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Power Line Interference Removal for High Quality
Continuous Bio-Signal Monitoring with low-power

wearable devices
Marco Tomasini, Simone Benatti, Student Member, IEEE, Bojan Milosevic, Elisabetta Farella, Member, IEEE,

and Luca Benini, Fellow, IEEE

Abstract—Mobile and long-term recording of biomedical sig-
nals such as ECG, EMG and EEG can improve diagnosis and
monitor the evolution of several widespread diseases. However, it
requires specific solutions, such as wearable devices that should
be particularly comfortable for patients, while at the same
time ensuring medical-grade signal acquisition quality, including
Power Line Interference (PLI) removal. This work focuses on
the on-board real-time PLI filtering on a low-power bio-potential
acquisition wearable system. The paper analyzes in depth basic
and advanced PLI filtering techniques and evaluates them in a
wearable real-time processing scenario, assessing performance on
EMG and ECG signals. Our experiments prove that most PLI
removal algorithms are not usable in this challenging context,
because they lack robustness or they require off-line processing
and large amounts of available data. On the other hand, adaptive
filtering techniques are robust and well-suited for lightweight
on-line processing. We substantiate this finding with off-line
analysis and comparison, as well as with a complete embedded
implementation on our low-power low-cost wearable device.

Keywords—PLI removal, EMG, ECG, wearable computing,
biomedical monitoring, sensor node

I. INTRODUCTION

WEARABLE devices are becoming increasingly popular
in several areas of modern healthcare practices, most

notably in delivering point of care services, providing ambula-
tory monitoring within the healthcare environment and remote
support for rehabilitating patients and the chronically ill at
home. These devices act as supporting tools for doctors provid-
ing continuous assessment of critical physiological parameters
or for identifying precursors of major adverse events [1]. They
are also used in out-of-hospital environments to provide contin-
uous monitoring solutions and real-time feedback information
about the individual’s health condition [2]–[5].

Wearable devices are capable of measuring significant phys-
iological parameters, such as heart rate, blood pressure, body
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and skin temperature, oxygen saturation, respiration rate, elec-
trocardiogram, etc. Beside the data collection, further advan-
tages are given by the development of smart devices, capable
to process the acquired signals and run algorithms for the
analysis of physiological parameters. This includes continuous
collection and evaluation of multiple vital signs and intelligent
multiparameter medical emergency detection. Therefore, it is
necessary to provide low cost and low power wearable systems,
equipped with sufficient computational resources to elaborate
and analyze the biomedical signals in real-time with medical-
grade quality [6].

Frequently used biopotentials, such as the Electrocardio-
gram (ECG) and the Electromyogram (EMG), lie in the
1 µV − 10 mV range, with a bandwidth of 0− 1 kHz, while
other biopotentials, such as the Electroneurogram (ENG), can
reach a bandwidth of 1 − 10 kHz [7]. Therefore, a correct
acquisition of such signals requires an accurate design and a
multilevel approach for noise reduction. Biomedical signals
are often affected by interferences and artifacts, which may
lead to their wrong interpretation. One major common source
of interference is the Power Line Interference (PLI), which is
due to the capacitive coupling between the subject and nearby
electrical appliances and mains wiring [8]. The main frequency
of the PLI is nominally at 50 Hz in Europe and 60 Hz in USA.
However, it is non-stationary and frequency and amplitude
variations are often detected and mainly originated from the
AC power system. In particular, its frequency has variations
of ±2 Hz, while the amplitude is heavily influenced by the
system in use and the environment [9], [10].

Many solutions have been developed to reduce the inter-
ference in the acquired biomedical signals. Useful ways to
reject the interferences include the use of active electrodes
with integrated analog filters, the shielding and connection to
ground of electrodes, subjects and nearby electrical appliances.
In spite of these solutions, a significant residual interference
remains. Moreover, the proposed solutions are often invasive
and not suitable for wearable solutions.

Wearable sensor nodes are usually equipped with limited
computational resources, thus the most common approach to
reject the PLI from biomedical signals is the use of analog
filters. This solution introduces non linear phase shifts, skewing
the signal and it is costly in terms of component count and
board space. Thus, additional signal processing techniques
are necessary to filter the noise and achieve a robust output.
The desired solution should remove the PLI even if it is
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non-stationary, while minimally affecting the frequency signal
spectrum of interest. Furthermore, for a successful application
in wearable solutions, it should be suitable for real-time
implementation in resource constrained devices, requiring low
computational complexity and low memory cost.

