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Article

Is the classical Wald test always suitable
under response-adaptive randomization?

Alessandro Baldi Antognini,1 Alessandro Vagheggini1 and
Maroussa Zagoraiou2

Abstract

The aim of this paper is to analyze the impact of response-adaptive randomization rules for normal response trials

intended to test the superiority of one of two available treatments. Taking into account the classical Wald test, we show

how response-adaptive methodology could induce a consistent loss of inferential precision. Then, we suggest a modified

version of the Wald test which, by using the current allocation proportion to the treatments as a consistent estimator of

the target, avoids some degenerate scenarios and so it should be preferable to the classical test. Furthermore, we show

both analytically and via simulations how some target allocations may induce a locally decreasing power function. Thus,

we derive the conditions on the target guaranteeing its monotonicity and we show how a correct choice of the initial

sample size allows one to overcome this drawback regardless of the adopted target.

Keywords

Adaptive experiments, asymptotic tests, comparative clinical trials, ethics, power

1 Introduction

Adaptive experiments are sequential procedures where the decision about how to proceed next is made according
to a pre-established rule that makes use of the information accrued along the way. Even if their use remains
controversial due to some inferential problems that could arise,1,2 adaptive designs are widely used in different
experimental fields and they are nowadays considered as a panacea for ethical issues posed by randomized clinical
trials. This is especially true for phase III trials, where patients are enrolled step-by-step and are assigned to one of
two or more available treatments to be compared. In this context, randomization is regarded as a must and, when
is combined with the adaptive nature of the experiment, it means that the treatments are assigned to the next unit
by allocation probabilities that make use of the past information. However, the updating process cannot take place
in a haphazard manner, which could undermine the validity and integrity of the ensuing statistical analysis. Thus,
the design of these experiments requires special care and it is not surprising that statistical research on this topic
has become very popular over the past two decades, also due to the strong encouragement from US Government
agencies and health authorities.3,4

Due to the peculiarity of clinical context, often there are several competing goals related to the ethical demand
of maximizing the subjects care and to the statistical aim of drawing correct inferential conclusions with high
precision. By formalizing these goals into suitable optimization problems, several authors provided target
allocations of the treatments that could represent a valid trade-off among ethics and inference.5–12 In general,
these targets depend on the unknown model parameters and they can be approached asymptotically by using
suitable response-adaptive (RA) randomization procedures, such as the doubly adaptive biased coin design13 and
the efficient randomized-adaptive design (ERADE),14 converging to them.

RA designs are a class of sequential allocation rules where the probabilities of treatment assignments change at
each step on the basis of earlier responses and past allocations. Starting from an initial sample of observations on
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each treatment (usually based on restricted randomization) to derive a non-trivial estimation, at each step these
designs estimate the unknown parameters as well as the target and then force the next allocation to converge to the
target.

Under these procedures the resulting statistical analysis requires refined tools able to allow for the complex
dependence structure, since (i) the assignments are a stochastic process, making the resulting responses
dependent, and (ii) inference must be unconditional on the design, because the allocations are themselves
informative on the parameters of the model.15,16 Although the asymptotic properties of both (i) the usual
maximum likelihood estimators (MLEs) and (ii) the allocation process are well-established, the large majority
of the literature9,13,17–25 is focused on the implications of the RA methodology in terms of estimation of the
treatment effects, while little attention is devoted to hypotheses testing,7,12,26–28 almost exclusively for
binary data.

The aim of this paper is to analyze the impact of RA designs for hypothesis testing in the case of normally
response trials for checking the superiority of one of two available treatments. Taking into account the classical
Wald test, we first show how the RA methodology could induce an anomalous behavior of the power function.
Then, we suggest a modified version of Wald test which, by using the current allocation proportion to the
treatments as a consistent estimator of the target, avoids some degenerate scenarios and so it should be
preferable than the classical test. Furthermore, we show both analytically and via simulations how some target
allocations may induce an additional anomalous behavior of the power function, which could be locally
decreasing. Thus, we derive the conditions on the target guaranteeing the monotonicity of the ensuing power,
showing also how a correct choice of the initial sample size allows one to overcome this drawback regardless of the
adopted target.

The paper is structured as follows. Starting from the notation and some preliminaries in Section 2, Sections 3
and 4 deal with the asymptotic power of the Wald-type Z-tests under RA randomization procedures,
highlighting their drawbacks. Section 5 describes some practical implications via a simulation study, while
Section 6 deals with some general conclusions about the applicability of RA randomization procedures for
hypothesis testing.

2 Preliminaries

Suppose that patients come to the trial sequentially and are assigned to one of two competing treatments, say A
and B. At each step i� 1, let di denote the allocation of the ith subject, with di¼ 1 if they is assigned to A and 0
otherwise, and let Yi be the corresponding outcome that is assumed to be normally distributed with

EðYiÞ ¼ �i�A þ ð1� �iÞ�B and VðYiÞ ¼ �
2, i � 1 ð1Þ

where �A and �B are the treatment effects and s2
2R
þ denotes the common variance. Assuming that the outcomes

are conditionally independent given the treatment assignments, the usual goal consists of identifying the
superiority of a given treatment, so that the inferential interest lies in estimating or testing �¼�A��B, while
it is customary to regard �B (or the sum of the treatment effects) as a nuisance. Thus, from now on we take into
account the problem of testing the hypothesis H0: �¼ 0 versus H1: �> 0 (the case H1: � 6¼ 0 can be easily derived
in an analogous way).

