊗n
i=1 ai ≡ ⊗n

i=1 bi
⊗-RE

∧n
i=1

(
ai ≡ bi

)

⊙n
i=1 ai ≡ ⊙n

i=1 bi
�-RE (⊗ and �-RE)

Consider the ⊗ chain a ⊗ b ⊗ a ⊗ c. The meaning of the chain above is that
a is obligatory, but if a is violated (meaning that ¬a holds) then b is obligatory.
If also b is violated, then a becomes obligatory. But we already know that we
will incur in the violation of it, since ¬a holds. We thus have the obligation of
c. However, this is what we want to obtain from the ⊗-chain: a ⊗ b ⊗ c.

Now, consider the �-chain a�b�a�c. The intuitive reading is that a should
be the most preferred outcome, while b is the second best in case a is not possible
to achieve. However, if also b is not attainable, then a should be the agent’s third
best choice. Nevertheless, we have already established that this is not possible,
and we thus have c as the following preferred outcome.

The above example shows that duplications of formulas in ⊗-chains and �-
chains do not contribute to the meaning of the chains themselves. This motivates
us to adopt the following axioms to remove (resp., introduce) an element from
(to) a chain if an equivalent formula occurs on the left of it.

n⊗

i=1

ai ≡
k−1⊗

i=1

ai ⊗
n⊗

i=k+1

ai where aj ≡ ak, j < k (⊗-contraction)

n⊙

i=1

ai ≡
k−1⊙

i=1

ai �
n⊙

i=k+1

ai where aj ≡ ak, j < k (�-contraction)



Given that we use classical propositional logic as the underlying logic, it is
not possible that an ⊗-chain (�-chain) and its negation hold at the same time.
What about when ⊗-chains like a⊗ b⊗c and ¬(a⊗ b) hold. In this case, the first
chain states that a is obligatory and its violation is compensated by b, which in
turn is itself obligatory and it is compensated by c. The second expression states
that ‘either it is not the case that a is obligatory, but if it is so, then its violation
is not compensated by b’. Accordingly, the combination of the two expressions
should result in a contradiction (a similar argument can be made for �-chains).
To ensure this, we must assume the following axioms that allow us to derive,
given a chain, all its sub-chains with the same initial element(s).

a1 ⊗ · · · ⊗ an → a1 ⊗ · · · ⊗ an−1, n ≥ 2 (⊗-shortening)
a1 � · · · � an → a1 � · · · � an−1, n ≥ 2 (�-shortening)

If Alice prefers to visit John to visit her parents to watch a movie to spend her
Saturday afternoon she prefer to visit John to visit her parents. Thus, we can
derive

visit John � visit parents

from
visit John � visit parents � watch movie.

3.2 Axioms for Obligations and Mental Attitudes

In the previous section we proposed the basic axioms for a logic of norms and
goals. In this section, we address the relationships between ⊗, �, obligations,
beliefs and mental attitudes;

In this paper we assume that the description of the environment in which an
agent is situated is given by a set of propositional formulas. The agent is rational
in the sense that the agent is able to reason with the formulas using classical
propositional logic as the underlying logic. We further assume that the provided
description of the environment is truthful and the agent knows it. Accordingly,
we do not have to introduce a further modal operator to describe the knowledge
of an agent. The second principle of rationality for the agents is that they do not
form self-inconsistent beliefs and goal-like mental attitudes, and similarly for the
norms (obligations) they are subject to. Namely, we assume that all unary modal
operators are internally consistent. Internal consistency of beliefs, obligations,
and goal-like mental attitudes is expressed by the following axiom:

¬�⊥ (⊥-�)

with � = {O,B,D,G, I,SI}.
Similarly, rational agents are expected to avoid conflictual beliefs and individ-

ual mental-attitudes (but desires), and there are no norms that make something
obligatory and forbidden at the same time. This property is called external con-
sistency and it is modelled by the following axiom:

�a → ¬�¬a (D)



with � = {B,O,G, I,SI}. As we discussed in [9] we do not assume this external
consistency for desires. Thus Da and D¬a is consistent within our framework.
For example, Alice may desire to visit Bob while, at the same time and for other
reasons, she might not to. Visiting Bob and not visiting him are two possible
outcomes for Alice deliberation, and she can use other information to determine
what course of action she commits to. Hence, it is rational for her to derive that
she has both desires (they are two acceptable and viable outcomes).

