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Abstract In the framework of cluster analysis based
on Gaussian mixture models it is usually assumed that

all the variables provide information about the clus-

tering of the sample units. Several variable selection

procedures are available in order to detect the struc-

ture of interest for the clustering when this structure is
contained in a variable sub-vector. Currently, in these

procedures a variable is assumed to play one of (up to)

three roles: i) informative, ii) uninformative and corre-

lated with some informative variables, iii) uninforma-
tive and uncorrelated with any informative variable. A

more general approach for modelling the role of a vari-

able is proposed by taking into account the possibil-

ity that the variable vector provides information about

more than one structure of interest for the clustering.
This approach is developed by assuming that such in-

formation is given by non-overlapped and possibly cor-

related sub-vectors of variables; it is also assumed that

the model for the variable vector is equal to a product
of conditionally independent Gaussian mixture models

(one for each variable sub-vector). Details about model

identifiability, parameter estimation and model selec-

tion are provided. The usefulness and effectiveness of

G. Galimberti
Department of Statistical Sciences, via delle Belle Arti 41,
40126 Bologna, Italy
E-mail: giuliano.galimberti@unibo.it

A. Manisi
E-mail: annamaria.manisi@gmail.com

G. Soffritti
Department of Statistical Sciences, via delle Belle Arti 41,
40126 Bologna, Italy
Tel.: +39-051-2098193
Fax: +39-051-232153
E-mail: gabriele.soffritti@unibo.it

the described methodology are illustrated using simu-
lated and real datasets.
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algorithm · Gaussian mixture model · Genetic
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1 Introduction

When a dataset is characterised by the presence of an
unknown cluster structure (a grouping of a given set of

observations into clusters), methods for cluster analy-

sis are the correct unsupervised tool to extract such an

information from the data (Hastie et al. 2009). How-
ever there may be datasets in which such a structure

is confined in a sub-space of the variable space. Since

the effect of the presence of uninformative variables is

a masking of the cluster structure (see, e.g., Gordon

1999, p. 23), the use of methods able to select the in-
formative variables in a cluster analysis, such as those

proposed by Fowlkes et al. (1988), Gnanadesikan et al.

(1995), Brusco and Cradit (2001), Montanari and Liz-

zani (2001), Fraiman et al. (2008), Steinley and Brusco
(2008a) and Witten and Tibshirani (2010), is crucial

for a proper recovery of the unknown cluster structure

from the observed data.

Another problem to be tackled when performing a

cluster analysis is that datasets may be characterised
by the presence of several independent unknown clus-

ter structures, that is independent groupings of the

same set of observations defined in different subspaces

of the variable space. Since a classical assumption in
cluster analysis is that one single cluster structure is

contained in the data, most clustering methods can

miss relevant information about the ways observations
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are clustered. Methods able to avoid this drawback are

due to Soffritti (2003), Friedman and Meulman (2004),

Belitskaya-Levy (2006), Poon et al. (2013), Dang and

Bailey (2015) and Liu et al. (2015), for example.

If the variables are continuous, model-based clus-
tering methods that rely on Gaussian mixture models

can be employed. In these models the joint probabil-

ity density function (p.d.f.) of the variables is assumed

to be a mixture of a finite number of Gaussian densi-
ties (one component density for each cluster) (see, e.g.,

McLachlan and Peel 2000; Melnykov and Maitra 2010).

The number of components is generally chosen through

model selection criteria, such as the Bayesian infor-

mation criterion (BIC) (Schwarz 1978). In the frame-
work of likelihood-based methods, parameters are usu-

ally estimated through the maximum likelihood (ML)

method by resorting to the expectation-maximisation

(EM) algorithm (Dempster et al. 1977). The clustering
of the given set of observations is performed using a

rule that assigns an observation to the component of

the mixture to which it has the highest posterior prob-

ability of belonging. Gaussian mixture models with a

parsimonious covariance structure can help controlling
the model complexity when the number of variables is

high. They can be obtained by reparameterising the

component-covariance matrices according to their spec-

tral decomposition and by imposing constraints on the
resulting eigenvalues and/or eigenvectors over the mix-

ture components (Banfield and Raftery 1993; Celeux

and Govaert 1995). Another approach relies on the use

of factor-analytic dimensionality reduction methods (see,

e.g., McLachlan et al. 2003; McNicholas and Murphy
2008; Viroli 2010).

Methods that simultaneously select the informative

variables and find the cluster structure, based on Gaus-

sian mixture models, have been proposed by Dy and

Brodley (2004), Law et al. (2004), Tadesse et al. (2005),
Raftery and Dean (2006), Pan and Shen (2007), Xie

et al. (2008), Wang and Zhu (2008), Galimberti et al.

(2009), Maugis et al. (2009a), Maugis et al. (2009b),

Zeng and Cheung (2009), Zhou et al. (2009), Guo et al.
(2010) and Andrews and McNicholas (2014). Compar-

isons among some of these methods, based on analyses

of simulated and real datasets, can be found in Stein-

ley and Brusco (2008b), Witten and Tibshirani (2010),

Celeux et al. (2011), Celeux et al. (2014) and Andrews
and McNicholas (2014). In particular, the variable se-

lection methods proposed by Raftery and Dean (2006)

are based on a model in which the vector of the ex-

amined variables is assumed to be partitioned into two
sub-vectors: one is composed of the informative vari-

ables and the other contains the uninformative ones. A

greedy search algorithm is developed for partitioning

the variables into these two sub-vectors. In the steps

of this algorithm, for each variable two different mod-

els are considered: a) a model in which the examined

variable is jointly modelled with the informative vari-

ables through a Gaussian mixture with K components
(K ≥ 2); b) a Gaussian linear regression model for the

conditional distribution of the examined variable given

the informative ones. These two models correspond to

two different roles (informative and uninformative, re-
spectively) for the examined variable. The selection of

the informative variables is then recast as a sequence of

model comparison problems, based on the BIC. Maugis

et al. (2009a) exploit a similar approach by introduc-

ing an explicit formulation of the joint p.d.f. of the ob-
served variables. In particular, they assume that this

joint p.d.f. is equal to the product of a Gaussian mix-

ture model with K components (K ≥ 2) for the dis-

tribution of the informative variables and a Gaussian
linear regression model for the conditional distribution

of the uninformative variables given the informative

ones. This regression model allows the uninformative

variables to be explained by only a subset of the in-

formative ones. A more versatile model for the joint
p.d.f. is proposed in Maugis et al. (2009b) by allowing

some uninformative variables to be independent of all

the informative ones. Local optima in the model spaces

resulting from these two latter types of models are de-
termined using a backward-stepwise algorithm. In order

to overcome the well known drawbacks of stepwise tech-

niques Scrucca (2016) suggests an approach based on

the use of genetic algorithms. According to these lat-

ter methods, a variable can play one of (up to) three
roles in cluster analysis. Overall, the methods just de-

scribed make use of Gaussian linear regression models

for performing variable selection in model-based cluster

analysis; they embed a supervised learning process into
an unsupervised one.

As far as the detection of multiple cluster structures

is concerned, methods that make use of Gaussian mix-

tures are described in Galimberti and Soffritti (2007).

In particular, these methods rely on a model in which
the vector of the observed variables is assumed to be

partitioned into independent sub-vectors, each of which

provides information about an unknown cluster struc-

ture. Thus, the joint p.d.f. of the variable vector is given
by a product of Gaussian mixture models, one for each

variable sub-vector. According to this approach, each

variable is relevant for detecting one specific structure

of interest for the clustering. However, due to the as-

sumption of independence among variable sub-vectors,
such an approach is quite restrictive.

This paper illustrates an approach for discovering

independent unknown cluster structures from possibly
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correlated variable sub-vectors. Such a correlation is

managed by replacing the assumption of independence

among the variable sub-vectors with conditional inde-

pendence assumptions and by resorting to multivariate

linear regression models (Soffritti and Galimberti 2011)
or seemingly unrelated linear regression models (Galim-

berti et al. 2015) in which the distribution of the error

terms is modelled using a Gaussian mixture model. The

model for the joint p.d.f. of the variable vector is spec-
ified so as to take into account also the possibility that

some variables are uninformative. Namely, such unin-

formative variables can be correlated with some infor-

mative variables or uncorrelated with any informative

variable. As a result, a general approach for modelling
the role of variables in cluster analysis is obtained.

The paper is organised as follows. The basic idea

of the proposed approach is introduced in Section 2.

The theory is described in Section 3. Namely, the mod-
els used to develop the approach are presented in Sec-

tions 3.1, 3.4 and 3.6. A comparison with existing mod-

els is given in Section 3.2. A discussion about identifia-

bility is provided in Section 3.3. Specifically, a theorem

ensuring identifiability of models having the same par-
tition of the variable vector is given in Section 3.3.1; the

proof is reported in Appendix. Necessary conditions for

identifiability of models having different partitions of

the variable vector are illustrated in Section 3.3.2. De-
tails on ML estimation and model selection are given in

Sections 3.5 and 3.7, respectively. Sections 4 and 5 con-

tain experimental results obtained from the analysis of

real and simulated datasets, respectively. Concluding

remarks are reported in Section 6. Additional experi-
mental results are provided in the Supplementary Ma-

terial together with a detailed description of three algo-

rithms developed for exploring classes of models char-

acterised by the presence of two unknown independent
cluster structures.

2 An introductory example

The basic idea of the approach developed in this paper
can be introduced through a simple example referring

to the crabs dataset described in Campbell and Mahon

(1974) and available in the package MASS (Venables and

Ripley 2002) for the R software environment (R Core

Team 2015). This dataset reports five morphological
measurements (in mm) for 200 crabs of the species Lep-

tograpsus variegatus: frontal lobe size (FL), rear width

(RW), carapace length (CL), carapace width (CW) and

body depth (BD). Namely, the sample is composed of
50 crabs each of two colours (blue and orange) and

both sexes. Detailed information about how the data

were collected are reported in Campbell and Mahon

Table 1: Pearson correlation matrix in the crabs

dataset.

FL RW CL CW BD
FL 1.000 0.907 0.979 0.965 0.988
RW 0.907 1.000 0.893 0.900 0.889
CL 0.979 0.893 1.000 0.995 0.983
CW 0.965 0.900 0.995 1.000 0.968
BD 0.988 0.889 0.983 0.968 1.000

(1974) together with the results of a supervised analy-

sis based on linear discriminant functions. Variables in
the dataset are highly pairwise linear dependent (see

Table 1).

Although the most natural way of analysing this
dataset is through classification methods in the context

of a supervised learning, several papers can be found in

the statistical literature in which the crabs dataset is

analysed according to the rules of an unsupervised pro-

cess (i.e.: without accounting for the information about
crabs’ colour and sex). Some examples can be found

in Raftery and Dean (2006), McNicholas et al. (2010),

Viroli (2010), Andrews and McNicholas (2014), Scrucca

and Raftery (2015),Malsiner-Walli et al. (2016) and Zhu
and Melnykov (2016). The purpose of this type of anal-

ysis is to test novel clustering techniques and compare

their performance with the one of other existing meth-

ods. In particular, these papers focus on the ability to

recover the four classes that arise from the joint clas-
sification of the crabs based on their colour and sex.

In line with these applications, the introductory exam-

ple presented in this Section is set into an unsupervised

learning process. Namely, in the first part of this exam-
ple the interest is in detecting whether the crabs dataset

is characterised by the presence of a cluster structure in

the joint distribution of the five morphological measure-

ments. Using the R package mclust (Fraley and Raftery

2002; Fraley et al. 2012) Gaussian mixture models with
a number K of components from one to nine are fitted

to the dataset. For each value of K, models with un-

constrained and constrained covariance structures are

estimated. Namely, the parsimonious models fitted to
the data are obtained using the approach based on the

eigen-decomposition of the component-covariance ma-

trices (Banfield and Raftery 1993; Celeux and Govaert

1995). Note that all analyses are carried out with an

mclust option SVD for the initialisation of the EM al-
gorithm. This option transforms the variables through

a singular value decomposition (Scrucca and Raftery

2015). In the analysis of the crabs dataset this op-

tion has been found to be the one that allows to select
the model with the largest BIC (Scrucca and Raftery

2015). According to the BIC values, the best model

is a parsimonious mixture of four components. Let this
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Table 2: Classification of the crabs according to their

colour and sex (BF = blue female, BM = blue male, OF

= orange female, OM = orange male) and the cluster
memberships estimated by the model M1 selected using

mclust.

Colour and sex
Cluster BF BM OF OM
1 49 11 0 0
2 0 0 5 50
3 0 39 0 0
4 1 0 45 0
aRi 0.794

model be denoted asM1. Details about the specific con-

straints on the component-covariance matrices in model

M1 are provided in Section 4.1. In order to measure the

association between the cluster structure detected by
model M1 and the classification of the crabs, the joint

classification of the crabs based on colour and sex and

the segmentation obtained from the model is examined,

and the adjusted Rand index (aRi) (Hubert and Arabie
1985) is computed. From the obtained results (see Ta-

ble 2) it emerges that such an association is high, and

the clustering obtained from the selected model repro-

duces quite well the four classes of crabs defined from

their colour and sex.

As described in Section 1, the presence of a cluster
structure may be masked by uninformative variables.