Several proposals have been made in the literature in order to derive suitable target allocations (�; 1� �) to A
and B, respectively (either as finite sample allocations or as asymptotic proportions to be approximated in a large
sample set-up) that achieve a good trade-off between ethical concerns and inferential precision. One of the main
proposals consists in formalizing these objectives into a combined/constrained optimization problem and find the
targets that are optimal with respect to the chosen approach (see Chapter 5 of Baldi Antognini and Giovagnoli16

and the paper by Biswas and Bhattacharya11 for a recent review). In general, the ensuing target depends on the
unknown model parameters, i.e. �¼ �(�), and assuming without loss of generality ‘‘the-larger-the-better’’ scenario
(namely, treatment A is better than B if and only if �A>�B) it should satisfy the following conditions:

T1 �: R! (0; 1) is a symmetric function with �(�x)¼ 1� �(x), ensuring that both treatments are treated
likewise;

T2 �(x) is increasing in x, meaning that any gain in terms of the relative superiority of a given treatment should
skew the assignments by increasing its desirability;

T3 �(�) is twice continuously differentiable with bounded derivatives.
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Note the following.

. From T1, �(x) 6¼ f0; 1} guarantees that the comparative experiments do not collapse into the observation of just
one treatment; moreover, �(0)¼ 1/2 and therefore, due to the symmetric structure of �(�) around the point
(0; 1/2), we could simply model the target function for x> 0.

. Ethical requirement T2 ensures that the superior treatment should be favored and, combined with T1,
guarantees that the desirability of either treatment is the same if and only if the two treatment arms equally
perform.

. the target �(�) may depend on the nuisance parameter too and in this case conditions T1–T3 should be satisfied
for any given value of the nuisance. For example, for �A, �B> 0, Zhang and Rosenberger29 suggested the targetffiffiffiffiffiffi
�A
p

=ð
ffiffiffiffiffiffi
�A
p

þ
ffiffiffiffiffiffi
�B
p
Þ, while Baldi Antognini and Giovagnoli16 analyzed the target �A/(�Aþ�B). Clearly, these

choices correspond to

�ZðxÞ ¼
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ �B
p

�
ffiffiffiffiffiffi
�B
p

2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ �B
p

þ
ffiffiffiffiffiffi
�B
p
Þ
, for x4 0 ð2Þ

and

�RðxÞ ¼
1

2
þ

x

2ð2�B þ xÞ
, for x4 0 ð3Þ

respectively, both satisfying T1–T3 for any �B2R
þ.

Although non-necessary from a mathematical perspective, an additional ethical requirement that is almost
always satisfied by the targets suggested in the literature9,11,12,23,29,30 is

T4 limx!1 �(x)¼ 1, namely the target function has to approach 1 as A performs infinitely better than B
(analogously, from T1, limx!�1 �(x)¼ 0).

In such a case, the behavior of the target could be represented by the cumulative distribution function (cdf) of a
continuous symmetric random variable centered at 0 with support R, like e.g. the normal target11,23,30

�NðxÞ ¼ �ðx=T Þ, x 2 R ð4Þ

where � denotes the cdf of the standard normal, the Cauchy target

�CðxÞ ¼
1

2
þ
arctanðx=T Þ

�
, x 2 R ð5Þ

or the logistic one

�LðxÞ ¼ 1þ e�x=T
� ��1

, x 2 R ð6Þ

The tuning parameter T> 0 manages the ethical component of the target: small values of T tend to skew the
subjects’ assignment to the superior treatment, while as T grows the ethical component vanishes and the target
tends to the balanced one. In this setting, it is natural to regard �0(�) as the connected pdf, where, from T3, this
density should be uniformly continuous, so that limx!1�

0(x)¼ 0 and also limx!1x�
0(x)¼ 0 to ensure

integrability.
Alternatively, by using the symmetric property T1, �(x) could be modeled for x2Rþ as a suitably re-scaled cdf

of a positive random variable, like e.g. the exponential target

�EðxÞ ¼
1�

e�x=T

2
, if x � 0,

ex=T

2
, if x5 0:

8>><
>>: ð7Þ

Figure 1 shows the different behavior of all of the above-mentioned targets (where, for simplicity, we set
T¼�B¼ 1).
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Remark 1. Every above-mentioned target (namely, �N(�), �C(�), �L(�), �Z(�), �R(�) and �E(�)) satisfies T4.
However, this condition could be relaxed by assuming a re-scaled target function ~�ð�Þ such that
limx!1 ~�ðxÞ ¼ c 2 1=2; 1ð �; clearly, it does not induce substantial implications in practice, since ~�ð�Þ is univocally
associated with a cdf �(�) satisfying T1–T4, given by �ðxÞ ¼ ½ ~�ðxÞ � ð1� cÞ�=ð2c� 1Þ.