In addition the agent can have a set of beliefs of how the environment is (for
example, about what is not given by the explicit description of the environment
or can be inferred from it using classical propositional logic). Thus, to represent
the agent belief we use the B operator. B is axiomatised as a normal KD45 oper-
ator, with the standard axioms for positive and negative introspections (Axioms
4 and 5). Accordingly the axioms for B are:

Ba → BBa (4)

¬B¬a → B¬B¬a (5)

B(a → b) → (Ba → Bb) (K)

B� (N)

For the other modal operators, we establish that they are regular, namely,
that the following inference �-RR holds for them

a1 ∧ · · · ∧ an → b

�a1 ∧ · · · ∧ �an → �b
(�-RR)

for � ∈ {O,D,G, I,SI}. As explained in [6] �-RR allows us to model, for example,
the notion of intentionality: Suppose that an agent knows that a1 ∧ · · · ∧ an → b
(or in other terms, that the implication is a property of the environment in
which the agent is situated). This means, that in the given environment, b is
an unavoidable consequence of a1, . . . , an. Therefore, if the agents intend all the
ais, i.e., Iai, then the agent knows that in case she is successful in achieving all
the ais, then she will bring about b, thus committing herself to the ais indirectly
commits herself to b as well. Thus, �-RR allows us to derive Ib.

We can now move to the analysis of the axioms relating norms (⊗-chains)
and obligations. In this paper we follow the analysis proposed in [8] for the
relationships between norms and obligations. Thus the first axiom we consider is:

a1 ⊗ · · · ⊗ an → Oa1 (⊗-O)

For instance, given the “driving car” example above, we can obtain the first
element as the current obligation (O¬damage). Furthermore, we say that if the
first element does not hold, we can infer the obligation of the second element.
For example



a1 ⊗ · · · ⊗ an ∧ ¬a1 → Oa2. (7)

In this occasion (always referring to the “driving car” example), we actually did
cause soma damage, thus the new obligation in force is to compensate for it
(Ocompensate).

Moreover, we argued that we can repeat the same procedure. This leads us
to generalise (7) for the axiom that expresses the detachment principle for ⊗-
chains and factual statements about the opposites of the first k elements of an
⊗-chain.

a1 ⊗ · · · ⊗ an ∧
k<n∧

i=1

¬ai → Oak+1 (O-detachment)

For alternative axiomatisation of the relationships between obligations and
norms see [8].

As stated before, desires are expected or acceptable outcomes, independently
of whether they are compatible with other expected or acceptable outcomes. As
such, given an �-chain, we consider each element to be desired by the agent since
she has expressed a preference order on such a chain and she thus considers all
of them to be acceptable. This is expressed by the following axiom.

a1 � · · · � an → Dai, with 1 ≤ i ≤ n (�-D)

According to this axioms, given the preference of Alice her “desires”, i.e.,
the outcomes that she considers acceptable are visit John, visit parents and
watch movie, but she has no desire to her household chores.

Given an �-chain, a goal represents what should be the most preferred out-
come for the agent, provided that the agent does not have the opposite desire.

a1 � · · · � an ∧ ¬D¬a1 → Ga1 (�-G1)

Again, if an agent has opposite desires then, given an �-chain, the goal is the
first element such that the agent does not desire the opposite. By rationality,
if for each element of such a chain, the agent has expressed an opposite desire,
then any element of the chain cannot represent a goal.

a1 � · · · � an ∧
k<n∧

i=1

D¬ai ∧ ¬D¬ak+1 → Gak+1 (�-G-gen)

An intention is the first mental attitude where the agent compares her outcomes
(her preferred courses of action) with the environment she is operating in. Indeed,
given an �-chain, it may be the case that neither of the first, say, four outcomes
are attainable because facts of the environment (or her own beliefs) state that
the opposites of such four outcomes actually hold. (For instance, a1 may be that
the agent would like travel to California, but she beliefs that her current funds
would not cover the whole trip.) Consequently, intentions represent the first level
of real commitment of the agent.

