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Abstract. Stochastic Galerkin finite element approximation of PDEs with random inputs leads
to linear systems of equations with coefficient matrices that have a characteristic Kronecker product
structure. By reformulating the systems as multiterm linear matrix equations, we develop an effi-
cient solution algorithm which generalizes ideas from rational Krylov subspace approximation. Our
working assumptions are that the number of random variables characterizing the random inputs is
modest, in the order of a few tens, and that the dependence on these variables is linear, so that it is
sufficient to seek only a reduction in the complexity associated with the spatial component of the ap-
proximation space. The new approach determines a low-rank approximation to the solution matrix
by performing a projection onto a low-dimensional space and provides an efficient solution strat-
egy whose convergence rate is independent of the spatial approximation. Moreover, it requires far
less memory than the standard preconditioned conjugate gradient method applied to the Kronecker
formulation of the linear systems.
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1. Introduction. This paper is concerned with the design and implementation
of efficient iterative solution algorithms for high-dimensional linear algebra systems
that arise from Galerkin approximation of elliptic PDE problems with correlated
random inputs. The tensor product structure of the Galerkin approximation space
and the low-rank structure that is inherent in the discrete systems is exploited in our
innovative solution strategy. This strategy builds on recent progress in rational Krylov
subspace approximation (see, for example, Simoncini [24]) and generates an accurate
reduced basis approximation of the spatial component of the Galerkin solution.

We focus on stochastic steady-state diffusion equations with homogeneous Dirich-
let boundary conditions. To this end, let D ⊂ R2 be a sufficiently regular spatial
domain and let Ω be a sample space associated with a probability space (Ω,F ,P).
Our goal is to approximate u : D × Ω → R such that P-a.s.,

(1.1)
−∇ · (a(�x, ω)∇u(�x, ω)) = f(�x) in D,

u(�x, ω) = 0 on ∂D.

We assume that f is deterministic and a is a random field that can be expressed
as a linear function of a finite number of real-valued independent random variables
ξr : Ω → Γr ⊂ R of the form

(1.2) a(�x, ω) = a0(�x) +

m∑
r=1

ar(�x) ξr(ω).
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A common choice is a truncated Karhunen–Loève (KL) expansion (see Lord, Powell,
and Shardlow [15] for further discussion). In that case,

(1.3) a(�x, ω) = μ(�x) + σ
m∑
r=1

√
λrφr(�x) ξr(ω),

where μ is the expected value of the diffusion coefficient, σ is the standard deviation,
and {λr, φr} are eigenpairs of the integral operator B associated with B(�x1, �x2 ) =
(1/σ2)C(�x1, �x2 ), where C : D ×D → R is the covariance function. We assume λ1 ≥
λ2 ≥ · · · so that the terms retained in (1.3) correspond to the m largest eigenvalues
of the covariance.

Weak formulations of (1.1) have been well studied in the literature (e.g., see [15,
Chapter 9]) and well-posedness follows straightforwardly from the Lax–Milgram lemma
if realizations of a are positive and bounded. To ensure this, we restrict our attention
to independent uniform random variables ξr on Γr = [−1, 1] and assume that there
exist constants amin

0 and amax
0 satisfying

(1.4) 0 < amin
0 ≤ a0(�x) ≤ amax

0 <∞ a.e. in D

and the coefficient functions ar satisfy

(1.5)

m∑
r=1

‖ar‖∞ < amin
0 .

Stochastic Galerkin methods (introduced by Babuška and collaborators [1], [4])
seek approximations uhp to the weak solution u of (1.1) in finite-dimensional approx-
imation spaces of the form Zh ⊗ Sp, where Zh ⊂ H1

0 (D) and Sp ⊂ L2
�(Γ). As usual,

H1
0 (D) is the Sobolev space associated with D, and L2

�(Γ) denotes the set of functions
v on Γ := Γ1 × · · · × Γm = [−1, 1]m satisfying

〈v, v〉� :=

∫
Γ

	(y)v(y)2 dy <∞,

where 	(y) = 2−m is the joint density of [ξ1, . . . , ξm] and y = [y1, . . . , ym] with
yr := ξr(ω). We choose Zh = span{ϕ1(�x), . . . , ϕnx(�x)} to be a finite element space
associated with a spatial mesh of D with characteristic element size h. In our ex-
periments, we choose Sp = span{ψ1(y), . . . , ψnξ

(y)} to be the set of multivariate
polynomials of total degree p or less in y1, . . . , ym on Γ. However, tensor product
polynomials could also be used. For the first choice, we have

(1.6) nξ = dim(Sp) =
(m+ p)!

m!p!

and, as usual (see [15, Chapter 9]), we construct the basis functions as

ψj(y) =
m∏
s=1

ψjs(ys), j = (j1, . . . , jm) ,
m∑
s=1

js ≤ p,

where {ψjs , js = 0, 1, 2, . . . , p} are univariate Legendre polynomials of degree js that
are orthonormal on [−1, 1] with respect to the weight function 	s = 1/2. This yields
a basis of multivariate Legendre polynomials that are orthonormal with respect to
	(y) = 	1(y1) · · · 	m(ym).
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The structure of the expansion (1.2) and the tensor product form of the approxi-
mation space Zh ⊗ Sp leads to a structured linear algebraic system Ax = b of nx · nξ

equations where

A = G0 ⊗K0 +

m∑
r=1

Gr ⊗Kr, b = g0 ⊗ f0,(1.7)

and the vector x contains the coefficients in the expansion of the stochastic Galerkin
approximation in the tensor product basis {ϕiψj , i = 1, . . . , nx, j = 1, . . . , nξ}. In
(1.7), the symbol ⊗ denotes the Kronecker product. K0 and Kr are finite element
stiffness matrices of size nx × nx defined by

[K0]i,j =

∫
D

a0∇ϕi · ∇ϕj d�x, [Kr]i,j =

∫
D

ar∇ϕi · ∇ϕj d�x, r = 1, . . . ,m,

for i, j = 1, . . . , nx. The matrices G0 and Gr are of size nξ × nξ and are defined by

[G0]s,t = 〈ψs, ψt〉�, [Gr]s,t = 〈yrψs, ψt〉�, r = 1, . . . ,m,

where ψs, ψt, s, t = 1, . . . , nξ are basis functions for Sp . Since we choose these to
be orthonormal with respect to 〈·, ·〉�, G0 = I. The vector g0 is the first column
of G0, and f0 is the vector associated with the finite element discretization of the
deterministic analogue of (1.1). That is,

[f0]i =

∫
D

f ϕi d�x, i = 1, . . . , nx.

From now on, we will refer to the algebraic linear system Ax = b as the Kronecker
formulation of the discrete problem. Alternatively, by introducing the solution matrix

X =
[
x1,x2, . . . ,xnξ

] ∈ R
nx×nξ ,

whose jth column is the subvector of x containing the coefficients associated with
the jth basis function ψj for Sp, the linear system can also be rewritten as a linear
multiterm matrix equation

K0XG
�
0 +

m∑
r=1

KrXG
�
r = F.(1.8)

For example, see [13, Lemma 4.3.1]. By introducing the operator vec (·), which stacks
the columns of a matrix one after the other to form a vector, we have the relation
x = vec(X). The nx × nξ matrix F satisfies vec(F ) = b or, equivalently, F = f0 g

�
0 .

We will refer to (1.8) as the matrix equation formulation of the discrete problem.
There is a substantial body of work on solving the Kronecker formulation of

discrete problems associated with stochastic Galerkin approximation of elliptic PDEs.
Since A is sparse, symmetric, and positive definite, the standard conjugate gradient
(CG) method can be applied. However, this must be done in a smart way without
assembling A. (See, e.g., [10] for an early reference.) Matrix-vector products should
be done by exploiting the relation

(1.9)
m∑
r=0

(Gr ⊗Kr)v = vec

(
m∑
r=0

KrV G
�
r

)
, V = array(v),
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where array (·) forms a matrix V of size nx × nξ from the nξ subvectors of the
given vector v. Preconditioners that exploit the structure of A are another essential
ingredient (see, for example, [19], [26], [25], [21], [8]). In particular, the mean-based
preconditioner P = G0⊗K0 analyzed by Powell and Elman in [19] requires nξ inexact
decoupled solves with K0 in each CG iteration. Mean-based preconditioning is often
used in practice due to its nonintrusive nature, despite its lack of robustness when we
increase the ratio σ/μ in the KL expansion (1.3).