Thus, a further analysis is carried out through the R

package clustvarsel (Scrucca and Raftery 2014) that

implements the variable selection methods proposed by
Raftery and Dean (2006). This second analysis is per-

formed using the same initialisation of the EM algo-

rithm mentioned above and with a number K of com-

ponents from one to nine. The results suggest that only

four morphological measurements are relevant for clus-
tering the crabs. They are frontal lobe size, rear width,

carapace width and body depth. The carapace length

can be discarded. The best Gaussian mixture model

fitted to the p.d.f. of the four selected measurements is
a parsimonious mixture of four components with the

same constraints on the covariance matrices already

used in model M1 (details are reported in Section 4.1).

Using this parsimonious model allows to obtain a parti-

tion of the crabs with an increased agreement with the
partition based on colour and sex (see Table 3). The

resulting model for the p.d.f. of the five measurements

is denoted as M2 and is given by the product of the just

described Gaussian mixture model for the joint distri-
bution of (FL, RW, CW, BD) and a linear regression

model for the conditional distribution of CL given (FL,

RW, CW, BD).

Table 3: Classification of the crabs according to their

colour and sex and the cluster membership estimated

by the model M2 selected using clustvarsel.

Colour and sex
Cluster BF BM OF OM
1 50 10 0 0
2 0 0 3 50
3 0 40 0 0
4 0 0 47 0
aRi 0.840

Given the drawbacks of the variable selection meth-

ods proposed by Raftery and Dean (2006), further anal-

yses are carried out by resorting to two C++ softwares

(SelvarClust and SelvarClustIndep) that incorpo-

rate algorithms for fitting and selecting the models de-
scribed in Maugis et al. (2009a,b). They are available at

http://perso.math.univ-toulouse.fr/maugis.Both

softwares lead to the same result obtained by clustvarsel.

According to these approaches, four morphological mea-
surements (frontal lobe size, rear width, carapace width

and body depth) play the role of informative variables,

while the carapace length can be considered uninforma-

tive and correlated with all the informative variables.

Although these methods are able to recover the four

classes of crabs, the obtained results do not provide

an explicit information about a distinctive feature of

the dataset, that is the independence between colour
and sex. In order to capture this feature it is neces-

sary to use unsupervised methods able to explicitly ac-

count for the presence of two independent sources of

clustering without imposing any restriction on the sam-
ple correlation structure of the measurements. In order

to achieve this goal, the idea developed in this paper is

that the information about a first source of clustering is

given by the marginal distribution of some morphologi-

cal measurements, while the conditional distribution of
some other measurements provides information about

the second source of clustering. Namely, using meth-

ods illustrated in Section 3, the vector of the five mea-

surements is split into two sub-vectors. For the joint
marginal p.d.f. of (RW, CL) a parsimonious mixture of

two Gaussian components is selected, while the joint

conditional p.d.f. of (FL, CW, BD) given (RW, CL) is

modelled using a parsimonious mixture of two Gaus-

sian linear regression models with the same regression
coefficients. Details about the parsimonious covariance

structure of these two mixture models are provided in

Section 4.1. The joint model for the five morphological

measurements, given by the product of these two mix-
ture models and denoted asM3, allows to obtain two in-

dependent clusterings of the crabs. The first clustering,

based on the analysis of rear width and carapace length,
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Table 4: Comparison between the cluster structure de-

tected in the joint marginal distribution of RW and

CL (cluster structure I) and the classifications of crabs
based on their colour and/or sex.

Colour and sex Colour Sex
Cluster I BF BM OF OM B O F M
1 50 7 50 3 57 53 100 10
2 0 43 0 47 47 43 0 90
aRi 0.400 −0.003 0.810

Table 5: Comparison between the cluster structure de-

tected in the conditional distribution of (FL, CW, BD)

given (RW, CL) (cluster structure II) and the classifi-

cations of crabs based on their colour and/or sex.

Colour and sex Colour Sex
Cluster II BF BM OF OM B O F M
1 50 50 1 0 100 1 51 50
2 0 0 49 50 0 99 49 50
aRi 0.486 0.980 −0.005

reproduces quite well the classification of crabs based

on their sex (see Table 4). On the contrary, the clus-

tering obtained by modelling the dependence of frontal
lobe size, carapace width and body depth on rear width

and carapace length using the above mentioned mixture

of two Gaussian linear regression models is almost per-

fectly associated with the classification based on colour

(see Table 5). Thus, according to model M3, all mea-
surements play a relevant role for clustering the crabs:

RW and CL provide information about the classifica-

tion based on colour, while FL, CW and BD (condi-

tionally on the previous two measurements) are infor-
mative on the classification based on sex. This partition

of the variable vector is consistent with the results re-

ported in Campbell and Mahon (1974) and based on a

linear discriminant analysis. Namely, a first canonical

variable, which differentiates between the two species,
is obtained as a contrast between the carapace width

relative to the width of the front lip and the depth of

the body. Furthermore, a second canonical variable re-

sulting from a contrast between the rear width and the
carapace length allows to identify males and females.

However, it is worth noting that the methods proposed

in this paper allow to discover this partition of the vari-

ables without exploiting the information about crabs’

colour and sex. To the authors’ knowledge no other un-
supervised method is able to obtain this same result in

reference to this benchmark dataset.

Model M3 provides information also about a third

clustering of the crabs based on the joint p.d.f. of the
five measurements. This clustering can be obtained by

jointly examining the two cluster structures described

above. Table 6 compares this third clustering with the

Table 6: Classification of the crabs according to their

colour and sex and the segmentation based on the joint

examination of the two independent cluster structures
detected by model M3.

Colour and sex
Cluster I Cluster II BF BM OF OM
1 1 50 7 1 0
1 2 0 0 49 3
2 1 0 43 0 0
2 2 0 0 0 47
aRi 0.859

classification based on colour and sex. According to

the aRi, using model M3 leads to an improvement over
models M1 and M2 in recovering this latter classifica-

tion. Furthermore, a limitation of these latter models is

that neither M1 nor M2 provide any explicit informa-

tion about the existence of two independent sources of
clustering (sex and colour). This limitation is overcome

if model M3 is employed. Further comments and results

obtained from the analysis of this dataset using meth-

ods illustrated in Section 3 are reported in Section 4.1.

3 Modelling the role of variables through

Gaussian mixtures

3.1 Models with two independent clusterings

Let X = (X1, . . . , XL) be the random vector composed
of L observed continuous variables to be used for clus-

tering n sample units. Assume that the examined dataset

is characterised by two unknown independent cluster

structures S1 and S2, that is two independent clus-

terings of the n sample units. Such structures can be
modelled by assuming that two independent nominal

latent variables Z1 and Z2 (with K1 and K2 categories,

respectively) affect the probability distribution of X.

More specifically, assume that (XS1 ,XS2 ,XU ) denotes
a splitting of X into three non-overlapped sub-vectors,

where XU can be empty. Namely, XSg is the sub-vector

containing Lg variables that provide information about

the cluster structure Sg (g = 1, 2), while the sub-vector

XU is composed of LU uninformative variables, with
L1 + L2 + LU = L.

The proposed model is based on the following set of

assumptions.

(A1) The marginal distribution of XS1 is affected by the

latent variable Z1 and is given by a Gaussian mix-
ture model with K1 components. Namely:

f
(

xS1 ; θ1

)

=

K1
∑

k1=1

π
(1)
k1

φL1

(

xS1 ;µ
(1)
k1

,Σ
(1)
k1

)

, (1)
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where K1 ≥ 2, φL1

(

·;µ
(1)
k1

,Σ
(1)
k1

)

is the p.d.f. of

the L1-dimensional normal distribution with mean

vector µ
(1)
k1

and positive definite covariance matrix

Σ
(1)
k1

, θ1 = (π1,µ1, σ1), π1 =
(

π
(1)
1 , . . . , π

(1)
K1

)

,

µ1 =
(

µ
(1)
1 , . . . ,µ

(1)
K1

)

and σ1 =
(

Σ
(1)
1 , . . . ,Σ

(1)
K1

)

.

(A2) The sub-vector XS2 is assumed to be conditionally
independent of Z1 given XS1 . Furthermore, the con-

ditional p.d.f. of XS2 given XS1 is affected by the

latent variable Z2 and is equal to

f
(

xS2 |xS1 ; θ2

)

=

K2
∑

k2=1

π
(2)
k2

φL2(x
S2 ;µ

(2)
k2

,Σ
(2)
k2

), (2)

where K2 ≥ 2 and

µ
(2)
k2

= β0 + λ
(2)
k2

+B21x
S1 , k2 = 1, . . . ,K2, (3)

with β0 and λ
(2)
k2

denoting L2-dimensional vectors
and B21 representing a L2×L1 matrix of regression

coefficients. The condition defined by equation (3) is

equivalent to assuming that the dependence of XS2

on XS1 is given by a multivariate linear regression
model whose error terms follow a mixture of K2

Gaussian components. Specifically,

XS2 = β0 +B21x
S1 + ǫ2, (4)

ǫ2 ∼
K2
∑

k2=1

π
(2)
k2

NL2

(

λ
(2)
k2

,Σ
(2)
k2

)

, (5)

where NL2

(

λ
(2)
k2

,Σ
(2)
k2

)

denotes the L2-dimensional

normal distribution with mean vector λ
(2)
k2

and pos-

itive definite covariance matrix Σ
(2)
k2

. Thus, the con-
ditional distribution of XS2 given XS1 is described

by a mixture of K2 Gaussian linear regression mod-

els (see, e.g., Quandt and Ramsey 1978; De Sarbo

and Cron 1988) with the constraint that the effect

of XS1 on the expected value of XS2 is the same for
all the K2 components of the mixture (2). In order

to guarantee identifiability of the model defined by

equations (4) and (5), it is necessary to require some

constraints on β0 or the λ
(2)
k ’s. Namely, β0 = 0 or

∑

k2
π
(2)
k2

λ
(2)
k2

= 0. This problem does not arise if
model (3) is directly parameterised as follows:

µ
(2)
k2

= γ
(2)
k2

+B21x
S1 , k2 = 1, . . . ,K2, (6)

where γ
(2)
k2

= β0+λ
(2)
k2

. Then, θ2 = (π2,γ2,B21,σ2),

π2 =
(

π
(2)
1 , . . . , π

(2)
K2

)

, γ2 =
(

γ
(2)
1 , . . . ,γ

(2)
K2

)

, σ2 =
(

Σ
(2)
1 , . . . ,Σ

(2)
K2

)

(for further details see Soffritti and

Galimberti 2011).

(A3) The sub-vector XU is assumed to be conditionally

independent of (Z1, Z2) given
(

XS1 ,XS2
)

. Further-

more, the conditional distribution ofXU given (XS1 ,

XS2) follows a Gaussian linear regression model.

Specifically:

XU = α0 +A1x
S1 +A2x

S2 + ǫU , (7)

ǫU ∼ NLU
(0,ΣU ) ,

whose parameters are θU = (α0,A1,A2,ΣU ), where

α0 is a LU -dimensional vector,A1 andA2 represent

matrices of regression coefficients with dimensions

LU × L1 and LU × L2, respectively, and the covari-
ance matrix ΣU is positive definite.

Thus, the joint p.d.f. of X can be obtained as fol-
lows:

f(x; θ) =

K1
∑

k1=1

π
(1)
k1

φL1

(

xS1 ;µ
(1)
k1

,Σ
(1)
k1

)

×
K2
∑

k2=1

π
(2)
k2

φL2

(

xS2 ;γ
(2)
k2

+B21x
S1 ,Σ

(2)
k2

)

× φLU

(

xU ;α0 +A1x
S1 +A2x

S2 ,ΣU

)

, (8)

where θ = (θ1, θ2, θU ).

If assumptions (A1) and (A2) hold, all the informa-

tion about the first cluster structure is provided by the

marginal distribution of the variable sub-vector XS1 .

In particular, assuming that XS2 is conditionally inde-
pendent of Z1 given XS1 ensures that, conditionally on

XS1 , XS2 does not provide any information about the

first cluster structure. Assumption (A2) includes a spe-

cific dependence structure of XS2 on XS1 that allows
to take into account the possible correlation between

these two variable sub-vectors. Thus, the first cluster

structure can be discovered by examining the marginal

distribution of XS1 even if XS1 and XS2 are correlated.

Assumption (A2) is analogous to the assumption in-
troduced in Raftery and Dean (2006) and exploited in

Maugis et al. (2009a,b) to perform variable selection

in the presence of correlated variables; the main dif-

ference is that the conditional p.d.f. of XS2 given XS1

does not follow a Gaussian linear regression model but a

mixture of K2 Gaussian linear regression models. Thus,

assumption (A2) is adequate whenever the second clus-

ter structure is hidden in the conditional distribution

of XS2 given XS1 . Note that, by setting B21 = 0 in
equation (6), this second structure is, in fact, defined

in the marginal distribution of XS2 , thus leading to the

model proposed by Galimberti and Soffritti (2007).

Both XS1 and XS2 represent vectors of informative
variables. If, in addition, XU 6= ∅, model (8) also allows

to perform variable selection. A graphical representa-

tion of model (8) is given in Figure 1.
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Z1 Z2

XS1 XS2

XU

Fig. 1: Graphical representation of model (8). Circles

and squares are used to denote latent variables and ob-

served variables, respectively.

