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HIGHER INTEGRABILITY FOR MINIMIZERS OF ASYMPTOTICALLY CONVEX
INTEGRALS WITH DISCONTINUOUS COEFFICIENTS

GIOVANNI CUPINI - FLAVIA GIANNETTI - RAFFAELLA GIOVA - ANTONIA PASSARELLI DI NAPOLI

This paper is dedicated to Nicola Fusco, who directed us to the theory of regularity in the Calculus of Variations,
on the occasion of his 60th birthday.

ABSTRACT. We study the local regularity of vectorial minimizers of integral functionals with standard p-
growth. We assume that the non-homogeneous densities are uniformly convex and have a radial structure,
with respect to the gradient variable, only at infinity. Under a W 1,n-Sobolev dependence on the spatial
variable of the integrand, n being the space dimension, we show that the minimizers have the gradient
locally in Lq for every q > p. As a consequence, they are locally α-Hölder continuous for every α < 1.

1. INTRODUCTION

In this paper we study the regularity of vectorial local minimizers of functionals with irregular inte-
grands in the x-variable and only asymptotically convex with respect to the gradient variable. In order to
state our result precisely, we introduce right now our hypotheses. We will consider

F(u; Ω) :=

∫
Ω
f(x,Du) dx, (1.1)

where Ω ⊂ Rn, n > 2, is a bounded open set, u : Ω → RN , N > 1, is a Sobolev map and f :
Ω× RnN → [0,+∞) is a Carathéodory function convex with respect to the second variable.

As it is well known since the famous example by De Giorgi [13] (see also [39], [40], [45]), in order
to avoid the irregularity phenomena peculiar of the vectorial minimizers, the dependence of the energy
density on the modulus of the gradient variable is necessary. We shall assume it only at infinity, i.e., for
large values of the gradient variable ξ. Precisely:

(A1) there exist R̃ > 0 and a function f̃ : Ω× [R̃,+∞)→ [0,+∞) such that

f(x, ξ) = f̃(x, |ξ|), (1.2)

for a.e. x ∈ Ω and every ξ ∈ RnN \BR̃(0).

The integrand f will satisfy the so-called p-growth condition, that is
(A2) there exist an exponent p > 1 and constants c1, c2, L > 0 such that

c1|ξ|p − c2 ≤ f(x, ξ) ≤ L(1 + |ξ|)p,
for a.e. x ∈ Ω and ξ ∈ RnN .

2000 Mathematics Subject Classification. Primary: 49N60; 49N99. Secondary: 35J47.
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The usual p-uniform convexity will be assumed only at infinity. More precisely, we shall suppose that
ξ → f(x, ξ) ∈ C2(RnN \BR̃(0)) and

(A3) there exists ν > 0 such that

〈Dξξf(x, ξ)λ, λ〉 ≥ ν (1 + |ξ|)p−2|λ|2,

for a.e. x ∈ Ω, for every ξ ∈ RnN \BR̃(0) and for every λ ∈ RnN .
Note that, since f is C2 with respect to the gradient variable outside the ball BR̃(0), the assumption in
(A3) is equivalent to the C2- asymptotic convexity introduced in [5].

Also the bound on the second order derivatives in the gradient variable will be required only at infinity.
Indeed, we shall assume that

(A4) there exists L1 > 0 such that

|Dξξf(x, ξ)| ≤ L1(1 + |ξ|)p−2,

for a.e. x ∈ Ω and every ξ ∈ RnN \BR̃(0).

We now introduce the main property of our energy density. As already mentioned, we will not ask a
regular dependence of f on the x-variable. Indeed, the function x → Dξf(x, ξ) will be required to be
weakly differentiable for every ξ ∈ RnN \BR̃(0) and it will be assumed that

(A5) there exists a non-negative function k ∈ Lnloc(Ω) such that

|Dξxf(x, ξ)| ≤ k(x)(1 + |ξ|)p−1,

for a.e. x ∈ Ω and for every ξ ∈ RnN \BR̃(0).
If we take into account that many properties are requested only at infinity, a model functional in our

setting is

F(u; Ω) :=

∫
Ω
a(x)|Du|p dx, p > 1

with a ∈W 1,n
loc (Ω) ∩ L∞(Ω), a ≥ 1.