We will focus on the matrix equation formulation (1.8) in this paper. In particular,
we propose a new method that determines a low-rank approximation to the solution
matrix X by performing a projection onto a subspace of dimension nk · nξ, where nk

is much smaller than nx. In analogy to what is done in reduced basis approaches to
nonintrusive methods (for example, see [20]), our strategy only attempts to achieve a
reduction in the complexity associated with the high dimension of the deterministic
part of the problem. Hence our working assumption is that the number of terms m
in (1.2) is modest (in the low tens) so that the dimensions of the stochastic Galerkin
spaces Sp and Zh satisfy nξ 
 nx. Our philosophy is that long vectors of size nx · nξ

should never be constructed in generating a low-rank approximation. Previous work
on low-rank approximation methods has focussed on finding the dominant eigenvec-
tors of (KL-like) expansions of the solution matrix (see, for example, Matthies and
Keese [17]). There has also been significant recent research on the construction of
low-rank tensor decompositions of the discrete solution; in particular, by Khoromskij
and Schwab [14], Matthies and Zander [18], and Ballani and Grasedyck [2]. The novel
aspect of our strategy is that a reduced approximation space is built up on-the-fly
from rational Krylov subspaces. A projection is then used to obtain a reduced ma-
trix equation whose solution yields the low-rank approximation. We note that tensor
methods are to be recommended when tensor product polynomials are used and m,
and hence the stochastic dimension nξ, are extremely large.

An outline of the paper is as follows. The construction of reduced rational Krylov
approximation spaces for multiterm linear matrix equations is discussed in general
terms in the next section. In section 3, we discuss the model problem (1.1) and modify
the associated stochastic Galerkin matrix equations so that the general algorithm
from section 2 can be applied efficiently. Details of our implementation are given
in section 4. Finally, the performance of the resulting solver is assessed for two
test problems in section 5. Our experiments demonstrate that huge computational
savings—compared to solving the Kronecker formulation of the matrix equations using
standard preconditioned CG—can be achieved when the dimension nx · nξ is large.
That is, when one is looking to compute an accurate approximation to the solution
of (1.1) on a fine spatial mesh when the coefficient (1.2) is a function of up to m = 20
random variables.

2. Reduced rational Krylov approximation. Krylov-type subspaces have
proved to be effective approximation spaces in projection methods for linear matrix
equations; see [24]. A shortcoming of classical (polynomial in the coefficient matrix
A) Krylov subspaces is that they may require a large dimension to satisfactorily
approximate the sought after solution. The use of rational Krylov subspaces, which
involve rational matrix functions of the type (A − sjI)

−1, sj ∈ C, have practically
solved this problem in many applications. At the cost of solving a linear system at
each iteration, the generated space quickly builds up spectral information of the matrix
A, thus allowing a good approximation in a space of lower dimension than classical
Krylov spaces. Rational Krylov subspaces with appropriately chosen parameters sj
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have thus become a standard in the solution of large scale matrix equations and other
problems such as matrix function evaluations. We propose an extension of the rational
Krylov subspace idea to solve (1.8). The presence of several coefficient matrices makes
the generalization very challenging. Moreover, the need for a small though rich (i.e.,
spectrally informative) approximation space is particularly pressing.

To introduce the concept of reduced rational Krylov approximation, suppose that
we are given a set of m sparse symmetric positive definite matrices A1, . . . , Am of size
nx ×nx, whose spectra are all contained in a small interval S ⊂ R+. The significance
of S will become apparent later. In addition, let A0 = I be the nx × nx identity
matrix. Now suppose that we wish to solve a general multiterm matrix equation of
the form

A0XB0 +A1XB1 + · · ·+AmXBm = f0 g
�
0(2.1)

for the unknown matrix X of size nx × nξ (with nξ 
 nx), where the matrices Br,
r = 0, 1, . . . ,m are of size nξ × nξ, and the vectors f0 and g0 are of length nx and
nξ respectively. In this section, we simply view (2.1) as an abstract problem and
temporarily leave aside the specific details of stochastic Galerkin matrix equations.

Suppose that we can generate an orthonormal basis for an approximation space
Kk ⊂ Rnx of dimension nk 
 nx. If we collect the nk basis vectors into a matrix
Vk of size nx × nk, then an approximate solution to (2.1) can be sought in the form
Xk = VkYk ≈ X , where the nk × nξ matrix Yk (the reduced solution matrix) can be
defined by insisting that the residual

Rk := XkB0 +A1XkB1 + · · ·+AmXkBm − f0g
�
0

satisfies the Galerkin condition V �
k Rk = 0. This may be viewed as an orthogonality

condition for each column of the matrix Rk or as a matrix orthogonality condition in
the sense that

vec
(
V �
k Rk

)
=
(
I ⊗ V �

k

)
r = 0,

where r = vec(Rk). Substituting Xk = VkYk into this expression we see that Yk is
the solution of the reduced (or projected) matrix equation

(2.2) (V �
k Vk︸ ︷︷ ︸
I

)YkB0 + (V �
k A1Vk︸ ︷︷ ︸

A1

)YkB1 + · · ·+ (V �
k AmVk︸ ︷︷ ︸

Am

)YkBm = V �
k f0︸ ︷︷ ︸
f0

g�
0 .

Comparing (2.2) with (2.1) we see that the left matrices have been reduced in size
(from nx × nx to nk × nk) but will be dense rather than sparse. The right matrices
Br are unchanged. Readers who are more familiar with the Kronecker formulation of
matrix equations will note that (2.2) is equivalent to the algebraic system Akyk = bk,
where yk = vec(Yk) and

(2.3) Ak = B0 ⊗ I +

m∑
r=1

Br ⊗Ar, bk = g0 ⊗ f0.

To effectively implement such a strategy we will need to answer two questions: (i)
how do we construct the approximation space Kk, keeping nk as small as possible while
still maintaining accuracy? and (ii) can we solve the reduced matrix equation (2.2)
for Yk efficiently? For the latter, we will consider the Kronecker formulation (2.3). We
can compute yk using a direct method if nk · nξ is small or else use a matrix-oriented
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iterative solver such as CG, taking care to ensure that matrix-vector products are
performed efficiently using (1.9). For the former, we want to develop an iterative
procedure for building a sequence of approximation spaces K1 ⊂ K2 ⊂ · · · ⊂ Kj ⊂ · · ·
that terminates after k iterations when Kk is judged to be rich enough. To achieve
this objective, starting from the initial (scaled) vector1 v0 = f0/‖f0‖ ∈ R

nx and given
a vector of real positive parameters s = [s1, s2, . . .], we will iteratively generate spaces
Kj , j = 1, 2, . . . of increasing dimension nj that are built from a nested sequence of
rational Krylov approximation spaces. We give a brief outline of the construction of
these spaces next. All other implementation details are deferred to section 4.

At the first iteration j = 1, we start with V0 = v0 and compute

W = [(A1 + s1I)
−1v0, . . . , (Am + s1I)

−1v0] ∈ R
nx×m.

Next, we identify the �1 most significant directions of this matrix. This is done by
computing the singular values σi of W and retaining only the �1 left singular vectors
ui, i = 1, . . . , �1 associated with the values that contribute a fixed proportion β% of
the total (typically β = 99). That is, we choose �1 such that

∑�1
i=1 σi >

β
100

∑m
i=1 σi.

The approximation space K1 will be of dimension n1 = �1 + 1 ≤ m + 1 and is given
by range(V1) once the vectors have been modified to form an orthonormal basis

V1 = orth
(
[v0,u1, . . . ,u�1 ]

)
= [v0,v1, . . . ,v�1 ] ∈ R

nx×(�1+1).

The second iteration is defined by computing a new matrix

W = [(A1 + s2I)
−1v1, . . . , (Am + s2I)

−1v1]

and then computing its singular value decomposition in order to determine which �2
directions should be kept. The approximation space K2 has dimension n2 = �2+ �1+
1 ≤ 2m + 1. At the jth iteration, the jth column vj−1 of the basis matrix Vj−1 is
used to expand the space. The procedure continues to enrich the space until, after k
steps, an appropriate convergence criterion is satisfied. The orthogonality property
V �
k Rk = 0 ensures finite termination in exact arithmetic, since the exact solution will

be determined in an approximation space of dimension at most nx. However, a good
approximation is clearly sought in a space with a much smaller dimension.

