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Abstract. Peirce considered the principal business of logic to be the analysis of 
reasoning. He argued that the diagrammatic system of Existential Graphs, which 
he had invented in 1896, carries the logical analysis of reasoning to the furthest 
point possible. The present paper investigates the analytic virtues of the Alpha 
part of the system, which corresponds to the sentential calculus. We examine 
Peirce’s proposal that the relation of illation is the primitive relation of logic and 
defend the view that this idea constitutes the fundamental motive of philosophy 
of notation both in algebraic and graphical logic. We explain how in his algebras 
and graphs Peirce arrived at a unifying notation for logical constants that 
represent both truth-function and scope. Finally, we show that Shin’s argument 
for multiple readings of Alpha graphs is circular. 
 
Keywords. Charles S. Peirce; Logical analysis; Existential Graphs; Propositional 
Logic; Multiple Readings; Notation. 

 
 

§ 1. Introduction. According to Peirce, the principal business of logic is the 
analysis of reasoning (CP 2.532, 1893; CP 4.134, 1893; MS 1147, pp. 13-14, c.1900). 
Mathematics is the practice of deduction, logic its investigation (CP 4.239, 1902). All 

                                                
1 Research supported by the Estonian Research Council (Project PUT267) and the Academy of 
Finland: Diagrammatic Mind: Logical and Communicative Aspects of Iconicity, Principal Investigator 
Ahti-Veikko Pietarinen. We presented parts of this study at the following meetings and conferences: 
Institute of Philosophy, Logic Section, Chinese Academy of Social Sciences, Beijing, April 2014; La 
Logique en Question, Sorbonne, Paris, May 2014; The Helsinki Metaphysical Club Meeting: Icon, 
University of Helsinki, September 2014; International Workshop on the History and Philosophy of 
Notation, Tallinn University of Technology, August 2015; 11th Congress of the International 
Association for Visual Semiotics, University of Liège, September 2015. We are most grateful to 
Frederik Stjernfelt for reading a previous version of this paper and offering precious comments. Praise 
goes also to Jean-Marie Chevalier, Bruno Leclercq, Amirouche Moktefi, Mohammad Shafie, Liu 
Xinwen, as well as to two anonymous referees, for constructive remarks, suggestions and objections 
which we have attempted to address and answer here. 
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deduction is mathematical in the sense that it is constructive or diagrammatic (NEM 
4, pp. 47-48, 1902). But mathematical deductions or deduction tout court is the matter 
of investigation of deductive or formal logic. Logic cannot ground mathematics: 
deductions are in the first place mathematically, rather than logically, valid (CP 4.234, 
1902). What logic can do is to describe and analyze mathematical reasoning (CP 
2.192, 1902). Peirce was primarily a logician, and as a logician he felt that his talent 
was in logical analysis: “my strong point is my power of logical analysis” (Peirce to 
Carus, July 1908). 

Peirce took analysis to be the process of decomposing something into its 
constituent parts: “if one concept can be accurately defined as a combination of 
others, and if these others are not of more complicated structure than the defined 
concept, then the defined concept is regarded as analyzed into these others” (MS 284, 
p. 45; CP 1.294, c.1905). A satisfactorily complete analysis is one in which the 
compound is decomposed into homogeneous parts, that is, into elements that are not 
in themselves composed of other elements and which therefore remain unanalyzed. 
“No analysis”, he wrote, “whether in logic, in chemistry, or in any other science, is 
satisfactory, unless it be thorough, that is, unless it separates the compound into 
components each entirely homogeneous in itself, and therefore free from the smallest 
admixture of any of the others” (CP 4.548, 1906). For if that which is unanalyzable 
were not homogeneous in itself, then it would be mixed with other components — but 
then it would be analyzable, for analysis is exactly what separates the different 
components that are mixed in a heterogeneous compound. 

Since the 1870s, Peirce’s logical analyses had been algebraic. During 1896 he 
invented a graphical notation later named Entitative Graphs, which appeared in print 
the following year (Peirce 1897). Within a month from the invention of Entitative 
Graphs, he had created the system of Existential Graphs (EGs; see MSS 481-484). 
Examples of the latter system reached print in 1901 in the Dictionary of Philosophy 
and Psychology edited by J. M. Baldwin (Vol. 1, entry “Symbolic logic”, pp. 640-
651), in the Syllabus for the Lowell Lectures of 1903, and in the 1906 Monist article 
“Prolegomena to an Apology for Pragmaticism” (Peirce 1906). Peirce continued 
working on Existential Graphs for the rest of his life. He wrote to William James on 
Christmas Day of 1909 that these graphs “ought to be the logic of the future” (NEM 
3, p. 874).  

Why so? The graphs, as had later crystallized to Peirce, are first and foremost an 
instrument of logical analysis: 
 

[T]he system of Existential Graphs is designed to afford a sort of geometrical 
παρασκευή,—or diagram,—for logical analysis, i.e. for illustrating and 
facilitating the same. (MS 300, p. 34, 1908) 
 
[T]he system of Existential Graphs alone enables us to carry the logical analysis 
of terms, propositions, and arguments to the furthest point possible in the nature 
of things. (MS 296, pp. 7-8, 1908) 

 
[T]here is no organ of definition and logical analysis that is at all equal to [EGs]. 
(Peirce to Carus, 18 Sept. 1908) 

 
Not only is the analysis carried out through EGs the most complete one; it is also 
necessarily correct: 
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[A]ll its represented analyses must be logically correct, since to say that an 
analysis is logically correct only means that it will be so represented in such a 
system that is, as this will then be, stripped of all superfluities. (MS 296, p. 9, 
1908) 

 
[I]f a graph expresses a concept analytically, its analysis must be logically 
correct, and the only logically correct analysis from elements all of which are 
expressed in the graph. This is plain, since all that we mean by a logically correct 
analysis is one in which the elements are so put together as precisely to express 
the concept to be analyzed (Ibid.) 

 
Peirce’s suggestion is that once the notational system has reached a maximum of 
analyticity, any particular analysis performed by it will prove to be a correct analysis. 
A system, constructed so as to employ the least amount of logical machinery and the 
least number of logical objects, forces us to the correct analysis of propositions. To 
say that an analysis is correct can in the first place mean nothing more than this.  

Now, how does the system of Existential Graphs yield correct logical analyses? 
This is our task to explain in the present paper. EGs divide in three parts: Alpha, 
corresponding to propositional calculus; Beta, corresponding to a fragment of 
quantificational logic with identity; and Gamma, which consists of modal logic, 
higher-order notions, abstraction, and logics for non-declarative assertions (Roberts 
1973; Pietarinen 2011). Roberts has elucidated different aspects of the analyticity of 
EGs, especially concerning the rules of transformation and the analysis of the logical 
structure of propositions. The rules allow dividing each piece of reasoning into its 
smallest steps, namely either insertions or omissions, which can hardly be considered 
complex operations (CP 4.564, 1906, MS 490, 1906). Peirce’s favorite example here 
is how by the rules of EGs a syllogism in Barbara is divided into no less than seven 
distinct logical steps (CP 4.571, 1906). Concerning the Beta part or quantificational 
logic, Peirce claimed that EGs provide “the only method by which all connections of 
relatives can be expressed by a single sign” (MS 482, 1897), as “the System of 
Existential Graphs recognizes but one mode of combination of ideas” (MS 490, 1906; 
cf. MS 296, 1908). The Beta line of identity performs the office of predication, 
identity, existence, and class-inclusion, all in one single sign (Pietarinen 2011), thus 
answering the puzzle of the composition of concepts (MS 498-499, 1906). Zeman 
(1968) has suggested that the continuity of the Beta lines provides an analysis of the 
conception of identity. Shin (2002, 2011), whose proposal we shall discuss below, has 
argued that EGs have multiple readings notwithstanding their being analytic. 

What about the first part of the system corresponding to propositional calculus, the 
Alpha part? What it is that makes Alpha more analytic (in Peirce’s sense) than other 
systems of propositional logic? According to Peirce, Alpha is more analytic than other 
systems because, at bottom, it employs one single logical conception, that of 
consequence de inesse, or material implication. To express the material conditional 
the system employs one single logical symbol, the so-called “scroll”, constituted by 
two closed lines one inside the other ( ), forming two compartments with the 
antecedent placed in the outer compartment and the consequent in the inner one. 
Peirce discovered the functional completeness of the joint denial for Boolean algebra 
in 1880, which was re-discovered and proved by H. M. Sheffer in 1913.2 In his 1885 

                                                
2 This unpublished manuscript (MS 378), entitled “A Boolian Algebra with One Constant”, was 
according to Irving Anellis still in 1926 tagged “to be discarded” at Harvard University’s philosophy 
department. In the manuscript Peirce reduces the number of logical operations to one constant. He 
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“On the Algebra of Logic” he uses the “copula of inclusion” ( )3 as the primitive, 
functionally complete operator of his non-relative logic. This was to become Peirce’s 
basic idea in the philosophy of propositional logic, and his experiments to properly 
express inclusion/implication since the 1880s directly contributed to the invention of 
the graphical systems of the late 1890s.  