Equation (8) can be rewritten as follows:

f(x; θ) =

K1
∑

k1=1

K2
∑

k2=1

π
(1)
k1

π
(2)
k2

[

φL1

(

xS1 ;µ
(1)
k1

,Σ
(1)
k1

)

× φL2

(

xS2 ;γ
(2)
k2

+B21x
S1 ,Σ

(2)
k2

)

× φLU

(

xU ;α0 +A1x
S1 +A2x

S2 ,ΣU

)]

. (9)

Consider the Cartesian product between {1, . . . ,K1}
and {1, . . . ,K2}, that are the sets of labels for the cat-

egories of Z1 and Z2, respectively. Let the r-th element

of such a set be denoted as cr = (k1r , k2r ), r = 1, . . . , R,
where R = K1 ·K2. Using this notation and exploiting

properties of the Gaussian distribution (see, e.g., An-

derson 2003), equation (9) can be rewritten as follows:

f(x; θ) =
R
∑

r=1

πrφL (x;µr,Σr) , (10)

where, for r = 1, . . . , R,

πr = π
(1)
k1r

π
(2)
k2r

, (11)

µr = Q







µ
(1)
k1r

γ
(2)
k2r

α0






, (12)

Σr = Q







Σ
(1)
k1r

0 0

0 Σ
(2)
k2r

0

0 0 ΣU






Q′, (13)

Q =





IL1 0 0

B21 IL2 0

A1 +B21 A2 ILU



 ,

with IL denoting the identity matrix of order L. Thus,
the joint p.d.f ofX in equation (8) is a Gaussian mixture

of R components whose parameters are given in equa-

tions (11)-(13). As a consequence of above, assumptions

(A1)-(A3) can also be interpreted as conditions that im-
pose specific constraints on the parameters of a Gaus-

sian mixture model for X. These constraints imply a re-

duction in the number of free parameters. For example,

as far as the mixing proportions πr in equation (11) are

concerned, only (K1−1)(K2−1) free parameters have to

be estimated instead ofK1K2−1. Since the matrix Q is

nonsingular, assumptions (A1)-(A3) also imply that all

component-covariance matrices in the mixture model
defined in equation (10) are positive definite. Further-

more, equation (10) highlights that the joint p.d.f. of

X is affected by a latent variable Z̃ whose categories

are obtained by considering the K1 · K2 combinations
of categories of Z1 and Z2. This latter result is due to

the independence assumption between Z1 and Z2.

Model (8) prevents the possible presence of uninfor-

mative variables that are independent of any other vari-

able. Models that do not impose this restriction can be
obtained as follows. Let (XS1 ,XS2 ,XU ,XI) be a split-

ting of X into four non-overlapped sub-vectors, where

the additional sub-vectorXI can be empty. Specifically,

XI contains LI uninformative variables that are also in-
dependent of all the remaining variables. By assuming

that XI has a marginal multivariate Gaussian distribu-

tion with mean vector µI and positive definite covari-

ance matrix ΣI , the resulting p.d.f. of X is defined as

follows:

f(x; θ) =

K1
∑

k1=1

π
(1)
k1

φL1

(

xS1 ;µ
(1)
k1

,Σ
(1)
k1

)

×
K2
∑

k2=1

π
(2)
k2

φL2

(

xS2 ;γ
(2)
k2

+B21x
S1 ,Σ

(2)
k2

)

× φLU

(

xU ;α0 +A1x
S1 +A2x

S2 ,ΣU

)

× φLI

(

xI ;µI ,ΣI

)

, (14)

where θ = (θ1, θ2, θU , θI), with θI = (µI ,ΣI). The

graphical representation of the model obtained from
equation (14) is given in Figure 2(a).

Whenever XU 6= ∅, both model (8) and model (14)

force the uninformative variables in XU to linearly de-

pend on all the informative variables (see equation (7)).
This further restriction can be removed as follows. Let

XS1

U and XS2

U denote the sub-vectors of XS1 and XS2 ,

respectively, useful to predict the uninformative vari-

ablesXU according to a Gaussian linear regressionmodel

(XS1

U ⊆ XS1 , XS2

U ⊆ XS2). Thus, equation (7) is modi-
fied as follows:

XU = α0 +A1Ux
S1

U +A2Ux
S2

U + ǫU , (15)

where A1U and A2U are matrices of regression coef-
ficients both with LU rows and a number of columns

equal to the lengths of sub-vectors XS1

U and XS2

U , re-

spectively. Combining equations (15) and (14) leads to
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the following p.d.f. of X:

f(x; θ) =

K1
∑

k1=1

π
(1)
k1

φL1

(

xS1 ;µ
(1)
k1

,Σ
(1)
k1

)

×
K2
∑

k2=1

π
(2)
k2

φL2

(

xS2 ;γ
(2)
k2

+B21x
S1 ,Σ

(2)
k2

)

× φLU

(

xU ;α0 +A1Ux
S1

U +A2Ux
S2

U ,ΣU

)

× φLI

(

xI ;µI ,ΣI

)

, (16)

where θ = (θ1, θ2, θU , θI), with θU = (α0,A1U ,A2U ,

ΣU ). The graphical representation of the model ob-

tained from equation (16) is given in Figure 2(b).

More general models can be defined. For example,

in equation (4) the variables in the sub-vector XS2 are
forced to linearly depend on all the variables belong-

ing to XS1 . This restriction can be removed as follows.

Let XS1

S2
denote the sub-vector of XS1 composed of the

predictors of XS2 (XS1

S2
⊆ XS1). Then, µ

(2)
k2

in equation

(6) becomes

µ
(2)
k2

= γ
(2)
k2

+B∗
21x

S1

S2
, k2 = 1, . . . ,K2, (17)

where the number of columns of matrix B∗
21 coincides

with the length of XS1

S2
. If, in addition, L2 ≥ 2, it is pos-

sible to define a model in which a different sub-vector

of XS1 can be employed for predicting each variable

in XS2 . Such a model can be specified as follows. Let

XS2 [l] be the l-th variable of XS2 and XS1

l be the sub-
vector ofXS1 containing the predictors ofXS2 [l]. Then,

µ
(2)
k2

can be obtained as follows:

µ
(2)
k2

[l] = γ
(2)
k2

[l] + (xS1

l )′βl, l = 1, . . . , L2, (18)

where the notation a[l] is used to denote the l-th el-

ement of vector a and βl is the vector of the regres-
sion coefficients of XS1

l on XS2 [l]. The joint model for

the vector XS2 resulting from equation (18) represents

a seemingly unrelated linear regression model with a

Gaussian mixture for the errors (for further details see

Galimberti et al. 2015).

3.2 Comparison with Gaussian mixture models for

clustering and regression

Some approaches for unsupervised analysis introduced
in Sections 1 and 2 can be obtained from models (8)

and (16) by admitting that the variable sub-vector XS2

can be empty.

– If XS2 = XU = ∅, model (8) reduces to a Gaussian
mixture model for the joint distribution of X, thus

leading to the approach to cluster analysis based on

Gaussian mixture models.

– If XS2 = ∅ and XU 6= ∅, equation (8) defines a

model with only one cluster structure hidden in the

variable sub-space associated with the sub-vector

XS1 . Specifically, vectors XS1 and XU contain in-

formative and uninformative variables, respectively.
This model represents the tool for model-based clus-

ter analysis with variable selection according to the

approach developed by Raftery and Dean (2006).

– When XS2 = ∅, XU 6= ∅ and XI = ∅, equation (16)
gives the model developed by Maugis et al. (2009a).

– When XS2 = ∅, XU 6= ∅ and XI 6= ∅, model (16)

reduces to the model described in Maugis et al.

(2009b).

Furthermore, if K1 and K2 in equations (1)-(6) are

allowed to be equal to 1 and XS2 6= ∅, XU = ∅, model

(8) can result in two types of linear regression models.

– When K1 = 1 and K2 > 1, model (8) reduces to a
mixture of Gaussian linear regression models with

the same regression coefficients (Soffritti and Galim-

berti 2011) and Gaussian random predictors. Such a

model assumes that in the dataset there is only one

latent clustering of the sample units and that this
clustering is hidden in the conditional distribution

of XS2 given XS1 .

– When K1 = K2 = 1, model (8) reduces to a Gaus-

sian linear regression model with Gaussian random
predictors. According to this model no cluster struc-

ture is defined either in the marginal distribution of

XS1 or in the conditional distribution of XS2 given

XS1 .

Thus, a general framework for model-based cluster-

ing, linear regression with Gaussian random predictors

and multiple cluster structure detection that encom-
passes all the methods described so far can be obtained

from the models illustrated in Section 3.1 by simply ad-

mitting that XS2 can be empty and allowing K1 and

K2 to be equal to one.

3.3 Identifiability

Some results concerning identifiability are developed for

two classes of models obtained from equation (14). The

first class is composed of models that have the same
splitting of X but differ in the values of K1 and/or K2.

The second class is obtained by examining models that

can also have different splittings of X. A theoretical re-

sult on the identifiability in the first class under mild
and simple conditions is provided in Section 3.3.1. Sec-

tion 3.3.2 contains a description of six situations that

generate non-identifiability in the second model class;
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Z1 Z2

XS1 XS2

XU XI

(a)

Z1 Z2

X̄
S1

U X
S1

U X
S2

U X̄
S2

U

XU XI

(b)

Fig. 2: Graphical representations of two models obtained from equation (16), where X̄S1

U = XS1 r XS1

U , X̄S2

U =

XS2 rXS2

U .

it also provides five necessary conditions for the identi-

fiability of this class.
Due to the richness of the class of models that can be

obtained from equation (14), simple and general suffi-

cient conditions for identifiability can hardly be derived.

Thus, it is important to remark that the identifiability

is generally not ensured.

3.3.1 Models with the same splitting of X

The model class examined in this Section is composed

of models obtained from equation (14) by keeping (XS1 ,

XS2 , XU ,XI) equal to a given splitting of X while

varying the values of K1 and K2. Namely, models with

values of Kg ∈ {2, . . . ,Kgmax}, g = 1, 2, are admit-

ted, where K1max and K2max denote the maximum

number of components specified by the researcher for
the mixtures defined in equations (1) and (2), respec-

tively. Let the resulting model class be denoted as M.

The generic element of M is M = (K1,K2). For each

M ∈ M the parameterised p.d.f’s are f(·|θM ), with
θM = (θ1, θ2, θU , θI). The corresponding parameter

space is QM .

Under mild conditions, the identifiability of the model

class M is ensured by the following theorem.

Theorem 1 Let ΘM be a subset of QM whose elements

θM fulfil the following conditions:

(I1) Conditions for θ1:

π
(1)
k1

> 0 ∀ k1;
(

µ
(1)
k1

,Σ
(1)
k1

)

6=
(

µ
(1)
k′

1
,Σ

(1)
k′

1

)

∀ k1 6= k′1;

(I2) Conditions for θ2:

π
(2)
k2

> 0 ∀ k2;
(

γ
(2)
k2

,Σ
(2)
k2

)

6=
(

γ
(1)
k′

2
,Σ

(2)
k′

2

)

∀ k2 6= k′2.

Let M = (K1,K2) and M∗ = (K∗
1 ,K

∗
2 ) be two mod-

els. If θM ∈ ΘM and θ
∗
M∗ ∈ ΘM∗ exist such that

f(x; θM ) = f(x; θ∗
M∗) ∀ x ∈ RL, then M = M∗ and

θM = θ∗
M∗ (up to permutations of the mixture compo-

nents of the marginal p.d.f. of XS1 and of the mixture

components of the conditional p.d.f. of XS2 given XS1).

The constraints on the parameter space described
by the conditions (I1) and (I2) avoid non-identifiability

due to both empty components and equal components

in the mixtures defined in equations (1) and (2). The

same types of constraint are used to avoid non-identifiability

of a finite mixture distribution due to potential overfit-
ting (see, e.g., Frühwirth-Schnatter 2006, p. 19). The

non-identifiability due to invariance to relabeling the

components is common to all finite mixture models

(McLachlan and Peel 2000). A proof of Theorem 1 is
provided in Appendix.

3.3.2 Models with different splittings of X

In order to define the second class of models it is conve-

nient to use the following notation. Let a generic model
M = (K1,K2) introduced in Section 3.3.1 be denoted as

M
(2)
(S1,S2,U,I)(K1,K2), and let the corresponding model

class be M
(2)
(S1,S2,U,I), where (S1, S2, U, I) is the split-

ting of the variable index set I = {1, . . . , L} associated

with the splitting (XS1 ,XS2 , XU ,XI) of the variable

vector X employed to specify all models belonging to

the class M
(2)
(S1,S2,U,I).

Models characterised by different splittings (XS1 ,

XS2 , XU ,XI) of X and different values of K1,K2 can

be obtained by admitting that the splitting (S1, S2, U, I)

used to define the model class M
(2)
(S1,S2,U,I) can vary.

Namely, let V be the family of the splittings of the

variable index set I into four elements (where the third

and fourth elements can be equal to the empty set):



10 Giuliano Galimberti et al.

V = {(S1, S2, U, I); (S1, S2, U, I) ∈ F4, Sg 6= ∅ ∀g, S1 ∩
S2 = ∅, S1 ∩ U = ∅, S2 ∩ U = ∅, I = I r S1 r S2 r U},
where F denotes the family of subsets of I. Then, the
wider model class is defined as

M(2) =
⋃

(S1,S2,U,I)∈V

M
(2)
(S1,S2,U,I).

Hereafter the generic element of this class is denoted as

M (2) = (S1, S2, U, I,K1,K2). For each model M (2) ∈
M(2) the parameterised densities are f(·|θM(2)), with

θM(2) = (θ1, θ2, θU , θI). The corresponding parameter

space is denoted by QM(2) .