This paper analyzes the biopotential acquisition with a
wearable platform [11] and evaluates its use for accurate
real-time parameter monitoring with digital PLI filtering. We
compared the four major classes of approaches for the PLI
noise filtering, evaluating them with simulated signals and
interference for an accurate study in a wide range of situa-
tions. Moreover, we implemented and profiled them on the
embedded wearable platform evaluating accuracy and real-
time performance. Based on this analysis, we demonstrate a
highly effective PLI removal on our wearable smart platform
in two applications: the acquisition of a 3-lead ECG, and the
acquisition and processing of EMG signals.

II. RELATED WORK

Several solutions for the removal of the PLI have been
studied in the past decades. One of the approaches is the design
of an analog front end with high Common Mode Rejection
Ratio (CMRR). Hardware solutions have been developed to
increase the actual CMRR by equalization of the cable shield
and the use of a Driven Right Leg (DRL) circuit [12]. The
DRL improves the CMRR by a closed loop compensation that
provides a CM-canceling signal to the subject’s body. This
reduces the CM gain and boosts the CMRR, but it is affected
by stability issues, which limit the effective improvement. The
digitally-assisted DRL tunes the DRL loop’s gain at the power
line frequency, but needs an additional notch filter increasing
power consumption. The common-mode feedback (CMFB)
technique [13] improves CMRR by feeding the CM voltage
back to the input of each pre-amplifier. The feedback loop is
based on a summing amplifier and high value compensation
capacitors to efficiently extract the CM noise. All these solu-
tions require increased area, extra components and lead to an
increased power consumption with a reduction of the common
mode interference that is hardly higher than 40 dB [14].

For a more robust PLI removal, digital signal processing
techniques are employed. The most common approach used
to remove the PLI is a digital notch filter at the power line
frequency (50 or 60 Hz) [15]–[17]. It has the advantage to be
easily implemented and it has low computational requirements.
However, the notch filter is not a good candidate to remove the
PLI from biomedical signals with time-varying disturbances:
to avoid signal distortion around the PLI frequency it needs
a narrow notch frequency band, which leads to ineffective
filtering when PLI frequency deviations are present.

A different approach is the time domain subtraction for
PLI elimination [18]. This method first divides the signal in
linear and non-linear segments by evaluating a threshold on
its second derivative. In the linear segments, the signal is
averaged and the PLI is estimated, which is then removed from
both linear and non-linear segments. This approach is limited
to the processing of ECG signals, which exhibit a periodic
alternation between linear and non-linear segments. In fact, it

is not suitable for the denoising of EMG or EEG recordings
since the linear and non linear segments in those cases cannot
easily be identified in the presence of the PLI. Furthermore,
the time domain subtraction alters considerably the spectrum
for both lower and higher frequencies.

To overcome this limitation, newly developed techniques
include the Sinusoidal Modeling (SM) [19] and Regression
Subtraction (RS) [20], which accurately separate the PLI
from biopotential signals. These methods share the same base
approach, which consists in the estimation of the sinusoidal
interference and its removal from the acquired signal. They
estimate the amplitude and phase of the PLI and they reject
the interference while minimally affecting the spectrum of
the signal. On the other hand, these techniques lose their
effectiveness when the frequency of the PLI is not constant
and its deviation from the nominal value is not known.
To overcome this drawback, it is necessary to calculate the
Fast Fourier Transform (FFT) of the signal to localize with
precision the value of the fundamental PLI frequency. This
solution is not suitable for a real time implementation due the
high computational cost to perform the FFT with adequate
precision.

Another approach is the use of adaptive interference can-
cellation, which can track amplitude, phase and frequency of
the PLI [21]. A drawback of this solution is that it requires
a reference signal to estimate the frequency variations, which
may not always be available in practice. To overcome this lim-
itation, reference-free adaptive methods have been proposed in
literature [22], [23]. Such methods are unfortunately sensitive
to the ratio between the PLI and the signal amplitude in the
interference frequency band. Therefore, they are not general
and the parameters must be tuned case by case. An innovative
adaptive filtering method was introduced by Keshtkaran et al.
to track time fluctuations of the PLI’s frequency, amplitude and
phase [24], [25]. It can be used to process ECG, EEG and EMG
signals without any reference signal, with the advantages of
low computational complexity and low memory requirements,
hence making it suitable for real time implementation in smart
wearable solutions.