However, if Alpha’s analyticity consisted simply in having a minimal functionally 
complete set of logical operations, then the Boolean algebra with one constant of 
1880 and the algebras of non-relative logic of the 1880s and 1890s would be as 
analytical as Alpha. Therefore, Peirce’s own emphasis on the greater analyticity of 
EGs remains in need of an explanation: 

 
We now have an apparatus capable of analytically expressing every proposition 
which can be analytically expressed by the “general algebra of logic” […] this 
system is far more perfect than logical algebra in being more analytical, and 
analysis is the chief thing in logic. (“On Logical Graphs”, MS 481, pp. 9-10, 
1896) 

 
[J]ust as logical algebra “frees us”, as Schröder says, “from the trammels of 
language”, so this system frees us from the trammels of algebra. (MS 1147, p. 
24, c. 1900) 

 
Why, then, did Peirce resort to Alpha, if he already had experimented upon 
analytically equivalent algebraic systems? Does not the copula of inclusion yield a 
complete analysis of non-relative logic? The reason, we claim, is that functional 
minimality does not exhaust the analysis. In the mid-1890s Peirce took a step further 
in the analysis of propositional logic. The idea was to have, one may say, truth-
functional signs that at the same time represent their own scope. The recognition that 
there are two functions that symbols may have in the analysis of logic, namely (i) 
truth-function (the “meaning” of a logical operation) and (ii) collectional function (the 
“scope” of a logical constant, including the representation of the order of operations) 
is a straightforward one to be made and we do not claim that to be Peirce’s discovery. 
But the idea of a notation in which the two functions are merged into one single 
notational devise is typical of his work. We claim that it is this merging of the truth-
function and collectional function in a unifying notation that constitutes the core 
meaning of Peirce’s claim that the system of Alpha graphs gives us the most complete 
analysis of propositional logic. This idea was to have significant consequences also to 
how he understood quantification to operate in the Beta part of the system (Pietarinen 
2015a). 

The neglect of these crucial aspects of Peirce’s EGs has caused two sorts of 
misunderstandings. The first is the claim that EGs represent almost a complete break 
with Peirce’s earlier logics and philosophy of logic: 
 

                                                                                                                                      
states that “this notation … uses the minimum number of different signs … shows for the first time the 
possibility of writing both universal and particular propositions with but one copula” (W4, p. 221). 
Peirce’s notation was later termed the Sheffer stroke and is well-known as the NAND operation. In 
Peirce’s terms it is one in which “[t]wo propositions written in a pair are considered to be both denied” 
(W4, p. 218). In the same manuscript, he also discovers what is the expressive completeness of the 
NOR operation, indeed today rightly known as the Peirce arrow. 
3 In the 1885 article he uses the claw “–<”. The “cursive” form used in the present paper ( ) was 
introduced by Peirce in his later writings (see e.g. MS 530, pp. 31-32, 1904). 
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It is now usual to think of this later work as merely being an “iconic” treatment 
of his earlier discoveries in the algebra of logic. It is also common to think of the 
graphs as intended merely as a tool for the visual representation or manipulation 
of logical propositions, still understood mentally as linearly notated. However, I 
will argue that it instead represents almost a complete break with most central 
motifs in his earlier work in the Algebraic Period and is based upon a philosophy 
of logic that even Peirce himself did not have the opportunity fully to develop. 
(Dipert 2006, p. 293) 

 
Dipert is certainly right that no appeal to sheer iconicity is really of use here. Algebra 
itself is iconic (Peirce 1885; Peirce 1906; MS 595, 1893; MS 303, 1903; MS 292, 
1906; MS 634, 1909), and iconic thinking in general comes in two varieties, the 
geometric and the algebraic (MS 616, 1906). The algebraic and the diagrammatic are 
the two sides of the same iconic coin, and therefore the reference to the iconic 
character of the graphs can by no means adequately explain their emergence as an 
autonomous system of notation. However, contrary to what Dipert maintains, we will 
show that under some important respects Alpha is not a break with Peirce’s earlier 
algebraic work. Rather, the Alpha graphs are the development of logical algebras, the 
pushing of them to the extreme. The philosophical motivation behind the algebraic 
and graphical systems is ultimately the same: that of analyzing the reasoning process 
and elements into their smallest and simplest components. The philosophy of graphs 
is a more developed and sophisticated version of the philosophy of algebra. 

The second, and a lot more consequential misunderstanding likewise derives from 
a misconception of the relation between the graphs and the algebra of logic. It is to 
maintain, as Shin (2002, 2011) does, that EGs differ from symbolic notations because 
they are, unlike symbolic notations, capable of “multiple readings”. We show in 
Section 4 that Shin’s argument is circular, for it presupposes what it is supposed to 
prove, namely that Alpha differs from standard symbolic notations. What really 
distinguishes Alpha from symbolic notations is, as Peirce emphasized, that the Alpha 
signs are the fewest with which one can express the propositional calculus.  

Our investigation belongs to that essential doctrine of logic that Peirce named the 
“philosophy of notation” (Peirce 1885). The philosophy of notation is in itself an 
important part of the philosophy of logic. It has been pursued by many in the modern 
era, from Leibniz to Frege and Peano. Peirce was, among his fellow logicians, the 
more attentive one towards the notational aspects of logic, more perceptively 
discerning the precise nature of the problems involved in the invention, modification 
and adoption of logical notations. Given Peirce’s anti-psychologistic approach, one 
should not be surprised to discover that notions such as cognitive efficiency, visual 
clarity, and persuasive efficacy are in principle extraneous to the philosophy of 
notation.4 But unlike psychological considerations, ethical considerations on the 
notation fully enter the logical scene. One of the first teachings of the Ethics of 
Notation (MS 253, 1903, MS 530, 1904) – which does for notations what the Ethics 
of Terminology (MS 478, 1903) does for language – is that a new notation is to be 

                                                
4 We do not deny that these notions (cognitive efficiency, visual clarity, and persuasive efficacy) do 
sometimes play a role even in Peirce’s philosophy of logic. Nor do we underestimate the importance of 
modern cognitive approaches to logical and mathematical notations (see e.g. Dutilh Novaes 2012; De 
Cruz & De Smedt 2013). What we deny is that the evolution of Peirce’s logics and the birth of the 
graphs can be explained in terms of such notions alone. In this paper we argue that another notion – 
analysis – has precedence. For further criticism and counter-criticism concerning issues such as 
visuality, free rides or generality of logical diagrams see Pietarinen (2015b), Pietarinen & Bellucci 
(2015a, 2015b). 
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adopted instead of an older and more established one only upon valid and justifiable 
grounds. If no justification for a notational change can be provided, then the older and 
more established form is to be maintained.5 If one accepts the Ethics of Notation as a 
methodological principle to be followed in the historiography of logic, one is thereby 
committed to justify Peirce’s shifts and improvements in notation – in the non-relative 
department the shift from the algebra of inclusion to that of consequence and from 
Entitative to Existential Graphs. Any such justification, we claim, must fit with the 
notion that animates Peirce’s entire philosophy of deductive logic: namely, analysis. 
By tracing Peirce’s “pursuit of analysis” from the algebras to the graphs, and by 
explaining the reasons for his notational moves, we hope to contribute a new chapter 
to the history of the philosophy of notation.  

The present paper is the first part of a series of papers investigating EGs as an 
instrument of logical analysis. It is divided as follows. Section 2 examines Peirce’s 
idea that the relation of inclusion is the primitive relation of logic and defends the 
view that this idea constitutes the fundamental motive of his notational researches, 
both algebraic and graphical. Section 3 explains how Peirce managed to represent 
scope in his algebras and graphs. Sections 2 and 3 provide a more accurate picture of 
the philosophy of logic behind Alpha than what we find in contemporary discussions 
on EGs. Having cleared up the precise meaning of Alpha’s analyticity, Section 4 
discusses Shin’s argument for multiple readings of Alpha graphs.  

The second and the third part (forthcoming) address the Beta and the Gamma 
systems of EGs as instruments of logical analysis. 
 
§ 2. The Relation of Inclusion and the Emergence of Negation. Since 1865, Peirce 
identified categorical propositions with hypotheticals,6 and since 1880 he identified 
both with the relation of illation expressed by the ergo.7 In his “Description of a 
Notation for the Logic of Relatives” (Peirce 1870) he had already moved away from 
Boole’s equational system and adopted an implicational one. His argument against 
the primacy of identity was that inclusion is a simpler notion than identity. Inclusion 
analyzes identity, that is, “x = y” is analyzed as “x y ∧ y x (Peirce 1870, W2, p. 
360).8 To express the paramount relation of logic, which comprises at once class-
inclusion, hypotheticals or conditionals, and illation, he uses the “copula of 
inclusion”: .  From “the identity of the relation expressed by the copula with that of 
illation, springs an algebra” (Peirce 1880; W4, p. 173), which he calls the “algebra of 
the copula”:  

 
This identification, by means of which all that is found true of term, proposition, 
or inference is at once known to be true of all three, is a most important engine 
of reasoning, which we have gained by beginning with a consideration of the 
genesis of logic. […] In consequence of the identification in question, in S  P, 
I speak of S indifferently as subject, antecedent, or premise, and of P as 
predicate, consequent, or conclusion. (Peirce 1880; W4, p. 170, 170n5) 
 

                                                
5 Peirce’s statement of the maxim of the ethics of notation is this: “The person who introduces a 
conception into science has both the right and the duty of prescribing a terminology and a notation for 
it; and his terminology and notation should be followed except so far as it may prove positively and 
seriously disadvantageous to the progress of science. If a slight modification is sufficient to remove the 
objection, a much greater one should be avoided” (MS 530, p. 1, 1904, emphasis in the original). 
6 Cf. Logic Notebook, 1865, W1, p. 337. 
7 Cf. W4, p. 421.  
8 Such an “analysis” of equality through inclusion was later imitated by Schröder (1890, p. 147). 
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The reason for the identification of logical consequence with material implication is 
that “logic supposes inferences not only to be drawn, but also to be subjected to 
criticism; and therefore we not only require the form P ∴ C to express an argument, 
but also a form Pi Ci to express the truth of its leading principle” (W4, p. 166, 
1880). When the leading principle of an argument is stated in a conditional 
proposition, the premises become the antecedent and the conclusion the consequent. 
This much Peirce had learnt from the medieval doctors, who “always called the minor 
premise the antecedent and the conclusion the consequent” (NEM 4, p. 178, 1898).9 
Peirce was not confused about material implication and logical consequence.10 In fact, 
he informally used a deduction theorem in his 1880s algebras,11 and subsequently 
proved it as a meta-theorem of the system of graphs.12 Inclusion is transitive (if A B 
and B C, then A C),13 anti-symmetric (if A  B, the reverse B A does not 
hold) and reflexive (A A). It is what we nowadays call a partial order. In the 1881 
“On The Logic of Number” Peirce calls any such relation a “fundamental relative of 
quantity” and the systems of objects having a fundamental relation of quantity a 
‘system of quantity” (W4, pp. 299-300). The fundamental relative of quantity is 
crucial in the construction of an axiomatic base for arithmetic that Peirce undertook in 
that important paper.14 But the transitivity and anti-symmetry of this relation was 
important for Peirce because it mirrors inference, namely the passing from premises 
to conclusion. Inference is a transitive, anti-symmetric process, and the basic 
operation in formal logic must reflect these properties as far as possible. The idea that 
material implication is primary because it mirrors inference remains a constant theme 
throughout his logical thought.15  