The vector of positive parameters s = [s1, s2, . . .] is selected before the iteration
begins. Notice that since eachAr is symmetric and positive definite, each of the shifted
matrices (Ar + sjI), r = 1, . . . ,m is invertible, regardless of the particular positive
value of sj chosen. We delay a discussion of specific choices for sj until section 4.2.
Here, we simply note that we apply the same parameter sj when computing each
of the m columns of W . In this setting, the user must supply only one parameter
sj at the jth iteration. Of course, the number k of required iterations will not be
known in advance so we may cycle through a fixed number of chosen values, say,
s = [s1, s2, . . . , s10]. For more general multiterm matrix equations, up to m different
parameters could be employed in each iteration. However, we will not consider that
case here. Depending on the problem, further simplifications may be possible. For
instance, it might be appropriate to choose a single value of sj in all iterations.
We will discuss multiple-parameter and parameter-free strategies in section 4.2 and
investigate them numerically in section 5. For now, we use the subscript j to allow
for the possibility of dynamically updating sj as the iteration proceeds.

1The vector f0 is the initial residual associated with the deterministic algebraic system and a
zero initial guess.
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To describe the Krylov approximation space generated, let

(2.4) K�(Ar ,v0, s) := span

⎧⎨⎩v0, (Ar + sr1I)
−1v0, . . . ,

�∏
j=1

(Ar + srjI)
−1v0

⎫⎬⎭
be the rational Krylov subspace associated with the matrix Ar, the initial vector v0,
and the chosen vector of parameters s, where [sr1 , sr2 , . . . , sr� ] contains an appropriate
subset of length � of the components of s. (The parameters appear in different orders
and combinations for each r = 1, . . . ,m.) After k iterations, the approximation space
contains the rational Krylov subspaces K�(Ar ,v0, s), r = 1, . . . ,m for some particular
values of � (which may be different for each r). However, it is actually a richer space,
in the sense that it also contains combinations of rational functions in the coefficient
matrices {A1, . . . , Am} that are not included in those subspaces. This way, we expect
to construct a smaller subspace than by simply taking the union of individual rational
spaces. As an illustration, consider the specific case of m = 3. Suppose we perform
three iterations and choose distinct parameters s1, s2, and s3. The process generates
the following space (where, for ease of exposition, we do not orthogonalize or deflate
the vectors):

span{v0, (A1 + s1I)
−1v0︸ ︷︷ ︸

=:v1

, (A2 + s1I)
−1v0︸ ︷︷ ︸

=:v2

, (A3 + s1I)
−1︸ ︷︷ ︸

=:v3

v0,

(A1 + s2I)
−1v1, (A2 + s2I)

−1v1, (A3 + s2I)
−1v1,

(A1 + s3I)
−1v2, (A2 + s3I)

−1v2, (A3 + s3I)
−1v2}

= span
{
v0, (A1 + s1I)

−1v0, (A2 + s1I)
−1v0, (A3 + s1I)

−1v0,

(A1 + s2I)
−1(A1 + s1I)

−1v0, (A2 + s2I)
−1(A1 + s1I)

−1v0, (A3 + s2I)
−1

(A1 + s1I)
−1v0, (A1 + s3I)

−1(A2 + s1I)
−1v0, (A2 + s3I)

−1(A2 + s1I)
−1

v0, (A3 + s3I)
−1(A2 + s1I)

−1v0,
}
,

which consists of rational functions in {A1, A2, A3}. We see that the space contains
the subspaces

K2(A1,v0, s) = span
{
v0, (A1 + s1I)

−1v0, (A1 + s2I)
−1(A1 + s1I)

−1v0

}
,

K2(A2,v0, s) = span
{
v0, (A2 + s1I)

−1v0, (A2 + s3I)
−1(A2 + s1I)

−1v0

}
,

associated with A1 and A2 and the subspace

K1(A3,v0, s) = span
{
v0, (A3 + s1I)

−1v0

}
,

associated with A3. However, the four vectors

(A2 + s2I)
−1(A1 + s1I)

−1v0, (A3 + s2I)
−1(A1 + s1I)

−1v0,

(A1 + s3I)
−1(A2 + s1I)

−1v0, (A3 + s3I)
−1(A2 + s1I)

−1v0

are not contained in any of these individual subspaces.

Remark 2.1. The low-rank projection method described above may be viewed as
a generalization of the standard Galerkin method applied to the Sylvester equation

AX +XG = fg�,
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where the dimension of G is much smaller than that of A. The analogy with our
strategy is that a projection is only performed on the “large” part of the equation.
The smaller right-looking part (involving G) is not reduced. See Simoncini [24] for a
complete survey.

3. Application to stochastic Galerkin matrix equations. Let us now re-
turn to the multiterm matrix equation (1.8) associated with stochastic Galerkin ap-
proximations of (1.1),

K0XG
�
0 +

m∑
r=1

KrXG
�
r = f0 g

�
0 .(3.1)

Recall from section 1 that each term corresponds to a different term in the expansion
of the diffusion coefficient (1.2). The left matrices Kr, r = 0, 1, . . . ,m are symmetric
stiffness matrices of size nx × nx. The right matrices Gr, r = 0, 1, . . . ,m are of
size nξ × nξ and are also symmetric. Due to the constuction of the basis for Sp we
have G0 = I. In addition, G1, . . . , Gm all have at most two nonzero entries per row.
Since we are working with uniform random variables on Γr = [−1, 1], it can also be
shown that the eigenvalues of Gr are contained in [−1, 1] for r = 1, 2, . . . ,m. That
is, G1, . . . , Gm are all indefinite and have spectral bounds that do not depend on the
polynomial degree p or the number of random variablesm. See Powell and Elman [19]
and Ernst and Ullmann [9] for further discussion. Next, since g0 is the first column
of G0, we have

F = f0 g
T
0 = [f0,0, . . . ,0] ∈ R

nx×nξ ,

so that only the first column of the matrix F on the right-hand side of (3.1) is nonzero.
The matrix equation (3.1) has the same structure as (2.1), but the left matrices

are generally indefinite. This is an issue for two reasons. On the one hand, positive
definiteness of the left matrices ensures that the rational Krylov subspaces generated
in section 2 are well-defined (the coefficient matrices used in the construction of W
are nonsingular); on the other hand, it ensures that the projected (reduced) matrices
V �
k ArVk in (2.2) are nonsingular. The matrix K0 is always positive definite due to

(1.4). However, K1, . . . ,Km are indefinite whenever the functions a1, . . . , am are not
strictly positive. We encounter this situation when working with KL expansions (1.3)
where ar := σ

√
λrφr and φr is an eigenfunction of a covariance operator. Spectral

bounds for Kr, r = 0, 1, . . . ,m are given in [19], and these depend on the finite element
mesh parameter h in an unfavorable way. To generate a matrix equation (2.1) that
has positive definite left matrices whose spectral intervals do not grow as h → 0, we
will need to make two modifications to (3.1).

First, we formally divide the matrix system in (3.1) by K0. This corresponds to
applying the preconditioner P = I ⊗K0 to (1.7). Since K0 is symmetric and positive
definite, we may exploit the Cholesky factorization K0 = LL�. Multiplying on the
left in (3.1) by L−1, defining X̂ := LTX , and using G0 = I and G�

r = Gr yields the
modified matrix equation

X̂ +

m∑
r=1

K̂rX̂Gr = f̂0 g
�
0 ,(3.2)

where f̂0 := L−1f0 and K̂r := L−1Kr L
−T for r = 1, . . . ,m. When Kr is indefinite K̂r

is also indefinite. The eigenvalues of K̂r coincide with those of K−1
0 Kr, and bounds

for these are established in [19, Lemma 3.4] in the case where the diffusion coefficient
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is given by (1.3). Generalizing this result to (1.2) and assuming for simplicity now

that a0 > 0 is a constant, it is straightforward to show that the eigenvalues of K̂r lie
in the bounded interval [−τr, τr], where

τr := a−1
0 ‖ar‖L∞(D).(3.3)

If ar(�x) > νr > 0 for all �x ∈ D, so that Kr is positive definite, then a tighter bound

for the eigenvalues of K̂r is given by
[
a−1
0 νr, τr

]
, which is a subset of [−τr, τr]. The

key point is that these spectral bounds do not depend on the finite element mesh
parameter h.

