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Random Sampling via Sensor Networks:
Estimation Accuracy vs. Energy Consumption

Flavio Zabini, Alex Calisti, Davide Dardari, and Andrea Conti

Abstract—The estimation of spatial processes from sparse
sensing nodes is fundamental for many applications, including
environmental monitoring and crowd-sourcing. In this paper,
we analyze the impact of measurement errors on the estimation
of a finite-energy signal sampled by a set of sensors randomly
deployed in a finite d-dimensional space according to homoge-
neous Poisson Point Process. The optimal linear space invariant
interpolator is derived. Based on such an interpolator, analytical
expressions of both the estimated signal energy spectral density
and the normalized estimation mean square error are obtained.
An asymptotic analysis for high sensors density with respect to
the signal bandwidth is given for scenarios subjected to estimation
energy constraint. The normalized estimation mean square error
is derived for large wireless sensor networks with constraints on
the capacity-per-volume and on battery duration.

I. INTRODUCTION

Self-organizing wireless sensor networks (WSN) has at-
tracted considerable attention in the last years [1]. The pos-
sibility to create a network infrastructure composed of low-
cost, small-size and energy-limited sensing devices (sensors)
has created a large number of applications in smart home, en-
vironmental monitoring, crowdsensing and Internet of Things.

For the classical regular sampling, the well-known
Whittaker-Kotelnikov-Shannon sampling theorem states that
a signal can be perfectly reconstructed from its samples
provided that the sampling frequency is larger than twice its
bandwidth. For the irregular sampling, a theorem of Landau
[2], [3] establishes necessary conditions on samples density
for the perfect estimation. In the case of a random sampling
in time, the estimation accuracy is usually evaluated in the
terms of mean square error (MSE) [4]. In particular, if the
sample positions are the output of a stationary Poisson point
process (PPP), Marvasti [5] shows that the reconstruction is
still possible via ideal low pass (ILP) filtering provided that
the average samples density is higher than twice the signal
bandwidth, and that the spectrum of the estimated signal is
that of the original signal immersed in a white noise floor.

Recently, the extension of Marvasti’s result to a multidi-
mensional domain has gained interest due to its application on
WSN for environmental monitoring [6]–[10]. The assumption
that nodes in a WSN are deployed according to a homogeneous
PPP (homogeneous in Rd corresponds to stationary in R)
is widely adopted [11]–[14].1 However, many works do not
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1Multidimensional signal reconstruction from inhomogeneous Poisson sam-

pling has been analyzed in [15], where the optimal linear space invariant (LSI)
interpolator is derived accounting for random sampling and signal properties.

consider that the ILP filtering is no more optimal for irregular
sampling, as widely known in the one-dimension domain
in case of jitter [16]–[18]. Moreover, in a realistic sensing
scenario, the distortion due to measurement errors and sensors
energy consumption have to be considered [19]–[21].

In this paper, by following the approach in [15], we derive
the optimal LSI interpolator minimizing the normalized es-
timation mean square error (NEMSE) by jointly taking into
account random sampling, measurement errors and energy
consumption. In particular, the estimated signal energy spec-
tral density (ESD) and NEMSE are derived as functions of
important parameters such as samples density and distortion.
These results aim to answer the following question in multidi-
mensional signal estimation: given a certain amount of energy

spent for the estimation, is it better to have few accurate

samples or many inaccurate ones? Anyway, in an actual
WSN, the most relevant estimation energy constraint is not
on the whole network, but on each sensor, due to the battery
duration limitation. In addition, a constraint on the capacity
of each sensor for sending the samples to the interpolation
entity has to be taken into account. Therefore, another relevant
question is: when the estimation accuracy of a large WSN is

dominated by the capacity-per-volume and when by the sensor

lifetime? By modeling the communication channel between
each nodes and the interpolator as an erasure channel, and
by considering the capacity-per-volume as a constraint for a
large WSN, we derive a simple analytical expression for the
NEMSE as a function of both the estimation rate and the
capacity-per-volume.