In recent years, there have been numerous research and
commercial efforts in the design of wearable biopotentials
measurement systems. One of the main challenges is to provide
the device with adequate computational resources to execute
signal processing on board, implementing a comfortable and
feature rich solution, while providing adequate communication
interface and battery life.

An example of a system for the monitoring of physio-
logical signals is presented in [26]. This device is capable
of achieving ubiquitous medical monitoring when interfaced
to appropriate body worn sensors. The main limitation of
the system is that the signal is filtered by an analog circuit
due the insufficient computational resources of the wearable
device. Another project presented in [27] is based on a PDA
connected with a sensor board for ECG acquisition. The
board is equipped with a two electrodes ECG amplifier, a
MSP430 microprocessor and a Bluetooth Low Energy (BLE)
radio module. This system is strongly oriented to a the ECG
acquisition scenario, therefore there is a lack of flexibility.
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Fig. 1. Photograph of the top (left) and bottom (right) layers of the proposed device.
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Fig. 2. Overview of the Cerebro wearable device.

Furthermore, it has only 2 channels, which is a limit to enable
on board multimodal biosignals recording.

The lesson learned from existing approaches suggests that
the design of a high-quality wearable device requires to couple
an accurate AFE for the acquisition of biopotentials, with an
efficient microcontroller (MCU) integrating DSP functionali-
ties. This is the system architecture that we target in this study.
It is in fact desirable for the AFE to integrate a digital back-
end for fast and reliable communication with the MCU, which
must have sufficient computational resources to locally execute
algorithms for filtering and information extraction to improve
the quality of the signals.

III. SYSTEM ARCHITECTURE

The presented wearable device pairs a high-performance and
flexible AFE, well suited for the acquisition of the ECG, EMG
and EEG signals, with an efficient MCU with integrated DSP
functions. The PCB of the device is shown in Fig. 1, while the
functional block diagram of the system is shown in Fig. 2.

The Cerebro AFE was designed for the use in low-power
wearable devices for the acquisition of biopotential signals
[20], [28], [29]. It is equipped with 8 differential AFE channels
multiplexed to a shared 16 bit sigma-delta ADC, which sam-
ples each channel at up to 8kHz. This solution achieves a large
CMRR (100dB) and an SNR of 95db, which is comparable

with commercial ICs for biopotential acquisition ADS1298
[30], BMD101 [31] and to state-of-the-art research solutions
[32]. Moreover, Cerebro is equipped with an internal DAC
used in a feedback loop to adjust the reference of each channel
and remove any DC offset [33]. The platform is powered by an
ARM Cortex M4 microcontroller (STM32F407) operating at a
frequency of up to 168 MHz. The Cortex-M4 core is equipped
with a single-precision hardware Floating point unit (FPU) and
it implements a full set of DSP instructions. This architecture
allows advanced and efficient digital processing capabilities,
totaling 210 DMIPS (1.25 DMIPS/MHz). After the signals
have been acquired and elaborated, they can be transmitted
by a Bluetooth module to a nearby smartphone or they can
be stored on a local SD card. Finally, additional inertial and
pressure sensors have been added in order to collect data on
the patient’s motor activity.

To improve the energy efficiency of the device, the power
supply of the board is handled by a dedicated power manage-
ment circuitry, which automatically detects the power source
in use (battery or USB connector). It manages the recharging
of the battery, while providing low-dropout voltage regulators
to the other submodels on board. This solution allows us to
switch off the components of the board that are not necessary
for a targeted biomedical application allowing the application
of aggressive power saving strategies.

The board was designed with Altium Design CAD using 6
layers with 3 ground planes, 1 power plane and 2 signal layers.
Discrete components are placed on both top and bottom layers
in order to reduce the resulting size of the final system, which
is 91 × 46 mm. The board consumes 5mW for the reading
and filtering of 4 bio-potential signals sampled at 1 kHz. It
is powered by a 1350 mAh lithium-ion cell-phone battery,
which lasts in the given configuration for more than 1 day
of continuous signal recording.