Let (S1, S2, U, I,K1,K2) and (S∗
1 , S

∗
2 , U

∗, I∗,K∗
1 ,K

∗
2 )

be any two members of M(2), and let (θ1, θ2, θU , θI)

and (θ∗
1, θ

∗
2, θ

∗
U , θ

∗
I) be their parameters. The model

classM(2) is identifiable for θM(2) ∈ QM(2) if f(x|θ1, θ2,

θU , θI) = f(x|θ∗
1, θ

∗
2, θ

∗
U , θ

∗
I) if and only if S1 = S∗

1 ,

S2 = S∗
2 , U = U∗, I = I∗, K1 = K∗

1 , K2 = K∗
2 and

it is possible to permute the component labels so that

θ1 = θ
∗
1, θ2 = θ

∗
2, θU = θ

∗
U and θI = θ

∗
I .

The following remarks show six different types of
situation that can prevent the identifiability of M(2)

for θM(2) ∈ QM(2) from being ensured. All types are

associated with a moving of a variable sub-vector from

an element of (XS1 ,XS2 ,XU ,XI) to another without

changing the joint p.d.f. of X.

Remark 1 Moving variables from XS2 to XU or to XI

Consider a given model M (2) = (S1, S2, U, I,K1,K2) ∈
M(2). Let s be a nonempty subset strictly included into
S2 (thus, composed of Ls elements, with 1 ≤ Ls <

L2), and s̄ be its complement in S2, with the remaining

L2 − Ls = Ls̄ elements. Then the variable sub-vector

XS2 and the model parameters γ
(2)
k2

, Σ
(2)
k2

, B21 and A2

are partitioned as follows:

XS2 =

(

Xs

Xs̄

)

,γ
(2)
k2

=

(

γk2,s

γk2,s̄

)

,

Σ
(2)
k2

=

[

Σk2,ss Σk2,ss̄

Σ′
k2,ss̄ Σk2,s̄s̄

]

,B21 =

[

Bs1

Bs̄1

]

,

A2 =
[

A2s A2s̄

]

.

By exploiting results concerning the Gaussian dis-

tribution, the k2-th Gaussian density of the mixture for

XS2 |XS1 in equation (8) can be decomposed as

φL2

(

xS2 ;γ
(2)
k2

+B21x
S1 ,Σ

(2)
k2

)

=

φLs

(

xs;γk2,s +Bs1x
S1 ,Σk2,ss

)

×φLs̄

(

xs̄;µk2,s̄|s +Σk2,s̄|sx
s,Σk2,s̄s̄|s

)

, (19)

where

µk2,s̄|s = γk2,s̄ +Bs̄1x
S1 −Σk2,s̄|s(γk2,s +Bs1x

S1),

(20)

Σk2,s̄|s = Σ′
k2,ss̄Σ

−1
k2,ss

, (21)

Σk2,s̄s̄|s = Σk2,s̄s̄ −Σ′
k2,ss̄Σ

−1
k2,ss

Σk2,ss̄. (22)

If the parameters in equations (20)-(22) are iden-

tical for k2 = 1, . . . ,K2 then the regression density of

Xs̄ on Xs can be factorised from the Gaussian mixture

for XS2 |XS1 and regrouped with the regression den-

sity of XU on XS1 ∪ XS2 . Thus, a model (S1, s, U ∪
s̄, I,K1,K2) ∈ M(2) is obtained that is different from

M (2) but cannot be distinguished from M (2) by the

joint p.d.f. of X.

Furthermore, if the parameters in equations (20)-
(22) are identical for k2 = 1, . . . ,K2, A2s̄ = 0, Bs̄1 = 0

and Σk2,ss̄ = 0 ∀k2, then Xs̄ is independent of XS1 ,

Xs and XU . Thus, the marginal density of Xs̄ can

be factorised from the Gaussian mixture for the con-

ditional p.d.f. of XS2 given XS1 and regrouped with
the marginal density of XI . This second situation leads

to another model (S1, s, U, I∪ s̄, K1,K2) ∈ M(2) that is

different from M (2) but is undistinguishable from M (2)

by the joint p.d.f. of X.

Remark 2 Moving variables from XS1 to XU or to XI

Similarly to the situation illustrated in Remark 1, sup-

pose that t is a nonempty subset strictly included into
S1 (thus, composed of Lt elements, with 1 ≤ Lt <

L1), and t̄ is its complement in S1, with the remaining

L1 − Lt = Lt̄ elements. The variable sub-vector XS1

and the model parameters µ
(1)
k1

, Σ
(2)
k1

, B21 and A1 are

partitioned accordingly:

XS1 =

(

Xt

Xt̄

)

,µ
(1)
k1

=

(

µk1,t

µk1,t̄

)

,

Σ
(1)
k1

=

[

Σk1,tt Σk1,tt̄

Σ′
k1,tt̄ Σk1,t̄t̄

]

,B21 =
[

B2t B2t̄

]

,

A1 =
[

A1t A1t̄

]

. (23)

Similarly to equation (19), the following decomposi-
tion holds for the k1-th Gaussian density of the mixture

for XS1 in equation (8):

φL1

(

xS1 ;µ
(1)
k1

,Σ
(1)
k1

)

= φLt

(

xt;µk1,t,Σk1,tt

)

×φLt̄

(

xt̄;µk1,t̄|t +Σk1,t̄|tx
t,Σk1,t̄t̄|t

)

, (24)

where

µk1,t̄|t = µk1,t̄ −Σk1,t̄|tµk1,t, (25)

Σk1,t̄|t = Σ′
k1,tt̄Σ

−1
k1,tt

, (26)

Σk1,t̄t̄|t = Σk1,t̄t̄ −Σ′
k1,tt̄Σ

−1
k1,tt

Σk1,tt̄. (27)
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If the parameters in equations (25)-(27) are identi-

cal for k1 = 1, . . . ,K1 and B2t̄ = 0 then the regres-

sion density of Xt̄ on Xt can be factorised from the

Gaussian mixture for XS1 and regrouped with the re-

gression density of XU on XS1 ∪ XS2 . Thus, a model
(t, S2, U∪ t̄, K1,K2) ∈ M(2) is obtained that is different

from M (2) but is undistinguishable from M (2) by the

joint p.d.f. of X.

Furthermore, if the parameters in equations (25)-

(27) are identical for k1 = 1, . . . ,K1, B2t̄ = 0, A1t̄ = 0

and Σk1,tt̄ = 0 ∀k1, then Xt̄ is independent of Xt,

XS2 and XU . Thus, the marginal density of Xt̄ can be
factorised from the Gaussian mixture for the marginal

p.d.f. of XS1 and regrouped with the marginal den-

sity of XI . In this way another model (t, S2, U, I ∪
t̄, K1,K2) ∈ M(2) is obtained that is different from
M (2) but cannot be distinguished from M (2) by the

joint p.d.f. of X.

Remark 3 Moving variables from XS1 to XS2

Consider now a model M (2) = (S1, S2, U, I,K1,K2) ∈
M(2) such thatK1 is a composite number. Suppose that

the latent variable Z1 can be re-expressed in terms of

a vector (Z̃1, Z̃2), where Z̃1 and Z̃2 are two indepen-

dent nominal latent variables with H and J categories,
respectively, with H and J denoting positive integers

greater than one such that H · J = K1. Namely, Z1

is composed of the H · J combinations of categories of

Z̃1 and Z̃2, and each category of Z1 corresponds to an

element of the Cartesian product between {1, . . . , H}
and {1, . . . , J}, that are the sets of labels for the cate-

gories of Z̃1 and Z̃2, respectively. Thus, π
(1)
k1

= πhk1
πjk1

,

where (hk1 , jk1) is the element of the Cartesian product

between {1, . . . , H} and {1, . . . , J} that corresponds to
the k1-th category of Z1.

Furthermore, suppose that for the model parame-
ters µ

(1)
k1

, Σ
(1)
k1

, partitioned as illustrated in the Remark

2, the following equalities hold:

Σ′
k1,tt̄Σ

−1
k1,tt

= Bt̄t ∀k1,

µk1,t = µhk1
, Σk1,tt = Σhk1

∀k1 ∈ Ihk1
,

µk1,t̄ = µjk1
, Σk1,t̄t̄ = Σjk1

∀k1 ∈ Ijk1 ,

where Bt̄t is a Lt̄ ×Lt matrix of regression coefficients,

µhk1
and Σhk1

are a Lt×1 vector and a Lt×Lt matrix

specific to the hk1 -th category of Z̃1, µjk1
and Σjk1

denote a Lt̄ × 1 vector and a Lt̄ × Lt̄ matrix specific

to the jk1 -th category of Z̃2, Ihk1
= {k1 = (hk1 , jk1) :

jk1 = 1, . . . , J} and Ijk1 = {k1 = (hk1 , jk1) : hk1 =

1, . . . , H}. Then the marginal distribution of Xt is only
affected by the latent variable Z̃1 and the sub-vector

Xt̄ is conditionally independent of Z̃1 given Xt. As a

consequence of above, the Gaussian mixture for XS1 in

equation (8) can be decomposed as

K1
∑

k1=1

π
(1)
k1

φL1

(

xS1 ;µ
(1)
k1

,Σ
(1)
k1

)

=

H
∑

hk1
=1

πhk1
φLt

(

xt;µhk1
,Σhk1

)

×
J
∑

jk1=1

πjk1
φLt̄

(

xt̄;µjk1
+Bt̄tx

t,Σjk1

)

. (28)

Regrouping the second term in the right part of equa-

tion (28) with the Gaussian mixture of XS2 on XS1

leads to the following Gaussian mixture for the p.d.f. of

the variable sub-vector Xt̄ ∪XS2 given Xt:

M
∑

m=1

πmφLt̄+L2

(

xt̄ ∪ xS2 ;µm,Σm

)

,

where M = J ·K2, πm = π
(2)
k2

πjk1
,

µm =

(

µjk1
+Bt̄tx

t

γ
(2)
k2

+B2t̄µjk1
+B2tx

t

)

,

Σm =

[

Σjk1
Σjk1

B′
2t̄

B2t̄Σjk1
Σ

(2)
k2

+B2t̄Σjk1
B′

2t̄

]

.

Thus, a model (t, t̄ ∪ S2, U, I,H, J ·K2) ∈ M(2) is ob-

tained that is different from M (2) but cannot be distin-
guished from M (2) by the joint p.d.f. of X.

Remark 4 Moving variables from XS2 to XS1

Consider now a model M (2) = (S1, S2, U, I,K1,K2) ∈
M(2) such that K2 is a composite number. Similarly to

the situation illustrated in Remark 3, suppose that the

latent variable Z2 can be described in terms of a vector
composed of two independent nominal latent variables

Z̃3 and Z̃4 with P and Q categories, respectively, where

P > 1, Q > 1 and P · Q = K2. Thus, π
(2)
k2

= πpk2
πqk2

,

where (pk2 , qk2) is the element of the Cartesian product
between {1, . . . , P} and {1, . . . , Q} that corresponds to

the k2-th category of Z2.

Suppose also that for the model parameters γ
(2)
k2

,

Σ
(2)
k2

, partitioned as illustrated in the Remark 1, the

following equalities hold:

Σ′
k2,ss̄Σ

−1
k2,ss

= Bs̄s ∀k2,

γk2,s = γpk2
, Σk2,ss = Σpk2

∀k2 ∈ Ipk2
,

γk2,s̄ = γqk2
+Bs̄1x

S1 +Bs̄sx
s, Σk2,s̄s̄ = Σqk2

∀k2 ∈ Iqk2 ,

where Bs̄s is a Ls̄×Ls matrix of regression coefficients,

γpk2
and Σpk2

are a Ls×1 vector and a Ls×Ls matrix

specific to the pk2 -th category of Z̃3, γqk2
and Σqk2

de-

note a Ls̄×1 vector and a Ls̄×Ls̄ matrix specific to the



12 Giuliano Galimberti et al.

qk2 -th category of Z̃4, Ipk2
= {k2 = (pk2 , qk2) : qk2 =

1, . . . , Q} and Iqk2 = {k2 = (pk2 , qk2) : pk2 = 1, . . . , P}.
Then the conditional distribution of Xs given XS1 is

only affected by the latent variable Z̃3, the sub-vector

Xs̄ is conditionally independent of Z̃3 given (XS1 ,Xs)
and the Gaussian mixture for XS2 |XS1 in equation (8)

can be decomposed as

K2
∑

k2=1

π
(2)
k2

φL2

(

xS2 ;γ
(2)
k2

+B21x
S1 ,Σ

(2)
k2

)

=

P
∑

pk2
=1

πpk2
φLs

(

xs;γpk2
+Bs1x

S1 ,Σpk2

)

×

Q
∑

qk2=1

πqk2
φLs̄

(

xs̄;γqk2
+Bs̄1x

S1 +Bs̄sx
s,Σqk2

)

.

(29)

By regrouping the first term in the right part of

equation (29) with the Gaussian mixture of XS1 the

following Gaussian mixture for the p.d.f. of the variable

sub-vector XS1 ∪Xs is obtained:

A
∑

a=1

πaφL1+Ls

(

xS1 ∪ xs;µa,Σa

)

,

where A = K1 · P , πa = π
(1)
k1

πpk2
,

µa =

(

µ
(1)
k1

γpk2
+Bs1µ

(1)
k1

)

,

Σa =

[

Σ
(1)
k1

Σ
(1)
k1

B′
s1

Bs1Σ
(1)
k1

Σpk2
+Bs1Σ

(1)
k1

B′
s1

]

.

Thus, a model (S1 ∪ s, s̄, U, I,K1 · P,Q) ∈ M(2)

is obtained that is different from M (2) but cannot be

distinguished from M (2) by the joint p.d.f. of X.