II. SYSTEM MODEL

Consider the signal z(x) ∈ C with support A ⊆ Rd, finite
energy Ez , and ESD Ez(ν), where x,ν ∈ Rd. Let F {·} and
δ(·) be the Fourier transformation and the Dirac delta gen-
eralized function in Rd, respectively [22]. The homogeneous
Poisson sampling process can be expressed as

P(x) =
∑

n∈N (Π)

δ(x− xn) (1)

where Π is the homogeneous PPP in Rd with intensity ρ [23],
xn denotes the position of the n-th sample according to Π,
and N (·) is the index set operator. It is known [24] that

E {P(x)} = ρ (2a)

E {P(x)P(x− τ )} = ρ2 + ρδ(τ ) . (2b)

The sampled signal with measurement errors is given by

zϵ(x) =
∑

n∈N (ΠA)

ẑnδ(x − xn) (3)
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where N (ΠA) is the index set of the points of Π falling in
A. The n-th sample affected by measurement is

ẑn = z(xn) + en (4)

where the en
′s are zero-mean independent random variables

(RVs) with variance σ2
n, independent of P(x). The distortion

due to measurement errors is defined as

D ! E

{

∑

n∈N (ΠA)

|en|
2
}

. (5)

Consider the estimation performed by a LSI interpolator θ(x)
with Fourier transform Θ(ν). In the d-dimensional domain, the
term space-invariant takes the place of the usual time-invariant
in the one-dimension domain. The estimated signal is given
by

ẑ(x) = (zϵ ∗ θ)(x) =
∑

n∈N (ΠA)

ẑnθ(x − xn). (6)

Two metrics are employed to evaluate the signal estimation
accuracy: the ESD of the estimated signal (6) and the NEMSE.
The former is

Eẑ(ν) ! F

{
∫

Rd

E
{

ẑ(x)ẑ†(x− τ )
}

dτ

}

= E

{

|Ẑ(ν)|2
}

(7)
with Ẑ(ν) ! F {ẑ(x)}. The latter is

ϵS !

∫

Rd |z(x)− ẑ(x)|2

Ez
(8)

where the expectation is with respect the measurement errors
and the samples positions. To perform an asymptotic analysis
for large sample intensity, we also introduce the following
quantities normalized to the signal bandwidth-per-dimension
Bz:2 the (normalized) spatial frequency ν̆ ! ν/2Bz , the
Poisson sampling process intensity ρ̆ ! ρ/(2Bz)d, distortion

D̆ ! D
Ez(2Bz)d

, signal ESD Ĕz(ν̆) !
(2Bz)

d

Ez
Ez (2Bzν̆), and

estimated signal ESD Ĕẑ(ν̆) !
(2Bz)

d

Ez
Eẑ (2Bzν̆).

III. SIGNAL ESTIMATION

Lemma 1 (Optimal LSI Interpolator): The transfer function
of the LSI which minimizes the NEMSE defined in (8) is given
by

Θ(ν) =
Ez(ν)

ρEz(ν) + Ez

(

1 + D
Ezρ

) . (9)

Proof: By extending the Wiener filtering theory to Rd

as done in [15], it can be shown that the LSI interpolator
minimizing (8) results in

Θ(ν) =
Z(ν) U†

zϵ
(ν)

Ezϵ(ν)
(10)

where Z(ν) ! F {z(x)}, Uzϵ
(ν) ! F {E {zϵ(x)}},

and Ezϵ(ν) ! F {Rzϵ
(τ )} with Rzϵ

(τ ) !

2For finite energy signals with infinite band in Rd, we consider, for
normalization purpose, the extension of the well-known Gabor’s bandwidth

to Rd, i.e. Bz !

√

∫

Rd

|ν|2Ez(ν)dν
Ez

.

∫

Rd E
{

zϵ(x)z†ϵ(x− τ )
}

dx. In the sense of distributions, we
have from (3), (4), and (6) that

zϵ(x) = z(x)
∑

n∈N (Π)

δ(x−xn)+
∑

n∈N (ΠA)

enδ(x−xn) (11)

where the first term follows by the definition of support of
z(x). From (2a), (2b), (11), and the independence between en

and xn, it follows that

E
{

zϵ(x)z
†
ϵ(x− τ )

}

= z(x)z†(x− τ )[ρ2 + ρδ(τ )]

+E

{

∑

n∈N (ΠA)

σ2
nδ(x− xn)δ(x − τ − xn)

}

and

E {zϵ(τ )} = ρz(τ ) (12a)

Rzϵ
(τ ) =[ρ2 + ρδ(τ )]

∫

Rd

z(x)z†(x− τ )dx +Dδ(τ ) .

(12b)

By Fourier transforming (12) in Rd we obtain

Uzϵ
(ν) = ρZ(ν) (13a)

Ezϵ(ν) = ρ2Ez(ν) + Ez

(

ρ+
D

Ez

)

(13b)

which, together with (10) and Ez(ν) = |Z(ν)|2, provides (9).