3 The Wald-type Z-tests under RA randomization procedures

3.1 RA designs and asymptotic inference

Several RA designs have been suggested in the literature with the aim of converging to a desired target �(�)
depending on the unknown model parameters. After the starting sample of n0 observations assigned to each
treatment, at each step n> 2n0 these designs estimate the difference � between the treatment effects by �̂n ¼

�̂An � �̂Bn, where ð�̂An, �̂BnÞ are the MLEs of (�A, �B), i.e. the sample means. Thus, the target is estimated by
�̂n ¼ �ð�̂nÞ and then the next allocation is forced to gradually approach the target.

An example is the ERADE14 defined by

Prð�nþ1 ¼ 1 j �1, . . . , �n;Y1, . . . ,YnÞ ¼

��ð�̂nÞ, if �n 4 �ð�̂nÞ

�ð�̂nÞ, if �n ¼ �ð�̂nÞ,

1� � 1� �ð�̂nÞ½ �, if �n 5 �ð�̂nÞ

8><
>:

where �n ¼ n�1
Pn

i¼1 �i and 1��n denote the allocation proportions to A and B, respectively, and g2 [0;1) is a
randomization parameter. As shown by Hu et al.,14 the ERADE asymptotically approaches any chosen target
�(�) satisfying T1–T3, namely it guarantees that limn!1�n¼ �(�) almost surely.

In general, even if the MLEs coincide with those of the non-sequential setting, their distribution under RA
designs is not the same as when the observations are independent and identically distributed (i.i.d.), due to the
dependence structure induced by the adaptation process. However, given a target �(�) satisfying T1–T3,
consistency and asymptotic normality of the MLEs are ensured provided that the RA design is chosen
such that limn!1�n¼ �(�) almost surely.16 Indeed, as n tends to infinity ð�̂An, �̂BnÞ ! ð�A,�BÞ almost
surely and

ffiffiffi
n
p �̂An

�̂Bn

� �
�

�A

�B

� �� �
,!N

0

0

� �
;

�2

�ð�Þ
0

0
�2

1� �ð�Þ

0
BBB@

1
CCCA

0
BBB@

1
CCCA:

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
μ

ρ(
μ)

ρN ρL ρE ρR ρZ ρC

Figure 1. Target functions �N, �C, �L and �E (with T¼ 1), �R and �Z (with �B¼ 1).
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Thus, assuming that the common variance s2 is a priori known,

ffiffiffi
n
p

�̂n � �ð Þ ,!N 0;
�2

�ð�Þ½1� �ð�Þ�

� �
ð8Þ

and, recalling that �ð�̂nÞ is a consistent estimator of �(�) due to the continuity of the target function, the classical
Wald test statistic is (see, for instance, Yi and Wang)27

Wn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�ð�̂nÞ½1� �ð�̂nÞ�

�2

r
�̂n ð9Þ

As is well-known, under H0 the statistic Wn converges asymptotically to a standard normal distribution (or,
alternatively, W2

n follows a chi-squared distribution with one degree of freedom (dof)) and thus the asymptotic
test rejects H0 if

�̂4 z1��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

n�ð�̂nÞ½1� �ð�̂nÞ�

s
ð10Þ

where za is the a-percentile of �. Therefore, the (asymptotic) power of the right-sided Z-test of level a is

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�ð�Þ½1� �ð�Þ�

�2

r
� z1��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�Þ½1� �ð�Þ�

�ð�̂nÞ½1� �ð�̂nÞ�

s !
, �4 0

which can be approximated by

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�ð�Þ½1� �ð�Þ�

�2

r
� z1��

 !
, �4 0 ð11Þ

since asymptotically �ð�̂nÞ � �ð�Þ.
Under the same hypotheses, we suggest an alternative version of the Wald test which can be constructed by

using �n, instead of �ð�̂nÞ, as a consistent estimator of �(�), namely by replacing Wn in (9) with

~Wn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�nð1� �nÞ

�2

r
�̂n ð12Þ

and rejecting H0 if

�̂4 z1��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

n�nð1� �nÞ

s
ð13Þ

A formal derivation of this test can be obtained from the following version of the central limit theorem
(CLT)20

ffiffiffiffiffiffiffiffiffi
NAn

p
ð�̂An � �AÞffiffiffiffiffiffiffiffi

NBn

p
ð�̂Bn � �BÞ

� �
,!N

0

0

� �
;
�2 0

0 �2

� �� �
, as n!1,

where NAn¼ n�n and NBn¼ n(1��n) denote the number of allocations to the two treatments after n steps. Indeed,
as n grows, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n�nð1� �nÞ
p

�̂n � �ð Þ ,!N 0; �2
� �

ð14Þ

and therefore the rejection region (13), as well as power function (11), follows directly recalling that �n! �(�)
almost surely as n tends to infinity.
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Remark 2. When the common variance �2 is unknown, it can be estimated at each step n by the usual pooled sample
variance s2pn, which is a consistent estimator for �2 under RA designs satisfying limn!1�n¼ �(�) almost surely. Thus,
from the CLTs in (8) and (14), as n tends to infinity,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n�ð�̂nÞ½1� �ð�̂nÞ�

s2pn

s
�̂n � �ð Þ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�nð1� �nÞ

s2pn

s
�̂n � �ð Þ

converge in distribution to a standard normal random variable. Then, both tests Wn and ~Wn can be adjusted by
substituting �2 with s2pn and therefore the corresponding power functions can still be approximated by (11), since in a
large sample set-up s2pn � �

2.