Let us now briefly discuss our assumptions.
We begin noting that the counterpart of the uniform p-convexity at infinity, in case of non-smooth func-
tions f is that there exists ν > 0 such that

1

2
[f(x, ξ1) + f(x, ξ2)] ≥ f

(
x,
ξ1 + ξ2

2

)
+ ν(1 + |ξ1|2 + |ξ2|2)

p−2
2 |ξ1 − ξ2|2, (1.3)

for a.e. x ∈ Ω and for every ξ1, ξ2 ∈ RnN \BR̃(0) endpoints of a segment contained in the complement
of BR̃(0). This property was introduced by Fonseca, Fusco and Marcellini in [18] in order to study the
existence of real valued minimizers of some non convex variational problems. Already in such a paper,
the condition (1.3) has been revealed sufficient for the Lipschitz regularity of local minimizers. Since
then, the regularity properties of local minimizers ofF(u; Ω) when the integrand f is p-uniformly convex
at infinity with respect to the the gradient variable have been widely investigated assuming a dependence
on the x variable through a smooth function (see [4], [9], [10], [17], [20], [21], [22], [23], [24], [44]).

On the other hand, many regularity results are available when the integrand f is uniformly convex
with respect to the last variable but discontinuous with respect to x. In particular, when the dependence
on x is given through a coefficient belonging to a suitable Sobolev class, the higher differentiability
as well as the partial Hölder continuity of the gradient of the local minimizers have been obtained in
[28], [32], [41], [42], [43]. More recently, the regularity of the solutions of some parabolic systems
with Sobolev coefficients has been faced in [30]. We refer to [27], [29] for the case of functionals with
variable exponents growth condition.
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The aim of this paper is to show that the Sobolev dependence on the x-variable expressed by the
assumption (A5) is sufficient to prove that, under a p-convexity condition only at infinity, the local
minimizers u of F have the gradient locally in Lq for every q > p and, therefore, that they are locally
Hölder continuous for every exponent 0 < α < 1.

More precisely, taking into account that, without loss of generality, we can assume R̃ = 1, our main
result is the following.

Theorem 1.1. Let f : Ω × RnN → [0,+∞) be a Carathéodory function such that f = f(x, ξ) is
convex and C2 with respect to the last variable and satisfies the assumptions (A1)-(A5), with p > 1.
Let u ∈ W 1,p

loc (Ω,RN ) be a local minimizer of (1.1). Then u is locally α-Hölder continuous for all
α ∈ (0, 1). Moreover, for all q > p and for all Bρ(x0) ⊂ BR(x0) b Ω we have that[∫

Bρ(x0)
|Du|q dx

] 1
q

≤ C

[∫
BR(x0)

(1 + f(x,Du)) dx

] 1
p

,

where C = C(n,N, p, q, L, L1, ν, c1, c2, ρ, R).

We remark that Hölder continuity results for any exponent α strictly less than 1, are not uncommon when
the integrands depend on x. We refer to [8] and [42] for examples of not locally Lipschitz continuous
minimizers, but Hölder continuous for every exponent.

It is worth pointing out that we were inspired by a regularity result proved in [14] for functionals
satisfying the non-standard (p, q)-growth conditions. We recall that the theory of regularity of minimizers
in this framework of non-standard growths was started by Marcellini, see [36], [37], see also Acerbi-
Fusco [2], Boccardo-Marcellini-Sbordone [3], Fusco-Sbordone [25], [26], and later widely investigated
by many authors and in different settings of applicability. For more details and references on this subject
we refer to [38].

Besides the (p, q)-growth condition, Eleuteri, Marcellini and Mascolo in [14] deal with an integrand
f satisfying (1.2) for all ξ ∈ RnN , but satisfying the assumption (A5) with a function k belonging to Lr,
with r > n. They proved that the local minimizers of the integrals are locally Lipschitz continuous if
q
p < 1 + 1

n −
1
r (note that this assumption on the gap q

p is sharp as shown in [16] and [19]). See also the
papers by Colombo and Mingione [6], [7] for related results. We also cite the paper [34] by Kristensen
and Mingione, see also Kuusi and Mingione [35], for other interesting regularity results for vector valued
minimizers under weak properties in the x-dependence of the energy density.