IV. PLI FILTERING METHODS

This section details the major digital filtering techniques and
their parameters. In the rest of this paper, we denote: xsig(n)
as the true biomedical signal, p(n) as the PLI, x(n) as the
contaminated signal and y(n) as the filtered output signal (see
Fig. 3).
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Fig. 3. Signal acquisition block diagram.

Notch Filter. The notch filter is a stop band filter that
allows to attenuate component frequency in a narrow band.
The transfer function of a real second order IIR filter is given
in the following equation:

H(z) =
Y (z)

X(z)
=
a0 + a1z

−1 + a2z
−2

b0 + b1z−1 + b2z−2

where a0,a1,a2 are the feed-forward and b0,b1,b2 are the
feedback coefficients of the filter. The transfer function is
implemented with the difference linear equation as follows:

a0y(n) = b0x(n) + b1x(n− 1) + b2x(n− 2)−
−a1y(n)(n− 1)− a2y(n)(n− 2)

In our implementation, we use a second order IIR filter
centered at the PLI frequency with a bandwidth of 1Hz. In
our experiments, the quality factor was set at 50 in order to
reduce the PLI interference at approximately the same level of
the ExG signal and thus avoid distortion of the bio-potentials
in the frequency spectrum.

Sinusoidal Modeling. SM allows to remove the PLI and
the baseline wonder (BW) from the biomedical signal. This
method models PLI and BW with a set of sinusoids modulated
by low order time polynomials. It is expressed as follows:

pest(t) =

I∑
i=0

(a
(i)
0 + a

(i)
1 t+ a

(i)
2 t2)sin(2πifPLIt) +

+(b
(i)
0 + b

(i)
1 t+ b

(i)
2 t2)cos(2πifPLIt)

where I is the total number of signal components in the model.
The BW corresponds to the component with i = 0, while the
PLI harmonics are modeled by the remaining ones (i 6= 0). The
sinusoids represent the harmonic character of the PLI signal
with the fundamental frequency (i = 1) corresponding to the
PLI frequency (fPLI ) in the analysis window. Moreover, the
model is extended to include the DC component (i = 0), whose
time variations correspond to the BW signal component.

The coefficients of the model can be estimated by minimiz-
ing the quadratic error between the signal x(t) and the modeled
PLI:

min(

N∑
n=1

= |x(tn)− pest(tn))|2)

where tn are the sampling instants in the analysis window.
Finally, the estimated model is subtracted from the original
signal to obtain a noise free signal y(t) = x(t)− pest(t).

We implemented this method to remove the first component
of the power line interference (i = 1) with fPLI = 50Hz

and a window size of 1.5s as recommended in [19]. In our
implementation, we do not include the DC component in the
model, since Cerebro is equipped with an internal DAC used
to adjust the reference of each channel and remove any DC
offset [33]. The algorithm can be used in two modalities: in
the first one, denoted as offline mode, the PLI is estimated and
then subtracted from the same analysis window. In the second
method, denoted as online mode, the PLI is estimated in one
signal window and then it is subtracted from the subsequent
window. The latter modality allows to use this approach in
real-time applications.

Regression Subtraction. The acquired signal xn =
xsig(n) + p(n) is the superposition of the biomedical signal
xsig(n) and the PLI components, modeled as:

pi(n) = Ai · sin(2π
fPLI,i

fs
n+ ϕi)

with amplitude A, phase ϕ and harmonic number i. This
method considers a window of N samples multiple of
(fs/fPLI,i) where the phase and amplitude of the PLI are
estimated in two steps. In the first step, in order to estimate
ϕi, the algorithm projects the acquired sequence x(n) onto a
locally generated cosine with known phase:

1

N

∑N−1
n=0 x(n)cos(2π

fPLI,i

fs
n+ ϕest,i) =

1

2
Aisin(ϕi − ϕest,i)

Following, the method executes an iterative binary search
to find the estimated phase ϕest,i. In the second step, the
amplitude estimation (Aest,i) is found by a projection onto
an in-phase sinusoidal signal, as follows:

Aest,i =
2

N

N−1∑
n=1

x(n)sin(2π
fPLI,i

fs
n+ ϕest,i)

The estimated PLI noise is found using (Aest,i) and (ϕest,i)
as follows:

pest,i(n) = Aest,i · sin(2π
fPLI,i

fs
n+ ϕest,i)

Finally, the estimated noise is subtracted from the original sig-
nal to obtain a noise free signal. This method was implemented
in software to remove the first component of the PLI, with
fPLI = 50Hz and a window size of 1s. RS can also be applied
in two modalities, online and offline, as described for SM.