Remark 1: By using normalized quantities, for ρ̆ → +∞,
the optimal LSI interpolator in (9) tends to 1

ρ1Bz
(ν) where

1Bz
(ν) denotes the indicator function equal to 1 for ν ∈ Bz

and 0 otherwise. It means that the ILP filter considered in
[6], [8], [9] is an asymptotic optimal choice when the samples
intensity which is much higher than the signal band cardinality
in Rd.

Remark 2: In the particular case of D = 0 and d = 1,
(9) reduces to the optimal linear time invariant interpolator
for stationary Poisson sampling process found by Leneman in
[16] once the ESD is replaced by the power spectral density.

Corollary 1 (Normalized Estimated Signal ESD): When the
optimal LSI interpolator in (9) is employed, the normalized
ESD of the estimated signal is given by

Ĕẑ(ν̆) = Ĕz(ν̆)

⎡

⎣

Ĕz(ν̆)

Ĕz(ν̆) + 1
ρ̆

(

1 + D̆
ρ̆

)

⎤

⎦ . (14)

Proof: From (6) and (7), the ESD of the estimated signal
ẑ(ν) results in Eẑ(ν) = |Θ(ν)|2Ezϵ(ν), which from (13b) and
(9) becomes (14) in terms of normalized quantities.

Remark 3: While the use of an ILP interpolator in a PPP
causes a white noise floor on the estimated signal ESD [5],
the optimal LSI interpolator introduces only a scaling factor
point outs in square brackets in (14).

We now introduce two examples.

Example 1 (Bessel-type autocorrelation function): Consider
a signal z(x) (x ∈ R2) with a Bessel-type autocorrelation
function such that its normalized ESD results in Ĕz(ν̆) =
4
π
1C0(ν̆), where C0 denotes the 2-dimensional ball centered

in the origin with radius 1/2. The corresponding normalized
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(a) The case of Bessel-type autocorrelation function

−0.5

0.5

−0.5

0.5

1

1

0

0
0

−1 −1

−5

−10

−15

−20

−25

−30

−35

−40

ν̂1ν̂2

Ĕ ẑ
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(b) The case of Gaussian autocorrelation function

Fig. 1. Estimated signal normalized ESD in R2 for ρ̆ = 102 and D̆ = 102.

estimated signal ESD according to (14) is depicted in Fig.
1(a).

Example 2 (Gaussian-type autocorrelation function): Con-
sider a signal z(x) (x ∈ R2) with a Gaussian-type auto-
correlation function, such that its normalized ESD results in
Ĕz(ν̆) = 4

π
e−4|ν̆|2 (i.e., an infinite band signal where the

standard deviation is considered as the practical bandwidth
per dimension for normalization purpose). The corresponding
estimated signal normalized ESD according to (14) is depicted
in Fig. 1(b).

Note that, in both the examples, the typical noise floor due
to homogeneous Poisson sampling and measurement errors
does not arise when using the optimal LSI interpolator (9).

Corollary 2 (NEMSE): When the optimal LSI interpolator
in (9) is employed, the NEMSE results in

ϵS = 1−

∫

Rd

Ĕ2
z (ν̆)

Ĕz(ν̆) + 1
ρ̆

(

1 + D̆
ρ̆

)dν̆ . (15)

Proof: By using the fundamental isometry presented in
[4], the NEMSE corresponding to the optimal LSI interpolator
results in

ϵS = 1−
1

Ez

∫

Rd

|Ez,zϵ(ν)|
2

E†
zϵ
(ν)

dν

which, from (13a) and (13b), provides (15) in terms of
normalized quantities.

Remark 4: From (15), the distortion effect can be described
by an equivalent diminished normalized intensity

ρ̆D̆ !
ρ̆

1 + D̆
ρ̆

. (16)

Example 3 (NEMSE for ILP ESD Signals): For signals of
the example 1, the NEMSE results in

ϵS =
( 1

ρ̆D̆

)

/
(

1 +
1

ρ̆D̆

)

.

TABLE I
TABLE OF THE MAIN QUANTITIES RELATED TO AN LARGE WSN FOR

SIGNAL ESTIMATION (u IS THE MEASUREMENT UNIT FOR THE SIGNAL).