Even though the proof of Theorem 1.1 relies on analogous arguments to those in [14], it seems that
under the weaker assumption k ∈ Lnloc(Ω) the local Lipschitz continuity of the minimizers cannot be
achieved even if p = q.
As in [14], we shall combine a suitable a priori estimate for the gradient of the local minimizers with
an approximation procedure. As a common feature, we shall establish the a priori estimate for smooth
minimizers and then we will show that such a priori estimate is preserved in passing to the limit.
Note that, in order to face new difficulties arising from our weaker assumptions on the function k, to
obtain the apriori estimate we shall use a double iteration procedure that will allow us to reabsorb certain
integrals involving the gradient with a critical integrability exponent. Moreover, in our approximation
procedure will have to take into account the lack of convexity of the integrand for small values of the
gradient.

Remark 1.2. When f satisfies the assumptions of Theorem 1.1, but is not convex in the last variable, the
local minimizers of F still satisfies the thesis of the previous theorem, provided

sc−F(w; Ω) =

∫
Ω
f∗∗(x,Dw) dx , (1.4)
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where sc−F is the relaxed functional of F and ξ 7→ f∗∗(x, ξ) is the convex envelope of f(x, ·). In fact,
f∗∗ fulfills (A1), (A2), (A3), (A4) with suitable constants ν and R. Moreover, f = f∗∗ in Ω × BR for
some R ≥ R̃ (see e.g. Theorem 2.5 (iv) in [9]) therefore (A5) holds for f∗∗, with R replacing R̃. Since
sc−F is the relaxed functional, if u is a local minimizer of F , then u is a local minimizer of sc−F , too.
As said, the integrand f∗∗ satisfies the assumptions of Theorem 1.1; thus Theorem 1.1 applies and we
get that the gradient of u is in Lqloc(Ω) for every finite q > p.

The plan of the paper is the following: in Section 2 we fix the notations and collect preliminary results;
in Section 3 we establish the a priori estimate and in Section 4 we give the proof of the main result.

2. PRELIMINARIES

In this section we recall some standard definitions and collect several lemmas that we shall use to
establish our main result.

First of all, we recall that u ∈W 1,p
loc (Ω,RN ) is a local minimizer of F in (1.1) if

F(u; suppϕ) ≤ F(u+ ϕ; suppϕ)

for any ϕ ∈W 1,p(Ω,RN ) with sptϕ b Ω.
We will follow the usual convention and denote by C a general constant that may vary on different

occasions, even within the same line of estimates. Relevant dependencies on parameters and special
constants will be suitably emphasized using parentheses or subscripts. All the norms we use on Rn, RN
and RnN will be the standard Euclidean ones and denoted by | · | in all cases. In particular, for matrices
ξ, η ∈ RnN we write 〈ξ, η〉 := trace(ξT η) for the usual inner product of ξ and η, and |ξ| := 〈ξ, ξ〉

1
2 for

the corresponding euclidean norm.
In what follows, Bn

r (x) will denote the ball in Rn centered at x of radius r. Analogously, BnN
r (ξ) is a

ball in RnN . If no confusion may arise we shall omit the superscripts related to the space dimension and
the dependence on the center.

The following lemma finds an important application in the so called hole-filling method. Its proof can
be found for example in [33, Lemma 6.1] .

Lemma 2.1. Let h : [r,R0] → R be a non-negative bounded function and 0 < ϑ < 1, A,B ≥ 0 and
β > 0. Assume that

h(s) ≤ ϑh(t) +
A

(t− s)β
+B,

for all r ≤ s < t ≤ R0. Then

h(r) ≤ cA

(R0 − r)β
+ cB,

where c = c(ϑ, β) > 0.

We shall need the following

Lemma 2.2. Let u ∈W 1,p
loc (Ω,RN ) be a local minimizer of

F(w; Ω) =

∫
Ω
f(x,Dw(x)) dx ,

where f : Ω × RnN → [0,+∞) is a Carathéodory function, convex with respect to the last variable,
satisfying (A2) and (A3). Suppose that there existBr(x0) b Ω and v ∈ u+W 1,1

0 (Br(x0),RN ) such that
F(u;Br(x0)) = F(v;Br(x0)). Then there exists R0(p, ν, R̃, L) > R̃ such that the Lebesgue measure
of the set

{x ∈ Br(x0) : |Du(x) +Dv(x)| > 2R0 and |Du(x)−Dv(x)| > 0} (2.1)
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is zero.