3.2 Asymptotic approximation, target function and starting sample size

The performances of the Wald tests described above, as well as the quality of the CLT approximation of the power
function in (11), are strictly related to the chosen target. Test Wn is based on the asymptotic approximation
�ð�̂nÞ � �ð�Þ, which, from T4, could admit degenerate situations where �ð�̂nÞ � 0 or 1. Indeed, if the desired
target �(�) has a strong ethical component (namely it satisfies T4 and rapidly increases as � grows), when the
difference between the treatment effects is remarkable, so is �̂n and thus �ð�̂nÞ tends to one; consequently, the
right-hand side of (10) grows to infinity and therefore H0 tends to be always accepted (i.e. the power goes to zero).

As an example, Figure 2 shows the behavior of the Wald test Wn in a simulated trial where the chosen target
functions are �N in (4), �L in (6) and �E in (7) (colors are yellow, orange and red for T¼ 0.5, 1 and 2, respectively)
and �R in (3) (with �B¼ 1), where the ERADE is employed with g¼ 0.5. The results come from 5000 simulations
with sample sizes n¼ 75, 150, 250 and starting sample of n0¼ 2 observations on each treatment, where the
responses are generated following a Gaussian distribution with s2

¼ 1, �B¼ 1 and �A¼�Bþ k, where k� 0.
Taking into account targets �N, �L and �E, the ensuing power tends to be quite poor, it is not monotonically
increasing in � and tends to zero as � grows (although under �L and �E the non-monotonicity is not noticeable in
the plots for T¼ 2, the power function is still decreasing, but this behavior is present for larger values of �).
Moreover, this anomalous behavior is accentuated as the ethical component of the target grows (i.e. small values
of T), since in such a case the ethical skew tends to assign all subjects to the superior treatment also for small values
of �. Therefore, the consistency and asymptotic normality of the MLEs are strongly compromised, as well as the
quality of the approximation of power (11). This is particularly true for small sample sizes, where also the type I
errors become slightly inflated, as shown in Table 1. This is due to the fact that, given the RA nature of the
procedure, when the sample size is small and the chosen target is characterized by a strong ethical impact, then �n
tends to be slightly more unstable, as an estimator of �(�), than �ð�̂nÞ as � tends to zero and therefore the type I
errors for ~Wn are more inflated than those for Wn. This becomes more evident for �N, since it has the highest
ethical impact if compared with the other considered targets (see Figure 1), especially for T¼ 0.5.

While the choice of �R (which satisfies T4, but with a lower ethical improvement with respect to �N, �L and �E)
always guarantees a suitable behavior of the power of the test, that goes to one as � grows, also preserving a
correct type I error (see Table 1).

As it can be easily seen from the power function in (11), a crucial condition for the applicability of Wald testWn

is that the chosen target � should satisfy limx!1x
2[1� �(x)]¼1. This condition characterizes the ethical

improvement of the target and prescribes that 1� � should tend to zero more slowly than x�2, in order to
avoid the degenerate scenarios discussed previously. For instance, as also shown in Figure 2, adopting �R then
limx!1 x2[1� �R(x)]¼1 (which holds for �C and �Z too), while under �N (and also for �E and �L) this limit goes
to zero.

Now taking into account ~Wn, it is based on the asymptotic approximation �n& �(�) which could also admit the
extreme scenarios �n& 0 or 1 due to T4. However, these two cases could be verified only for n0¼ 0, while in
practical applications for any fixed sample size n

	n ¼
n0
n
� �n �

n� n0
n
¼ 1� 	n ð15Þ

where

	n 2
1

n
;
1

2
�
1

n

� �
, for n even
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due to the starting sample of n0� 1 allocations made on each treatment (for n odd, 	n� (n� 1)/2). Note that the
cases 	n¼ 0 or 1/2 should be excluded. Indeed, 	n¼ 1/2 corresponds to assume no adaptivity of the design (i.e.
every allocation is made by restricted randomization). Whereas 	n¼ 0 implies that no starting sample has been
taken into account, namely the RA procedure starts with an initial guess (�A0, �B0) possibly derived from earlier
trials, which ensures the applicability of the RA methodology even when no patients are assigned to the treatments
(potentially also modifying the usual sample means accordingly, as discussed by Hu et al.).14

n = 75 n = 15 n0 = 250

ρ N

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
μ

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
μ

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
μ

ρ L

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
μ

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
μ

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
μ

ρ E

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
μ

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
μ

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
μ

Power of Wald test Wn with initial sample size n0 = 2

tuning parameter

0.5 1 2

ρ R

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
μ

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
μ

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0
μ

Figure 2. Power of the Wald test Wn under �N, �L and �E (T¼ 0.5, 1 and 2) and �R (�B¼ 1) with n¼ 75, 150, 250 and starting sample

size n0¼ 2.
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Thus, to take into account the initial samples, a more suitable asymptotic approximation of the allocation
proportion satisfying condition (15) is �n& �(�)(1� 2	n)þ 	n, then the resulting power function of ~Wn becomes