Besides being iconic of inference itself, inclusion is also the most analytic 
operation. That the copula of inclusion (together with falsity) alone is sufficient to 
express the whole logic of propositions is one of the dominant motives of Peirce’s 
philosophy of algebraic notation. Negation is defined in terms of implication (as the 
implication of what is false). In the 1880 paper he derives negation from implication 
as follows: let us take x to be a constant falsehood; A  x then amounts to the 
negation of A (Peirce 1880, W4, p. 176). This roughly corresponds to intuitionistic 
negation, which gets ¬A from A → ⊥. The “fourth icon” of the 1885 “On the Algebra 
of Logic” states exactly this (Peirce 1885, W5, p. 172; cf. Prior 1958). Negation is 
introduced in the system for the sake of easier calculations, but implication is 
logically primary. When an operation is defined by means of another, the former is 
dispensable: 
 

The algebra of the copula, as given in my first paper, is adequate to every 
problem of non-relative logic, and it makes use of but two operational signs, the 

                                                
9 For Peirce’s discussion of the medieval doctrine of consequences see W2, pp. 431-432 (1870), MS 
594, pp. 62-64 (c. 1893), MS 408, p. 121, MS 411, pp. 177-178 (1894). See also Bellucci (2015). 
10 But Dipert 1981, p. 592 suggests that he was “deliberately ambiguous” between them. 
11 Cf. W4, p. 173, 1880; CP 3.380, 1885. 
12 “If one graph can be illatively transformed into another an enclosure may be written consisting of an 
oval enclosing the former graph and an oval enclosing nothing but the latter” (Logic Notebook, June 
1898, MS 339, p. 118r; cf. MS 339, p. 180r; cf. also Roberts 1973, pp. 120-121; Pietarinen 2015c). 
13 In his notes on Peirce’s Johns Hopkins logic lectures of 1878-79, Allan Marquand writes that all 
syllogistic and all logic springs out from the transitiveness of the copula, and that the resemblances 
between the copula of inclusion and the relation of illation are more important than the differences 
(December 3, 1878, Marquand 1879, p. 45). 
14 On Peirce’s 1881 axiomatization of arithmetic see Shields 2012. 
15 See NEM 4, p. 277, c. 1895, CP 3.440, 1896, CP 3.472, 1897, NEM 4, p. 174, 1898  



8 
 

copula  and the sign of negation. Accordingly, an algebra of non-relative 
logic which contains three signs, say of addition, multiplication, and negation, 
contains a surplusage of signs. (W5, p. 108, 1884) 

 
A superfluous sign is a sign signifying a logical operation or function that can be 
signified in terms of other signs. A superfluous concept is one signified by a 
superfluous sign. In the “Philosophy of Notation” paper of 1885 Peirce is clear on 
what he means by notational superfluity: 
 

The forms of Boolian algebra hitherto used, have either two operational signs 
and a special sign of negation, or three operational signs. One of the operational 
signs is in that case superfluous. Thus in the usual notation we have 
 

 
 
showing two modes of writing the same fact. (W 5, pp. 174-175)  

 
In a notation that has both a sign of conjunction and a sign of disjunction it is possible 
to express the same fact in two different ways. In contemporary notation, ¬(x ∨ y) := 
¬x ∧ ¬y and ¬x ∨ ¬y := ¬(x ∧ y). De Morgan’s laws are the effect of a surplus of 
signs. Signs of addition and multiplication can be introduced by definition, but 
philosophically speaking they are superfluous.  

Wittgenstein wrote to Russell in a similar vein:  
 

The big question now is, how must a system of signs be constituted in order to 
make every tautology recognizable as such in one and the same way? This is the 
fundamental problem of logic (1913/2012, p. 59) 
 

Although ¬¬p is perfectly equivalent to p, the sign “¬¬p” is not equivalent to the sign 
“p”, for “¬¬p” contains two occurrences of the sign of negation, while “p” does not; 
this suggests that “¬¬p” contains something not contained in p, which is obviously 
false because the two are equivalent. Something is wrong in the notation, 
Wittgenstein concludes (Tr. 4.0621). That two things are identical, or that two states 
of things have the same truth-value, should be shown in the notation itself. The fact 
that the alleged primitives of logic are inter-definable shows that they are not the real 
primitives (Tr. 5.42). In Peirce’s terms, the possibility of having two modes of writing 
the same fact, while a virtue for an algebra considered as a calculus, is an 
imperfection for an algebra considered as an instrument for logical analysis.16 
 Around 1880 Peirce had discovered the functional completeness of the joint denial 
operator: 
 

Every logical notation hitherto proposed has an unnecessary number of signs. It 
is by means of this excess that the calculus is rendered easy to use and a 
symmetrical development of the subject is rendered possible; at the same time, 

                                                
16 In Peirce’s notes for the entry on “Exact Logic” for Baldwin’s Dictionary we read: “It is far simpler, 
without question, to admit disjunction and copulation, together with negation, as primitive relations. If 
the object were to produce a working calculus of logic, that should be done [...] The real purpose of 
logic is to analyze reasonings, explain them, to furnish general canons for application in difficult cases, 
and to guide the laying out of a general plan of procedure in reasoning. For that purpose, complete 
analysis is requisite; and a completely analytic statement must necessarily be very complicated. (MS 
1147, pp. 13-14, c. 1901). 
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the number of primary formulae is thus greatly multiplied, those signifying facts 
of logic being very few in comparison with those which merely define the 
notation. (W 4, p. 218, 1880-81) 

 
But the algebra of joint denial is a hapax in Peirce’s logical writings. Although it 
perfectly conforms to the ideal of an analytic algebra, this system was soon 
abandoned in favor of inclusion. Since he proved that both joint denial and inclusion 
are minimally functionally complete (this latter when taken to encompass the constant 
falsehood ⊥), that is, since one is as analytic as the other, the question may arise as to 
why Peirce settled on inclusion. The answer should at this point be clear, as inclusion 
mirrors inference while the joint denial operator does not: “of all the methods in 
which propositions may be analyzed and analyzed correctly, that one which uses the 
copula of inclusion alone corresponds to the theory of inference” (NEM 4, p. 174, 
1898). If logic were a purely syntactic manipulation of signs, then any analytic 
relation could be taken as primitive as any other. Russell and Peano, for example, 
considered the choice of the primitive ideas of their logic as being to some extent 
arbitrary (Russell 1903, § 31; Peano 1958, pp. 247, 302, 432). But for Peirce logic 
takes its reason for being from the nature of reasoning, and its signs should adhere to 
the representation of reasoning as much as it is allowed by the requirement of 
analyticity: if two notations are equivalently analytic, preference should be accorded 
to the one which more closely represents inference. 

Peirce would continue using some copula of inclusion during the late 1880s and 
the beginning of the 1890s. Very remarkable is the so-called “sign of consequence”, 
invented circa 1886 (W5, pp. 341-343, 361-378) and used in the projected 1893 book 
How to Reason: the Critick of Arguments (MS 411, MS 559). The sign of 
consequence, , is formed by a horizontal line (the vinculum) extending over the 
antecedent and by a cross separating antecedent and consequent:  It expresses 
the material conditional (W5, p. 341). From the point of view of the truth-functional 
calculus, the sign of consequence and the copula of inclusion are equivalent. (In the 
next section, however, we show that they are not equivalent under a somewhat 
different perspective.) The sign of consequence and its algebra, Peirce says, 
“completely describes the notation. It does not yield a convenient calculus, but it has 
the logical merit of doing everything that the Boolian algebra does without any 
superfluous sign” (“The Logic of Relatives”, 1886, W5, p. 373), that is, is a sole 
sufficient operator for the propositional calculus. Peirce also suggests that the sign of 
consequence can be “truncated” and read off as a disjunction: 

 
[W]e can cut the sign of consequence into two parts, the cross signifying ‘or,’ the 
vinculum ‘not’. Thus, 

 
may be regarded as  

 
 
meaning not X or Y is true. […] this modification of our notation is so vastly 
more convenient than what we had before, that the student may well ask why I 
did not adopt it from the beginning. The answer is, that in thus breaking the sign 
of consequence and inconsequence we shutter all vestiges of the logical origin of 
the signs of aggregation and composition. Now, I consider the convenience of a 
logical algebra a very secondary consideration, since it is of no very great 
importance as a calculus, while it is very important as an instrument of logical 
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analysis (“The Algebra of the Copula”, MS 411, pp. 232-233, 1893; formulas in 
Peirce’s hand). 

 
The sign of consequence can be “truncated” in two Boolean parts, one the vinculum 
expressing negation, the other the cross expressing disjunction. The notational 

derivation from  to  show how negation and disjunction can be derived 
from the conditional without any structural remodeling of the notation.  