For the proof we refer to [9]. We conclude recalling a regularity result for minimizers of functionals
whose integrands are smooth with respect to the x-variable (see e.g. [31] for the case p ≥ 2 and [1] for
the case 1 < p < 2; see also [15] and, in particular, Theorem 1.1 in [9] as far as the Lipschitz continuity
of the local minimizers is concerned).

Lemma 2.3. Let u ∈W 1,p
loc (Ω,RN ) be a local minimizer of the functional at (1.1), with f : Ω×RnN →

[0,+∞), f ∈ C2(Ω × RnN ). Assume that there exists p > 1 such that for every x ∈ Ω and every
ξ, λ ∈ RnN ,

c1|ξ|p − c2 ≤ f(x, ξ) ≤ L(1 + |ξ|)p,
ν (1 + |ξ|)p−2|λ|2 ≤ 〈Dξξf(x, ξ)λ, λ〉,

|Dξξf(x, ξ)| ≤ L1 (1 + |ξ|)p−2,

|Dξxf(x, ξ)| ≤ K(1 + |ξ|)p−1,

with positive constants c1, c2, L, L1, ν,K.
Then u ∈ W 2,a

loc (Ω), with a = min{2, p} and (1 + |Du|2)
p−2
2 |D2u|2 ∈ L1

loc(Ω). If, moreover, (A1)
holds, then u ∈W 1,∞

loc (Ω) and u ∈W 2,2
loc (Ω).

3. THE A PRIORI ESTIMATE

The following a priori estimate is the key tool for our main result. Its proof follows the one of [14,
Proposition 3.1], but it is drastically different in the second step were we have to take into account the
weaker assumption on the function k(x) appearing in (A5).

Theorem 3.1. Let u ∈ W 1,p
loc (Ω,RN ) be a local minimizer of the functional F at (1.1) with the in-

tegrand f satisfying the assumptions (A1)-(A5). If u ∈ W
2,min{2,p}
loc (Ω;RN ) ∩ W 1,∞

loc (Ω;RN ) and

(1 + |Du|2)
p−2
2 |D2u|2 ∈ L1

loc(Ω), then, for every exponent q ≥ p and for all x0 ∈ Ω, there exist a
radius Rq = Rq(n,N, p, q, ν, k, L, L1, x0) and a ball BRq(x0) b Ω such that the following estimate[∫

Bρ(x0)
|Du|q dx

] 1
q

≤ C

[∫
BR(x0)

(1 + f(x,Du)) dx

] 1
p

,

holds for every ρ and R, with 0 < ρ < R < Rq, and with a positive constant C =
C(n,N, p, q, L, L1, ν, c1, c2, ρ, R).

Proof. We shall divide the proof into three steps.

Step 1. Our first aim is to prove that, for every γ ≥ 0 and for every cut off function η ∈ C∞0 (Ω), the
following integral estimate holds∫

Ω
η2(1 + (|Du| − 1)+)γ−2(|Du| − 1)+)2|Du|p−2|D2u|2 dx

≤ C(γ + 1)2

∫
Ω
η2k2(x)(1 + (|Du| − 1)+)γ+p dx

+ C

∫
Ω
|Dη|2(1 + (|Du| − 1)+)γ+p dx , (3.1)

with C = C(n,N,L, L1, ν, p).
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Since u is a local minimizer of the functional F(u,Ω), then u satisfies the Euler’s system∫
Ω

∑
i,α

fξαi (x,Du)ϕαxi(x) dx = 0 ∀ϕ ∈ C∞0 (Ω;RN ),

and, using the second variation, for every s = 1, . . . , n it holds∫
Ω

 ∑
i,j,α,β

f
ξαi ξ

β
j
(x,Du)ϕαxiu

β
xsxj +

∑
i,α

fξαi xs(x,Du)ϕαxi

 dx = 0 ∀ϕ ∈ C∞0 (Ω;RN ). (3.2)

Fix s = 1, . . . , n, an exponent γ ≥ 0, a cut off function η ∈ C∞0 (Ω) and consider the function

ϕα := η2uαxs(1 + (|Du| − 1)+)γ−2((|Du| − 1)+)2 α = 1, . . . , N.