Our agents are not omniscient, they may lack the knowledge of certain facts
of the world: an agent’s belief represents the fact that she has reasons to accept a



certain statement to be true without having the evidence that it is so. Using her
competence/knowledge, she forms an opinion (a belief) of how the environment
she is situated in is, or might be. Consequently, she can use her beliefs or the
knowledge she possesses about the environment to determine to what outcomes
she commits to, depending on her risk attitude. The outcomes she commits to
are her intentions.

The axiom hereafter tries to capture many facets of the agent’s level of com-
mitment, represented by the three different αs combined with the four different
βs (in fact, the β5 alternative of wishful thinker has been introduced for com-
pleteness sake only).

a1 �· · ·�an ∧

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 =
k<n∧

i=1

¬ai

α2 =
k<n∧

i=1

B¬ai

α3 =
k<n∧

i=1

¬ai ∨ B¬ai

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∧

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β1 = Bak+1

β2 = ¬B¬ak+1

β3 = Bak+1 ∨ ¬B¬ak+1

β4 = ak+1

β5 = ¬ak+1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

→ Iak+1.

(I)

A few comments are in order. In alternative α1 we have the strongest commit-
ment for the agent (some sort of omniscient/librairian agent). In our example,
this case model the situation that Alice knows that John is not at home, so she
cannot visit him so she will not form the intention to visit him. In here, we use
the term omniscient not in the perspective/meaning of a know-it-all agent, but
to stress out the fact that the agent does not relies on her own beliefs but she
needs to verify the falsity of a statement to proceed in the �-chain about what
things really are (she has the burden of proof). This can be view as the most
burdensome among our alternatives.

Alternative α2 is the more ‘introspective’ one (or more cautious): the agent
is not interested in how things truly are and her decision process relies only upon
what she believes in. It can be described as a more cautious approach because
the agent discards a possible outcome based only on her own beliefs, which can
be false. For instance, if w |= a and w |= B¬a, then the agent should derive Ia
(even if an oracle would forecast her eventual failure).

Alternative α3 can be called as the ‘good enough’ alternative: if the agent has
not the capabilities to verify a certain statement, she ‘trusts’ in her own beliefs.

Alternative β1 is ‘risk-adverse’: the agent’s decision is based upon on her
beliefs only about the truthfulness of the outcome she will try to achieve.

On the contrary, alternative β2 is a ‘risk-taking’ position, given that the
agent looks at whether the opposite outcome holds. Based on her compe-
tence/experience, she has evidence that the opposite actually does not hold,
and she thus tries to achieve that particular outcome.

The alternative-sequence α3 ∧ β3 is the most pragmatic one: the agent takes
neither a risk-taking, nor a risk-adverse position.



β4 represents a non-risk taking position (a win-win situation): the agent
knows that such an outcome actually holds in the environment she is situated in
and then it is feasible to achieve (in our running Alice example, she is already
at John’s place).

Alternative β5 is a typical case of wishful thinker (the agent knows she will
fail).

A social intention is an intention that is permitted within the legal system
the agent is operating in.

Ia ∧ ¬O¬a

SIa
(8)

Naturally, in the decision process to decide whether an outcome may be a
social intention, the agent uses the �-chains. Therefore, to state that an ele-
ment in an �-chain is a social intention (say ak+1), it must satisfy the following
requirements: (1) every element before ak+1 is not an intention or the opposite
obligation holds, (2) ak+1 is actually an intention, and (3) the opposite obligation
(O¬ak+1) does not hold. This is expressed by the following axiom.

a1 � · · · � an ∧ ( k<n∧

i=1

¬Iai ∨ O¬ai

) ∧ Iak+1 ∧ ¬O¬ak+1 → SIak+1. (SI)

To illustrate this axioms consider again Example 1. From (2) we have
O¬parking downtown, and there is no norm to prevent her to take public trans-
ports, so ¬O¬public transports. She does not want to get a parking ticket,
so she decided not to take her care, so she does not form the intention to
park downtown, thus her next preference is to take public transport, that is
Ipublic transports. Thus this intention is also a social intention, i.e., we have
SIpublic transports.

In the final part of this paper, we shall prove soundness and completeness
results for a system S containing the schemata presented above.