� �
ffiffiffi
n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	nð1� 	nÞ þ ð1� 2	nÞ

2�ð�Þ½1� �ð�Þ�

�2

s
� z1��

0
@

1
A, �4 0 ð16Þ

Note that this simply corresponds to assume a re-scaled target ~�ð�Þ ¼ �ð�Þð1� 2	nÞ þ 	n satisfying T1–T3 where,
instead of T4, for any fixed sample size n

lim
x!1

~�ðxÞ ¼ 1� 	n and lim
x!�1

~�ðxÞ ¼ 	n

(i.e. from Remark 1, c¼ 1� 	n).
Figure 3 shows the performance of ~Wn under the same simulation scenarios adopted in Figure 2.
If compared with the classical Wald test, ~Wn is much more robust with respect to degenerate situations induced

by the choice of a given target, due to the effect of the starting sample size. Indeed, for any considered target the
power function tends to one as � grows. As shown previously, under �N, �L and �E the ethical component of the
target grows as T decreases and therefore the type I errors tend to be inflated, especially for small sample sizes (see
Table 1).

Clearly, from power functions (11) and (16), the performance of the classical Wald test Wn (for any chosen
starting sample size n0) is substantially the same of ~Wn with n0¼ 0. Therefore, an application of RA procedures
with n0� 1 combined with test ~Wn is preferable from a practical viewpoint.

However, does every choice of the target guarantee suitable properties of the power function? And how strong
should be the ethical skew in order to avoid an anomalous behavior of the power?

4 Properties of the power function

Assuming without loss of generality s¼ 1, if we let for any x> 0

gnðxÞ ¼ x
ffiffiffi
n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	nð1� 	nÞ þ ð1� 2	nÞ

2�ðxÞ½1� �ðxÞ�

q
� z1�� ð17Þ

the power of test ~Wn is �(gn(�)) and a first requirement is that the power function should tend to one as the sample
size grows. Due to the properties of �(�), this condition is always satisfied since, for every fixed x> 0,
limn!1gn(x)¼1.

Moreover, for any fixed n (sufficiently large for the CLT approximation), additional fundamental
requirements are:

C1: the power should reach 1 as � tends to infinity;

Table 1. Type I errors of the tests Wn and ~Wn for targets �N, �L and �E (with T¼ 0.5, 1 and 2), and �R (with �B¼ 1).

n¼ 75 n¼ 150 n¼ 250

� T Wn
~Wn Wn

~Wn Wn
~Wn

�N 0.5 0.02 0.12 0.07 0.11 0.06 0.10

1 0.06 0.06 0.05 0.05 0.05 0.05

2 0.05 0.05 0.05 0.05 0.06 0.05

�L 0.5 0.06 0.06 0.06 0.06 0.05 0.05

1 0.06 0.06 0.05 0.05 0.05 0.05

2 0.05 0.05 0.05 0.05 0.05 0.05

�E 0.5 0.08 0.09 0.07 0.07 0.06 0.06

1 0.06 0.06 0.05 0.05 0.05 0.05

2 0.05 0.05 0.05 0.05 0.05 0.05

�R 0.05 0.05 0.05 0.05 0.05 0.05
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C2: the power should be increasing in �.

Provided that 	n 6¼ 0, condition C1 is always satisfied since limx!1gn(x)¼1. Whereas if 	n¼ 0 (i.e. n0¼ 0), C1 is
fulfilled only when limx!1x

2[1� �(x)]¼1, namely for targets with a low ethical improvement (as discussed in
Section 3 for Wn).

n = 75 n = 15 n0 = 250
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Figure 3. Power of the Wald test ~Wn under �N, �L and �E (T¼ 0.5, 1 and 2) and �R (�B¼ 1) with n¼ 75, 150, 250 and starting sample

size n0¼ 2.
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Condition C2 means that, for n sufficiently large (and for any fixed n0), gn(x) should be increasing in x. This
crucial property is not generally guaranteed for any chosen target allocation (even if n0 6¼ 0), as the following
theorem shows.