Therefore, denoting
Φ(t) := (1 + t)γ−2t2,

we have

ϕαxi =2ηηxiu
α
xsΦ((|Du| − 1)+)

+η2uαxsxiΦ((|Du| − 1)+) + η2uαxsΦ
′((|Du| − 1)+)[(|Du| − 1)+]xi .

Thanks to our assumptions on the minimizer u, through a standard density argument, we can use ϕ as
test function in the equation (3.2) , thus getting

0 =

∫
Ω

2ηΦ((|Du| − 1)+)
∑

i,j,s,α,β

f
ξαi ξ

β
j
(x,Du)ηxiu

α
xsu

β
xsxj dx

+

∫
Ω
η2Φ((|Du| − 1)+)

∑
i,j,s,α,β

f
ξαi ξ

β
j
(x,Du)uαxsxiu

β
xsxj dx

+

∫
Ω
η2Φ′((|Du| − 1)+)

∑
i,j,s,α,β

f
ξαi ξ

β
j
(x,Du)uαxsu

β
xsxj [(|Du| − 1)+]xi dx

+

∫
Ω

2ηΦ((|Du| − 1)+)
∑
i,s,α

fξαi xs(x,Du)ηxiu
α
xs dx

+

∫
Ω
η2Φ((|Du| − 1)+)

∑
i,s,α

fξαi xs(x,Du)uαxsxi dx

+

∫
Ω
η2Φ′((|Du| − 1)+)

∑
i,s,α

fξαi xs(x,Du)uαxs [(|Du| − 1)+]xi dx

=: I1 + I2 + I3 + I4 + I5 + I6. (3.3)

Let us now estimate the integrals Ij , j = 1, . . . , 6 .

ESTIMATE OF I1

By (A3) and (A4), we can estimate the integral I1 by the use of Cauchy-Schwartz and Young’s inequali-
ties as follows

|I1| ≤ 2

∫
Ω
Φ((|Du| − 1)+)

{ ∑
i,j,s,α,β

f
ξαi ξ

β
j
(x,Du)ηxiu

α
xsηxju

β
xs

} 1
2
{
η2

∑
i,j,s,α,β

f
ξαi ξ

β
j
(x,Du)uαxsxiu

β
xsxj

} 1
2
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≤ C(ε, L1)

∫
Ω
|Dη|2Φ((|Du| − 1)+)|Du|p dx

+ ε

∫
Ω
η2Φ((|Du| − 1)+)

∑
i,j,s,α,β

f
ξαi ξ

β
j
(x,Du)uαxsxiu

β
xsxj dx, (3.4)

where ε > 0 will be chosen later.

ESTIMATE OF I3

Since

f
ξαi ξ

β
j
(x, ξ) =

(
f̃tt(x, |ξ|)
|ξ|2

− f̃t(x, |ξ|)
|ξ|3

)
ξαi ξ

β
j +

f̃t(x, |ξ|)
|ξ|

δ
ξαi ξ

β
j

and

[(|Du| − 1)+]xi = (|Du|)xi =
1

|Du|
∑
α,s

uαxixsu
α
xs a.e. in {|Du| ≥ 1} (3.5)

then, for a.e. x ∈ {|Du| ≥ 1},∑
i,j,s,α,β

f
ξαi ξ

β
j
(x,Du)uαxsu

β
xsxj [(|Du| − 1)+]xi

=

(
f̃tt(x, |Du|)
|Du|2

− f̃t(x, |Du|)
|Du|3

) ∑
i,j,s,α,β

uαxsu
β
xsxju

α
xiu

β
xj [(|Du| − 1)+]xi

+
f̃t(x, |Du|)
|Du|

∑
i,s,α

uαxsu
α
xsxi [(|Du| − 1)+]xi

=

(
f̃tt(x, |Du|)
|Du|

− f̃t(x, |Du|)
|Du|2

)∑
i,s,α

uαxs(|Du|)xsu
α
xi(|Du|)xi

+
f̃t(x, |Du|)
|Du|

∑
i,s,α

uαxsu
α
xsxi(|Du|)xi

=

(
f̃tt(x, |Du|)
|Du|

− f̃t(x, |Du|)
|Du|2

)∑
α

(∑
i

uαxi(|Du|)xi

)2

+ f̃t(x, |Du|)|D(|Du|)|2. (3.6)

Thus,

I3 =

∫
Ω
η2Φ′((|Du| − 1)+)

{( f̃tt(x, |Du|)
|Du|

− f̃t(x, |Du|)
|Du|2

)∑
α

(∑
i

uαxi(|Du|)xi

)2

+ f̃t(x, |Du|)|D(|Du|)|2
}
dx.