Quantity Significance Unit
z(x) Signal to be reconstructed u
x Spatial coordinate in Rd m

xn Random position of the n-th sample in Rd m
ẑn n-th random sample of z(x) ∈ C (4) u

ν Spatial frequency coordinate in Rd m−1

Ez Energy of the signal u2 md

Ez(ν) ESD of z(x) u2 m2d

|A| Cardinality of z(x) domain in Rd md

Bz Bandwidth-per-dimension of z(x) m−1

D Distortion due to sensing errors u2

EM Overall estimation energy J
T Time duration of the sensing s
σ2

M Measurement error variance for each sensor u2

Ws Power consumption for each sensor W
κM Proportional constant between WsT and 1/σ2

M J u2

c Capacity-per-volume symbol/ch. use

md

·̆ Normalized version of a quantity

Example 4 (NEMSE for Gaussian ESD Signals): For signals
of the example 2, the NEMSE results in

ϵS =
π

4ρ̆D̆
ln
(

1 +
4ρ̆D̆
π

)

.

Fig. 2 shows the NEMSE as a function of the normalized
sampling intensity ρ̆ for different values of the normalized
distortion for both examples 3 and 4. It can be noticed that
the distortion effects vanish for ρ̆ approaching the infinity. The
different asymptote in the case of Gaussian ESD is due to its
infinite signal bandwidth.

IV. ESTIMATION ENERGY CONSTRAINT

Consider the energy spent by the n-th sensor for the
estimation of its own 1/σ2

n trough the hardware-dependent
constant κM expressed in [J u2] where u is the measurement
unit for the signal (see Table IV). For σ2

n = σ2
M for all n, the

overall estimation energy is EM = κM
ρ|A|
σ2

M
and the distortion
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Fig. 2. NEMSE as a function of normalized sampling intensity

results in D = ρ|A|σ2
M. It follows that D̆ = κM ρ̆2 |A|2(2Bz)

d

EMEz

which, substituted in (15), provides

ϵS = 1−

∫

Rd

Ĕ2
z (ν̆)

Ĕz(ν̆) + 1
ρ̆
+ κM

|A|2(2Bz)d

EMEz

dν̆ . (17)

Equation (17) shows that the NEMSE is decreasing with re-
spect to the energy spent for the estimation EM and increasing
with respect to the signal domain Lebesgue measure |A| and
to the signal band Lebesgue measure (2Bz)d. The fact that
(17) is also decreasing with respect the signal energy Ez is
simply due to the normalization choice in (8).

Remark 5: Given the overall estimation energy EM, (17)
shows that having more samples (higher ρ̆) with higher mea-
surement error variance σ2

M reduces the NEMSE with respect
to the case of less samples with higher precision. This is thank
to the employment of the optimal LSI interpolator (9).

Remark 6: For every finite set of samples, the NEMSE is

lower bounded by ϵS > 1 −
∫

Rd

Ĕ2
z
(ν̆)

Ĕz(ν̆)+κM
|A|2(2Bz)d

EMEz

dν̆. Note

that such a bound is asymptotically approached for both the
normalized samples intensity and the normalized distortion
approaching the infinity.

V. NETWORK CAPACITY CONSTRAINT

Consider now large WSN with constraints in the capacity
of each sensor of sending the samples to the interpolation
entity. Here we study the effect of network capacity constraint
when a large WSN is employed to reconstruct the signal
z(x) (expressed in unit) in A ∈ R2. Assume that the sensor
positions are the output of an homogeneous PPP with intensity
λ and that each sensor is able to transmit the samples to the
entity performing the interpolation with probability q. Thus,
the sampling point process results in (1) with ρ = qλ, that is

ρ̆ =
qλ

(2Bz)d
. (18)

A. Capacity-per-unit volume Constraint

A general and simple way to model the network capability
to collect data and forward them to the interpolation entity is to
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Fig. 3. Large WSN for signal estimation: MSE as a function of normalized
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assume the WSN can guarantee a certain capacity-per-volume
c. Such a value is a function of network bandwidth and proto-
cols (MAC, routing, physical layer, etc.3). For homogeneous
Poisson distribution of the sensors positions, the capacity of
the channel between the n-th sensor and the interpolator for
large WSN is

Cn =
C

|ΠA|
≈

c|A|

E {|ΠA|}
=

c

λ
(19)

where C is the overall capacity in [symbols/channel use] and
| · | denotes the cardinality. If the channel between the n-th
sensor and the interpolator is modeled as an erasure channel,
it results

Cn = 1− ϵ (20)

where ϵ is the erasure probability, which is considered equal
for all sensors. From (19) and (20) it follows that the sample
availability can be written as

q ! 1− ϵ = Cn ≈
c

λ
. (21)

Since 0 ≤ C ≤ 1 and |ΠA| ≥ 1 (for each PPP realization,
a WSN is obviously constituted by at least one sensor), it is
0 ≤ q ≤ 1.