Remark 5 Switching the order of XS1 and XS2

Consider a model M (2) = (S1, S2, U, I,K1,K2) ∈ M(2)

such that B21 = 0. For such a model the Gaussian

mixture of XS2 given XS1 in equation (14) becomes

K2
∑

k2=1

π
(2)
k2

φL2

(

xS2 ;γ
(2)
k2

,Σ
(2)
k2

)

.

In this situation the model (S2, S1, U, I,K2,K1) be-

longs to the class M(2), it is different from M (2) and is

also undistinguishable from M (2) by the joint p.d.f. of

X.

Remark 6 Moving variables from XU to XI

Consider a given model M (2) = (S1, S2, U, I,K1,K2) ∈
M(2) such that U 6= ∅ and LU ≥ 2. Let v a nonempty

subset strictly included into U (thus, composed of Lv

elements, with 1 ≤ Lv < LU ), and let v̄ be its comple-

ment in U , with the remaining LU −Lv = Lv̄ elements.

Then, the variable sub-vector XU and the model pa-

rameters α0, A1, A2 and ΣU are partitioned accord-

ingly:

XU =

(

Xv

Xv̄

)

,α0 =

(

α0,v

α0,v̄

)

,A1 =

(

A1,v

A1,v̄

)

,

A2 =

(

A2,v

A2,v̄

)

,ΣU =

[

Σvv Σvv̄

Σ′
vv̄ Σv̄v̄

]

.

According to some properties of the Gaussian dis-

tribution the conditional p.d.f. of XU given (XS1 ,XS2)

in equation (14) can be decomposed as follows:

φLU

(

xU ;α0 +A1x
S1 +A2x

S2 ,ΣU

)

= φLv

(

xv;α0,v +A1,vx
S1 +A2,vx

S2 ,Σvv

)

×φLv̄

(

xv̄;µv̄|v +Σv̄|,vx
v,Σv̄v̄|v

)

, (30)

where

µv̄|v = α0,v̄ +A1,v̄x
S1 +A2,v̄x

S2

− Σv̄|,v(α0,v +A1,vx
S1 +A2,vx

S2), (31)

Σv̄|,v = Σ′
vv̄Σ

−1
vv , (32)

Σv̄v̄|v = Σv̄v̄ −Σ′
vv̄Σ

−1
vv Σvv̄. (33)

If A2v̄ = 0, A1v̄ = 0 and Σvv̄ = 0, then Xv̄ is inde-
pendent of XS1 , XS2 and Xv. Thus, the marginal p.d.f.

of Xv̄ can be grouped together with the marginal p.d.f.

of XI . This leads to a model (S1, S2, v, I ∪ v̄, K1,K2) ∈
M(2) that is different from M (2) but cannot be distin-
guished from M (2) by the joint p.d.f. of X.

In order to avoid that the model classM(2) contains

the above illustrated non distinct elements it is neces-

sary for the model parameters to fulfil the following

conditions.

(C1) Conditions for γ2,σ2:

∀s ( S2 ∃(k2, k
′
2), 1 ≤ k2 < k′2 ≤ K2 :

µk2,s̄|s 6= µk′

2,s̄|s
or Σk2,s̄|s 6= Σk′

2,s̄|s

or Σk2,s̄s̄|s 6= Σk′

2,s̄s̄|s
.

(C2) Conditions for µ1,σ1,B21:

∀t ( S1 B2t̄ 6= 0 or

∀t ( S1 ∃(k1, k
′
1), 1 ≤ k1 < k′1 ≤ K1 :

µk1,t̄|t 6= µk′

1,t̄|t
or Σk1,t̄|t 6= Σk′

1,t̄|t

or Σk1,t̄t̄|t 6= Σk′

1,t̄t̄|t
.
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(C3) Additional conditions for µ1,σ1 when K1 is a com-

posite number:

∀t ( S1, ∀k1 ∈ {1, . . . ,K1} ∃ It,k1 : ∀k′1 ∈ It,k1

µk1,t̄|t 6= µk′

1,t̄|t
or Σk1,t̄t̄|t 6= Σk′

1,t̄t̄|t
,

where It,k1 ( {1, . . . ,K1}r {k1} :
|It,k1 | ≥ max(H, J) − 1, ∀(H, J) : H · J = K1.

(C4) Additional conditions for µ2,σ2 when K2 is a com-

posite number:

∀s ( S2, ∀k2 ∈ {1, . . . ,K2} ∃ Is,k2 : ∀k′2 ∈ Is,k2

µk2,s̄|s 6= µk′

2,s̄|s
or Σks,s̄s̄|s 6= Σk′

s,s̄s̄|s
,

where Is,k2 ( {1, . . . ,K2}r {k2} :

|Is,k2 | ≥ max(P,Q)− 1, ∀(P,Q) : P ·Q = K2.

(C5) Conditions for A1,A2,ΣU :

∀v ( U A1v̄ 6= 0 or A2v̄ 6= 0 or Σvv 6= 0.

The identifiability conditions (C2) and (C5) for the
parameters of the model classM(2) are of the same type

of conditions already introduced for the parameters of

the model classes described in Maugis et al. (2009a,b).

The other conditions are specific for the models intro-

duced in this paper. The illustrated conditions also al-
low to avoid identifiability issues associated with move-

ments of variables in directions that are opposite to the

ones considered in Remarks 1, 2 and 6.

3.4 Models with more than two independent

clusterings

Models (8), (14) and (16) can be modified so as to ad-

mit that the examined dataset is characterised by G

unknown cluster structures, where G can be greater
than two. These structures can be modelled by assum-

ing that G independent nominal latent variables affect

the probability distribution of X. Namely, assume that

(XS1 ,XS2 , . . . ,XSG ,XU ,XI) is a splitting of X into
G+2 non-overlapped sub-vectors.XSg is the sub-vector

containing Lg variables that provide information about

the cluster structure Sg (g = 1, . . . , G). As described

in Section 3.1, the sub-vectors XU and XI are com-

posed of LU and LI uninformative variables, respec-
tively (

∑

g Lg +LU +LI = L). For the marginal distri-

bution of XS1 the assumption (A1) used in Section 3.1
still holds. The remaining assumptions are modified as

follows.

(A2*) For g = 2, . . . , G, the sub-vector XSg is assumed
to be conditionally independent of (Z1, . . . , Zg−1)

given (XS1 , . . . ,XSg−1); furthermore, the conditional

p.d.f. of XSg given (XS1 , . . . ,XSg−1) is affected by a

latent variable Zg (with Kg categories) and is equal

to

f
(

xSg |(xS1 , . . . ,xSg−1); θg

)

=

Kg
∑

kg=1

π
(g)
kg

φLg

(

xSg ;µ
(g)
kg

,Σ
(g)
kg

)

, (34)

where Kg ≥ 2,

µ
(g)
kg

= γ
(g)
kg

+

g−1
∑

h=1

Bghx
Sh ,

Bgh is a Lg × Lh matrix of regression coefficients,

θg = (πg,γg,Bg1, . . . ,Bg,g−1,σg), πg =
(

π
(g)
1 , . . . ,

π
(g)
Kg

)

, γg =
(

γ
(g)
1 , . . . ,γ

(g)
Kg

)

, σg =
(

Σ
(g)
1 , . . . ,Σ

(g)
Kg

)

.

Thus, the dependence ofXSg on (XS1 , . . . ,XSg−1) is

described by a multivariate linear regression model

whose error terms follow a mixture of Kg Gaussian
components, with the constraint that the effect of

XSh , h = 1, . . . , g−1, on XSg is the same for all the

Kg components of the mixture (34).

(A3*) The sub-vector XU is assumed to be conditionally

independent of (Z1, . . . ZG) given
(

XS1 , . . . ,XSG
)

;
furthermore, the conditional distribution ofXU given
(

XS1 , . . .XSG
)

follows a Gaussian linear regression

model; namely:

XU = α0 +

G
∑

g=1

Agx
Sg + ǫU . (35)

As far as XI is concerned, it is assumed that it is inde-

pendent of any other variable in X and has a marginal

distribution given by a multivariate Gaussian model
with mean vector µI and positive definite covariance

matrix ΣI . Thus, the joint p.d.f. of X can be obtained

as follows:

f(x; θ) =

K1
∑

k1=1

π
(1)
k1

φL1

(

xS1 ;µ
(1)
k1

,Σ
(1)
k1

)

×
G
∏

g=2





Kg
∑

kg=1

π
(g)
kg

φLg

(

xSg ;µ
(g)
kg

,Σ
(g)
kg

)





×φLU

(

xU ;α0 +

G
∑

g=1

Agx
Sg ,ΣU

)

×φLI

(

xI ;µI ,ΣI

)

, (36)

where θ = (θ1, . . . , θG, θU , θI), with θU = (α0,A1, . . . ,

AG, ΣU ).

Using a notation similar to the one adopted in Sec-

tion 3.3.2, the class of models resulting from equation (36)
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can be denoted as M(G); the generic model belong-

ing to M(G) is M (G) = (S1, . . . , SG, U, I,K1, . . . ,KG)

and the parameterised densities are f(·|θM(G)), with

θM(G) = (θ1, . . . , θG, θU , θI) ∈ QM(G) . Theorem 1 can

be generalised so as to hold for any subclass of M(G)

composed of models having the same splitting of X. As

far as the the identifiability of M(G) for θM(G) ∈ QM(G)

is concerned, it cannot be ensured. The conditions (C1)-

(C5) illustrated in Section 3.3.2 can be extended to
prevent distinct models in the class M(G) from being

undistinguishable by the joint p.d.f. of X.

Similarly to the general models defined in Section 3.1

by removing restrictions from model (14), more general

models can be defined also from model (36). Although
the formal specification of such models is omitted for

the ease of presentation, they can be obtained through

a generalisation of the equations (15)-(18).

3.5 Parameter estimation

For a given model M (G) = (S1, . . . , SG, U, I,K1, . . . ,

KG) ∈ M(G), whose parameters are θM(G) = (θ1, . . . , θG,

θU , θI) ∈ QM(G) , the estimation can be performed us-
ing the ML method. Consider a random sample x =

(x1, . . . , xi, . . . , xn). According to equation (36) the

log-likelihood of model M (G) can be written as

l(θM(G)) = l1(θ1) +

G
∑

g=2

lg(θg) + lU (θU ) + lI(θI), (37)

where

l1(θ1) =

n
∑

i=1

ln

[

K1
∑

k1=1

π
(1)
k1

φL1

(

xS1

i ;µ
(1)
k1

,Σ
(1)
k1

)

]

,

lg(θg) =
n
∑

i=1

ln





Kg
∑

kg=1

π
(g)
kg

φLg

(

x
Sg

i ;µ
(g)
i,kg

,Σ
(g)
kg

)

,





lU (θU ) =

n
∑

i=1

ln

[

φLU

(

xU
i ;α0 +

G
∑

g=1

Agx
Sg

i ,ΣU

)]

and

lI(θI) =

n
∑

i=1

ln
[

φLI

(

xI
i ;µI ,ΣI

)]

,

with

µ
(g)
i,kg

= γ
(g)
kg

+

g−1
∑

h=1

Bghx
Sh

i .

Equation (37) shows that l(θM(G)) is composed of

G + 2 parts, each of which only depends on a sub-

vector of θM(G) . Thus, θ̂M(G) = (θ̂1, . . . , θ̂G, θ̂U , θ̂I),

the ML estimate of θM(G) , can be obtained by a sepa-

rate maximization of the G+2 parts. More specifically,

θ̂1 can be computed by maximizing l1(θ1) through the

EM algorithm for a Gaussian mixture model (see, e.g.,

McLachlan and Peel 2000, chapter 3). As far as the
ML estimation of θg is concerned (g = 2, . . . , G), it

can be carried out by maximizing the corresponding

lg(θg). Soffritti and Galimberti (2011) and Galimberti

et al. (2015) provide two EM algorithms for computing
θ̂g. The EM algorithm described in the latter paper is

also suitable to deal with models resulting from equa-

tion (18). Finally, θ̂U and θ̂I can be computed using the

ML solution for a multivariate linear regression model

with Gaussian error terms and a multivariate Gaussian
model, respectively (see, e.g., Srivastava 2002).

3.6 Parsimonious models

All models for the random vector X described in Sec-

tions 3.1 and 3.4 are based on Gaussian mixture models

whose components are assumed to have unconstrained

covariance matrices. Models with a reduced number of
variance-covariance parameters can be obtained by re-

sorting to the approach of Banfield and Raftery (1993)

and Celeux and Govaert (1995). Namely, the covari-

ance matrix Σ
(g)
kg

is decomposed as follows: Σ
(g)
kg

=

λ
(g)
kg

D
(g)
kg

A
(g)
kg

D
′(g)
kg

, where λ
(g)
kg

= |Σ
(g)
kg

|1/Lg , D
(g)
kg

is the

matrix of eigenvectors of Σ
(g)
kg

and A
(g)
kg

is the diagonal

matrix containing the eigenvalues of Σ
(g)
kg

(normalized

in such a way that |A
(g)
kg

| = 1). In this parameterisation,

the volume, shape and orientation of the k-th compo-

nent in the mixture model (34) are determined by the

parameters λ
(g)
kg

, A
(g)
kg

and D
(g)
kg

, respectively. Thus, by

constraining one or more of these parameters to be the
same for all components, for g = 1, . . . , G, parsimo-

nious and interpretable models can be obtained. Some

details about these constraints are reported in Table

A of the Supplementary Material. Let the class ob-
tained by including also such parsimonious models be

denoted as M
(G)
pars, and a model of this widened class

be M
(G)
pars = (S1, . . . , SG, U, I,K1, . . . , KG, P1, . . . , PG,

PU , PI), where Pg (g = 1, . . .G) denotes the parame-

terisation of the component-covariance matrices of the

mixture model (34), PU and PI denote the form (spheri-
cal, diagonal, unconstrained) of the covariance matrices

ΣU and ΣI , respectively, in model (36). The parsimo-

nious Gaussian mixture models (and their ML estima-

tors) resulting from imposing (up to) fourteen different
constraints on such parameters are illustrated in Celeux

and Govaert (1995). These models can be estimated us-

ing, for example, the R packages mclust and mixture
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(Browne et al. 2015). Details on the estimation of parsi-

monious Gaussian clusterwise linear regression models

can be found in Dang and McNicholas (2015). Models

from the class M
(G)
pars are estimated and compared in

Sections 4.1, 4.2 and E (see the Supplementary Mate-
rial).