Now, if we use the Cauchy-Schwartz inequality, we have∑
α

(∑
i

uαxi(|Du|)xi

)2

≤ |Du|2|D(|Du|)|2

and observing that
Φ′((|Du| − 1)+) ≥ 0 and f̃t(x, |Du|) ≥ 0,



8 G. CUPINI - F. GIANNETTI - R. GIOVA - A. PASSARELLI DI NAPOLI

we conclude

I3 ≥
∫

Ω
η2Φ′((|Du| − 1)+)

f̃tt(x, |Du|)
|Du|

∑
α

(∑
i

uαxi(|Du|)xi

)2

dx ≥ 0. (3.7)

ESTIMATE OF I4

By using the assumption (A5) we obtain

|I4| ≤ 2p−1

∫
Ω
ηΦ((|Du| − 1)+)k(x)|Du|p−1

∑
i,s,α

|ηxiuαxs | dx

≤ 2p−1

∫
Ω
η|Dη|k(x)Φ((|Du| − 1)+)|Du|p dx. (3.8)

ESTIMATE OF I5

Using the assumption (A5) and Young’s inequality we have that

|I5| ≤ 2p−1

∫
Ω
η2Φ((|Du| − 1)+)k(x)|Du|p−1|D2u| dx

≤ ε

∫
Ω
η2Φ((|Du| − 1)+)|Du|p−2|D2u|2 dx

+ Cε

∫
Ω
η2Φ((|Du| − 1)+)k2(x)|Du|p dx, (3.9)

where ε ∈ (0, 1) will be chosen later.

ESTIMATE OF I6

Using the assumption (A5) and (3.5), we get

|I6| ≤ 2p−1

∫
Ω
η2Φ′((|Du| − 1)+)k(x)|Du|p−1|Du| |D((|Du| − 1)+)| dx

≤ C

∫
Ω
η2Φ′((|Du| − 1)+)k(x)|Du|p|D2u| dx. (3.10)

Now, since
Φ′(t) = (γt+ 2)t(1 + t)γ−3,

it follows that

tΦ′(t) = t(γt+ 2)t(1 + t)γ−3 =
γt+ 2

1 + t
Φ(t) ≤ 2(1 + γ)Φ(t) for all t ≥ 0. (3.11)

Using the notation cγ := 2(1 + γ) > 0, multiplying and dividing the integrand in the right hand side of
(3.10) by c−1/2

γ (δ + (|Du| − 1)+)1/2, with 0 < δ < 1 to be chosen later, we have

|I6| ≤
∫

Ω
η2

{
1

cγ
Φ′((|Du| − 1)+)(δ + (|Du| − 1)+)|Du|p−2|D2u|2

} 1
2

×
{
C2cγΦ′((|Du| − 1)+)k2(x)(δ + (|Du| − 1)+)−1|Du|p+2

} 1
2 dx

≤ cγCε

∫
Ω
η2Φ′((|Du| − 1)+)k2(x) (δ + (|Du| − 1)+)−1 |Du|p+2 dx

+
ε

cγ

∫
Ω
η2Φ′((|Du| − 1)+) (δ + (|Du| − 1)+) |Du|p−2|D2u|2 dx , (3.12)
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where we used Young’s inequality. In order to estimate the last integral in (3.12) we note that

δ + (|Du| − 1)+ ≤ 2(|Du| − 1)+ a.e. in {|Du| ≥ 2},
and, since Φ′(t) is increasing, also that

Φ′((|Du| − 1)+) ≤ Φ′(2)χ{|Du|≥1} a.e. in {|Du| ≤ 2}.
Therefore, by virtue of (3.11), we have