Definition 2. Let S be a logical system extending the Classical Proposi-
tional Calculus (CPC), containing the axiom schemata (⊗-contraction), (�-
contraction), (⊗-shortening), (�-shortening), (K), (⊥-�), (D), (4), (5),
(N), (⊗-O), (O-detachment), (�-D), (�-G1), (�-G-gen), (I), and closed under
the following rules: (�-RE), (⊗ and �-RE) and (�-RR).

4 Sequence Semantics

Sequence semantics is an extension of neighbourhood semantics. The extension
is twofold: (1) we introduce a second neighbourhood like function, and (2) the
new function generates a set of sequences of sets of possible worlds instead of set
of sets of possible worlds. This extension allows us to provide a clean semantic
representation of ⊗- and �-chains.

The sequence semantics addresses the problem identified in [7] for possible
world semantics for deontic logic for compensatory obligations. A compensatory



obligation is a sub-class of a contrary-to-duty obligation, where the violation
of the primary obligation is compensated by the fulfilment of the secondary
obligation. Compensatory obligations can be modelled by ⊗-chains. As we have
already discussed a⊗b means that a is obligatory, but its violation is compensated
by b, or in other terms it is obligatory to do b to compensate the violation
of the obligation of a. Thus, a situation where a does not hold (or ¬a holds)
and b holds is still deemed as a “legal” situation. Accordingly, when we use
a “standard” possible world semantics, there is a deontically accessible world
where ¬a holds, but this implies, according the usual evaluation conditions for
permission (something is permitted, if there is a deontically accessible world
where it holds), that ¬a is permitted. However, we have the norm modelling
the compensatory obligation that states that a is obligatory (and if it were not,
then there would be no need for b to compensate for the violation, since, there
would be no violation of the obligation of a). The sequence semantics solves
this problem by establishing that to have an obligation, we must have a norm
generating the obligation (where a norm is represented by an ⊗-chain), and
not simply that something is obligatory because it holds in all the deontically
accessible worlds. Similarly, when we consider mental-attitudes, an agent forms
a mental attitude because the agent has an outcome in mind (where, as we have
argued, an outcome is a gradation of alternative objectives).

Before introducing the semantics, we give some technical definitions for oper-
ation of s-zipping, i.e., the operation that removes repetitions or redundancies
occurring in sequences of sets of worlds. This operation is required to capture
the intuition described by the ⊗- and �-contraction axioms.

Definition 3. Given a set of possible worlds W , let X = 〈X1, . . . , Xn〉 be such
that Xi ∈ 2W (1 ≤ i ≤ n). A sequence of sets Y is s-zipped from X iff Y is
obtained from X by applying the following operation: for 1 ≤ k ≤ n, if Xj = Xk

and j < k, delete Xk from the sequence.

Definition 4. A set S of sequences of sets of possible worlds is closed downward
s-zipping iff if X ∈ S, then (i) for all Y such that X is s-zipped from Y , Y ∈ S;
and (ii) for all Z such that Z is s-zipped from X, Z ∈ S.

Closure under s-zipping essentially determines classes of equivalences for ⊗-chain
and �-chain based on Axioms (⊗-contraction) and (�-contraction).

Definition 5. A sequence frame is a structure

F = 〈W, CO, Cout,NO,NB,ND,NG,N I,N SI〉,
where

– W is a non empty set of possible worlds;
– CO and Cout are two functions with signature W �→ 2(2

W )n , such that for every
world w ∈ W , for every X ∈ CO

w, and Y ∈ Cout
w X and Y are closed under

s-zipping;
– NO, NB, ND, NG, N I, and N SI are functions with Signature W �→ 22

W

.



As we have already said the sequence semantics is an extension and gener-
alisation of neighbourhood semantics. Here the N functions are just instances
of the standard neighbourhood function that associates sets of propositions (a
proposition can be represented by the set of possible world where the proposition
holds) to possible worlds. Thus, for example, NB

w denotes the set of propositions
that an agent believes at w. The C functions are generalisations of the N func-
tions. Instead of a set of propositions, each of these functions associates a set
of sequences of propositions to each possible worlds. Each of such sequences
describes an order over the propositions in it (with respect to a possible world).
Thus, Cout

w gives the semantic representation of the preferences of the agents at
w; similarly, CO models the norms in force in a particular possible world.