3.7 Model selection

The selection of an appropriate model in a model class

for a given dataset can be performed through the same

methods usually employed to select the number of com-
ponents or the parameterizations of the component-

covariance matrices in model-based cluster analysis (see,

e.g., McLachlan and Peel 2000). A widely employed

information-based criterion is the BIC:

BICM = 2l(θ̂M )− nparM ln(n), (38)

where l(θ̂M ) and nparM denote the maximum value

of the log-likelihood and the number of estimated pa-
rameters in model M , respectively. Note that, for mod-

els M (G) with a log-likelihood equal to the one defined

in equation (37), BICM(G) can be obtained by sum-

ming the BIC values associated with the G + 2 parts

of l(θ̂M(G)).

In a Bayesian framework,BIC represents an asymp-
totic approximation of the log-posterior probability of

a model under specific conditions (Kass and Raftery

1995). Keribin (2000) provides conditions that guaran-

tee the consistency of the BIC in estimating the num-
ber of components for mixture models. The criteria for

performing variable selection in Gaussian model-based

cluster analysis proposed by Maugis et al. (2009a) and

Maugis et al. (2009b), based on the BIC, are proved

to be consistent under regularity conditions. A similar
result is proved in Galimberti and Soffritti (2013) for se-

lecting the partition of the variables in a parsimonious

approach to model-based cluster analysis. From an ap-

plied point of view, good performances of the BIC as a
model selection criterion for Gaussian mixture models

are reported in several papers, such as Biernacki and

Govaert (1999) and Fraley and Raftery (2002). All the

experimental results illustrated in Section 4 and in the

Supplementary Material are obtained by using this cri-
terion.

In order to find the optimal model in a model class

for a given dataset all possible models have to be fitted

and compared. An approach based on an exhaustive

search is clearly feasible only when the number of ob-
served variables is small. An example is illustrated in

Section D of the Supplementary Material. When this

number is moderate or high an approach based on an

exhaustive search becomes computationally expensive

and time-consuming; thus, non-exhaustive strategies are

needed. Solutions may be represented, for example, by

stepwise techniques and genetic algorithms. In this pa-

per a greedy search algorithm and two genetic algo-
rithms are developed. They are suitably devised to per-

form model selection in classes of models with two un-

known independent clusterings. A general description of

the two genetic algorithms is given in Section 3.8. For
a detailed description of all algorithms see Sections A

and B of the Supplementary Material.

3.8 Exploring model classes using genetic algorithms

Genetic algorithms constitute stochastic optimisation

techniques that exploit principles and operators of the
biological evolution of a species for solving complex

problems with a vast number of possible solutions (Gold-

berg 1989). These algorithms are widely used in many

fields of statistics (see, e.g., Chatterjee et al. 1996). Ap-

plications in subset selection problems can be found,
for example, in Bozdogan (2004) and Scrucca (2016).

In general, a genetic algorithm starts from the ex-

amination of the chromosomes (ordered sequences of

genes) that compose an initial population. Each of these
chromosomes is randomly generated; it is assigned a

value summarising its fitness. Then, an iterative evo-

lution process is performed, based on three main ge-

netic operators (selection, crossover, mutation), with
the goal of generating novel populations composed of

chromosomes characterised by improved fitness values.

The selection operator consists in a weighted random

sampling from the initial population with weights that

are generally proportional to the chromosomes’ fitness.
The chromosomes selected in this way reproduce and

their offspring will compose a novel generation. Such

a generation is obtained after crossover and mutation.

Namely, crossover is a random process of genome re-
combination that applies to pairs of chromosomes; mu-

tation is a random alteration of a gene in a chromosome.

The chromosomes of the resulting novel generation are

assigned their fitness and the evolution process repeats.

Usually, the algorithm stops when a maximum number
of populations has been generated.

As far as the exploration of classes of models illus-

trated in this paper is concerned, a first genetic algo-
rithm is developed for finding the model M̂ such that

M̂ = argmax
M∈M̃(2)

BICM , (39)

where M̃(2) is the subclass ofM(2) composed of models

M (2) = (S1, S2, U, I,K1,K2) with I = ∅.
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In this algorithm each model M is represented as

a chromosome whose fitness is given by BICM . The

evolution process is composed of two parts:

a) information extraction for the specification of model
(1);

b) information extraction for the specification of mod-

els (2) and (7).

In part a) the examined chromosomes have a binary
gene for each variable in X (with 1/0 denoting a vari-

able selected/not selected for XS1 , respectively); they

also have two genes associated with the number of com-

ponents to be used in models (1) and (2). The pos-
sible values of these two latter genes are the integer

numbers between two and a maximum value chosen

by the researcher (K1max for model (1) and K2max for

model (2)). Thus, chromosomes of length L+ 2 are ex-

amined in the first part of the algorithm. Let Ma be
the best model detected at the end of part a) and let

Ŝ1, K̂1 be the solution for S1,K1 obtained from Ma.

In part b) a solution for S2, K2 and U is searched by

keeping fixed the solution for S1,K1 obtained from the
model Ma. Specifically, the chromosomes are composed

of L−L̂1+1 genes, where L̂ is the length of XŜ1 , with a

binary gene for each variable in XrXŜ1 (where 1 and

0 denote a variable selected and not selected for XS2 ,

respectively), and an additional gene (with positive in-
teger values) associated with the number of components

for model (2). The model Mb obtained at the end of this

second part provides Ŝ2, K̂2, Û , where Û = Ir Ŝ1r Ŝ2.

Thus, Û will not be empty when L̂1 + L̂2 < L, with L̂2

denoting the length of XŜ2 . The final solution of the

algorithm is M̂ = (Ŝ1, Ŝ2, Û , K̂1, K̂2). All models exam-

ined and estimated with this genetic algorithm have un-

constrained covariance matrices. The results of an eval-

uation of its effectiveness, based on simulated datasets
generated from models with unconstrained covariance

matrices, are provided in Section 5 and Section C of the

Supplementary Material.

A second genetic algorithm is developed for carrying
out the model search in the subclass M̃

(2)
pars of M

(2)
pars

that only comprises models M
(2)
pars = (S1, S2, U, I,K1,

K2, P1, P2) with I = ∅. The search is still decomposed

in two parts that are similar to those described above;

the main difference is in the structure of the chromo-

somes. Namely, in part a) the examined chromosomes
have two additional genes (with positive integer values

up to 14) for distinguishing the parsimonious param-

eterisations to be used in models (1) and (2). In part

b) an additional gene is necessary to denote the par-
simonious parameterisation in model (2); another gene

(with up to three possible values) is added for indicat-

ing the form of the covariance matrix ΣU in model (7).

Sections 4.1, 4.2 and E in the Supplementary Material

show the results obtained from analyses carried out us-

ing this second algorithm.

These genetic algorithms have been implemented in

R by exploiting the package GA (Scrucca 2013). Each ex-

ecution requires the specification of the following tuning
parameters: K1max, K2max, N1 and N2 (dimension of

the examined populations in parts a) and b), respec-

tively), d1max and d2max (maximum number of gen-

erations to be examined in the two parts of the algo-

rithm). The specific values of these tuning parameters
employed in the analyses are detailed in the following

Sections. In both algorithms linear-rank selection and

single point crossover operators are used. The proba-

bility of crossover between pairs of chromosomes is set
equal to 0.8 in all analyses. As far as the mutation is

concerned, this genetic transformation is randomly car-

ried out in a parent chromosome with a probability of

0.1.

4 Experimental results from analyses of real

datasets

Each real dataset considered in this Section is analysed

with six different algorithms: mclust, clustvarsel, Sel

varClust, SelvarClustIndep, the greedy search algo-

rithm illustrated in Section A of the Supplementary
Material and the second genetic algorithm (see Sec-

tion 3.8). The main goal is to provide examples in which

the proposed approach results to be useful to discover

something that cannot be found by the other meth-
ods. In this perspective, all the results summarised in

this Section are obtained using implementations of the

greedy search algorithm and the genetic algorithm that

have not carried out with the goal of being efficient from

a computational point of view. Thus, the reported CPU
times are merely illustrative and can be greatly reduced

using more efficient implementations.

4.1 Further results from the analysis of the crabs

dataset

The three models illustrated in Section 2 for the crabs
dataset can be seen as a special case of the models de-

scribed in Sections 3.1 and 3.2. They are listed in Ta-

ble 7 together with an additional model M4.

The mixtures in models M1 and M2 have four el-

lipsoidal components with the same volume and shape.

Model M4 is obtained from an exploration of the model
class M̃

(2)
pars through the greedy search algorithm. The

total CPU time required by this algorithm is three hours

and 58 minutes. The model selected from this algorithm
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Table 7: Maximised log-likelihood and BIC value of four models fitted to the crabs dataset.

Models X
S1 X

S2 X
U K1 K2 l(θ̂M ) nparM BICM

M1 FL, RW, CW, BD, CL ∅ ∅ 4 - −1241.0 68 −2842.3
M2 FL, RW, CW, BD - CL 4 - −1265.3 53 −2811.2
M3 RW, CL FL, CW, BD ∅ 2 2 −1345.4 23 −2812.7
M4 FL, RW, CW, BD CL ∅ 4 2 −1265.2 55 −2821.8

for the joint p.d.f. of FL, RW, CW, BD coincides with

the one obtained using clustvarsel, SelvarClust and

SelvarClustIndep. As far as the conditional p.d.f. of

CL is concerned, a mixture of two linear regression

models with the same variances is selected. Model M3 is
selected through the second genetic algorithm. Namely,

eight independent executions of this algorithm are per-

formed, one for each combination of the following val-

ues for the tuning parameters: N1 = 200, 300, 400, 500,
d1max = 40, 50. The remaining tuning parameters are

set as follows: N1 = N2, d1max = d2max and K1max =

K2max = 5. A further execution is carried out by using

values of N1 and d1max chosen in a way that the total

CPU time required by the genetic algorithm is similar
to the one of the greedy search algorithm. Namely, an

execution with N1 = 65 and d1max = 40 has required

three hours and 31 minutes. This setting makes it possi-

ble to compare the effectiveness of these two algorithms
based on a similar CPU time (although their implemen-

tations are not optimised from a computational point

of view). In all these nine executions the selected model

is M3. In this model the parsimonious mixture used to

model the marginal p.d.f. of (RW, CL) has two ellip-
soidal components with the same volume and shape; as

far as the mixture model for the conditional p.d.f. of

(FL, CW, BD) given (RW, CL) is concerned, its com-

ponents are spherical with the same volume. According
to the BIC values of these four models, M2 and M3

perform better than M1 and M4.

In model M3 the measurements FL, CW and BD

are assumed to linearly depend on both RW and CL.

Since this assumption could be restrictive, models are
also estimated in which a different set of regressors is

allowed for each of the three regression equations in the

multivariate linear regression model of frontal lobe size,

carapace width and body depth (see equation (18)).

Namely, given the splitting of the five measurements ob-
tained from the genetic algorithm, a regressors selection

is carried out through an exhaustive search. According

to the BIC, the best solution obtained after examin-

ing these further models is a mixture of two seemingly
unrelated linear regression models in which frontal lobe

size and carapace width are both regressed on carapace

length and rear width, while body depth only depends

Table 8: Classification of the crabs according to their

colour and sex and the segmentation based on the joint

examination of the two independent cluster structures
detected by model M5.

Colour and sex
Cluster I Cluster II BF BM OF OM
1 1 50 7 0 0
1 2 0 0 50 3
2 1 0 43 0 0
2 2 0 0 0 47
aRi 0.873

on carapace length. The clustering of the crabs resulting

from such a model coincides with the classification of

crabs based on their colour (aRi = 1). The joint model
for the five morphological measurements, denoted as

M5, is given by the product of this seemingly unre-

lated linear regression model and the Gaussian mixture

model for CL and RW described above. It has a BIC

value (−2808.3) which is higher than the one of any

other examined model. Model M5 also reaches the best

performance in recovering the classification of the crabs

based on colour and sex (aRi = 0.873) (see Table 8).

Figure 3 provides some graphical displays about model

M5. In particular, Figure 3(a) shows the joint bivariate

scatterplot of RW and CL where the first cluster struc-
ture is represented. In this figure, each point is labelled

according to its estimated cluster membership. The su-

perimposed ellipses are centred on the estimated com-

ponent mean vectors; their volume, shape and orienta-
tion depend on the parameterisation of the component-

covariance matrices. Figures 3(b), 3(c) and 3(d) refer to

the second cluster structure. They show the three two-

dimensional scatterplots of the variables FL, CW and

BD, after removing the estimated effects of RW and CL.
Labels correspond to the clusters of the second cluster

structure. The centres of the superimposed ellipses are

obtained from the estimated values of γ
(2)
k2

, (k2 = 1, 2).