ε

cγ

∫
Ω
η2Φ′((|Du| − 1)+) (δ + (|Du| − 1)+) |Du|p−2|D2u|2 dx

≤ 2
ε

cγ

∫
|Du|≥2

η2Φ′((|Du| − 1)+)(|Du| − 1)+|Du|p−2|D2u|2 dx

+
ε

cγ

∫
|Du|≤2

η2Φ′((|Du| − 1)+)(|Du| − 1)+|Du|p−2|D2u|2 dx

+
ε δ

cγ

∫
|Du|≤2

η2Φ′((|Du| − 1)+)|Du|p−2|D2u|2 dx

≤ 2ε

∫
Ω
η2Φ((|Du| − 1)+)|Du|p−2|D2u|2 dx

+
ε δ

cγ

∫
1≤|Du|≤2

η2Φ′(2)|Du|p−2|D2u|2 dx

≤ 2ε

∫
Ω
η2Φ((|Du| − 1)+)|Du|p−2|D2u|2 dx

+
ε δ

2

∫
|Du|≥1

η2Φ(2)|Du|p−2|D2u|2 dx. (3.13)

Inserting the estimate (3.13) in (3.12), we obtain that

|I6| ≤ 2ε

∫
Ω
η2Φ((|Du| − 1)+)|Du|p−2|D2u|2 dx

+
ε δ

2

∫
|Du|≥1

η2Φ(2)|Du|p−2|D2u|2 dx

+ cγCε

∫
Ω
η2Φ′((|Du| − 1)+)k2(x) (δ + (|Du| − 1)+)−1 |Du|p+2 dx. (3.14)

Since the equality (3.3) can be written as follows

I2 + I3 = −I1 − I4 − I5 − I6 ,

by virtue of (3.7), we get
I2 ≤ |I1|+ |I4|+ |I5|+ |I6|

and therefore, recalling the estimates (3.4), (3.8), (3.9) and (3.14), we get

(1− ε)
∫

Ω
η2Φ((|Du| − 1)+)

∑
i,j,s,α,β

f
ξαi ξ

β
j
(x,Du)uαxsxiu

β
xsxj dx

≤ Cε
∫

Ω
|Dη|2Φ((|Du| − 1)+)|Du|p dx

+2p−1

∫
Ω

(η|Dη|)k(x)Φ((|Du| − 1)+)|Du|p dx

+Cε

∫
Ω
η2Φ((|Du| − 1)+)k2(x)|Du|p dx
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+3ε

∫
Ω
η2Φ((|Du| − 1)+)|Du|p−2|D2u|2 dx

+
ε δ

2

∫
|Du|≥1

η2Φ(2)|Du|p−2|D2u|2 dx

+cγCε

∫
Ω
η2Φ′((|Du| − 1)+)k2(x) (δ + (|Du| − 1)+)−1 |Du|p+2 dx. (3.15)

By the assumption (A3), the integral in the left hand side of (3.15) can be estimated as∫
Ω
η2Φ((|Du| − 1)+)

∑
i,j,s,α,β

f
ξαi ξ

β
j
(x,Du)uαxsxiu

β
xsxj dx ≥ ν

∫
Ω
η2Φ((|Du| − 1)+)|Du|p−2|D2u|2 dx.

Hence

(1− ε)ν
∫

Ω
η2Φ((|Du| − 1)+)|Du|p−2|D2u|2 dx

≤ 3ε

∫
Ω
η2Φ((|Du| − 1)+)|Du|p−2|D2u|2 dx

+ C

∫
Ω
|Dη|2Φ((|Du| − 1)+)|Du|p dx+ C

∫
Ω
η|Dη|k(x)Φ((|Du| − 1)+)|Du|p dx

+ C

∫
Ω
η2Φ((|Du| − 1)+)k2(x)|Du|p dx+

εδ

2

∫
|Du|≥1

η2Φ(2)|Du|p−2|D2u|2 dx

+ C(1 + γ)

∫
Ω
η2Φ′((|Du| − 1)+)k2(x) (δ + (|Du| − 1)+)−1 |Du|p+2 dx,

with C = C(n,N, p, ν, L, L1, ε). Choosing ε = ν
6+ν , we can reabsorb the first integral in the right hand

side of the previous inequality by the left hand side, thus getting∫
Ω
η2Φ((|Du| − 1)+)|Du|p−2|D2u|2 dx