Definition 6. A sequence model is a structure M = 〈F , V 〉, where

– F is a bi-sequence frame, and
– V is a valuation function, V : Prop �→ 2W

Given a model M = 〈F , V 〉, let ‖a‖V := {w | |=V
w a}.

Definition 7. The valuation function for a sequence model is a follows:

– usual for atoms and boolean conditions,
– |=V

w a1 ⊗ · · · ⊗ an iff 〈‖a1‖V , . . . , ‖an‖V 〉 ∈ CO
w,

– |=V
w � · · · � an iff 〈‖a1‖V , . . . , ‖an‖V 〉 ∈ Cout

w ,
– |=V

w �a iff ‖a‖V ∈ N �
w , where � = {O,B,D,G, I,SI}.

The definition above allows us to characterise a minimal logic satisfying
(�-RE), (⊗ and �-RE), (⊗-contraction) and (�-contraction) [8].

Definition 8. A neighbourhood function N is

– supplemented if X ∩ Y ∈ N , then X ∈ N and Y ∈ N ;
– closed under the intersection if X ∈ N and Y ∈ N , then X ∩ Y ∈ N ;
– contains the unit if W ∈ N .

A neighbourhood function is a filter if it is supplemented, closed under inter-
section and contains the unit. A neighbourhood function is a quasi-filter if it is
supplemented and closed under intersection.

The definition below gives the conditions of the frames for the various axioms.

Definition 9. A sequence model for S, as defined in 2, is a structure M =
〈F , v〉 satisfying the following conditions:

(K) and (N): N B
w is a filter.

(⊥-�): ∅ /∈ N �
w , for � ∈ {O,B,D,G, I,SI}.

(D): If X ∈ N �
w , then −X /∈ N �

w , for � ∈ {O,B,G, I,SI}.
(4): If X ∈ NB

w , then {x ∈ W : X ∈ NB
x ∈ NB

w}.
(5): If X /∈ NB

w , then {x ∈ W : X /∈ NB
x ∈ NB

w}.
(�-RR): N �

w , for � ∈ {O,D,G, I,SI}, is a quasi-filter.



(⊗-shortening) and (�-shortening): If 〈X1, . . . , Xn〉 ∈ Cx
w, then, for x ∈

{O, out}, 〈X1, . . . , Xn−1〉 ∈ Cx
w.

(⊗-O): If 〈X1, . . . , Xn〉 ∈ CO
w, then X1 ∈ NO

w .
(O-detachment) If 〈X1, . . . , Xn〉 ∈ CO

w and w �∈ Xi for 1 ≤ i ≤ k and k < n,
then Xk+1 ∈ NO

w .
(�-D): If 〈X1, . . . , Xn〉 ∈ Cout

w , then Xi ∈ ND
w , with 1 ≤ i ≤ n.

(�-G1): If 〈X1, . . . , Xn〉 ∈ Cout
w and −X1 /∈ ND

w , X1 ∈ NG
w .

(�-G-gen): If 〈X1, . . . , Xn〉 ∈ Cout
w and, for 1 ≤ i ≤ k and k < n, −Xi ∈ ND

w and
−Xk+1 /∈ ND

w , then Xk+1 ∈ NG
w .

(I): If 〈X1, . . . , Xn〉 ∈ Cout
w and, for 1 ≤ i ≤ k and k < n,

either
α1: w /∈ Xi;
α2: −Xi ∈ NB;
α3: w /∈ Xi or −Xi ∈ NB

and either
β1: Xk+1 ∈ NB;
β2: −Xk+1 /∈ NB;
β3: Xk+1 ∈ NB or −Xk+1 /∈ NB;
β4: w ∈ Xk+1;
β5: w �∈ Xk+1,

then Xk+1 ∈ N I
w.

(SI): If 〈X1, . . . , Xn〉 ∈ Cout
w and for 1 ≤ i ≤ k and k < n, Xi �∈ N I

w or ¬Xi ∈ NO
w ,

Xk+1 ∈ N I
w, and −Xk+1 �∈ NO

w , then Xk+1 ∈ N SI
w .

A few comments are in order. The conditions for axioms (K), (D), (4), (5),
(N) and (⊥-�) and the inference rule (�-RR) are the standard conditions for
such axioms in neighbourhood semantics (see [4]). The conditions for the remain-
ing axioms exploit the strong correspondence between propositions and truth sets
that allows for a semantic rewriting of the axioms. Axioms (⊗-shortening), (�-
shortening), (⊗-O) and (O-detachment) where first proposed by [8] for the
use of the sequence semantics for logics to model norms and obligations.