Next, we want to find positive shifts αr so that K̂r + αrI for r = 1, . . . ,m are
positive definite. Using [19, Lemma 3.4], we know that the eigenvalues of K̂r + αrI
lie in the interval

(3.4) Sr := [αr − τr, αr + τr],

(although this bound is not tight if ar is strictly positive on D). If (1.5) holds, then we
have

∑m
r=1 τr < 1 and thus τr < 1 for each r = 1, 2, . . . ,m. Hence, in our problems,

choosing αr = 1 for r = 1, . . . ,m suffices.
To incorporate these shifts, we note that (3.2) is equivalent to

X̂ +

m∑
r=1

(
K̂rX̂Gr ± αrX̂Gr

)
= f̂0 g

�
0 ,

which can be rearranged to give a matrix equation of the desired form (2.1),

(3.5) X̂

(
I −

m∑
r=1

αrGr

)
︸ ︷︷ ︸

=:B0

+

m∑
r=1

(
K̂r + αrI

)
︸ ︷︷ ︸

=:Ar

X̂ Gr︸︷︷︸
=:Br

= f̂0 g
�
0 .

The equivalent Kronecker formulation of (3.5) is given by Ax̂ = b with x̂ = vec(X̂)
and

(3.6) A = B0 ⊗ I +

m∑
r=1

Br ⊗Ar, b = g0 ⊗ f̂0.

In section 5 the efficiency of the low-rank projection method applied to (3.5) will be
compared to that of solving the Kronecker formulation (3.6) using CG.

4. Implementation details. The complete low-rank projection algorithm con-
sists of a preprocessing or set-up phase followed by an iterative solution phase. In
the preprocessing phase, the matrices Kr and Gr are transformed into Ar and Br

and the vector f0 is transformed into f̂0, as outlined in the previous section. More
precisely, the matrices Ar and the vector f̂0 are not explicitly assembled. It is enough
to provide the vector f0, the matrices Kr, the Cholesky factor L of K0, and the shifts
α1, . . . , αm. The parameters s = [s1, s2, . . .] are also selected. Strategies for choosing
them will be discussed in section 4.2. We stress that the preprocessing does not entail
any approximation, and hence the transformed matrix equation (3.5) is mathemati-
cally equivalent to the original system (3.1). The solution phase is outlined in general
terms in Algorithm 4.1. A careful implementation is essential if it is to be efficient in
practice, and we address this next.
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Algorithm 4.1 Multiterm Reduced Basis Solver (MultiRB).

INPUT: the matrices {Ar}r=1,2,...,m and {Br}r=0,1,...,m, the vectors f̂0 and g0, the
parameters s = [s1, s2, . . .], the truncation threshold β, and the maximum number of
iterations jmax.

0. v = f̂0/‖f̂0‖, V0 = v, j = 1,
1. While not converged and j < jmax

1.1 Compute W = [(A1 + sjI)
−1v, . . . , (Am + sjI)

−1v]

1.2 Truncate Ŵ := trunc(W ) ∈ Rnx×�j and expand Vj := orth([Vj−1, Ŵ ])

1.3 Update projected matrices Ar = V �
j ArVj , r = 1, . . . ,m, f = V �

j f̂0
1.4 Approximately solve

YjB0 +A1YjB1 + . . .+AmYjBm = fg�
0

for Yj and check convergence
1.5 If stopping criterion is satisfied, set k = j and stop; else
1.6 Set v = Vjej+1 (take the next column of Vj to expand the space)
1.7 Set j = j + 1

2. Optional postprocessing step: Compute rank-revealing factorization Yk ≈
Y (1)(Y (2))�.

OUTPUT: solution factors X(1) = Vk and X(2) = Yk (or X(1) = VkY
(1) and X(2) =

(Y (2))� if step 2 is performed).

4.1. Solution phase. The most time-consuming parts of the solution phase
are (i) step 1.1, which entails m system solves with sparse matrices of dimension
nx × nx, (ii) step 1.2, which performs the orthogonalization of the current reduced
basis, and (iii) step 1.4, where the solution of the projected problem is computed and
its accuracy is assessed. In step 1.2, the orthogonality of the approximation space basis
is maintained by enforcing orthogonality of the newly added vectors by means of the
Gram–Schmidt process. The new basis vectors are always taken to be the singular
vectors corresponding to the dominant singular values of the latest computed matrix
W . Note that steps 1.1 and 1.2 must be performed at every iteration, whereas step 1.4
can be performed every few iterations, if appropriate. We now elaborate on steps 1.1
and 1.4.

In step 1.1, the shifted systems that must be solved share the same right-hand
side vector v. In principle, they could be solved by a sparse direct solver. Indeed, if
sj does not change with the iteration, and if memory is not a concern, then one could
save sparse factorizations of each of the matrices (Ar+sjI) for r = 1, . . . ,m and reuse
them in each iteration. For large nx and m, however, storing all the factorizations
becomes prohibitive. Moreover, the direct solution of m large systems may well be
expensive. An effective alternative is the use of iterative methods and, in particular,
the simultaneous iterative solution of allm sparse systems using CG. The iterations for
each system are performed at the same time. That is, the matrix-vector products are
carried out simultaneously, making the access to memory allocations more efficient. It
goes without saying that if iterative methods are used to solve the systems in step 1.1,
then we do not need to solve them to machine precision. A loose tolerance will be
employed. A crucial point is that the matrices Ar = L−1KrL

−� + αrI will never be
explicitly assembled. If a system of the form (Ar + sjI)y = v is solved by a direct



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOCHASTIC GALERKIN MATRIX EQUATIONS A151

method, then this corresponds to solving

(4.1) (Kr + (αr + sj)K0)ỹ = Lv, ỹ = L−�y,

where Kr and K0 have the same sparsity pattern. On the other hand, if the same
system is solved by an iterative method, then matrix-vector products of the type
(Ar + sjI)w can be performed as (Ar + sjI)w = L−1((Kr + (αr + sj)K0)(L

−�w)).

In either case operations with the sum Kr + (αr + sj)K0 are performed so K̂r is not
formed explicitly.

In step 1.4, once the deterministic part of the problem has been reduced, the
projected matrix equation needs to be solved and the quality of the current approx-
imation assessed. We consider the Kronecker formulation and apply CG once more.
As is typical in these circumstances, a matrix-oriented version of CG is employed to
exploit the presence of blas2 and blas3 operations in all the required matrix opera-
tions. We also remark that to speed up convergence, the initial guess for this second
CG iteration (step 1.4) is taken to be the solution Yj−1 obtained at the previous outer
iteration. To ensure the matrix has the correct dimension, we pad Yj−1 with as many
zero rows as basis vectors added to Vj at step j. Summarizing, the algorithm con-
tains two inner iterations: the first one expands the approximation space by solving
m linear systems with the same right-hand side, but with different coefficient matri-
ces (step 1.1). The second one determines the approximate solution to the reduced
problem (step 1.4). While for the former a fixed loose stopping tolerance can be used,
for the latter an increasingly more accurate solution is sought as the outer iteration
converges.

Monitoring convergence of the outer iteration is not straightforward. Since we
assume that nx and nξ are so large that vectors of dimension nx · nξ should not be
constructed, the residual matrix associated with the current approximation cannot be
explicitly generated. Instead, at the jth iteration we evaluate the relative difference

(4.2)
‖Xj −Xj−1‖F

‖Xj‖F =
‖Yj − [Yj−1; 0]‖F

‖Yj‖F ,

where ‖ · ‖F denotes the Frobenius norm. For a matrix X , this norm is equiva-
lent to computing the Euclidean norm of vec(X). The outer iteration is terminated
once the relative difference in the approximation falls below a user-specified tolerance
tol outer. The stopping tolerance for the inner iteration in step 1.4 of Algorithm 4.1
can be tuned with respect to the outer tolerance. In section 5 we use a dynamically
decreasing tolerance tol inner for CG on the projected problems.

After k iterations, when the outer iteration is judged to have converged, the
approximate solution Xk can be returned in factored form. That is, the matrices
X(1) = Vk and X(2) = Yk can be returned. However, the reduced solution matrix
Yk ∈ Rnk×nξ is not necessarily of full rank. Specifically, many of the singular values
of Yk may fall below machine precision or some other tolerance that is below the final
tolerance requested for convergence. This fact can be exploited at convergence in
step 2. Details are given in the appendix. This computation may be expensive if nk

and nξ are both large so it may be skipped. It is not an essential part of the solution
phase. However, the cost of performing step 2 is included in our experiments in
section 5. We also remark that the product X(1)(X(2)) does not have to be performed
explicitly. Single columns of the solution matrix can be computed as X(1)((X(2))ei),
i = 1, . . . , nξ, where ei denotes the ith column of the identity matrix. In particular, if
we assume that the first basis function for Sp is ψ1 = 1, then the first column of the
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solution matrix provides the coefficients that determine the mean of the stochastic
Galerkin approximation.