In one of his last logical papers Peirce recalls that the development of Entitative 
Graphs in 1896 had started “from the conditional form” (MS 670, p. 11, 1911). In 
fact, in “The Logic of Relatives”, where Entitative Graphs were first presented (Peirce 
1897) he begins with the (quantificational) logic of relatives, without treating 
propositional logic as a separate part: the “algebra of the copula” section is 
conspicuously missing in that paper.17 However, it should not come as a surprise that 
the conditional is again the primary conception also in Entitative Graphs: “it must be 
acknowledged that the illative relation (that expressed by ‘therefore’) is the most 
important of logical relations, the be-all and the end-all of the rest. It can be 
demonstrated that formal logic needs no other elementary logical relation than this” 
(Peirce 1897, p. 171). We return to Entitative Graphs in the next section. 

Invented immediately after the system of Entitative Graphs, Existential Graphs 
too make the conditional form primary. It has sometimes been observed that in EGs 
Peirce abandons the conditional and resorts to conjunction and negation as the 
minimal set of connectives of the Alpha part. For example, Dipert wrote that 

 
the graphs make negation and conjunction primary, diminishing the importance 
of the conditional that had dominated Peirce’s logic since 1885 and of some 
transitive and antisymmetric logical connective that had dominated his whole 
adult life (from 1867 through the 1890s). (Dipert 2006, p. 323n43) 

 
This claim fails to do justice to Peirce’s treatment of propositional logic in EGs. What 
in 1885 was the copula of inclusion and in 1893 the sign of consequence, in EGs 
becomes the scroll, composed of two closed lines one inside the other (Fig. 1), but 
often drawn with one continuous line (Fig. 2). The antecedent is placed in the outer 
compartment, the consequent in the inner compartment. Both figure 1a and 1b 
represent the material conditional, “If A then B”: 
 

                              
      Figure 1                                                          Figure 2 

 
                                                
17 The reason is that “The Logic of Relatives” (Peirce 1897) was intended as Peirce’s second Monist 
review of Schröder’s Vorlesungen, this one being especially concerned with the third volume devoted 
to the logic of relatives. Thus Peirce, wishing to include a presentation of his newly discovered 
Entitative Graphs in the review, felt himself forced to focus on the graphical treatment of 
quantification. He would however soon produce a “more formal statement” (MS L 77) of the theory 
(MSS 482, 481, 483; Pietarinen 2015c), including separate presentations of propositional and predicate 
logic. But see Roberts 1973, pp. 25-27, for an explanation of the “Alpha” part of Entitative Graphs. 
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As with the “truncation” of the sign of consequence into a disjunction (with the 
vinculum signifying negation), in EGs the scroll may be interpreted as a conjunction 
(with the oval signifying negation); one may thus read Fig. 1 and Fig. 2 as ¬(A ∧ ¬B). 
Although this reading becomes easier in more complicate cases, it would be a logical 
distortion to treat negation as primary and the conditional as derived. On the contrary, 
by taking the conditional and its corresponding notation as primary, Peirce derives the 
idea of the negation from it. To do this, to show that if the scroll signifies a 
conditional, then the single oval must signify negation, Peirce introduces the 
pseudograph as a constant falsehood (⊥). This may be represented as a single empty, 
or vacant, oval, as in Fig. 3. (Strictly speaking, the area of the oval of the pseudograph 
is not absolutely empty, for the sheet of assertion upon which the graphs are scribed 
represents all truths, and the pseudograph denies that.) 

  
Figure 3 The empty oval or pseudograph 

 
Since the pseudograph is a constantly false proposition or absurdity, this can also be 
taken to mean that every proposition is true: “Were every graph asserted to be true, 
there would be nothing that could be added to that assertion. Accordingly, our 
expression for it may very appropriately consist in completely filling up the area on 
which it is asserted. Such filling up of an area may be termed a blot” (MSS 455-456). 
If the blot and its boundary is regarded as irrelevant to the meaning of the graph, Fig. 
4 may be taken to represent that from A the pseudograph follows, or that “not-A.”  
 

 
Figure 4 

 
As in the 1885 “On the Algebra of Logic”, Peirce proposes to derive negation from 
the conditional and constant falsehood. Now, since a blot may be made indefinitely 
small, this derivation, which is not quite a transformation according to the rules of 
inference, can also be represented as a continuous transmutation: 
 

  
Figure 5 

 
This mutation gives us what Peirce calls an interpretational corollary of the 
convention adopted (representing the conditional by the scroll): the single oval 
precisely denies its content. 
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Since an obliterated area may be made indefinitely small, a single cut will have 
the effect of denying the entire graph in its area. For to say that if a given 
proposition is true, everything is true, is equivalent to denying that proposition. 
(CP 4.402, 1903)18  
 
Since a Conditional de inesse (unlike other conditionals) only asserts that either 
the antecedent is false or the consequent is true, it all but follows that if the latter 
alternative be suppressed by scribing nothing but the antecedent, which may be 
any proposition, in an oval, that antecedent is thereby denied. (CP 4.564, 1906) 
 

It is important to notice that in this process – Peirce says – we “did not assume that 
any sign represented negation”. Yet we have “proved that certain signs having certain 
significations, otherwise defined, must express negation. In other words, we have 
virtually analyzed the concept of negation” (MS 481, p. 8, 1896, our emphasis). The 
scroll analyzes negation and shows its logical origin: “I thus analyze the negation of P 
into a positing of P as a mere idea together with the assertion that falsity is sequent 
upon it” (MS 300, p. 46, 1908). The reverse is not true, however: one cannot define 
the conditional by negation without also employing either conjunction or disjunction. 
In the Graphs, the impossibility of deriving the conditional (the scroll with vacant 
areas) by negation (a single cut with a vacant area, or pseudograph) in the same way 
in which Peirce derives the latter from the former is reflected in the impossibility of 
introducing the cut with a vacant area (pseudograph) by scribing it on the sheet. 

When each oval of the scroll is interpreted as expressing negation, the 
juxtaposition of two graphs on the Sheet of Assertion has to represent either 
conjunction or disjunction. This gives us the two, dual systems of Entitative and 
Existential Graphs. The full primitive sign is, both in Entitative and in Existential 
Graphs, the representation of the conditional. In Entitative Graphs, “A implies B” is 
represented as in Fig. 6, while in EGs it is represented as Fig. 7: 
 

             
                                      Figure 6                                                        Figure 7 

                             
As an abbreviation, we can interpret the oval as negation and then express the 
conditional in terms of negation and conjunction (as in EGs) or in terms of negation 
                                                
18 At one point Peirce seems to disavow aspects of the above analysis, as the blot cannot be removed 
completely: “this error of assuming that, because the blackened Inner Close can be made indefinitely 
small, therefore it can be struck out entirely, like an infinitesimal. That led me to say that a Cut around 
a graph-instance has the effect of denying it. I retract: it only does so if the Cut encloses also a blot, 
however small, to represent iconically the blackened Inner Close. […] a single Cut, enclosing only A 
and a blank, merely says: ‘If A’, or ‘If A, then’ and there stops. If what? you ask. It does not say. ‘Then 
something follows’, perhaps; but there is no assertion at all. This can be proved, too. For if we scribe 
on the Phemic Sheet the Graph expressing ‘If A is true, Something is true’, we shall have a Scroll with 
A alone in the Outer Close, and with nothing but a Blank in the Inner Close. Now this Blank is an 
Iterate of the Blank-instance that is always present on the Phemic Sheet; and this may, according to the 
rule, be deiterated by removing the Blank in the inner close. This will do, what the blot would not; 
namely, it will cause the collapse of the Inner Close, and thus leaves A in a single cut” (MS S-30, pp. 
16-18, 1906). If this is right, then the oval that derivatively represents denial has an infinitesimally 
small, invisible blot residing on its boundary. 
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and disjunction (as in Entitative Graphs). In this way, it is possible to negate a without 
resorting to the more complex conditional form with the blot as in Fig. 4. But Peirce 
is clear that this is a just a derived interpretation, an interpretational corollary (MS 
450, 1903). Taking the idea of negation as primary is philosophically inaccurate: 
 

All my own writings upon formal logic have been based on the belief that the 
concept of Sequence, alike in reasonings and in judgments, whether the latter be 
conditional or categorical, could in no wise be replaced by any composition of 
ideas […] The simple Cut is a Scroll […] Indeed, so far is the concept of 
Sequence from being a composite of two Negations, that, on the contrary, the 
concept of the Negation of any state of things, X, is, precisely, a composite of 
which one element is the concept of Sequence. Namely, it is the concept of a 
sequence from X of the essence of falsity. (MS 300, pp. 46-48, 1908)19 

 
Negation is not a primitive idea; rather, it is a conception derived from that of 
implication. Therefore, the sign of negation ought to be considered as a complication 
or determination of a more primitive sign, the scroll. The analysis of negation in terms 
of the conditional is according to Peirce one of the few satisfactory proofs of the 
indecomposability or uncompoundness of a logical concept that can be obtained. He 
took that in logical analysis, it is “tolerably easy to demostrate compoundness, but 
next to impossible to make sure of elementality, or elementarity” (MS 300, p. 49, 
1908). Once all other logical constants of the propositional calculus are defined in 
terms of the conditional relation, we have carried analysis to its extreme (truth-
functional) limit: the conditional is logically unanalyzable, while other logical 
relations are analyzable through it. 
 

§ 3. Combining Truth-function and Scope. Alpha is therefore as analytic as a 
notation for propositional logic can be, for it uses the least possible amount of logical 
connectives – in effect, just one. No system is more analytical than a single-sign 
notation. This was clearly perceived by Wittgenstein, who in the Tractatus pointed 
out that every proposition can be obtained from the elementary propositions by a 
recursive application of the N-operator (joint denial) to classes of propositions to 
obtain further propositions (Tr. 6.001). Russell and Whitehead used the Sheffer stroke 
in the second edition of Principia Mathematica, also persuaded by the Tractarian idea 
that austerity shows something essential about logic. Peirce had discovered the 
functional completeness of joint denial operator in 1880, but considered the other 
singular operator, material implication, to be superior because of its mirroring the 
very idea of inference itself. 