Theorem 1. A target � induces a monotonically increasing power function of Wald test ~Wn if and only if

�ðxÞ½1� �ðxÞ�4 x�0ðxÞ �ðxÞ �
1

2

� �
, for all x4 0 ð18Þ

Proof. See the Appendix. œ

Example 1. Taking into account �Z in (2), condition (18) becomesffiffiffiffiffiffi
�B
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþ �B
p

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ �B
p

þ
ffiffiffiffiffiffi
�B
p
Þ
2
4

x
ffiffiffiffiffiffi
�B
p
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ �B
p

�
ffiffiffiffiffiffi
�B
p
Þ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ �B
p

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ �B
p

þ
ffiffiffiffiffiffi
�B
p
Þ
3
, for x4 0

namely

ð3xþ 4�BÞð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ �B

p
þ

ffiffiffiffiffiffi
�B
p
Þ þ 2x

ffiffiffiffiffiffi
�B
p

4 0, for x4 0

that is clearly satisfied since �B> 0; therefore, adopting �Z the power is monotonically increasing in �.

To obtain suitable classes of targets satisfying Theorem 1, it could be useful to take into account the hazard
function (widely used in the survivor analysis literature) associated with a given target �, by letting

h�ðxÞ :¼
�0ðxÞ

1� �ðxÞ
, for any x4 0

Note that, from T2 and T3, the hazard h�:R
þ
!R

þ is a continuous function with limx!0h�(x)¼ 2�0(0).

Corollary 1. Given a target allocation �, if the corresponding hazard satisfies the condition limx!1xh�(x)¼K> 2,
then the power of test ~Wn is locally decreasing. Whereas if xh�(x)� 2 for every x> 0, then the power is
monotonically increasing.

Proof. See the Appendix. œ

Example 2. From Corollary 1, every target with constant or monotonically increasing hazard leads to an asymptotic
power which is not monotonically increasing. For instance, the exponential target �E has a constant hazard
h�E ðxÞ ¼ T�1 for every x> 0, which induces a locally decreasing power since limx!1 xh�EðxÞ ¼
limx!1 xT�1 ¼ 1. Also for the Normal and the Logistic targets the power is not monotonically increasing, since

xh�N ðxÞ ¼
xe�x

2=ð2T2Þ

T
ffiffiffiffiffiffi
2�
p

1�� x=Tð Þ½ �
! 1, as x!1

and

xh�L ðxÞ ¼
x�LðxÞ

T
!1, as x!1

Whereas assuming �R in (3) the corresponding hazard is h�R ðxÞ ¼ ð2�B þ xÞ�1, thus xh�R ðxÞ � 2 for any x> 0
and therefore the power is monotonically increasing. The same conclusion still holds for the Cauchy target �C in
(5), since

xh�C ðxÞ ¼
2Tx

ðT2 þ x2Þ½�� 2 arctanðx=T Þ�
� 2
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An additional characterization of target functions inducing a locally decreasing power can be derived through
differential inequalities.

Corollary 2. Given a target �, if there exists 
> 0 such that

x2�ðxÞ½1� �ðxÞ� � 
2�ð
Þ½1� �ð
Þ�, for all x � 


then the power of test ~Wn is not monotonically increasing.

Proof. See the Appendix. œ

Example 3. Taking into account the Logistic target �L with T¼ 1, then for any x� 3

x2�LðxÞ½1� �LðxÞ� ¼
x2ex

ð1þ exÞ2
�

32e3

ð1þ e3Þ2
¼ 0:40659

and therefore the ensuing power is locally decreasing.

Since the power function of Wn in (11) could be regarded as a special case of (16) with 	n¼ 0, all of the previous
results about monotonicity also hold for the classical Wald test Wn. However, even if some target allocations do
not guarantee that the ensuing power is monotonically increasing, the following result shows how ~Wn combined
with a suitable choice of both (i) the sample size and (ii) the starting samples allow one to avoid this drawback.

Theorem 2. For any chosen target �, letting

�� ¼ max
x2Rþ

x�0ðxÞ �ðxÞ �
1

2

� �
� �ðxÞ½1� �ðxÞ�

	 


then there exists a couple ðn�; 	n� Þ with

n� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�� þ 1

p
and 	n� ¼

1

2
�

1

n�

such that, for all n> n* and for all 	n 4 	n� the power function of the Wald test ~Wn is monotonically increasing.

Proof. See the Appendix. œ

Remark 3. Theorem 2 derives the minimum ratio 	n� between the starting sample and the sample sizes ensuring the
monotonicity of the power function. However, for any given target �, the power of the test ~Wn is monotonically
increasing in 	n for any �. Indeed, as 	n grows then the RA component of the design vanishes and therefore the power
reaches the one of the balanced design. This is clearly another view for the already discussed trade-off between ethics
and inferential precision.

Taking into account the previously defined targets inducing a locally decreasing power, namely �N, �L and �E,
Table 2 shows how the sample size and the starting sample can be chosen in order to obtain a monotonically
increasing power function.

In general, for every target the (minimum) sample size requested is n� 3, that is always satisfied in practice.
While as regards the choice of the starting samples, the ensuing condition is not-trivially fulfilled, especially for the

Table 2. Computations of n* and 	n� for the targets �N, �L and �E.