5 Soundness and Completeness

In this section we study the soundness and completeness of the logics defined
in Sect. 3. Completeness is based on adaptation of the standard Lindenbaum’s
construction for modal (deontic) neighbourhood semantics (see [4]).

Definition 10 (L-maximality). A set w is L-maximal iff for any formula a
of L, either a ∈ w, or ¬a ∈ w.

Lemma 1 (Lindenbaum’s Lemma). Any S-consistent set w of formulae in
the language L can be extended to a S-consistent L-maximal set w+.

Proof. Let a1, a2, . . . be an enumeration of all the possible formulae in L.

– w0 := w;



– wn+1 = wn ∪{an} if its closure under the axioms and rules of S is consistent,
w ∪ {¬an} otherwise;

– w+ =
⋃

n≥0 wn.

The construction of a sequence canonical model is as follows.

Definition 11 (S-Canonical Models). A sequence canonical model

M = 〈W, CO, Cout,NO,NB,ND,NG,N I,N SI, V 〉
for the system S is defined as follows:

1. W is the set of all the L-maximal consistent sets.
2. For any propositional letter p ∈ Prop, ‖p‖V := |p|L, where

|p|L := {w ∈ W | p ∈ w}.

3. Let CO :=
⋃

w∈W CO
w, where, for each w ∈ W ,

CO
w := {〈‖a1‖V , . . . , ‖an‖V 〉 |

n⊗

i=1

ai ∈ w},

where each ai is a meta-variable for a Boolean formula.
4. Let Cout :=

⋃
w∈W Cout

w , where, for each w ∈ W ,

Cout
w := {〈‖a1‖V , . . . , ‖an‖V 〉 |

n⊙

i=1

ai ∈ w},

where each ai is a meta-variable for a Boolean formula.
5. Let N � :=

⋃
w∈W N �

w where for each world w,

N �
w := {‖ai‖V | �ai ∈ w},

where � ∈ {O,B,D,G, I,SI}.
Lemma 2 (Truth Lemma for Canonical Sequence Models). If M =
〈W, CO, Cout,NO,NB,ND,NG,N I,N SI, V 〉 is canonical for S, then for any w ∈
W and for any formula A, A ∈ w iff |=V

w A.

Proof. Given the construction of the canonical model, this proof is easy and can
be given by induction on the length of an expression A. We consider only some
relevant cases.

Assume A has the form a1 ⊗ · · · ⊗ an. If A ∈ w, by definition of canonical
model, then there is a sequence 〈‖a1‖V , . . . , ‖an‖V 〉 ∈ CO

w. Following from the
semantic clauses given to evaluate ⊗-formulae, it holds that |=V

w a1 ⊗ . . . ⊗ an.
For the opposite direction, assume that |=V

w a1 ⊗ . . .⊗ an. By definition, there is
Cw which contains an ordered j-tuple 〈‖a1‖V , . . . , ‖an‖V 〉 and by construction
a1 ⊗ . . . ⊗ an ∈ w. Clearly the same argument holds in the case of operator �.

If, on the other hand, A has the form �b, where � ∈ {O,B,D,G, I,SI}, and
�b ∈ w, then ‖b‖V ∈ N �

w by construction, and by definition |=V
w �b. Conversely,

if |=V
w �b, then ‖b‖V ∈ N �

w and, by construction of N �, �b ∈ w.



It is easy to verify that the canonical model exists, it is not empty, and it is
a sequence semantics model.

Consider any formula A �∈ S; {¬A} is consistent and it can be extended to a
maximal set w such that for some canonical model, w ∈ W . By Lemma 2, �|=V

w A.

Corollary 1. The system S is sound and complete with respect to the class of
bi-sequence frames.

Lemma 3. The canonical model for S enjoys all the properties listed in
Definition 9.

Proof. For the cases for (�-RE), (K), (N), (⊥-�), (D), (4) and (5), see [4]. The
proofs for the cases for (⊗ and �-RE), (⊗-contraction), (�-contraction), (⊗-
shortening), (�-shortening), (⊗-O) and (O-detachment) are given in [8].