If this were the whole story, however, Alpha would just be as analytical as the 
algebra of logic of 1885, because the scroll analyzes the logic of propositions exactly 
as the copula of inclusion does. Something is missing in our reconstruction. In fact, as 
we now proceed to show, with the graphs Peirce takes a step further in the analysis, 
which consists in the unification in one single sign of two distinct notational offices: 
truth-functionality and the indication of scope.  

                                                
19 Cf. “Before I had the concept of a cut, I had that of two cuts” (MS 650, p. 20, 1910); “Now the 
method of logical analysis of propositions that I recommend is that of the System of the Existential 
Graphs; and that system did, as a fact, arise, and could not have failed to arise, from the adoption of a 
suitable diagrammatic symbol for the relation between one supposition and another from which it 
follows; and Existential Graphs suffice for all the purposes of logical criticism and Critic” (MS S-30, p. 
5, c.1906). 
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Such a step was first taken in 1886. We saw above that in 1886 Peirce substitutes 
the copula of inclusion with the sign of consequence. The decisive reason for this 
notational change was that the sign of consequence, unlike the copula of inclusion, 
also fulfills the office of parentheses. It thus does everything that the former notation 
does with a lesser amount of signs:  
 

[A] further notational convention must be introduced. Using parentheses, just as 
they are used in algebra, as binding signs, we have to distinguish between  
 

 
and 
 

 
To do this, we have only to establish the convention that the vinculum, or 
horizontal line, which forms a part of the sign of consequence is [to] be extended 
over the whole antecedent, and all possible ambiguity is removed, without the 
use of parentheses. Thus, we write  
 

 
and 

 
(MS 559, p. 8, 1893, formulas in Peirce’s hand) 

 
In the 1885 notation that uses the copula of inclusion, in order to distinguish A (B 

C) from (A B) C we need to use parentheses or other conventions.20 With the 
sign of consequence this is not necessary: the scope of vinculum denotes the 
antecedent in all cases.  

To appreciate the significance of such differences, it is instructive to 
compare the sign of negation in the standard language (¬) and the sign of negation in 
Boolean algebra, namely the vinculum.  

 
Figure 8 

 

 
Figure 9 

 
In Boolean notation (Fig. 8), the vinculum fulfills at once the offices that in the 
standard notation are obtained by the joint action of two different signs: the ¬ and the 
parentheses (Fig. 9).21 In a similar way the sign of consequence fulfills the offices that 
                                                
20 Peirce considers inclusion as left-associative, and thus writes x y z for x (y z) (W5, p. 
176, 1885). 
21 The first to achieve something similar may have been Descartes, who attached the vinculum to the 
radical sign (Cajori 1929, pp. 385-386), thus synthetizing two notational functions in one single sign. 
Leibniz, the Bernoullis and others used the vinculum to only express aggregation (Cajori 1929, pp. 386-
390). 
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in the 1885 notation were obtained by the joint action of two different signs, the 
copula  and the parentheses.22 This was the real novelty of the 1886-1893 sign, at 
once the sign of consequence and the sign of scope of the antecedent. None of the 
signs used in algebra, with the exception of the Boolean vinculum to express 
negation, has this double property.  

Now, the sign of consequence, with its “double lecture” discussed in the 
preceding section, is notationally equivalent to the conditional form that we find in 
Entitative Graphs. In Entitative Graphs, the sign of consequence (Fig. 10) is replaced 
by the oval (Fig. 11): 

 

                           
Figure 10                                                    Figure 11 

               
The oval here fulfills the same offices as the sign of consequence. Both the sign of 
consequence and the oval express material implication by indicating the scope of the 
antecedent. Nests of ovals behave just as stacked vincula.23 Both indicate scope of the 
antecedent, merging in one single sign two distinct offices. When he presents 
Entitative Graphs in the Monist, Peirce insists that his main concern in devising the 
new notation was the possibility of representing the scope of the antecedent in the 
conditional form. That was his reason for passing from the sign of inclusion to the 
sign of consequence: 
 

Since, if the antecedent is compound, it is very important to know just how much 
is included in the antecedent, while it is a matter of comparative indifference 
how much is included in the consequent (though it is simply everything not in 
the antecedent), and since further (for the same reason) it is important to know 
how many antecedents, each after the first a part of another, contain a given 
relative or copula, I find it best to make the line which joins the antecedent and 
consequent encircle the whole of the former. (Peirce 1897, p. 174, our emphasis) 

 
This is the form of Fig.11, which is read “If A, then B”. Fig. 12 means “for any x, 
either it is not H or it is D,” or “any H is D” (in contemporary notation, ∀x 
[Hx→Dx]). Fig. 13 means “whoever loves only the virtuous is wise” (in contemporary 
notation, ∀x∀y (Lxy ∧	
  Vy → Wx). The oval performs the office of negation and 
parentheses, while the juxtaposition functions as disjunction. (A further convention 
prescribes taking any line of identity whose outermost part is unenclosed or evenly 
enclosed as a universally quantified variable.) 

                                                
22 The editors of W5 state: “This may be thought of as a Peircean version of what is known as Polish 
notation. The location of the left tip of the ‘streamer’ makes it a prefixive (and parentheses-free) 
notation” (W5, pp. 459-460, n341.7). There are also interesting parallels with Frege’s philosophy of 
notation, which we cannot address here for want of space. The main issue is that both Peirce with his 
1886 sign of consequence and Frege with his 1879 Begriffsschrift managed to express the order of the 
operations in a second dimension. On Frege’s two-dimensional notation see Macbeth 2006, pp. 45-56. 
23 The editors of W5 state: “The diagrammatic treatment of logic here is suggestive of Peirce’s later 
graphical treatments but is more akin to his entitative than to his existential graphs. Note the emphasis 
on inclusion of antecedent in the consequent of a true hypothetical proposition” (W5, p. 458, n331.27-
332.22) 
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                                Figure 12                                                       Figure 13 

 
Since Peirce had been in possession of a graphical device for representing 

the logic of relatives over two dimensions since 1882 (cf. W4, pp. 391-399), why it is 
only in 1896 that he publishes the first version of his Graphs? The common answer is 
that in 1882 he lacked a devise to represent negation (cf. Roberts 1973, p. 20). But we 
believe it would be more appropriate to say that in 1882 he did not have a sign 
fulfilling both the office of a logical connective and of a collectional sign.24 This was 
the great novelty introduced in 1886 with the sign of consequence ( ), which does 
not simply represent a conditional form (as the copula of inclusion  does), but also 
represents the scope of the antecedent of that conditional. In this very important sense, 
the oval as a distinctive sign of Entitative and Existential Graphs evolved from the 
1886-1893 sign of consequence. The sign of consequence is the missing link between 
the 1885 system with the copula of inclusion and the systems of graphs. Fig. 14 shows 
what the shift from sign of consequence to Entitative Graphs would look like.25  

 

 
Figure 14 

 
The same is true of Existential Graphs. In the Alpha part of EGs, the scroll 

expresses a material conditional, and each of its ovals expresses negation. But the 
scroll (and a fortiori the ovals) indicates its own scope, so that no syntactic ambiguity 
is possible in Alpha. There is no way to scribe a graph in the Alpha system 
corresponding to A B C without thereby scribing either (A B) C (Fig. 15) 
or A (B C) (Fig. 16). 

                                                
24 Having a sign that fulfills both functions (truth-function and collectional function) allows the Beta 
graphs to represent dependent quantification. The problem with Peirce’s 1882 graphical experiments 
with the logic of relatives (W4, pp. 392-396) is that he cannot express dependent quantification without 
considerably complicating the notation, while in the 1896 Graphs dependent quantification is perfectly 
represented by means of ovals and lines only. On this point, see Pietarinen 2015a.  
25 The three formulas expressed with the sign of consequence (on the left-hand side) and in Entitative 
Graphs (on the right-hand side), correspond to the following standard formulas: “A → B”, “( A → B ) 
→ C”,  “¬ ¬ ( A → B )”. 
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Figure 15                                                        Figure 16 

 
In the Minute Logic of 1902 Peirce explains that the ovals indeed combine a 

number of offices: “even when there are no lines of identity, they fulfill three distinct 
offices, and […] in introducing these lines we have imposed upon them two more”. 
They “fulfill all five with success” (MS 430, p. 53, 1902). The first function is a truth-
function: the ovals mean negation. Second, they serve as collectional signs, and thus 
have a collectional function. Third, they can express all modes of logical combination 
when juxtaposition upon the Sheet of Assertion is taken to mean logical conjunction. 
The third office is a consequence of the first two. In the Beta part, they add two 
further offices. The fourth “is to indicate the order of succession of the 
identifications”, that dependent quantification (see footnote 26). The fifth, which he 
does not mention in this manuscript, is to cut continuous segments out of the lines of 
identity26 in order to represent non-identities between the individuals denoted by 
extremities of the line (MS 430, pp. 53-63, 1902; see Pietarinen 2015a).  