Since the selected model for the conditional p.d.f. of
(FL, CW, BD) given (RW, CL) has spherical compo-

nents with equal volume, the superimposed ellipses are

circles with the same radius.
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Fig. 3: Scatterplots for the crabs dataset. Points are labelled according to their estimated cluster memberships.

Panel (a) refers to the first cluster structure and is based on the observed values of variables RW and CL. Panels

(b), (c) and (d) refer to the second cluster structure and are based on the values of FL, CW and BD after removing
the estimated effects of RW and CL.

4.2 Analysis of the quality of life in Italy

Since 1990 the Italian financial newspaper Il Sole 24 Ore

(www.ilsole24ore.com) has carried out yearly a re-
search about the quality of life in the Italian provinces.

The dataset considered in this Section refers to the year

2002 and contains the following five indicators for 103

provinces: the deposits per inhabitant (X1), the value
added at market prices per inhabitant (X2), the per

capita disposable income (X3), the number of retired

people per 1000 working people (X4) and the unem-

ployment rate (X5). Variables in the dataset are gen-

erally characterised by moderate/high pairwise linear

dependencies (see Table 9).

The models selected by the six algorithms for clus-
tering the Italian provinces based on the illustrated

indicators are summarised in Table 10. Model M1 re-

sults from an analysis performed through mclust with

a maximum number of components equal to six; it is
a mixture of five Gaussian ellipsoidal components with

the same volume, orientation and shape. Model M2 is

obtained using the variable selection methods imple-
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Table 9: Pearson correlation matrix in the dataset con-

cerning the quality of life in Italy.

X1 X2 X3 X4 X5

X1 1.000 0.869 0.772 −0.503 −0.681
X2 0.869 1.000 0.895 −0.564 −0.845
X3 0.772 0.895 1.000 −0.318 −0.789
X4 −0.503 −0.564 −0.318 1.000 0.491
X5 −0.681 −0.845 −0.789 0.491 1.000

mented by clustvarsel (setting the maximum num-

ber of components for the p.d.f. of the informative vari-
ables equal to six). According to these methods, the

relevant indicators for clustering the Italian provinces

are the deposits per inhabitant and the unemployment

rate. The best Gaussian mixture model fitted to p.d.f.
of these variables is a mixture of four Gaussian ellip-

soidal components with the same volume and orien-

tation. According to the BIC values, model M2 per-

forms better than M1. Three independent executions

of SelvarClust lead to model M3; the same model
is also obtained after three independent executions of

SelvarClustIndep. According to these methods, a third

indicator (value added at market prices per inhabitant)

is also relevant for clustering the Italian provinces. The
best model for the joint p.d.f. of (X1, X2, X5) detected

by SelvarClust and SelvarClustIndep is a mixture

of four Gaussian ellipsoidal components with the same

volume and orientation. As far as the Gaussian linear

regression model for the two uninformative indicators
(the per capita disposable income and the number of

retired people per 1000 working people) is concerned,

only the value added at market prices per inhabitant

is used as a regressor; the covariance matrix is uncon-
strained. According to the BIC values, model M3 is

better than M1 and M2.

Models M4 and M5 are obtained using the greedy

search algorithm and the second genetic algorithm, re-
spectively. The total CPU time of the analysis based

on the greedy search algorithm is 4 hours and 34 min-

utes. According to model M4 the first cluster structure

that characterises the examined dataset is defined in
the joint marginal distribution of the following indica-

tors: value added at market prices per inhabitant, per

capita disposable income and unemployment rate. The

model for the p.d.f. of these indicators selected by the

greedy search algorithm is a mixture of two Gaussian
ellipsoidal components with the same volume. The sec-

ond cluster structure is detected in the conditional p.d.f.

of the deposits per inhabitant given the value added at

market prices per inhabitant, the per capita disposable
income and the unemployment rate. The selected model

for this p.d.f. is a mixture of two Gaussian ellipsoidal

components with equal volume, orientation and shape.

For the conditional p.d.f. of the number of retired peo-

ple per 1000 working people given the other indicators

a Gaussian linear regression model is selected; thus, in

model M4 this latter indicator composes XU and repre-

sents an uninformative variable. However, according to
the BIC values, model M4 is worse than M2 and M3.

Eight independent executions of the genetic algo-

rithm are carried out by combining the values 200, 300,

400 and 500 of N1 with the values 40 and 50 of d1max.

As far as the remaining tuning parameters are con-
cerned, they are set as follows:N1 = N2, d1max = d2max

and K1max = K2max = 5. In all these executions the

selected model is M5. The CPU times required by the

executions with N1 = 200, d1max = 40 and N1 = 200,
d1max = 50 are almost the same (4 hours and 37 min-

utes, 4 hours and 35 minutes, respectively) as the CPU

time of executing the greedy search algorithm. Accord-

ing to model M5, the information about the first cluster

structure is given by the joint marginal distribution of
three indicators: the deposits per inhabitant, the num-

ber of retired people per 1000 working people and the

unemployment rate. The selected model for the p.d.f.

of these indicators is a mixture of four Gaussian ellip-
soidal components with the same volume and orienta-

tion. Panels (a)-(c) of Figure 4 show the clustering of

the Italian provinces associated with this model. Clus-

ter CL_I_1 is composed of 64 provinces that are all

located in the northern and central parts of Italy. This
cluster contains Italian provinces that have high mean

values of deposits and low mean values of the unemploy-

ment rate. Cluster CL_I_4 only contains three provinces

(Rome, Milan and Trieste), whose distinctive feature
with respect to the previous cluster is a higher value of

deposits. Cluster CL_I_2 is composed of 23 provinces

that are characterised by low mean values of deposits

and high mean values of both the number of retired

people per 1000 working people and the unemployment
rate. The 13 provinces assigned to cluster CL_I_3 are

similar to the ones of cluster CL_I_2, but have higher

values of both the number of retired people per 1000

working people and the unemployment rate. Provinces
belonging to clusters CL_I_2 and CL_I_3 are all lo-

cated in the southern part of Italy. Thus, the first clus-

ter structure mainly reflects geographical differences.

The second clustering of the Italian provinces is de-

tected in the conditional p.d.f. of the per capita dis-
posable income given the amount of deposits per in-

habitant, the number of retired people per 1000 work-

ing people and the unemployment rate. The selected

model for this p.d.f. is a mixture of two Gaussian el-
lipsoidal components with equal volume, orientation

and shape. Panel (d) of Figure 4 shows that the p.d.f.

of the disposable income after removing the estimated
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Table 10: Models for the dataset concerning the quality of life in Italy.

Models X
S1 X

S2 X
U K1 K2 BICM

M1 X1, X2, X3, X4, X5 ∅ ∅ 5 - −7289.8
M2 X1, X5 - X2, X3, X4 4 - −7260.8
M3 X1, X2, X5 - X3, X4 4 - −7258.6
M4 X2, X3, X5 X1 X4 2 2 −7274.9
M5 X1, X4, X5 X3 X2 4 2 −7255.4

Table 11: Cluster structures in the dataset concerning

the quality of life in Italy (detected by model M5) and

their mutual association.

Cluster I
Cluster II 1 2 3 4
1 40 8 10 1
2 24 15 3 2
aRi 0.037

effects of the three indicators X1, X4, and X5 is bi-

modal. The two clusters detected by the genetic algo-

rithm in the conditional p.d.f. of X3 given (X1, X4, X5)

are composed of 59 and 44 provinces. The estimated
mean value of the per capita disposable income after

removing the estimated effects of the three indicators

X1, X4, and X5 within cluster CL_II_1, given by γ̂
(2)
1 ,

is equal to 9487.64; it is higher than that in the other

cluster (γ̂
(2)
2 = 7354.80). This second clustering of Ital-

ian provinces is not associated with the first one (see

Table 11); thus, the second cluster structure detected

in the dataset is reasonably affected by latent factors

that are independent of geographical differences among
provinces. Finally, a Gaussian linear regression model

is selected for the value added at market prices per in-

habitant. Thus, this latter indicator composes XU and

represents an uninformative variable. No improvement

of the linear regression mixture model with two com-
ponents selected for X3 is obtained after performing a

regressor selection through an exhaustive search. The

same result also holds for the linear regression model

selected for X2. Thus, X3 linearly depends on X1, X4

and X5; similarly, X2 linearly depends on X1, X3, X4

andX5. In these linear regression models both the value

added per inhabitant and the per capita disposable in-

come are positively affected by the deposits per inhabi-

tant and negatively affected by the unemployment rate;
the effect of the number of retired people per 1000 work-

ing people is positive on the disposable income and neg-

ative on the value added; finally, there is a positive effect

of the disposable income on the deposits per inhabitant.
According to the BIC values of the five models sum-

marised in Table 10, M5 reaches the best performance

for this dataset.

The two cluster structures obtained from model M5

are compared with the ones discovered by models M1,

M2 and M3. In particular, the results concerning the

comparison with the first cluster structure associated

withM5 (see Table 12) show that using methods mclust,
clustvarsel, SelvarClust and SelvarClustIndep lead

to detect clusters that are quite similar to the ones that

compose the first cluster structure. Thus, the three par-

titions obtained through mclust, clustvarsel, Selvar

Clust and SelvarClustIndep capture the geographical
differences among the provinces. However, they miss the

second source of clustering associated with latent fac-

tors that are independent of geographical differences.

5 Experimental results from analyses of

simulated datasets

The performance of the first genetic algorithm is evalu-

ated through two Monte Carlo experiments where artifi-
cial datasets are generated from a given known model.

The main goal is to evaluate the effectiveness of this

algorithm (with the BIC as a fitness measure) in se-

lecting the model the datasets come from. This Section
reports the results obtained in the first experiment. As

far as the second Monte Carlo study is concerned see

Section C of the Supplementary Material.

In the first experiment the artificial datasets are

generated in the Euclidean space R8 using model (8),

whereXS1 = (X1, X2, X3),K1 = 2,XS2 = (X4, X5, X6),
K2 = 2, and XU = (X7, X8).

Specifically, the parameters of the marginal p.d.f. of

XS1 are: π
(1)
1 = 0.5,

µ
(1)
1 =





0

0
0



 , Σ
(1)
1 =





1 −0.6 −0.3

−0.6 1 −0.4
−0.3 −0.4 1



 ,

µ
(1)
2 =





5

−5

5



 , Σ
(1)
2 =





1 0.6 0.3

0.6 1 0.4

0.3 0.4 1



 .
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Fig. 4: Plots for the dataset concerning the quality of life in Italy. Panels (a), (b) and (c) show the bivariate scat-

terplots for the three indicators (X1, X4, X5) that provide information about the first cluster structure associated

with model M5 (CL I). Points are labelled according to the provinces’ estimated cluster memberships. Panel (d)
refers to the second cluster structure (CL II) associated with M5. It contains the density histogram of X3 after

removing the estimated effects of X1, X4, and X5; the dotted line denotes the corresponding estimated p.d.f.; the

estimated cluster memberships of the provinces for the second structure are also illustrated.

Table 12: Comparison between the first cluster structure associated with model M5 (cluster I) and the clusterings

of the Italian provinces estimated by models M1, M2 and M3.

Clusters from M1 Clusters from M2 Clusters from M3

Cluster I 1 2 3 4 5 1 2 3 4 1 2 3 4
1 30 34 0 0 0 64 0 0 0 64 0 0 0
2 0 0 0 23 0 0 0 23 0 0 0 13 10
3 0 0 0 0 13 0 0 0 13 0 0 0 13
4 0 0 3 0 0 0 3 0 0 0 3 0 0
aRi 0.590 1.000 0.900
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Table 13: Distribution of 100 simulated datasets according to the partition ofX obtained with the genetic algorithm

in the executions with n = 200.

N1

80 120 160 200
d1max

30 40 50 30 40 50 30 40 50 30 40 50
Correct classification of all variables 62 62 61 76 79 80 91 88 91 91 91 90
Correct recovery of XS1 only 1 2 2 4 3 3 3 4 3 3 3 4

Ŝ1 = (1, 3, 7, 8), Ŝ2 = (2, 4, 5, 6) 25 24 26 14 14 13 5 8 5 6 6 5
Other wrong partitions 12 12 11 6 4 4 1 0 1 0 0 1

Table 14: Distribution of 100 simulated datasets according to the partition ofX obtained with the genetic algorithm
in the executions with n = 400.

N1

80 120 160 200
d1max

30 40 50 30 40 50 30 40 50 30 40 50
Correct classification of all variables 75 75 75 87 87 87 92 92 92 95 95 95
Correct recovery of XS1 only 2 2 2 1 1 1 2 2 2 2 2 2

Ŝ1 = (1, 3, 7, 8), Ŝ2 = (2, 4, 5, 6) 17 17 17 9 9 9 5 5 5 3 3 3
Other wrong partitions 6 6 6 3 3 3 1 1 1 0 0 0

The parameters of the conditional p.d.f. of XS2 given

XS1 are: π
(2)
1 = 0.5,

γ
(2)
1 =





−2

−1

3.5



 , Σ
(2)
1 =





1 0.5 0.6

0.5 1 0.4

0.6 0.4 1



 ,

γ
(2)
2 =





4
5

−2.5



 , Σ
(2)
2 =





1 −0.5 −0.6
−0.5 1 −0.4

−0.6 −0.4 1



 ,

B21 =





1.5 2 1.5

1.5 −2.5 −2

1.5 2 −2.5



 .