The proof of the remaining cases is rather straightforward and it follows the
structure of the axioms involved.

(�-D) Assume 〈X1, . . . , Xn〉 ∈ Cout
w . Then, by construction of the canonical

model, for 1 ≤ i ≤ n, it holds that Xi = ‖ai‖V and a1 � · · · � an ∈ w.
Thus Dai ∈ w for 1 ≤ i ≤ n by (�-D), hence Xi ∈ ND

w , with 1 ≤ i ≤ n.
(�-G1) Assume 〈X1, . . . , Xn〉 ∈ Cout

w and ¬X1 /∈ ND
w . Then, by construction,

a1 � · · · � an ∧ ¬D¬a1 ∈ w, where for 1 ≤ i ≤ n, Xi = ‖ai‖V . By (�-G1),
Ga1 ∈ w and X1 ∈ NG

w .
(�-G-gen) Suppose 〈X1, . . . , Xn〉 ∈ Cout

w and, for 1 ≤ i ≤ k and k < n, ¬Xi ∈ ND
w

and ¬Xk+1 /∈ ND
w , then a1 � · · · � an ∧ ∧k<n

i=1 D¬ai ∧ ¬D¬ak+1 ∈ w by
construction of the canonical model. By (�-G-gen), Gak+1 ∈ w and Xk+1 ∈
NG

w .
(I) Assume 〈X1, . . . , Xn〉 ∈ Cout

w and, for 1 ≤ i ≤ k and k < n, α1: w /∈ Xi and
β1: Xk+1 ∈ NB. Then a1 � · · · � an ∧ ∧k<n

i=1 ¬ai ∧ Bak+1 ∈ w. Hence, by (I),
Iak+1 ∈ w and Xk+1 ∈ N I

w. The proof for the other cases is similar.
(SI) Suppose 〈X1, . . . , Xn〉 ∈ Cout

w and for 1 ≤ i ≤ k and k < n, Xi �∈ N I
w or

¬Xi ∈ NO
w , Xk+1 ∈ N I

w, and ¬Xk+1 �∈ NO
w . Then, by construction of the

canonical model, a1 � · · ·� an ∧ (∧k<n
i=1 ¬Iai ∨O¬ai

)∧ Iak+1 ∧¬O¬ak+1 ∈ w.
By (SI) and modus ponens, SIak+1 ∈ w and thus Xk+1 ∈ N SI

w .

6 Conclusions

This paper offered a semantic study of the ⊗ and � operators originally intro-
duced in [5] to model deontic reasoning and contrary-to-duty obligations. We
showed that a suitable axiomatisation was able to capture characteristics in the
context of multi-modal logics the unified framework by [9] for agents’ motiva-
tional and deliberative components where goals, desires, and intentions are dif-
ferent facets of the same phenomenon, all of them being goal-like attitudes. In
particular, we proved that ⊗- and � expressions can be characterised in a class
of structures extending neighbourhood frames with sequences of sets of worlds.



We argued that both the formalism, and the semantics can be employed, with
some adjustments, to grasp various forms of reasoning about BDI-like agents.

A number of open research issues are left for future work. The logic of [9]
investigates how to characterise different degrees and types of goal-like mental
attitudes of agents. These works assume defeasible logic as the underlying logic
and they are restricted to literals. However, they show that the extension of
defeasible logic obtained from adding ⊗ and � are still computationally feasi-
ble. The natural question is to see how to use the sequence semantics we have
presented in this paper to capture the different intuitions of ⊗ and � discussed
in the above mentioned work. In addition we plan to explore decidability ques-
tions using, for example, the filtration methods. The fact that neighbourhoods
contain sequences of sets of worlds instead of sets is not expected to make the
task significantly harder than the one in standard neighbourhood semantics for
modal logics.

Second, we expect to enrich the language and allow for nesting of ⊗- and
�-expressions, thus having formulae like a ⊗ ¬(b ⊗ c) ⊗ d. We argued in [5]
that the meaning of those formulae is not clear in deontic reasoning. However, a
semantic analysis of them in the sequence semantics can clarify the issue. Indeed,
in the current language we can evaluate in any world w formulae like ¬(a ⊗ b).
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