The invention of the multi-task oval was an important achievement, showing a 
basic analytical truth: unlike what is the case with superfluous logical connectives 
which can be dispensed with if we seek a functionally analytical notation, the signs of 
scope are not dispensable. Quite the contrary, Peirce regarded such “collectional 
signs” as the most important signs of algebra: 
 

Treatises on algebra do not dwell upon the subject of the enclosure: they do not 
need to do so. They use it incessantly, however, and it merits the attention of the 
logician as the very type of an efficient algebraical tool,—the embodiment in 
purest form of the quintessential characteristic of mathematical thought, which 
consists in making individual objects out of relations. (MS 430, pp. 71-72, 1902) 

 
[A]long with the sign of negation we require one of those Collectional Signs,— 
“Klämmern”, Schröder calls them, — such as in algebra are the 
parentheses, brackets, braces, the vinculum, period. The functional signs when 
more than single letters are attached to them belong to this class of Collectional 
Signs, which class is the most important, — it would, indeed, be strictly true to 
say they are the only indispensable, — signs of algebra. But the whole of the 
strict truth is, in this case, not important. What is important is to understand that 
the essential power of algebra is due exclusively to collectional signs. (MS 670, 
pp. 13-14, 1911) 
 

It is strictly true that the collectional signs are the sole indispensable signs of algebra. 
For we can imagine an algebra in which the only signs are the parentheses. Alpha is 
such an algebra:  
                                                
26 A line of identity is defined by Peirce as “a Graph any replica of which, also called a line of identity, 
is a heavy line with two ends and without other topical singularity (such as a point of branching or a 
node), not in contact with any other sign except at its extremities. Otherwise, its shape and length are 
matters of indifference. All lines of identity are replicas of the same graph” (CP 4.416). A line asserts 
the numerical identity of the individuals denoted by its extremities. By being attached to Beta spots, 
lines represent predication. On the lines and more generally on Beta see Roberts 1973, pp. 47-63 and 
Pietarinen 2011. 
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But while the syntax of existential graphs thus needs both a sign of negation and 
an endless series of collectional signs, there is no reason why a single sign 
should not perfectly fulfill both these purposes. (Ibid.) 

 
Alpha forces us to the correct analysis of propositional logic by pushing to the 
extreme the requirement of analyticity. Signs of logical connectives are superfluous if 
we already have a powerful collectional sign. In a sense, the step that Peirce took with 
the Graphs was that of getting rid of signs of connectives. In the entry “Symbolic 
logic” written for Baldwin’s Dictionary (MS 1147) Peirce presents the graphs using 
parentheses and brackets instead of the ovals (Fig. 17a and 17b). The shape of the 
signs is immaterial (Fig. 18): 
 

 
 

Fig. 17a Alpha formulas in Baldwin’s Dictionary 
 
 

 
 

Fig. 17b Beta formulas in Baldwin’s Dictionary 
 
 

 
Figure 18 

 
Peirce even suggests that the primary office of ovals should be that of collectional 
signs, and secondarily that of signs of negation: 
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The first office which the ovals fulfil is that of negation. […] The second office 
of the ovals is that of associating the conjunctions of terms. […] This is the 
office of parentheses in algebra. […] The ovals are able to combine these offices 
because the last does not refer to single terms; so that we have only to use the 
ovals so as rightly to associate the elementary parts of the assertion we wish to 
express; and then, if any such parts have the wrong quality (which is the 
technical term for the distinction between affirmative and negative), it only 
needs to have an oval drawn around it so as to enclose nothing else. (MS 430, 
pp. 54-56, 1902) 
 

To appreciate this insight, it may help to compare Peirce’s position to Wittgenstein’s. 
In the Tractatus, Wittgenstein claimed that his Grundgedanke was that “the ‘logical 
constants’ do not represent. That the logic of the facts cannot be represented” (Tr. 
4.0312); “there are no such things as ‘logical objects’ or ‘logical constants’ (in the 
sense of Frege and Russell)” (Tr. 5.4). One argument in support of the Grundgedanke 
is that the behaviour of logical constants is akin to that of signs of punctuation:   
 

The apparently unimportant fact that the apparent relations like ∨ and ⊃ need 
brackets — unlike real relations is of great importance. The use of brackets with 
these apparent primitive signs shows that these are not the real primitive signs; 
and nobody of course would believe that the brackets have meaning by 
themselves. (Tr. 5.461) 
 
Logical operation signs are punctuations [Die logischen Operationszeichen sind 
Interpunktionen] (Tr. 5.4611) 

 
Cheung (1999) explains Tr. 5.4611 by considering the case of a propositional calculus 
with one single logical connective, the Sheffer stroke. If we write (p q) for p | q 
(neither p nor q), then the formula p → (q ∨ r) may be written as follows:  
 

(((pp)((qr)(qr)))((pp)((qr)(qr)))) 
 
The idea is that in any context in which there is but one logical operation, the sign of 
the operation can be dispensed with as long as the order and scope of its application is 
clearly indicated. For example, in a system of arithmetic with only addition, the sign 
of addition “+” can be dispensed with; 7 + (4 + 6) would be written as (7 (4 6)), and 
the rule of associativity of addition as (x (y z)) = ((x y) z).27 Such a notational device 
is applicable whenever we have a logical system with a single operation: in any such 
system, the sign of the truth-function only needs to occur as a sign of scope. Since in 
the Tractatus all other connectives are definable in terms of the N-operator, all signs 
of logical constants are, at bottom, Interpunktionen.  

Milne (2013) has argued that in fact Wittgenstein goes too far when he asserts that 
signs for logical operations are punctuation marks. There is a difference of function 
here: while logical constants determine truth-conditions, the signs of scope determine 
what it is whose truth-conditions are to be determined.  

 

                                                
27 Cf. Milne 2013, pp. 121-122n127. Of course in this example the juxtaposition of numbers is the 
“implicit” symbol of addition, just as in EGs the juxtaposition of graphs is the “implicit” symbol of 
logical conjunction. In the notation based on the representation of p | q as (p q), juxtaposition means 
joint denial. In both cases, the parentheses delimit scope of the operation whose symbol is only 
implicit. 
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While neither punctuation marks nor logical constants stand for anything, both 
contribute to the sense expressed. In this they are alike. But how they contribute 
differs, and it is for this reason that it is misleading—I’m tempted to say, it is just 
plain wrong—to say that signs for logical operations are punctuation marks. 
(Milne 2013, p. 123) 

 
This is a typical problem in the philosophy of notation. Let us put it in Peircean terms. 
Logical constants and punctuation marks have different notational functions: the 
former determine truth-conditions (i.e., is a truth-function), the latter determine that 
whose truth-conditions are determined (i.e., is a collectional function). Yet it is 
possible to devise a notation in which one sign fulfills both functions, thus showing 
that “there is no reason why a single sign should not perfectly fulfill both these 
purposes” (MS 670, pp. 13-14, 1911). In such a notation as well as in whatever 
notation follows the same principle, the logical constants are punctuation marks that 
bear truth-functional meaning. Tr. 5.4611 by no means suggests regarding the logical 
constants as “void” signs of punctuation: rather, it suggests regarding the signs of 
punctuation as “filled” with truth-functional meaning. If we interpret Tr. 5.4611 as 
asserting that logical constants can be expressed in the notation by punctuation marks 
(as Cheung 1999 does), then Peirce’s Alpha graphs may be said to constitute a 
convincing example of Tr. 5.4611. 

It might however be argued that according to Peirce’s explication of analysis in 
terms of homogeneous parts, those symbols that combine truth-function and 
collectional function (such as Peirce’s sign of consequence and scroll) are not fully 
analytic, as they combine or synthetize, rather than analyse, heterogeneous elements. 
But to say that the sign of consequence or the scroll is not analytic because it does not 
separate truth-function and collectional function is to presuppose that these functions 
are in fact different heterogeneous elements that the notation has to keep apart. We 
might call this presupposition the Atomistic Postulate concerning notations.  

However, on Peircean principles, the results of the analysis cannot be 
presupposed at the outset, because “to say that an analysis is logically correct only 
means that it will be so represented in such a system that is, as this will then be, 
stripped of all superfluities” (MS 296, p. 9, 1908). A system is more analytic than 
another if ceteris paribus, that is, provided that the former can represent everything 
that the latter represents, the former does it with fewer signs and conventions. It is one 
thing to recognize that notations exist in which the truth-function and the collectional 
function are represented by distinct symbols; quite another thing is to “reify” the two 
functions and maintain that an analytic notation should keep them apart. The idea that 
the two functions are to be separately represented in the notation is a presupposition 
that nothing in the analysis can warrant, and which on the contrary directly derives 
from one’s habitus of thinking in standard, linear notation, in which the signs of the 
operations and the signs of their scope are sharply distinct. But that truth-function and 
collectional function would be heterogeneous elements that ought to be separated in 
the notation is a presupposition that nothing in the analysis can warrant. On the 
contrary, the fact – exemplified by Alpha – that those two functions can be expressed 
in the analysis by the same symbol reveals that they should not have been divorced in 
the first place. We take this to be the real meaning of Wittgenstein’s remark that 
“[w]hen we have rightly introduced the logical signs, the sense of all their 
combination has been already introduced with them [...] We should then already have 
introduced the effect of all possible combinations of brackets” (Tr. 5.46). Of course 
some standard notations such as four operators plus parentheses or some other such 
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conventions may be useful for some purposes and philosophical for some other 
reasons. But there must be some element of truth in the idea of a notation without 
parentheses that Peirce and Wittgenstein (and for instance Łukasiewicz when 
inventing the Polish notation) cultivated: the mere fact that it is possible to express the 
whole propositional calculus with one single symbol reveals essential truths about 
logic itself. Peirce’s genius allowed him to see what a parentheses-free notation like 
the Alpha graphs teaches about logic: that truth-function and collectional function are 
different functions only in a notation that represents them as different. But since a 
notion is constructible in which no such difference is represented, this not only does, 
but must suffice for logic’s analytic purposes. 
 