B. Sensor Lifetime Constraint

Consider all sensors have the same power consumption Ws

such that the measurement error variance results in

σ2
M =

κM

WsT
, ∀n (22)

where T is the estimation process duration in seconds. By
substituting (22) in (5) we obtain D = ρ|A| κM

WsT
, thus

D̆

ρ̆
=

κM|A|

EzWsT
. (23)

3For the impact of fading and interference see, e.g., [25] and [26].
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C. NEMSE for a large WSN

By substituting (21) in (18) we obtain

ρ̆ ≈
c

(2Bz)d
(24)

that highlights how in a large WSN, the effectively available
samples intensity depends on the capacity-per-volume (and no
more on the sensors intensity). From (15), (23), and (24), we
obtain

ϵS = 1−

∫

Rd

Ĕ2
z (ν̆)

Ĕz(ν̆) + 1
c̆

(

1 + 1
T̆

)dν̆ (25)

where c̆ ! c
(2Bz)d

and T̆ ! EzWsT
κM|A| are two fundamental

parameters for the network capacity and the sensors battery
lifetime, respectively.

Remark 7: If the signal is rigorously band-limited, from (25)
and for large c̆ it is

ϵS =
1

c̆

(

1 +
1

T̆

)

+ o
(1

c̆

)

. (26)

Example 5: In the case of Bessel-type au-
tocorrelation function for the signal, it results

ϵS = 1
c̆

(

1 + 1
T̆

)

/
[

1 + 1
c̆

(

1 + 1
T̆

)]

. Fig. 3 shows the

NEMSE as a function of the normalized estimation time
for different values of normalized capacity. It can be seen
the capacity-limited region for large T̆ , corresponding to the
horizontal asymptotes, and the energy-limited region for low
T̆ .

Remark 8: For infinite normalized estimation time, the
asymptotical MSE is given by

ϵ(∞)
S ! lim

T̆→+∞
ϵS = 1−

∫

Rd

Ĕ2
z (ν̆)

Ĕz(ν̆) + 1
c̆

dν̆ .

VI. CONCLUSION

The estimation of a finite-energy signal from its samples
affected by measurement errors and scattered in Rd according
to an homogeneous PPP has been analyzed. The expression
of the optimal LSI interpolator in the MSE sense has been
derived and verified that such an expression in Rd includes a
result previously known in the literature as special case.

When the optimal interpolator is used, the effect of both the
random sampling and the measurement errors on the estimated
signal ESD is an attenuation of the original signal ESD instead
of a noise floor as for the case of ILP interpolator. Moreover,
the effect of the distortion due to measurement errors on the
NEMSE is shown to be equivalent to that of a reduction of
samples intensity, which can be compensated by increasing
the number of nodes inside the sampling area.

If a constraint in the overall estimation energy is imposed,
we verified that an increasing number of sensors leads to a
decreasing NEMSE in spite of the corresponding increasing
measurement error for each sensor. For the case when the
energy constraint is imposed on each sensor due to the battery
lifetime limitation, as usual in the large WSN scenario, we
derived a simple but significant expression for the NEMSE as
a function of the estimation time and the capacity-per-volume.
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[20] B. Csáji, M. C. Campi, and E. Weyer, “Non-asymptotic confidence
regions for the least-squares estimate,” in Proc. IFAC SYSID, Brussels,
Belgium, Jun. 2012, pp. 227–232.

[21] V. Zambianchi, M. Kieffer, F. Bassi, G. Pasolini, and D. Dardari,
“Distributed sps algorithms for non-asymptotic confidence region eval-
uation,” in Networks and Communications (EuCNC), 2014 European
Conference on, Jun. 2014, pp. 1–5.

[22] E. M. Stein and G. Weiss, Introduction To Fourier Analysis on Euclidean
Spaces. Princeton University Press, 1971.

[23] J. F. Kingman, Poisson Processes. Oxford University Press, 1st edition,
1993.

[24] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochas-
tic Processes. McGraw-Hill, 2002.

[25] F. Zabini, B. Masini, A. Conti, and L. Hanzo, “Partial equalization for
MC-CDMA systems in non-ideally estimated correlated fading,” IEEE
Trans. Veh. Technol., vol. 59, no. 8, pp. 3818–3830, Oct. 2010.

[26] A. Zanella, A. Bazzi, G. Pasolini, and B. M. Masini, “On the impact
of routing strategies on the interference of ad hoc wireless networks,”
IEEE Trans. Commun., vol. 61, no. 10, pp. 4322–4333, October 2013.