Adaptive PLI filter. In our evaluation, we focus on the
adaptive PLI filter (APF) proposed in [24] and [25], due to
its capability to process heterogeneous vital signs and their
low computational and memory requirements. This approach
iteratively estimates the fundamental frequency of the PLI
and then generates its other harmonics. At each sample, the
estimated PLI is subtracted from the noise-affected biosignal
in order to reject the PLI. The APF distinguishes two methods
for the estimation of amplitude and phase of the interference:
in APF LMS the amplitude and phase of each harmonic
are obtained using a least mean square algorithm, while the
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Fig. 4. Block diagram of the adaptive PLI filter.

APF RLS uses a simplified recursive least squares algorithm
to approximate the PLI parameters. Beside the parameter
estimation algorithm, the two APF approaches are equal.

Fig. 4 shows the functional blocks of the APF algorithm.
The bandpass filter is used to preprocess the signal to enhance
the fundamental harmonic of the PLI and to obtain a robust
estimation of its frequency. This filter is also useful for the
attenuation of lower frequency artifacts and signal components,
which may negatively affect the frequency estimation. If the
nominal power line frequency is known to be at 50 Hz, the
bandpass filter can be set to 45-55Hz, but it can be further
customized to accommodate both 50Hz and 60Hz powerline
frequencies. The next stage consists in an Adaptive Notch
Filter (ANF) for frequency estimation. It is implemented
through a lattice algorithm [34] to obtain high performance
in the instantaneous estimation of the PLI frequency with low
complexity and suitability for real-time finite precision imple-
mentation. Next, the discrete-time oscillators and the amplitude
phase estimator are used to generate the estimated PLI sinu-
soid. Defining the estimation error as e(n) = x(n)− pest(n),
the APF LMS method minimizes the cost function:

E(n) = E|e(n)|2

while the APF RLS minimizes the cost function:

E(n) =

N−1∑
n=1

λ(N−1−n)
a e2(n)

In this case, λa is the forgetting factor and 0 � λa < 1.
Finally, the estimated interference pest(n) is subtracted from
the input signal x(n) to obtain a noise-free signal y(n). In
our experiments, we tested both approaches to remove the
first component of the PLI and we followed the guidelines
presented in [24] for a correct adjustment of the parameters in
each block.

V. EXPERIMENTAL RESULTS

In this section, we present an extensive analysis using off-
line ECG data and simulated PLI to quantitatively evaluate
the methods under various signals and parameters conditions.
Furthermore, the algorithms were all implemented on the
microcontroller of our wearable device and they were tested on
real-time acquisition and filtering of ECG and EMG signals.

A. Off-line analysis setup
To analyze the characteristics of the aforementioned algo-

rithms under various signal conditions, we used ECG data
taken from the PTB Diagnostic ECG Database, which is part
of the Pysionet project [35]. The biopotentials are sampled
at 1 kHz with 16-bit resolution over a ±16.384mV range
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Fig. 5. Sensitivity to PLI amplitude.

and have variable duration (from 30s to 2min). In each test,
we added a synthetic PLI containing 1 harmonic to the ECG
signal, with variable frequency and amplitude as specified in
each simulation. To denote the signal to noise ratios (SNRs) of
the input and output signals we used SNRIN and SNROUT ,
defined as:

SNRIN =20 log10
‖xsig‖2
‖p‖2

SNROUT =20 log10
‖y‖2

‖xsig − y‖2

B. Sensitivity to Power Line Amplitude

To achieve a proper interference cancellation, the algorithm
should work robustly under several SNRIN conditions. To
evaluate this feature, we simulated signal sequences whose
SNRIN ranged from -20dB to 20dB. For each SNRIN value,
we added a 50Hz sinusoidal interference to the signal and each
method was applied to remove such interference, computing
the resulting SNROUT . Figure 5 shows the SNROUT for
each SNRIN at the sampling rate of 1 kHz.

In this test, executed with a constant PLI frequency, we can
observe that both online and offline modalities reach the same
performance in removing the PLI for all SNRIN values. In
fact, high values of SNROUT are noticed for both RS (36dB)
and SM (31dB) approaches. The APF RLS and APF LMS
achieve a constant SNROUT of 35dB and 29dB respectively,
indicating that the performance of the APF methods is robust
with respect to SNRIN . The notch filter demonstrates to be
the worst method in this comparison, with SNROUT = 25dB.