Finally, we note that the dimension of the approximation space constructed in
Algorithm 4.1 is nk with nk ≤ 1+m ·k, since at most m new vectors are added to the
space at each iteration. Memory limitations may require the user to terminate the
algorithm after a maximum number jmax of outer iterations—in this case the memory
requirements are bounded by (nx + nξ) ·m · jmax.

4.2. Selection of the parameters. It remains to choose the parameters sj used
in step 1.1 of Algorithm 4.1. Recall that in section 2 we stipulated that A1, . . . , Am

should all have eigenvalues contained in a small interval S ⊂ R+. If this is true, then
using a single parameter sj at the jth iteration to construct all the columns of W is
justified. Two strategies for choosing sj are outlined below. To implement them, we
need to estimate S cheaply, and so we explain how to do this first.

For stochastic Galerkin matrix equations we have Ar = K̂r + αrI, r = 1, . . . ,m,
where the shift αr is chosen to make Ar positive definite. In section 3 we explained
that αr = 1 suffices and a bound for the spectral interval of Ar is then given by
Sr = [1− τr, 1+ τr], where τr < 1 is defined in (3.3). Since the series (1.2) is assumed
to converge as m → ∞, we must also have τr → 0 as r → ∞. Hence, the interval Sr

contracts to α∗ = 1 as r → ∞ and S := S1 = [1− τ1, 1 + τ1] contains the eigenvalues
of each of A1, . . . , Am. The end points of this interval can be estimated once the
diffusion coefficient (1.2) has been chosen. No eigenvalues have to be computed.

It is often the case, especially when working with KL expansions (1.3), that the
first eigenfunction φ1 is a strictly positive function, so that, as explained in section 3,
the matrix K̂1 is positive definite and S1 is not a sharp bound for the eigenvalues
of A1 = K̂1 + α1I. However, for r ≥ 2, the matrices K̂r are indefinite and do have
spectral intervals centered around the origin (because the associated eigenfunctions are
symmetric). For those matrices, the bound Sr is sharper. In this case, the following
alternative strategy for choosing the shifts may be effective. Let λ1,min, λ1,max be the

extreme eigenvalues of K̂1 and choose

α1 = 1− (λ1,min + λ1,max)/2, α2 = α3 = · · · = αm = 1.(4.3)

This ensures that the eigenvalues of Ar = K̂r+αrI for each r = 1, . . . ,m are centered
around the unit value. The intervals Sr for r ≥ 2 are now nested and collapse to the
unit value as r → ∞. Estimates for λ1,min and λ1,max can be obtained cheaply by
computing the extreme eigenvalues of the matrix pencil (K1,K0), where K1 and K0

are assembled on a coarse finite element mesh (since the eigenvalues do not depend on
h). After applying the shifts in (4.3), the interval S := S2 or S = [1−λ2,min, 1+λ2,max],
where λ2,min and λ2,max are estimates for the extreme eigenvalues of the matrix pencil
(K2,K0), typically contains the eigenvalues of each of A1, . . . , Am. With an estimate
of S in hand, we can now address how to choose the parameters sj.

4.2.1. Multiple parameter strategy. One idea is to choose sj using standard
parameter estimation ideas using rational approximation. For example, see [24]. As-
sume for simplicity that m = 1, so that the problem to be solved is the Sylvester
equation

(4.4) XB0 +A1XB1 = f0g
�
0 .

Assume that B0 is nonsingular and that we can write the full eigendecomposition
B1B

−1
0 Q = QΛ, where Λ = diag(Λ1, 0) and Λ1 is diagonal and nonsingular. Then
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(4.4) can be rewritten as

XQ+A1XQΛ = f0g
�
0 B

−1
0 Q.

Setting Q = [Q1, Q2] with the same partitioning as for Λ, we see that the first block
satisfies

XQ1 +A1XQ1Λ1 = f0g
�
0 B

−1
0 Q1.

Moreover, the jth column zj of XQ1 is the solution to a shifted system,
( 1
λj
I + A1)zj = dj , where dj is the jth column of the right-hand side matrix

1
λj
f0g

�
0 B

−1
0 Q1. We now follow arguments for estimating zj used in rational Galerkin

methods. For example, see Druskin and Simoncini [6] and Druskin, Lieberman, and
Zaslavsky [5]. An approximation of zj is determined2 as zj,k ∈ Kk(A1,v0, s), where

Kk(A1,v0, s)

= span

⎧⎨⎩(A1 + s1I)
−1v0, (A1 + s2I)

−1(A1 + s1I)
−1v0, . . . ,

k∏
j=1

(A1 + sjI)
−1v0

⎫⎬⎭ ,

and v0 is the normalized version of dj . The vector of parameters s is still to be
selected. Let A1 = V �

k A1Vk, where the columns of Vk are an orthonormal basis of
Kk(A1,v0, s). If a Galerkin condition is imposed to determine zj,k, then the residual
satisfies (see [5])

dj −
(

1

λj
I +A1

)
zj,k =

rk(A1)dj

rk(−1/λj)
, rk(x) =

k∏
j=1

x− θj
x+ sj

,

where θj are the eigenvalues of A1. We now have

min
s1,...,sk

∥∥∥∥dj −
(

1

λj
I +A1

)
zj,k

∥∥∥∥ = min
s1,...,sk

1

|rk(−1/λj)| ‖rk(A1)dj‖,

where ‖ · ‖ denotes the Euclidean norm. We thus seek parameters s1, . . . , sk that
minimize ‖rk(A1)dj‖. A closely related optimization problem is obtained by replacing
θj with sj in the numerator of rk, giving the classical Zolotarev minimax problem

min
s1,...,sk

max
x∈spec(A1)

∣∣∣∣∣∣
k∏

j=1

x− sj
x+ sj

∣∣∣∣∣∣ .
If the Galerkin method is used with the values of sj obtained by solving this prob-
lem, then the rational function rk is the same as the function being minimized in the
Zolotarev problem. That is, θj = sj holds. To make the minimax problem tractable,
spec(A1) is usually replaced with S, where S is an interval containing spec(A1). The
set of parameters solving this problem can be computed using elliptic functions. Their
derivation is discussed, e.g., by Lu and Wachspress [16], and their computation by a
few lines of MATLAB code is described by Sabino [22, p. 43]. Other selections asso-
ciated with quasi-optimal rational approximation of matrix functions could be used

2To simplify the derivation, v0 is not included in the approximation space.
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instead; see, for example, Beckermann and Reichel [3] or Güttel [12], and Simoncini
[24] for a general presentation in the context of linear matrix equations.

In our setting (with m > 1), given an estimate for the interval S that contains the
eigenvalues of each of the matrices A1, . . . , Am, we may compute, say, 5 or 10 nodes
sj ∈ S using the method described above, which we cycle through as the iteration
proceeds.

4.2.2. Parameter-free strategy. Looking at (4.1) we can see that both αr and
sj act as shifts, although the rationale presented for choosing them is different. In the
case of stochastic Galerkin matrix equations, the shifts αr and the parameters sj can
often be combined, leading to a simpler version of Algorithm 4.1. We now develop
this idea.

Instead of selecting, say, 5 or 10 parameters sj ∈ S as described above, a simpler
strategy is to choose sj = s∗ for each j = 1, 2, . . . . That is, choose a single point in
S and use the same parameter in each iteration. For Lyapunov equations, the choice
s∗ =

√
a · b was suggested in [16], where the estimated spectral interval is given by

S = [a, b]. In our setting, if we choose the shifts to be αr = 1 for r = 1, . . . ,m,
then each of the intervals Sr will be centered about α∗ = 1, and a natural choice is
s∗ = 1 (the mid-point). S does not even need to be estimated. In (4.1), we then have
αr + sj = 2 for r = 1, . . . ,m, in each iteration. A mathematically equivalent version
of Algorithm 4.1 is then obtained by setting the constants αr to zero and choosing
s∗ = (αr + sj) = 2. Note that with this combination, the preprocessing phase is
essentially redundant. Only the Cholesky factor ofK0 needs to be precomputed. Once
the truncation threshold β is fixed, the MultiRB solver is completely parameter-free!

Whether we use a multiparameter or parameter-free strategy, it is worth noting
that if the spectrum of each matrix Ar, r = 1, . . . ,m, is independent of the mesh
parameter h, as in our setting, then the computed values of sj do not depend on
h. Since the spectrum of each matrix Ar + sjI is then independent of the mesh
parameter, we anticipate that the dimension of the approximation space generated
by our algorithm will be insensitive to h. This feature will be confirmed by numerical
experiments next.