� T �� n* 	n�

�N For all T> 0 0.031 2.12 3%

�L For all T> 0 0.018 2.07 2%

�E For all T> 0 0.011 2.04 1%
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large sample framework of asymptotic inference. Indeed, for a sample size of n¼ 250, if we choose �N then n0¼ 8
starting allocations on each treatment guarantee a monotonically increasing power (i.e. only the remaining 234
assignments will be allocated in the RA way).

5 A simulation study

Section 3 collects the theoretical results allowing the applicability of Wald-type Z-tests under RA designs, while in
Section 4 we analyze the corresponding power function from a theoretical point of view. In particular, we show

n = 75 n = 15 n0 = 250
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that, for certain classes of targets, the ensuing power is locally decreasing in the difference between the treatment
effects and could not tend to one as � grows, stressing also how a suitable choice of the starting sample overcomes
this drawback.

In this section we focus on the practical implications in terms of loss of power by means of a simulation study,
where the chosen RA procedure is the ERADE with g¼ 0.5. The results come from 5000 simulations with sample
sizes n¼ 75, 150 and 250, where the responses are generated following a Gaussian distribution with s2

¼ 1, �B¼ 1
and �A¼�Bþ k, with k� 0. The considered targets are �N, �L and �E with several values of the tuning parameter
T; for each scenario, the initial sample size n0 spans from 1 to d	n� 	 ne, i.e. the smallest integer greater than or
equal to 	n� 	 n (colors go from green to blue for ~Wn and from yellow to red for Wn, as the starting sample grows).
For the sake of readability, Figures 4–6 show the simulated power functions of ~Wn and Wn only for an initial
sample size n0¼ 1, 2 and d	n� 	 ne; for other potential values of n0 (that could be present depending on the chosen
sample size and the considered target) the local non-monotonicity is still present but not easily noticeable, and it
tends to be negligible as n0 approaches 	n� 	 n.

Figure 4 shows the behavior of the power function of Wald test ~Wn adopting �N. In general, the power tends to
become increasing as the tuning parameter T grows; this is clearly coherent since �! 1/2 as the randomization
component of the target grows and therefore the power tends to that of the balanced design, namely
� 2�1

ffiffiffi
n
p
�� z1��

� �
, that is monotonically increasing in �. While for small values of T, where the ethical skew is

stronger, also the CLT approximation is partially compromised, as it can be shown from the inflated type I errors
that occur for T¼ 0.25 and 0.33 or for small sample size n¼ 75 (see also Figure 5). Taking into account �N in
Figure 4, even if for T¼ 1 the non-monotonicity of the power is not noticeable in the plots, the power function is
still slightly decreasing, but this behavior is present for large values of �, hidden from the property of �(�). Indeed,
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for n¼ 75 and n0¼ 2 the ensuing power is slightly decreasing for values of � between 1.75 and 1.9. The same
behavior holds for �E and �L as it can be seen in Figure 5 (as also confirmed by further simulations, omitted here
for brevity).

As regards the starting sample size, the plots (see Figures 4 and 5) are very similar for all of the considered
targets: for low values of n0 the power function is locally decreasing, while as the sample dimension increases, so
should n0 in order to ensure a monotonically increasing power. Finally, note that, for small values of T, the gain in
terms of power highly increases even for small increments of n0 as discussed in Remark 3.

In order to explain the inadequacy of the classical Wald test, Figures 6 shows the power ofWn when target �N is
employed under the same simulation scenarios described previously. As it can be seen, the anomalous behavior of
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the power function is strongly accentuated for small sample sizes and small values of T; moreover, every choice of
the starting sample size does not allow to avoid degenerate situations in which the power vanishes as � grows (the
same clearly holds for �E and �L).

6 Discussion

The choice of the target function plays a crucial role in RA methodology, since it incorporates ethical requirements
with inferential goals. In general, targets should skew the assignments towards the best treatment and a
fundamental question is how strong should be the ethical improvement to obtain a suitable trade-off between
ethical aims and inferential precision.

Our paper is focused on this problem by taking into account hypothesis testing instead of the classical
estimation. Even though we do not suggest a specific target, we show the inadequacy of classes of target
functions for hypothesis testing in comparative clinical trials, stressing also the crucial role of the initial sample size.

Under RA randomization procedures, the classical Wald test Wn could be applied only when the desired target
� has a low ethical skew, namely when lim�!1�

2[1� �(�)]!1 (e.g. under re-scaled targets not satisfying T4),
while ~Wn should be generally preferable.