C. Sensitivity to Power Line Frequency Variability

In real life scenarios, the frequency of the PLI is not
constant at exactly 50Hz, hence it is important to evaluate the
performance of these techniques with regard to PLI frequency
variations. The notch filter, SM and RS, all need to know a
priori the fundamental frequency of the interference (fPLI ).
On the other hand, the APF approach can automatically detect
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the value of the frequency interference and no a priori setting
of its nominal value is required.

To test the capabilities of the algorithms to remove the PLI
under varying powerline frequencies, we used as the input
of each method synthetic sequences with SNRIN equal to
6dB and PLI frequency ranging between 50 and 51Hz. We
computed the output SNRs to evaluate the performance of
the algorithms. In this test, we assumed to know a priori the
frequency value of the powerline interference and set fPLI

correctly in each trial. Figure 6 shows the SNROUT achieved
by each method. We can observe that SM, RS and APF, all
achieve a SNROUT of up to 29dB. The notch filter is again
the worst method, with SNROUT = 25dB.

The accurate value of the PLI is unknown in a real scenario,
and may also change over time, thus it is important to test
the performance of the algorithms when fPLI is not known.
Hence, we performed the same experiment as described before,
but with fPLI always set to 50 Hz. Figure 7 shows the
resultant SNROUT . Here, we can observe that for a frequency
deviation smaller than 0.01Hz the notch filter, SM online and
RS (online and offline) correctly remove the PLI from the
biomedical signals, with SNROUT > 30dB. For a frequency
deviation higher than 0.01Hz, all these algorithms lose their
effectiveness. In fact, we can observe an SNROUT lower
than 30dB for all of them. SM offline is adequately robust
to achieve an SNROUT of up to 30dB only for frequency
deviations lower than 0.3Hz. Moreover, the performance of
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SM and RS online deteriorates rapidly if the number of
samples in a window used to estimate the interference is not
an exact multiple of the number of samples in a PLI period. In
the non-multiple sampling case there is a variance of the initial
PLI phase between two consecutive windows, therefore the PLI
estimated in one signal window and then subtracted from the
subsequent window is not correctly aligned. The notch filter, on
the other side, shows a lower but slowly declining SNROUT ,
hence resulting more robust to frequency deviations. The best
performance is achieved with the APF approaches, in particular
the APF RLS shows high values of SNROUT (≥ 35dB)
consistently achieved for varying PLI frequencies deviations.

SM and RS algorithms need an accurate estimate of the
fPLI to achieve good results. The frequency of the interference
is estimated by computing the FFT of the input signal and
localizing the strongest bin in the 45 - 55 Hz range. As resulted
from experimental analysis, high performance is achieved
when the estimate is accurate with a resolution of 0.01Hz.
The number of samples required to achieve such resolution
depends on the signal’s sampling period. When sampling at
1kHz, we need 100000 samples, which implies that we have
to wait more than 1 minute to collect data for a PLI frequency
estimate at the required level of resolution. This automatically
rules out the use of these algorithms for real-time continuous
monitoring: not only the FFT would be very demanding in
terms of computation and storage, but also the PLI frequency
can fluctuate significantly during the 1 minute interval, thereby
fundamentally limiting the achievable accuracy.

In contrast, the APF methods can effectively track the
variations in the PLI frequency. To demonstrate the fast con-
vergence of this approach, two synthetic sequences with main
frequencies of 50.5Hz and 51Hz were tested. In Figure 8 we
can observe the frequency convergence of the APF RLS, where
the frequency estimates converge to the actual fundamental
frequency (i.e. 50.5Hz and 51Hz) in less than 400ms, while
maintaining an SNROUT of 35db.

D. Evaluation on the Cerebro platform

To demonstrate the capabilities of our system and to evaluate
the performance of the algorithms in a real-life application
scenario, we collected ECG and EMG signals with the Cerebro
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Fig. 9. PLI removal for ECG signals. Top row: raw and filtered signals (units: seconds and mV), bottom row: frequency spectrum (units: Hz and dB); from
left to right: notch, SM, RS, APF.