5. Numerical experiments. In this final section, we consider two test problems
of the form (1.1) that are implemented in the MATLAB software package S-IFISS [23].
The iterative solver in S-IFISS tackles the Kronecker formulation of the original linear
system Ax = b with A in (1.7), not the matrix equation formulation considered here.
Example 5.1 corresponds to test problem 5 in S-IFISS and has a diffusion coefficient
of the form (1.2) taken from Eigel et al. [7]. Example 5.2 corresponds to S-IFISS test
problem 2, and in this case, the diffusion coefficient is a truncated KL expansion (1.3)
with relatively slowly decaying eigenvalues λr. In both examples, we choose the space
Zh to be the set of piecewise bilinear functions defined on uniform subdivisions of a
square domain D. We perform experiments with two specific finite element grids with
nx = 16, 129 and nx = 65, 025 degrees of freedom. The second of these (grid level 8)
is a uniform refinement of the first (grid level 7). We choose the space Sp to be the
set of Legendre polynomials of total degree p in y1, . . . , ym on Γ = [−1, 1]m. We vary
p and choose m appropriately for the problem at hand. Recall that nξ is given by
(1.6). All experiments were performed in MATLAB 7.10.0 on a Dell Precision T7500
desktop computer with 12 cores and a total of 48 GB RAM.

To solve the test problems we apply (i) the new MultiRB solver (Algorithm 4.1) to
the matrix equation (3.5) and (ii) CG to the equivalent Kronecker formulation (3.6).
Notice that both methods essentially use the mean-based preconditioner P = I ⊗K0.
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We compare the efficiency of the two approaches and investigate how the dimension
nk of the approximation space constructed by the MultiRB solver behaves when we
increase the number of spatial degrees of freedom nx, the polynomial degree p, and
the number of random variables m. All timings reported are in seconds. In the im-
plementation of MultiRB, we apply CG in step 1.1 until the relative residual error for
all m systems is below 10−4. The stopping tolerance for the outer iteration is cho-
sen to be tol outer = 10−5. The projected problem in step 1.4 is solved iteratively
with CG at each iteration, and we use the dynamically decreasing inner tolerance
tol inner = 10−3· tol outer. Unless otherwise stated, we fix the truncation thresh-
old to be β = 99.

When we apply CG to the Kronecker formulation, we exploit the structure and
use (1.9) when performing matrix-vector products. Variants of CG for linear systems
in Kronecker form are written with matrix-matrix operations and typically include
truncation strategies that maintain iterates of low rank as the iteration proceeds; see,
for example [18]. We do not adopt such a truncation strategy in our comparison be-
cause doing so would affect the optimality properties of the CG solver and we want our
reference method to have a reliable convergence rate. To make fair comparisons with
the reduced basis solver, the stopping criterion for CG applied to (3.6) is also based
on the relative difference in the approximate solution. The memory requirements of
CG applied to (3.6) are 4 vectors of length nx · nξ each: the current approximation,
the direction, the residual, and an extra vector for storing the matrix-vector multipli-
cation; the total memory requirements are thus 4 · nx · nξ. In contrast, the memory
requirements for the reduced basis solver are of order (nx + nξ) · nk. We stress that
CG requires full length vectors of size nx · nξ whereas the new solver does not.

Example 5.1. Consider the square domain D = [0, 1]× [0, 1] and define the diffu-
sion coefficient to be (1.2) with a0 = 1 and ar(�x) = γr cos (2πβ1(r)x1) cos (2πβ2(r)x2),
where γr := 0.832 r−4 and β1(r) := r − s(r) (s(r + 1)) /2, β2(r) := s(r) − β1(r) with
s(r) := �−1/2 +

√
1/4 + 2r�. We note that the coefficients γr, which determine the

weights of the terms ar, decay rapidly as r → ∞. If we choose m = 5, then we retain
all terms in (1.2) with coefficients γr ≥ 10−3. However, if m = 9 and m = 16, then
we retain all terms with γr ≥ 10−4 and 10−5, respectively. Selected polynomial chaos
coefficients uj of the computed approximation

uhp(�x,y) =

nξ∑
j=1

uj(�x)ψj(y)

are shown in Figure 1 for the case m = 9 and p = 3. Note that u1 represents the
mean E[uhp].

First, we fix the grid level to be 7 and compare the multiple-parameter and
parameter-free implementations of the reduced basis solver outlined in sections 4.2.1
and 4.2.2. For the latter, we set s∗ = 2. For the former, we choose the shifts as in (4.3)
and then, on the estimated interval S = [α1+λ1,min, α1+λ1,max] ≈ [0.1695, 1.8305],we
compute 5 nodes [s1, s2, s3, s4, s5] using the MATLAB code from [22, p. 43]. Note that

α1 is close to 1 in this example since λ1,min ≈ −λ1,max. The matrix K̂1 is indefinite.
Results are presented in Table 1. We record the number of outer iterations k required
by the MultiRB solver, the dimension nk of the approximation space generated (the
number of columns of Vk), and the rank of the final approximation Xk. We also
record the CPU time in seconds for the solution phase. This includes the time taken to
compute the truncated singular value decomposition of Yk. For m = 9 and m = 16 we
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Fig. 1. Left to right: Polynomial chaos coefficients u1, u5, and u10 of the stochastic Galerkin
solution uhp ∈ Zh ⊗ Sp to Example 5.1 in the case m = 9 and p = 3. The left plot shows the mean
solution.

Table 1

Results obtained with the MultiRB solver for Example 5.1 and grid level 7: multiparameter
versus parameter-free.

Multiparameter Parameter-free
m p nξ k nk Rank Time k nk Rank Time

2 21 23 84 19 5.96e0 16 66 19 3.67e0
5 3 56 26 97 29 7.02e0 19 77 28 4.76e0

4 126 28 104 37 7.80e0 19 77 36 4.63e0
5 252 28 104 43 8.24e0 23 94 42 6.29e0
2 55 16 74 26 6.96e0 14 79 26 5.72e0

9 3 220 16 74 34 7.21e0 16 94 34 6.96e0
4 715 16 74 40 7.84e0 17 100 42 8.19e0
5 2,002 22 105 47 1.67e1 18 102 47 1.27e1
2 153 15 87 32 1.19e1 12 82 32 9.94e0

16 3 969 16 89 40 1.40e1 14 106 41 1.21e1
4 4,845 16 89 45 2.53e1 15 117 46 2.82e1
5 20,349 19 105 49 1.71e2 15 117 51 1.52e2

Table 2

Results for Example 5.1 and grid level 7: MultiRB solver versus standard CG.

m p nξ k Inner nk Rank Time CG time (its)

2 21 16 12.9 66 19 3.67e0 1.42e0 (10)
5 3 56 19 15.6 77 28 4.76e0 3.85e0 (12)

4 126 19 16.7 77 36 4.63e0 9.32e0 (14)
5 252 23 18.9 94 42 6.29e0 1.77e1 (14)
2 55 14 13.3 79 26 5.72e0 3.68e0 (10)

9 3 220 16 15.6 94 34 6.96e0 1.59e1 (12)
4 715 17 17.1 100 42 8.19e0 6.20e1 (14)
5 2,002 18 18.4 102 47 1.27e1 1.71e2 (14)
2 153 12 12.7 82 32 8.94e0 1.26e1 (10)

16 3 969 14 15.1 106 41 1.21e1 1.64e1 (12)
4 4,845 15 16.7 117 46 2.82e1 5.44e2 (14)
5 20,349 15 17.5 117 51 1.52e2 3.31e3 (14)

see that the approximation space generated by the multiparameter version is smaller
than that generated by the parameter-free version. However, timings are similar for
both implementations.

Adopting the parameter-free implementation for simplicity, we now compare the
efficiency of using the MultiRB method to solve the matrix equation (3.5) and using
CG to solve (3.6). Results obtained for grid levels 7 and 8 are presented in Tables 2



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

STOCHASTIC GALERKIN MATRIX EQUATIONS A157

Table 3

Results for Example 5.1 and grid level 8: MultiRB solver versus standard CG.

m p nξ k Inner nk Rank Time CG time (its)

2 21 16 12.9 66 19 2.14e1 8.13e0 (10)
5 3 56 19 15.6 77 28 2.65e1 2.17e1 (12)

4 126 19 16.7 77 36 2.52e1 5.31e1 (14)
5 252 23 18.9 94 42 3.23e1 1.03e2 (14)
2 55 14 13.3 79 26 3.27e1 2.03e1 (10)

9 3 220 16 15.6 94 34 3.86e1 9.11e1 (12)
4 715 17 17.1 100 42 4.22e1 3.35e2 (14)
5 2,002 18 18.3 102 47 4.91e1 9.35e2 (14)
2 153 12 12.7 82 32 5.04e1 6.76e1 (10)

16 3 969 14 15.1 106 41 6.19e1 4.90e2 (12)
4 4,845 15 16.7 117 46 8.47e1 2.81e3 (14)
5 20,349 15 17.5 117 51 2.15e2 Out of Memory

and 3. In column five, we also now record the average number of inner CG iterations
required to solve the projected matrix equations. The CPU time in seconds taken to
solve the Kronecker formulation using CG is reported in the final column, and the
associated number of CG iterations is given in parentheses for reference.