Moreover, for testing hypotheses, RA randomization procedures should not be applied without a starting
sample. Indeed, for certain targets the choice n0¼ 0 may induce an accentuated anomalous behavior of the
power, that becomes strongly decreasing even for small differences between the treatment effects, while for high
values of � the RA rule tends to allocate every subject to the best treatment inducing a null power. On the other
hand, any choice of the starting sample size n0� 1 could be suitable if the chosen target satisfies condition (18): in
this case, small values of n0 improve the ethical goals of the RA design. Whereas when the desired � induces a
locally decreasing power, then the starting sample size should be chosen in an accurate manner, as shown in
Theorem 2, that clearly conflicts with the general suggestion n0¼ 2 given by Hu et al.14

Finally, we wish to stress that our results still hold even for an alternative hypothesis H1: � 6¼ 0, where all of the
previous conclusions about the monotonicity of the power function could be interpreted in terms of monotonicity
of the non-centrality parameter � of a non-central chi-square distribution with one dof. Indeed, taking into
account the classical Wald test, from the CLT in (8) under H0 the statistic W2

n is asymptotically distributed as
a central chi-square with one dof, so that H0 is rejected when W2

n 421;1�� ¼ z21��=2, where 
2
1;1�� is the (1� a)-

percentile of a central chi-square with one dof. While under the alternative hypothesis, W2
n converges to a non-

central chi-square with one dof and non-centrality parameter �¼�2n�(�)[1� �(�)]/s2 and therefore the
previously obtained results still hold (taking now into account W�W instead of �), since the power is a
monotonically increasing function of � (as in Hu and Rosenberger31 and Tymofyeyev et al.).7
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Appendix

Proof of Theorem 1

From equation (17),

g0nðxÞ ¼
ffiffiffi
n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	nð1� 	nÞ þ ð1� 2	nÞ

2�ðxÞ½1� �ðxÞ�

q
þþ

x
ffiffiffi
n
p
ð1� 2	nÞ

2 1
2� �ðxÞ
� �

�0ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	nð1� 	nÞ þ ð1� 2	nÞ

2�ðxÞ½1� �ðxÞ�

q
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and thus the power function is monotonically increasing if and only if

�ðxÞ½1� �ðxÞ� þ
n0ðn� n0Þ

ðn� 2n0Þ
2
4 x�0ðxÞ �ðxÞ �

1

2

� �
, for all x4 0 ð19Þ

From T1–T3, �(x)> 1/2 and �0(x)> 0 for every x> 0; therefore, condition (18) implies (19) since n0(n� n0)/
(n� 2n0)

2 is positive. On the other hand, suppose that there exists I R such that

�ðxÞ½1� �ðxÞ� � x�0ðxÞ �ðxÞ �
1

2

� �
, foreveryx 2 I

In this case the power is monotonically increasing if, for every x2 I,

n0ðn� n0Þ

ðn� 2n0Þ
2
4 x�0ðxÞ �ðxÞ �

1

2

� �
� �ðxÞ½1� �ðxÞ� ð20Þ

However, for any fixed n0, the left-hand side of (20) is monotonically decreasing in n and tends to zero as n grows;
therefore, condition (20) does not hold for sufficiently large n.

Proof of Corollary 1

From condition (18), a target � induces a monotonically increasing power if and only if

�ðxÞ

�ðxÞ � 1
2

4 xh�ðxÞ, for all x4 0 ð21Þ

Note that the left-hand side in (21) is monotonically decreasing in x, tends to infinity for x! 0 and goes to two as
x grows. Thus, if limx!1xh�(x)¼K> 2, then (21) does not hold for sufficiently large x. Whereas if xh�(x)� 2 for
every x> 0, then (21) is satisfied.

Proof of Corollary 2

Letting q�(x)9 �(x)[1� �(x)], then it is straightforward to see that q0�ðxÞ ¼ �
0ðxÞ½1� 2�ðxÞ� and

�0ðxÞ �ðxÞ �
1

2

� �
¼ �

q0�ðxÞ

2

Hence, condition (18) could be rewritten as follows

�
xq0�ðxÞ

2
5 q�ðxÞ, foreveryx4 0

namely q0�ðxÞ4 � 2x�1q�ðxÞ for every x> 0. Thus, if there exists Z> 0 such that q0�ðxÞ � �2x
�1q�ðxÞ for x>Z, by

applying Grönwall’s inequality, we obtain

q�ðxÞ � q�ð
Þ exp

Z x




�
2dt

t

	 

, for x4 


that is,

q�ðxÞ � q�ð
Þ



x

 �2
, for x4 


and therefore the power function in (16) is not monotonically increasing.
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Proof of Theorem 2

Letting for any x> 0

B�ðxÞ :¼ x�0ðxÞ �ðxÞ �
1

2

� �
� �ðxÞ½1� �ðxÞ�

then B�(x) is a continuous and bounded function with limx!0B�(x)¼ � 1/4 and limx!1 B�(x)¼ 0. From (19),
g0nðxÞ4 0 if and only if for every x> 0

Gð	nÞ :¼
	nð1� 	nÞ

ð1� 2	nÞ
2
4B�ðxÞ ð22Þ

where the function G(�) is monotonically increasing and reaches its maximum ~G given by

~G ¼
n2�4
16 , forneven, at	n ¼

1
2�

1
n ,

n2�1
4 , fornodd, at	n ¼

1
2�

1
2n :

(

Thus, ~G4�� for any n4 n� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�� þ 1

p
and, from the monotonicity of G(�), there exists a unique 	n� given by

	n� ¼
1

2
�

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�� þ 1

p
such that, for every 	n 4 	n� , G(	n)>��. Therefore, condition (22) is satisfied.
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