Finally, the parameters of the conditional p.d.f. of XU

given (XS1 ,XS2) are: α0 =

(

2

2

)

,A1 =

(

2 2 2

−2 −2 −2

)

,

A2 = −A1 and ΣU =

(

2.25 0

0 1

)

.

One hundred samples of n = 200 observations each

are generated and analysed using the first genetic algo-
rithm. Since the algorithm’s performance may depend

on how large is the exploration of the model space, the

algorithm is executed by changing the values of the

tuning parameters N1 and d1max that control the in-

formation extraction for the specification of model (1).
Namely, the examined values are 80, 120, 160 and 200

for N1; 30, 40 and 50 for d1max. The other tuning pa-

rameters are kept constant throughout the experiment;

they are set as follows: K1max = K2max = 3, N2 = 80
and d2max = 20. Greater values of N2 and d2max are

not examined because some preliminary analyses have

highlighted that increasing them has a little impact on

the results. This is mainly due to the fact that in part

b) of the algorithm the exploration of the model space

is carried out conditionally on the results obtained in
part a). For each sample, twelve executions of the algo-

rithm are performed. The same analysis is carried out

with the sample size n = 400.

The effectiveness of the genetic algorithm is evalu-
ated with respect to the ability to recover the correct

variable partition. The percentage of datasets for which

XS1 , XS2 and XU are successfully identified is gener-

ally high, especially with n = 400 (see Tables 13 and

14, first row). The most common error is represented
by a partition in which both uninformative variables

are allocated to the variable sub-vector that defines the

first cluster structure, and X2 is wrongly inserted in

the variable sub-vector that defines the second cluster
structure.

As far as the choice of the tuning parameters is con-

cerned, the beneficial effect of increasing N1 is quite

clear. Larger values of N1 allow a wider exploration of
the model space. This reduces the chance of selecting

the wrong model. It is interesting to note that the per-

centage of datasets for which XS1 , XS2 and XU are suc-

cessfully identified increases nonlinearly with N1. Sim-

ilar conclusions about the effect of N1 can be drawn
from the results of the second Monte Carlo study (see

Section C of the Supplementary Material). The choice

of d1max seems to be less crucial. When the sample size

is 200 the differences in the performance obtained for
different values of d1max are negligible, for any given

value of N1. Using a value greater than 30 for the max-

imum number of examined generations, in association
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with any examined value of N1, is completely useless

with n = 400.

The effectiveness is also evaluated with respect to

the ability of the genetic algorithm to recover the two

latent cluster structures. This task is carried out by
computing the adjusted Rand index between the true

cluster structures and the structures estimated by the

algorithm. Although in some datasets the true vari-

able partition is not correctly detected, the first cluster
structure identified by the genetic algorithm perfectly

coincides with the first true one in all samples (aRi =

1). Also the agreement between the second true cluster

structure and the second estimated one is very high: the

mean (over 100 datasets) of the aRi is greater that 0.996
in all executions of the algorithm for both sample sizes.

These results are due to the fact that there is a clear-

cut separation between clusters in both XS1 and XS2 ;

furthermore, in all datasets in which the genetic algo-
rithm selects wrong variable partitions, two variables in

both XŜ1 and XŜ2 are always correctly selected.

6 Conclusions

The approach for modelling the role of variables in clus-

ter analysis proposed in this paper relies on a model

that makes it possible to compare the results of dif-

ferent (supervised and unsupervised) analyses carried

out on a given dataset. Namely, this model allows to
perform variable selection in model-based clustering ac-

cording to the methods proposed by Raftery and Dean

(2006), Maugis et al. (2009a) and Maugis et al. (2009b).

It also allows to carry out model selection in multivari-
ate linear regression analysis and seemingly unrelated

linear regression analysis by assuming either a Gaus-

sian model or a Gaussian mixture model for the distri-

bution of the errors (Soffritti and Galimberti 2011; Gal-

imberti et al. 2015). Furthermore, using the proposed
model enables the detection of the presence of multi-

ple cluster structures from possibly correlated variable

sub-vectors.

As already remarked in Section 3.3, the identifia-
bility conditions provided in this paper do not guaran-

tee general identifiability. Thus, some caution is needed

when interpreting the results obtained from fitting mod-

els from the proposed class to a given dataset. From a

practical point of view, in order to reveal whether a
fitted model suffers from identifiability problems, boot-

strap methods could be employed, as suggested by (Grün

and Leisch 2004).

The process of selecting a model in the proposed
approach may be complex, particularly when G > 2

cluster structures are assumed. This may prevent the

methodology illustrated in this paper from being used

with high-dimensional datasets. In this paper two dif-

ferent selection strategies are examined, in the special

case G = 2: one performs a greedy search and the other

one is based on genetic algorithms. Resorting to these

strategies can partly mitigate the drawback just men-
tioned. From the results obtained on two real datasets

(see Sections 2, 4.1 and ??) it emerges that an ap-

proach based on a genetic algorithm performs better

than a greedy search technique. This result is due to the
fact that genetic algorithms are able to globally explore

a given model class, thus avoiding the main problems

that typically characterise stepwise and greedy search

strategies. Clearly, the effectiveness of a genetic algo-

rithm greatly depends on how large is the exploration
of the model class. A proper choice of the parameters

that control this exploration represents the main issue

of genetic algorithms. No general rule about how to

perform this choice is available. For this reason it is
always advisable to run a genetic algorithm different

times by varying the values of the tuning parameters.

This approach is exploited in all analyses illustrated in

Section 4. In particular, different settings for the pop-

ulation size and the number of generations are consid-
ered.

From the Monte Carlo studies summarised in Sec-

tion 5 and in the Supplementary Material it emerges

that an important role is played by the population size
N1 employed to discover the first cluster structure. In

general, the choice of this tuning parameter is strictly

related to the number of observed variables, as this

number directly affects the dimension of the model class.

In principle, a large value ensures a large exploration of
the model class and, thus, should be employed. How-

ever, increasing the population size also slows down the

search and increases the computational burden. Note

that, according to some authors (see, e.g., Bozdogan
2004; Scrucca 2016), after some limit an increase of this

tuning parameter does not lead to any additional ben-

efit. As far as the population size N2 is concerned, its

choice has a lower impact on the results. This is due to

the fact that the genetic algorithms developed in this
paper search for the two cluster structures in a sequen-

tial way. For this reason, N2 is set equal to or lower

than N1 in all analyses. It is worth mentioning that

the computational burden of the proposed genetic al-
gorithms depends not only on the choice of the tuning

parameters but also on the effort required to fit a model

and to compute its BIC.

Another issue is represented by the choice of the

model selection criterion. All results described in this
paper are obtained using the BIC. The Monte Carlo

studies show that the performance of this criterion is

satisfactory when the true model is in the examined
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model class. However, since this criterion tends to over-

estimate the number of clusters when the correct model

is not in the considered model class, criteria more ro-

bust to violation of some of the mixture model assump-

tions should be considered and evaluated (see, e.g., Bier-
nacki et al. 2000).

A proper choice of the tuning parameters in a ge-

netic algorithm as well as other aspects concerning model

selection (e.g.: a comparison with other non-exhaustive
strategies; how to deal with high-dimensional datasets)

represent topics for future research. Another issue to

be investigated is represented by the computational ef-

ficiency of genetic algorithms: for example, resorting

to parallel computing can reduce the overall computa-
tional time. Nevertheless, the experimental results il-

lustrated in Sections 4.1 and ?? show that for some

datasets the joint use of supervised and unsupervised

learning methods allows to extract unknown relevant
information that otherwise would be missed, thus sup-

porting the usefulness of the approach illustrated in this

paper.

7 Appendix. Proof of Theorem 1

The proof exploits arguments similar to the ones used
by Hennig (2000). It refers to any given splitting (XS1 ,

XS2 , XU ,XI) of X in which both XU and XI are not

empty. Thus, θM is composed of four non empty sub-

vectors. This proof can be easily modified so as to deal
with situations in which XU = ∅ and/or XI = ∅.

Let θM and θ∗
M∗ be such that

f(x; θM ) = f(x; θ∗
M∗) ∀ x ∈ RL. (40)

In the following it is shown that the equality (40) im-

plies that M = M∗ and θM = θ
∗
M∗ . This is the only

implication that needs to be proved in order to guaran-

tee identifiability (Hennig 2000).

The proof is composed of four parts. In the first

part it is shown that K1 = K∗
1 and θ1 = θ∗

1; the second
part proves that K2 = K∗

2 and θ2 = θ∗
2; finally, the

last two parts demonstrate that θU = θ∗
U and θI = θ∗

I ,

respectively.

According to equations (14) and (1), integrating

each side of the equality (40) with respect to XS2 , XU

and XI yields f
(

xS1 ; θ1

)

= f
(

xS1 ; θ∗
1

)

∀ xS1 ∈ RL1 ,

that is:

K1
∑

k1=1

π
(1)
k1

φL1

(

xS1 ;µ
(1)
k1

,Σ
(1)
k1

)

=

K∗

1
∑

k1=1

π
∗(1)
k1

φL1

(

xS1 ;µ
∗(1)
k1

,Σ
∗(1)
k1

)

∀ xS1 ∈ RL1 .

Given the constraints (I1) on θ1, the class of dis-

tributions that contains f
(

xS1 ; θ1

)

and f
(

xS1 ; θ∗
1

)

is

identifiable. Thus, K1 = K∗
1 and θ1 = θ∗

1 (up to a

permutation of the mixture components).

For the second part of the proof it is useful to recall
from equation (6) that the expected value of XS2 given

XS1 within the k2-th component of the model (2) is

µ
(2)
k2

= γ
(2)
k2

+B21x
S1 , k2 = 1, . . . ,K2.

Let

C(1) = {xS1 ∈ RL1 : ∀j ∈ {1, . . . ,K1}, ∀l ∈ {1, . . . ,K∗
1},

γ
(2)
j +B21x

S1 = γ
∗(2)
l +B∗

21x
S1

⇒ γ
(2)
j = γ

∗(2)
l ,B21 = B∗

21}.

The set C(1) contains all the vectors xS1 that can be

used to distinct different values of (γ
(2)
k2

,B21) by dif-

ferent values of µ
(2)
k2

. This set is the complement of a

finite union of (L1−1)-dimensional hyperplanes of RL1.

Thus, P(RL1 \ C(1)) = 0 and P(C(1)) = 1 according to
the Gaussian mixture model defined in equation (1).

Integrating each side of the equality (40) with re-

spect toXU andXI and then conditioning on any xS1 ∈
C(1) leads to f

(

xS2 |xS1 ; θ2

)

= f
(

xS2 |xS1 ; θ∗
2

)

∀ xS2 ∈
R

L2, that is:

K2
∑

k2=1

π
(2)
k2

φL2

(

xS2 ;γ
(2)
k2

+B21x
S1 ,Σ

(2)
k2

)

=

K∗

2
∑

k2=1

π
∗(2)
k2

φL2

(

xS2 ;γ
∗(2)
k2

+B∗
21x

S1 ,Σ
∗(2)
k2

)

∀ xS2 ∈ RL2 .

Given the constraints (I2) on θ2, for each xS1 ∈ C(1)

the class of distributions that contains f
(

xS2 |xS1 ; θ2

)

and f
(

xS2 |xS1 ; θ∗
2

)

is identifiable. Thus, K2 = K∗
2 and

θ2 = θ∗
2 with a probability equal to one (up to a per-

mutation of the mixture components).

According to equation (7), the conditional expected
value of XU given XS1 and XS2 is µU|1,2 = α0 +

A1x
S1 +A2x

S2 . Let

C(2) = {(xS1 ,xS2) ∈ RL1+L2 :

α0 +A1x
S1 +A2x

S2 = α∗
0 +A∗

1x
S1 +A∗

2x
S2

⇒ α0 = α∗
0,A1 = A∗

1,A2 = A∗
2}.

The set C(2) contains all the vectors (xS1 ,xS2) that can

be used to distinct different values of (α0,A1,A2) by

different values of µU|1,2. This set is the complement of

a (L1+L2− 1)-dimensional hyperplane of RL1+L2 . Ac-
cording to equation (10), the joint marginal distribution

of (XS1 ,XS2) is a Gaussian mixture model with K1K2

components. Given assumptions (A1) and (A2), the
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component-covariance matrices of this Gaussian mix-

ture for (XS1 ,XS2) are positive definite. Thus, accord-

ing to such a mixture, P(C(2)) = 1.

Integrating both sides of the equality (40) with re-

spect to XI and then conditioning on any (XS1 ,XS2) ∈
C(2) yields f

(

xU |xS1 ,xS2 ; θU

)

= f
(

xU |xS1 ,xS2 ; θ∗
U

)

∀ xU ∈ RLU , that is:

φLU

(

xU ;α0 +A1x
S1 +A2x

S2 ,ΣU

)

=

φLU

(

xU ;α∗
0 +A∗

1x
S1 +A∗

2x
S2 ,Σ∗

U

)

∀ xU ∈ RLU .

Thus, θU = θ∗
U with a probability equal to one.

Finally, integrating both sides of the equality (40)

with respect toXS1 ,XS2 andXU leads to φLI

(

xI ;µI ,ΣI

)

= φLI

(

xI ;µ∗
I ,Σ

∗
I

)

∀ xI ∈ RLI . From this result it fol-
lows that θI = θ∗

I . This completes the proof.
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