0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

48 49 50 51 52
−10

0

20

40

60

80

 

 

48 49 50 51 52
−10

0

20

40

60

80

 

 

48 49 50 51 52
−10

0

20

40

60

80

 

 

48 49 50 51 52
−10

0

20

40

60

80

 

 

Fig. 10. PLI removal for EMG signals. Top row: raw and filtered signals (units: seconds and mV), bottom row: frequency spectrum (units: Hz and dB); from
left to right: notch, SM, RS, APF.

platform. Data was collected from three subjects with acquisi-
tions of up to 10 min. The signals were sampled at 1kHz with
a gain of 32.

For the ECG, we used a 3-lead acquisition setup, where
one differential channel of Cerebro was used to acquire the
signal. We placed two disposable electrodes on the wrists
of the user and an additional electrode was placed on the
right ankle as the reference potential. The EMG signal was
acquired with one differential pair of electrodes placed on
the forearm of the subjects and an additional electrode was
placed on the elbow as the reference potential. Using the data
acquired with Cerebro, we compared the filtering performance
of the considered algorithms, evaluating the online versions of
the RS and SM algorithms and the RLS version of the APF,
which outperforms the LMS one. The Cerebro platform was
shown to be capable of acquiring high quality biopotential
signals in controlled environments [29]. To fully exploit its
wearable nature, we compared the proposed PLI filtering
techniques evaluating their effects on the frequency spectrum
and computational costs. In this case, we do not have an exact

computation of SNROUT , since we do not have p(t), but we
can compare the frquency spectrum of original and filtered
signals.

The result of the PLI removal from the ECG and EMG sig-
nal is shown in Fig. 9 and 10, where we plotted the raw and the
filtered signals along with their frequency spectrum. Ideally,
the perfect filtering technique should remove the PLI compo-
nent and leave the rest of the signal spectrum unchanged. The
visual difference in the filtered signals is minimal, but from
the spectrum plots we can note that the notch filter, RS online
and SM online fail to adequately remove the interference.
The notch filter removes also frequency components close the
PLI, while the RS and SM present minimal alterations of the
surrounding frequency spectrum, but they do not completely
remove the PLI. The APF RLS delivers considerably better
signal quality, indeed it is very precise to remove the PLI
without additional changes in the signal’s spectrum.

Finally, we evaluated the computational cost of the algo-
rithms. For the SM and RS approaches we calculated the com-
putational cost to filter the signal in a window of N samples
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TABLE I. COMPUTATIONAL AND MEMORY REQUIREMENTS.

Algorithm Computational Cost (ms) Memory (byte)

Notch 0.002 48 byte
Sinusoidal Modeling 79 84040
Regression Subtraction 8.3 8160
APF RLS 0.036 184

equal to 1500 (1.5s) and 1000 (1s) respectively. The notch
and APF are iterative approaches applied at each new sample.
Computational and memory costs are summarized in Table I.
Here we can note that the APF has the lowest computational
cost, requiring only 36µs at each sample, making it a preferred
choice for real-time implementation. The notch filter is also
characterized by a low computational cost, but it introduces
distortion in the signal, therefore it is not a good candidate to
remove the PLI from biomedical signals. SM and RS are much
more demanding with respectively 79ms and 8.3ms needed to
process each window. Moreover, they have considerably higher
memory requirements and they do not perform as well as the
APF RLS in the continuous monitoring scenario characterized
by frequency fluctuations of the PLI signal.

VI. CONCLUSION

In this paper, we presented the evaluation of PLI filtering
techniques for a wearable device, targeting their on-board im-
plementation and considering platforms with adequate process-
ing capabilities to acquire high quality heterogeneous biopo-
tential signals. In particular, we considered the acquisition of
EMG and ECG signals and we described the implementation
and performance of four main PLI removal methods. For
quantitative and qualitative analysis of their characteristics,
we performed extensive simulation using real ECG data and
simulated interference with various signal conditions. The
different approaches were also implemented and profiled on
the embedded wearable system, evaluating them in terms
of accuracy to reject the PLI and real-time performance.
In particular, we demonstrate that the APF RLS takes only
a few hundreds of milliseconds to autonomously tune its
parameters and converge to the input PLI frequency, while the
other approaches need several minutes for accurate frequency
estimation. Furthermore, APF RLS has the best performance
in terms of output SNR and it best preserves the frequency
characteristics of the targeted signals, while having minimal
computational cost.
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