Comparing the results in Tables 2 and 3 we see that the dimension nk of the
approximation space built by the MultiRB solver is independent of h, as predicted.
The rank of the final approximation is also observed to be independent of h. When nξ

is small we see that there is nothing to be gained by using the low-rank solver. Using
CG on the Kronecker formulation is quicker and requires comparable memory. This
can be explained as follows. To construct the reduced basis of size nk, the new method
requires the solution of m · k linear systems of size nx. In each iteration, mean-based
preconditioned CG requires the solution of nξ linear systems of size nx (with coefficient
matrix K0). So, when nξ 
 m · k, CG performs fewer solves and is quicker overall.
However, when the choice of m and p is such that the dimension nξ is large (typically
nξ > 100), using the reduced basis solver on the matrix formulation is much quicker.
Although we do not report them here, we note that the results obtained with the
multiparameter implementation of the low-rank solver exhibit completely analogous
behavior. Of course, timings are not the only consideration. In the largest experiment,
where nξ = 20, 349 and the grid level is 8, the Kronecker formulation consists of 1.3
billion equations! We run out of memory when we apply CG to (3.6). However, since
the reduced basis solver never forms vectors of length nx · nξ, it is able to make more
efficient use of the available memory. As mentioned in section 4.2, when nξ and nx

are large, computing the truncated singular value decomposition of Yk is costly. In
Table 3, in the casem = 16 and p = 5, we note that 35% of the total reported solution
time for the reduced basis solver was spent on this postprocessing task. Recall that
this step is not part of the actual solution phase and can be turned off by the user.

We observe that both the dimension nk of the approximation space generated
by the reduced basis solver and the rank of the final solution matrix increase slightly
with the number of random variablesm and the polynomial degree p. Notice also that
nk is larger than the rank in all cases. This suggests that the reduced basis built by
the new method is not optimal. One possible reason for this is that since the terms
in (1.2) decay so rapidly in this example, the spectral intervals of the matrices Ar

also decay very rapidly. The matrix A1 has a noticeably larger spectral interval than
A2, . . . , Am. Choosing a parameter sj to form (A1 + sjI) that is distinct from the
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Table 4

Results for Example 5.1 and grid level 8: MultiRB solver with β = 96.

m p nξ k Inner nk Rank Time

2 55 23 13.1 82 26 4.94e1
9 3 220 24 14.8 83 34 5.10e1

4 715 27 16.8 93 42 5.97e1
5 2,002 27 17.6 95 47 6.44e1
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Fig. 2. Left to right: Polynomial chaos coefficients u1, u5 and u10 of the stochastic Galerkin
solution uhp ∈ Zh ⊗ Sp to Example 5.2 in the case m = 12, p = 3 and σ = 0.3. The left plot shows
the mean solution.

parameter sj used to form (Ar + sjI) for r ≥ 2 in the construction of W in step 1.1
of the MultiRB method may then be more effective. The current implementation is
more general, however, and the savings in both time and memory usage compared to
using standard CG are self-evident.

In the results above we used the default value β = 99 for the truncation threshold.
The results presented in Table 4 illustrate the effect of relaxing the threshold to β = 96
so that fewer vectors are retained at each step. Comparing the results in Table 4 with
those in Table 3 for the case m = 9 we see that although the dimension nk is now a
little smaller, more outer iterations are required and the timings have increased.

Example 5.2. Consider the domain D = [−1, 1] × [−1, 1] and let the diffusion
coefficient now take the form (1.3) with mean μ = 1. Let ξr ∼ U(−√

3,
√
3) and

consider the covariance function

C(�x1, �x2) = σ2 exp

(
−‖�x1 − �x2‖1

�

)
,

where � denotes the correlation length. The eigenvalues and eigenfunctions of the as-
sociated covariance operator can be computed analytically (e.g., see [15, Chapter 7]).
The eigenvalues λr determine the weightings of the individual terms in the expansion
(1.3). Note that these decay much more slowly than the coefficients γr in Example 5.1.
If we set m = ∞ in (1.3), then

∫
D
Var(a(�x, ω)) d�x = σ2Leb(D) = 4σ2. If we truncate

the series after m terms, then the integral of the variance of the approximated coeffi-
cient is σ2

∑m
r=1 λr .We can use this fact to determine how to choosem. In particular,

setting � = 2 and then retaining m = 8, 12, and 20 terms means that we incorporate
87%, 89%, and 93%, respectively, of the integral of the variance of a. We present
results below for � = 2 and two distinct values of the standard deviation: σ = 0.1 and
σ = 0.3. Selected polynomial chaos coefficients uj of the computed approximation
are shown in Figure 2 for the case m = 12, p = 3, and σ = 0.3.
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Table 5

Results obtained with the MultiRB solver for Example 5.2 with σ = 0.1 and grid level 7: mul-
tiparameter versus parameter-free implementations.

Multiparameter Parameter-free
m p nξ k nk Rank Time k nk Rank Time

2 45 8 58 40 2.27e0 8 59 40 2.18e0
8 3 165 9 66 65 2.50e0 9 67 66 2.71e0

4 495 9 66 66 2.65e0 9 67 66 2.75e0
5 1,287 9 66 66 3.01e0 9 67 66 3.08e0
2 91 7 76 62 3.25e0 8 87 63 3.86e0

12 3 455 8 87 87 3.98e0 8 87 87 3.99e0
4 1,820 8 87 87 5.07e0 8 87 87 5.10e0
5 6,188 8 87 87 1.23e1 8 87 87 1.22e1
2 231 10 172 125 1.07e1 10 171 125 1.21e1

20 3 1,771 10 172 172 1.54e1 10 171 171 1.41e1
4 10,626 10 172 172 5.38e1 10 171 171 5.12e1

Table 6

Results obtained with the MultiRB solver for Example 5.2 with σ = 0.3 and grid level 7: mul-
tiparameter versus parameter-free implementations.

Multiparameter Parameter-free
m p nξ k nk Rank Time k nk Rank Time

2 45 16 124 45 5.37e0 17 128 45 5.57e0
8 3 165 21 163 128 8.08e0 20 152 127 7.18e0

4 495 24 187 182 1.05e1 24 183 178 1.04e1
5 1,287 26 203 203 1.87e1 27 207 207 1.87e1
2 91 15 166 89 8.52e0 15 165 89 8.54e0

12 3 455 18 202 197 1.22e0 18 201 197 1.20e1
4 1,820 21 236 236 2.59e1 21 236 236 2.60e1
5 6,188 25 282 282 1.17e2 25 282 282 1.14e2
2 231 16 283 203 2.08e1 16 281 206 2.00e1

20 3 1,771 23 403 403 6.45e1 23 399 399 6.28e1
4 10,626 26 459 459 4.38e2 26 454 454 4.11e2

First, we fix the grid level to be 7 and compare the multiple-parameter and
parameter-free implementations of the reduced basis solver. For the latter, we set
s∗ = 2 as before. For the former, we choose the shifts as in (4.3). The matrix K̂1

is positive definite now. In the case σ = 0.1 (the low standard deviation case), we
obtain α1 = 0.8794. The eigenvalues of A1 are then contained in [0.9737, 1.0263]. This
interval is not large enough to contain the eigenvalues of each of A2, . . . , Am so we
use S = [1 + λ2,min, 1 + λ2,max] ≈ [0.9219, 1.0784]. Similarly, in the case σ = 0.3, we
obtain α1 = 0.6381 and use S = [1+λ2,min, 1+λ2,max] ≈ [0.7657, 1.2344]. Notice that
S is larger when σ increases. For both values of the standard deviation, we compute
5 nodes [s1, s2, s3, s4, s5] on S, using the MATLAB code from [22, p. 43] as before.
Results are presented in Tables 5 and 6.