§ 4. The Fallacy of Multiple Readings. The functional minimality of the scroll 
and its fulfilling at the same time the office of a collectional sign give us a better idea 
of what Peirce meant when claiming that EGs are as analytical as a notation can be. 
Alpha is itself a direct effect of the pursuit of analysis that motivated all of Peirce’s 
works upon formal logic. Strictly speaking, the decisive step towards a diagrammatic 
representation of the logic of propositions was taken already in 1886 and consisted in 
re-unifying in one single sign (the sign of consequence) truth-functional and 
collectional meaning.  

We saw above that in Alpha graphs it is impossible to write A B C without 
thereby scribing either (A B) C (Fig. 15) or A (B C) (Fig. 16). This is a 
consequence of the notational re-unification of truth-function and scope. Unlike what 
may happen in algebraic notations that have to introduce some further stipulative 
conventions, it is structurally impossible for an Alpha graph to represent non-
equivalent propositions. Interestingly, an apparently similar distinction has been 
proposed by Shin (2002). Shin claims that what distinguishes Alpha (and EGs in 
general) from symbolic notation is that Alpha graphs can have multiple equivalent 
interpretations or “readings.” The aim of the present section is to expose the 
confusion that lies at the bottom of this view. 

According to Shin, the literature on Peirce’s logic has “taken for granted that 
Peirce’s Existential Graphs are diagrammatic and it is a different type of 
representation from his symbolic logical system” (Shin 2011, p. 334). Shin wants to 
replace such a take-for-granted distinction with a criterion that distinguishes 
diagrammatic from symbolic notations. We agree with her caution that, at this stage 
of our knowledge of how diagrams work, “it is desirable to search for linguistic and 
diagrammatic elements of a system, rather than to come up with necessary and 
sufficient conditions either for linguistic or diagrammatic systems in general” (Shin 
2011, p. 334). So what Shin is in search of is an element that distinguishes EGs from 
those logical notations commonly termed symbolic, and which ordinarily are 
presented in the literature. Such an element is, according to Shin, that an Alpha graph 
can have multiple equivalent readings while a formula of an ordinary symbolic 
language cannot. This element is taken to constitute the main difference between 
Alpha and symbolic languages for propositional logic.  
 

I demonstrate how differently a meaningful unit of each system can be read off. 
In order to prevent ambiguity, the semantic interpretation of a symbolic sentence 
requires its unique readability, and hence no possibility of multiple readings. On 
the other hand, in the case of EG, multiple readings do not generate ambiguity. 
(2002, p. 4) 
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The following is the proposed Multiple Reading Algorithm for Alpha graphs (Shin 
2002, p. 74): 

 
Multiple-Reading Algorithm Let X and Y be Alpha graphs 
1. If X is an empty space, its translation is ⊤. 
2. If X is a sentence letter, its translation is X. 
3. If a translation of X is α, then a translation of [X] is ¬α. 
4. If a translation of X is α and a translation of Y is β, then  

(a) a translation of XY is (α ∧ β), 
(b) a translation od [XY] is (¬α ∨	
  ¬β), 
(c) a translation of [X[Y]] (i.e., scroll with X in the outside cut and Y in the 
inner cut) is (α → β), and 
(d) a translation of [[X][Y]] is (α ∨	
  β). 

 

 
Figure 21 

 
Take the Alpha graph in Fig. 21. According to Shin, it may be “carved up” in 
different ways (Fig. 22), corresponding to the steps 4(a)-(d) of the Multiple-Readings 
Algorithm: 

 

 
Figure 22 

 
For example, the following equivalent readings of the Alpha graph in Fig. 21 may be 
obtained that correspond to cases 1 and 2 in Fig. 22: 
 
21a) [[X] [Y]], with X = (R ∧	
  ¬S) and Y = (P ∧	
  ¬Q) (Case 1): (R ∧	
  ¬S) ∨ (P ∧	
  ¬Q)  
21b) [X [Y]], with X = ¬(R ∧	
  ¬S) and Y = (P ∧	
  ¬Q) (Case 2): ¬(R ∧	
  ¬S) → (P ∧	
  ¬Q)  
 
According to Shin, ordinary symbolic languages cannot have such multiple readings. 
As a simpler example, take the Alpha graph in Fig. 23 and the sentences (23a)-(23c). 
 

 
Figure 23 
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23a) ¬P ∨ Q                  23b) P → Q               23c) ¬(P ∧ ¬Q) 
 
According to the Multiple-Readings Algorithm, Fig. 23 can be “read off” indifferently 
as (23a)-(23c): 23a is obtained by clause 4b preceded by clause 3; 23b by clause 4c; 
23c by 4a preceded by two applications of clause 3. One and the same diagram can be 
read off in these different ways, while the contrary is not true: (23a)-(23c) are 
different formulas expressing the same fact (the same truth-table). Being different, 
they require proofs of such logical equivalence. No such proof is needed in EGs, 
simply because there are no such different expressions: there is only one diagram as 
that in Fig. 23.  

There are two assumptions operative here.  
 
Condition 1:  “Reading off” an Alpha graph corresponds to translating it into a 
formula in ordinary symbolic notation. 
 

According to this condition, EGs are the object or source-language and the symbolic 
language is the target-language into which the first is translated.  

 
Condition 2: In order to generate multiple readings the target-language must have 
a richer logical vocabulary than the source-language.  
 

For had the target-language only conjunction (∧) and negation (¬), being thus a 
conjunctive-negative fragment of the full language of propositional logic, then (23a)-
(23c) above would be indistinguishable from one another (cf. Fig. 25 and Fig. 26). 
  

 
Figure 25. Single reading of an Alpha graph in a Symbolic Language with{∧, ¬} 

 
 

 

                    
Figure 26. Multiple readings of an Alpha graph in a Symbolic Language with {¬, ∧, ∨, →} 
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Shin is aware of this latter condition, as she tells that “EG’s Alpha system has fewer 
syntactic devices than propositional languages, but without suffering from the 
inconvenience of a symbolic system with only two connectives” (Shin 2002, p. 97; cf. 
2011, p. 340).  

Therefore, the only possible comparison is between Alpha and a given symbolic 
language Ls as expressive as Alpha (say, with ∧ and ¬). A comparison cannot be done 
otherwise, because the comparison has anyway to be made with some specific 
language Ls. It is from such a comparison that should result that there is something in 
Alpha that is not present in Ls. Accepting this method, as it should be if we want to 
differentiate Alpha from symbolic notations, the problem can then be reformulated 
according to Conditions 1 and 2. The difference between the language of Alpha 
graphs and a given symbolic language Ls with the set of connectives {∧, ¬} is that 
Alpha graphs have multiple readings in another target-language Lt with at least {¬, ∧, 
∨, →}, while Ls has no such multiple readings.28  

But now, if Conditions 1 and 2 are enough to be able to speak of “multiple 
readings” in a target language Lt of a formula of the source language Ls, then also 
symbolic formulas can have multiple readings. To see this, we may provide an 
algorithm to translate a sentence of Ls with {¬, ∧} into a sentence of Lt with {¬, ∧, ∨, 
→} as follows: 
   

3. If a translation of X is α, then a translation of ¬X is ¬α. 
4. If a translation of X is α and a translation of T is β, then 

(a) a translation of X ∧ Y is (α ∧ β), 
(b) a translation of ¬(X ∧ Y) is (¬α ∨ ¬β), 
(c) a translation of ¬(X ∧ ¬Y) is (α →β), 
(d) a translation of ¬(¬X ∧ ¬Y) is (α ∨ β). 

 
That is, in order to translate (1s) of Ls we can take different paths.  
 
(1s)  ¬[(¬A ∧ ¬B) ∧ ¬(C ∧ ¬D)] 
 
We can for example “read off” the whole formula according to clause 4(c), with X = 
(¬A ∧ ¬B) and Y = (C ∧ ¬D), as 
 
(1t)  (¬A ∧ ¬B) → (C ∧ ¬D). 
 
Likewise, we can “read off” the whole formula according to clause 4(b), with X = 
(¬A ∧ ¬B) and Y = ¬(C ∧ ¬D), as 
 
(2t)  ¬(A ∧ ¬B) ∨ ¬[¬(C ∧ ¬D)]. 
 
There is nothing surprising here. (1t) and (2t) are multiple readings in Lt of (1s) in Ls. 
To return to our simple example from Fig. 23, the sentence “P →Q” of Ls with {→} 

                                                
28 Given a Ls with the set of connectives {∧, ¬} one may recursively generate indefinitely many 
“multiple equivalent readings” of one single formula: ¬P = ¬¬¬P = ¬¬¬¬¬P and so on. One can 
likewise recursively produce “multiple equivalent readings” of one single Alpha graph by adding 
double cuts. However, such “multiple readings” are made within one given language, while Shin’s 
multiple readings are translations between languages. Shin’s point concerns such external, not 
internal, multiple readings. 
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can be multiply read either as “¬P ∨Q”, “P→Q”, or “¬(P∧¬Q)” in Lt with {¬, ∧, ∨, →
}, as shown in Fig. 27: 

 

 
Figure 27. Multiple readings of a formula of Ls {¬, ∧} in Lt  {¬, ∧, ∨, →} 

 
Why should not these be multiple readings in the sense in which Alpha is claimed to 
have multiple readings? Shin argues that in the case of symbolic languages we do not 
“read off” a formula in multiple ways. Rather, we extend the vocabulary of our 
language in order to provide multiple readings of its formulas. With Alpha, on the 
contrary, no extension of the vocabulary is needed in order to have multiple readings.  

But if we assume that any language is specified by its logical and non-logical 
vocabularies, then any addition to the vocabulary of a given language necessarily 
produces a different language.29 Strictly speaking, no language can extend its own 
notation without producing a different (albeit not necessarily more expressive) 
language. But then, on Shin’s account, when a language Ls has multiple readings in 
another language Lt, but Lt is, or may be considered as, an extension (and not 
necessarily a proper or conservative extension) of Ls, then the phenomenon in 
question is not one of multiple readings.  

The idea of extension implies the idea of a family of languages, some more 
extended than others. In taking Lt as an extension of Ls, as Shin does, one can only 
mean that we are taking them to belong to the same genus of languages, of which 
some are extensions of others in having some additional logical or non-logical 
constants in their vocabulary. For what other reason could there be to distinguish 
Alpha’s multiple readings in Lt from Ls’ multiple readings in Lt, if not that this latter 
is performed within a unique language (say L, to which Ls and Lt belong)? Shin’s 
illusion is created by the fact that the object-language Ls and the target language Lt, 
although two distinct languages, are both symbolic. But it is one thing to say that two 
languages are both symbolic, and quite another to say that they are the same language.  

There is thus a third condition tacitly operative in Shin’s multiple-readings 
argument:  

 
Condition 3: A formula can have multiple readings in a symbolic target-language 
only if it is not itself symbolic.  
 

Condition 3 is a definitory condition, and is implicitly assumed in Shin’s argument. It 
merely states that when we multiply translate a formula of a source language into a 
target language, and both languages belong to the same family (both are symbolic, 
both are diagrammatic), this is not called multiple reading. Condition 3, being 
definitory, is virtually harmless. The problem is that it renders Shin’s argument 
circular. For Shin’s aim is to find a feature that would prove that Alpha is not 
symbolic, and in general one that distinguishes non-symbolic from symbolic 
                                                
29 Cf. e.g. Church 1956, p. 48, p. 48n111. 
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notations. She thinks she has found in that the former may have multiple readings 
while the latter cannot. Unfortunately, the notion of multiple readings is itself defined 
in terms of such distinction: when a symbolic language has multiple translations in 
another, possibly more expressive symbolic language, we do not call these 
translations “multiple readings”. As it is apparent, there is a circulus in definiendo 
here: the differentiation between the graphical and the symbolic is exactly what the 
possibility of multiple readings is supposed to provide. But this very distinction is 
employed to define multiple readings. 

 In sum, Shin’s argument is that: 
1) What distinguishes Alpha from symbolic notations is that Alpha is capable of 

multiple readings while symbolic notations are not. 
2) A formula of a given language Ls has multiple readings in a symbolic target-

language Lt (richer in its connectives) if it has multiple equivalent translations 
in Lt without Lt being, or being capable of being, an extension of Ls. 

This argument is circular. The refutation is: When Lt is an extension of Ls, Lt and Ls 
belong to the same family of languages. Since (2) states that Lt is symbolic, Ls must 
also be symbolic. Therefore, a formula can have multiple readings only if it is not 
symbolic, for no symbolic formula can have multiple readings. Therefore an Alpha 
graph is non-symbolic because it can have multiple symbolic readings; but it can have 
multiple symbolic readings only because it is non-symbolic. Alpha graphs are 
differentiated from symbolic notations by saying that they have a character that only 
non-symbolic notations have.  

Shin in fact does not explain why symbolic notations cannot have what she calls 
multiple readings. What she says is that they do have multiple non-equivalent 
readings, and then suggests that this is the reason why they cannot have multiple 
equivalent readings. But this amounts to confounding the two: 
 

[A] symbolic system is very careful to prevent multiple readings of a formula, 
since it would yield ambiguity […] To secure unique readability, parentheses or 
prefix notations have been adopted so that one and only one way of parcelling up 
a sentence is available. (Shin 2002, p. 79) 

 
I demonstrate a fundamentally different way that sentences and graphs are read 
off. In the case of sentences, unique readability should be observed to prevent 
ambiguity in a system, but graphs can be read off in many different ways without 
causing ambiguity. (2011, p. 335) 

 
This way of differentiating between sentential and graphical assertions is exceedingly 
odd. Both assertions – that in symbolic languages unique readability should be 
observed to prevent ambiguity in the system, and that Peirce’s graphs can have 
multiple readings without causing ambiguities – are certainly true. But on the one 
hand, also the formulas of a symbolic language may have multiple readings in another 
language, as shown in Fig. 27 above. On the other hand, Shin’s use of “ambiguity” is 
itself ambiguous: by proposing the parallelism between unique readability of 
symbolic languages and multiple readability of diagrammatic ones, she conflates two 
senses of unique readability. A sentence in symbolic language may be syntactically 
ambiguous, and in order to prevent such ambiguity parentheses and other conventions 
are commonly introduced. However, Shin nowhere explains how the requirement of 
syntactical unique readability of symbolic sentences could be the cause of their not 
allowing multiple readings. Rather, the parallel suggested between unique-readability 
of sentences and multiple-readability of graphs gives the impression that, for want of 
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a parallel multiple-reading phenomenon in symbolic language, no better solution has 
been found than the idea that both sentences and graphs have multiple readings, but 
while the multiple readings of graphs are all logically equivalent, the multiple 
readings of sentences are not. This is an unfortunate way of putting the matter, for if a 
phenomenon (multiple readings) gives two distinct results (equivalent and non-
equivalent sentences), then it is more prudent to suspect that we are in the presence of 
two distinct phenomena. It would be far better to say, in the first place, that EGs do 
not have the sort of syntactical ambiguity that sentences of symbolic language can 
have (that is, non-equivalent multiple readings). This is the discrepancy to be 
explained. That EGs also have multiple equivalent readings is a distinct claim, and 
Shin does nothing to unpack her misleading suggestion that unique readability of 
symbolic sentences is the cause of their having only non equivalent multiple readings.  

We saw above that the real reason why Alpha graphs cannot express a 
syntactically ambiguous formula is that the Alpha graphs consist of signs that fulfil at 
once the office of truth-functional operators and the office of scope indicators. It is 
impossible in Alpha graphs to scribe a graph without indicating its compositional 
allocation. The interesting discrepancy is therefore between that of a notation in 
which it is possible to leave scope of a logical constant unexpressed and a notation in 
which this is not possible. This, if any, is a notational difference between Alpha and a 
corresponding symbolic notation.  

In the terms of Shimojima’s conceptual framework (Shimojima 1996a, 1996b), the 
convention of combining negation and scope indicator in one single sign functions as 
a structural constraint that excludes a false or ambiguous analysis of a given 
sentence. Such structural constraint provides EGs with a special variety of content 
specificity (see Shimojima 1996a, Chapter 3): they cannot represent certain 
information (truth-functional operation) without adding certain other information 
(scope of the operation). The symbolic notation, on the contrary, has no such 
structural constraint and therefore is not provided with such a peculiar variety of 
content specificity. A symbolic notation can represent certain information (truth-
functional operation) without adding certain other information (its scope). The 
absence of such structural constraint is what makes it possible to have syntactically 
ambiguous sentences in symbolic notation. The presence of such structural constraint 
in EGs, in contrast, renders the system non-ambiguous; or perhaps better put, 
syntactic ambiguity ceases to be an applicable property.30 

However, a charitable reading of Shin’s proposal may be that while the 
formulas of a symbolic language Ls with {¬, ∧} can be multiply read in a richer 
symbolic language Lt with {¬, ∧, ∨, →} which is a proper extension of the former, a 
graphs in the language of Alpha graphs cannot be multiply read in a richer Alpha 
language, because there is no such a thing as a richer Alpha language. In other 
words, Shin’s argument might be taken to imply that the language of the Alpha system 
is not extendible (that is, it cannot have more connectives than it actually has), 
without increasing its expressivity. This might well be true, and one might try to 
connect this fact with the discrepancy indicated above along the following lines: since 

                                                
30 Shimojima further explains that a structural constraint may be “nomic” or “stipulative”: “We call a 
structural constraint ‘purely nomic’ if it holds on a set of representations without needing any 
stipulation on our part. We call a constraint ‘purely stipulative’ if it holds on a set of representations 
purely in virtue of the syntactic stipulations we make for the representations” (1996a, p. 64). The 
structural constraint that obliges us to express scope together with operation is plainly a “stipulative” 
constraint, for it depends on the conventions adopted in our syntax, not on the properties of space (see 
ref. omitted).  
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all of Alpha’s truth-functional signs also express scope of the truth-function, the 
system is in this sense sui generis or saturated and no further extension of it is thereby 
possible. In this perspective, only those systems in which the truth-functions and the 
collectional functions would be notationally separated would be capable of proper 
extension of their vocabulary. In our terms: only incompletely or non-notationally 
analytic systems are extendible. The discrepancy that while symbolic notations are 
extendible Alpha graphs are not would then only be the superficial effect of those 
deeper structural constraints.  

Shin however does not suggest anything similar. She assumes the non-
extendibility of Alpha without further notice and infers from that assumption that 
non-extendible languages have multiple readings in some more extended languages. 
But lest the non-extendibility of Alpha is explained in terms of some yet more 
fundamental feature, nothing but the notational synthesis of truth function and 
collectional function differentiates Alpha from any other symbolic language (like Ls 
above) that is de facto as rich as Alpha in terms of its logical vocabulary. 
 

Conclusion. We explained why Peirce considered the Alpha part of the theory 
of Existential Graphs to meet the requirements of the most perfect notation for the 
analysis of the propositional calculus. We have discussed Peirce’s idea that the 
relation of illation is the primitive relation of logic and we have shown that this idea 
constitutes the fundamental motive of Peirce’s philosophy of notation, both algebraic 
and graphical. We explained how in his algebras and graphs Peirce arrived at a 
unifying notation for logical constants that represent both truth-function and scope, 
thus obtaining a notation that employs the least amount of logical vocabulary. We 
also showed that Shin’s claim that the possibility of multiple readings is what makes 
Alpha a non-symbolic notation is viciously circular. That which differentiates Alpha 
from typical symbolic and equivalently expressive notations is that Alpha is 
constituted by a minimal notation obtained by a notational re-unification of the truth-
function and collectional function. 
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