We see that both implementations of the reduced basis solver work equally well.
This is no surprise since the end points of the interval S used by the multiparameter
version are a much smaller perturbation from 1 here than in Example 5.1. The
computed values of sj are all close to 1 (the midpoint of S), especially when σ = 0.1,
which is effectively the choice made in the parameter-free version. It is also interesting
to note that both versions of our new method generate approximation spaces whose
dimensions match the rank of the final approximation (unless nξ is small). In this
sense, the reduced basis is optimal. Notice also that the recorded ranks are much larger
than in Example 5.1 and they increase when both the standard deviation σ and the
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Table 7

Results for Example 5.2 with σ = 0.3 and grid level 7: MultiRB solver versus standard CG.

m p nξ k Inner nk Rank Time CG time (its)

2 45 17 9.8 128 45 5.57e0 2.47e0 (8)
8 3 165 20 12.1 152 127 7.18e0 9.93e0 (10)

4 495 24 14.5 183 178 1.04e1 3.58e1 (12)
5 1,287 27 17.0 207 207 1.87e1 9.90e1 (13)
2 91 15 9.9 165 89 8.54e0 5.52e0 (8)

12 3 455 18 12.2 201 197 1.20e1 3.31e1 (10)
4 1,820 21 15.0 236 236 2.60e1 1.54e2 (12)
5 6,188 25 18.6 282 282 1.14e2 5.72e2 (13)
2 231 16 9.4 281 206 2.01e1 1.72e1 (8)

20 3 1,771 23 12.3 399 399 6.28e1 1.70e2 (10)
4 10,626 26 15.4 454 454 4.11e2 1.18e3 (12)

Table 8

Results for Example 5.2 with σ = 0.3 and grid level 8: MultiRB solver versus standard CG.

m p nξ k Inner nk Rank Time CG time (its)

2 45 17 9.8 128 45 3.21e1 1.34e1 (8)
8 3 165 21 12.2 160 129 4.14e1 5.66e1 (10)

4 495 24 14.5 183 178 5.11e1 1.97e2 (12)
5 1,287 27 16.9 207 207 6.40e1 5.53e2 (13)
2 91 15 9.9 165 89 4.78e1 3.00e1 (8)

12 3 455 18 12.2 201 196 6.16e1 1.75e2 (10)
4 1,820 21 15.0 236 236 8.64e1 8.21e2 (12)
5 6,188 25 18.6 281 281 1.88e2 3.07e3 (13)
2 231 16 9.4 281 206 1.11e2 9.47e1 (8)

20 3 1,771 23 12.3 399 399 1.97e2 8.45e2 (10)
4 10,626 26 15.4 454 454 5.56e2 Out of Memory

number of random variables m increase. As σ and m increase, the variance of the
truncated diffusion coefficient increases, so it is intuitive that a richer approximation
space would then be needed.

Adopting the parameter-free implementation for simplicity, we now compare the
efficiency of using the MultiRB method to solve the matrix equation (3.5) and using
CG to solve (3.6). Results obtained for grid levels 7 and 8 are presented in Tables 7
and 8, respectively. Here, we consider only the more challenging case σ = 0.3. Com-
paring the results in Tables 7 and 8 we see that the dimension nk of the approximation
space built by the MultiRB solver is independent of h, as predicted. The rank of the
final approximation is also observed to be independent of h. Once again, when nξ is
small there is nothing to be gained by using the low-rank solver. Using CG on the
Kronecker formulation is quicker and uses comparable memory. However, when nξ is
large (typically nξ > 100) using the reduced basis solver on the matrix formulation is
much quicker and uses substantially less memory. Indeed, in the largest experiment,
where nξ = 10, 626 and the grid level is 8, the Kronecker formulation consists of 690
million equations. We run out of memory when we apply CG to (3.6), but our new
method is able to solve the matrix formulation of the system easily.

For completeness, we investigate the numerical ranks of the iterates generated
when we apply CG to (3.6). In Table 9, we report the rank of the nx × nξ matrix Xj

associated with the jth CG iterate as the iteration proceeds for the casem = 8, p = 5,
and grid level 7. In this case, note that the largest possible rank is equal to nξ = 1, 287
(the number of columns of Xj). More precisely, at the jth iteration we record the
number of singular values σi(Xj) satisfying σi(Xj)/σ1 > δ/nξ for δ = 10−5, 10−12.
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Table 9

Number of singular values σi(Xj) of the CG approximate solution matrix Xj satisfying
σi(Xj)/σ1 > δ/nξ .

it j 1 2 3 4 5 6 7 8 9 10 11 12 13

δ = 10−5 1 9 45 96 140 172 185 194 193 202 204 204 204
δ = 10−12 1 9 45 165 359 462 529 603 645 711 750 791 810

The first value of δ was used to determine the rank, equal to 207, reported in Table 7
for the final MultiRB iterate. The more stringent value δ = 10−12 gives an idea of the
numerical rank of the CG iterate. That is, the number of (relative) singular values
above machine precision. Similar ranks are observed for the direction and residual
matrices. The numbers reported in Table 9 illustrate that the CG iterates are not
really of low rank. If a truncation procedure is implemented within CG to force the
iterates to be of low rank, then orthogonality of the direction vectors is lost and the
iteration error stagnates at a level that depends on the truncation threshold. The
MultiRB algorithm builds up, a few columns at a time, an approximation Xk of size
nx × nk (in factored form) with rank nk = 207.

6. Summary and conclusions. This paper describes the design and imple-
mentation of the MultiRB method, an innovative solver for linear systems arising
from stochastic Galerkin finite element approximation of elliptic PDEs with random
coefficients. We consider the multiterm matrix equation formulation of the systems
and develop a new solver that builds up an approximation space on-the-fly that ex-
ploits the inherent low-rank structure. The approximation space generated is inspired
by ideas from rational approximation. Our numerical results demonstrate that high-
dimensional (> 109 unknowns) stochastic Galerkin linear systems can be solved in a
few minutes on contemporary desktop computers. Moreover, the new solver requires
significantly less memory than conventional mean-based preconditioned CG.

Appendix. Here we briefly explain how to perform the optional postprocessing
step in Algorithm 4.1. Assuming that Yk = Y (1)(Y (2))� with Y (1), Y (2) of rank t,
the approximate solution to the original problem is also of rank t and is given by
Xk = X(1)(X(2)) with X(1) := VkY

(1) and X(2) := (Y (2))�. In practice, even if Yk is
full rank it is interesting to approximate Yk by a low rank matrix Y (1)(Y (2))� that
retains the largest singular values of Yk without affecting the overall approximation.
For ease of exposition we assume that nk ≤ nξ. Let Yk = UΘQ� be the economy-size
singular value decomposition of Yk, that is, Yk =

∑nk

r=1 θrurq
�
r , where the values θr

are sorted decreasingly. Suppose that θr̂+1 is the first singular value satisfying

θr̂+1 ≤ θ1
tol outer

nξ
,(6.1)

and let Ur̂ = [u1, . . . ,ur̂],Θr̂ = diag(θ1, . . . , θr̂) and Qr̂ = [q1, . . . ,qr̂]. Then Yk can
be approximated by Y (1)(Y (2))� with Y (1) = Ur̂Θr̂ and Y (2) = Qr̂, where the error
is given by

‖Yk − Y (1)(Y (2))�‖2 = θr̂+1

(see Golub and Van Loan [11]). Note that this does not affect the final approximation
in a significant manner. To show this, let us write Yk = Y (1)(Y (2))� + E with
‖E‖2 = θr̂+1 where θr̂+1 satisfies (6.1) and recall that ‖Yk‖2 = ‖Y (1)(Y (2))�‖2 = θ1,
‖Yk‖F = (θ21 + · · · + θ2nk

)1/2 ≥ ‖Y (1)(Y (2))�‖F and ‖E‖F ≤ √
nξ‖E‖2. In this case



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A162 C. E. POWELL, D. SILVESTER, AND V. SIMONCINI

we have that

‖Y (1)(Y (2))� − [Yk−1; 0]‖F
‖Y (1)(Y (2))�‖F

=
‖(Yk − E)− [Yk−1; 0]‖F

‖Y (1)(Y (2))�‖F
≤ ‖Yk − [Yk−1; 0]‖F

‖Y (1)(Y (2))�‖F +
‖E‖F

‖Y (1)(Y (2))�‖F
≤ ‖Yk − [Yk−1; 0]‖F

‖Yk‖F +

√
nξ‖E‖2

‖Y (1)(Y (2))�‖F
≤ tol outer+

θ1tol outer√
nξ‖Y (1)(Y (2))�‖2 =

(
1 +

1√
nξ

)
· tol outer.

Hence, the new approximation satisfies the same stopping criterion with a value of
the tolerance which approaches tol outer as nξ increases.
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