≤ C

∫
Ω
|Dη|2Φ((|Du| − 1)+)|Du|p dx+ C

∫
Ω
η|Dη|k(x)Φ((|Du| − 1)+)|Du|p dx

+ C

∫
Ω
η2Φ((|Du| − 1)+)k2(x)|Du|p dx+ Cδ

∫
|Du|≥1

η2Φ(2)|Du|p−2|D2u|2 dx

+ C(1 + γ)

∫
Ω
η2Φ′((|Du| − 1)+)k2(x) (δ + (|Du| − 1)+)−1 |Du|p+2 dx. (3.16)

Using (3.11), we get

Φ′((|Du| − 1)+) (δ + (|Du| − 1)+)−1

= Φ′((|Du| − 1)+)((|Du| − 1)+)−1 (|Du| − 1)+

δ + (|Du| − 1)+

≤ 2(γ + 1)Φ((|Du| − 1)+)((|Du| − 1)+)−2

≤ 2(γ + 1)(1 + (|Du| − 1)+)γ−2 a.e. in {|Du| > 1}

where we used also that
(|Du| − 1)+

δ + (|Du| − 1)+
≤ 1 ∀ δ > 0
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and the definition of Φ. Hence, taking into account that Φ′(0) = 0, we obtain that∫
Ω
η2Φ′((|Du| − 1)+)k2(x) (δ + (|Du| − 1)+)−1 |Du|p+2 dx

≤ C(1 + γ)

∫
Ω
η2k2(x)(1 + (|Du| − 1)+)γ+p dx. (3.17)

Inserting (3.17) in (3.16), we obtain∫
Ω
η2Φ((|Du| − 1)+)|Du|p−2|D2u|2 dx

≤ C

∫
Ω
|Dη|2Φ((|Du| − 1)+)|Du|p dx+ C

∫
Ω
η|Dη|k(x)Φ((|Du| − 1)+)|Du|p dx

+ C

∫
Ω
η2Φ((|Du| − 1)+)k2(x)|Du|p dx+ Cδ

∫
|Du|≥1

η2Φ(2)|Du|p−2|D2u|2 dx

+ C(γ + 1)2

∫
Ω
η2k2(x)(1 + (|Du| − 1)+)γ+p dx . (3.18)

Since ∫
Ω
η|Dη|k(x)Φ((|Du| − 1)+)|Du|p dx

=

∫
Ω

{
η2k2(x)Φ((|Du| − 1)+)|Du|p

} 1
2
{
|Dη|2Φ((|Du| − 1)+)|Du|p

} 1
2 dx

≤ 1

2

∫
Ω
η2k2(x)(1 + (|Du| − 1)+)γ+p dx+

1

2

∫
Ω
|Dη|2(1 + (|Du| − 1)+)γ+p dx,

and noting that, by Lemma 3.3 in [14], |Du|p−2|D2u|2χ{|Du|≥1} ∈ L1
loc(Ω), we can let δ go to 0 in

(3.18), thus obtaining∫
Ω
η2Φ((|Du| − 1)+)|Du|p−2|D2u|2 dx

≤ C
∫

Ω
|Dη|2(1 + (|Du| − 1)+)γ+p dx+ C(γ + 1)2

∫
Ω
η2k(x)2(1 + (|Du| − 1)+)γ+p dx

with C = C(n,N,L, L1, ν). Estimate (3.1) follows recalling the definition of Φ.

Step 2. In this step we prove that for all x0 ∈ Ω there exists Rγ > 0 such that BRγ (x0) b Ω and for
every ρ and R, 0 < ρ < R < Rγ ,∫

Bρ(x0)

∣∣∣(1 + (|Du| − 1)+)
∣∣∣ (γ+p)nn−2

dx ≤ C(γ + p)
2n
n−2

(R− ρ)
2n
n−2

(∫
BR(x0)

(1 + (|Du| − 1)+)γ+p dx

) n
n−2

,

(3.19)
for some C = C(n,N,L, L1, ν).

Fix radii 0 < ρ < s < t < R, with BR(x0) b Ω, and a cut off function η ∈ C∞0 (Bt) such that η = 1
on Bs and |Dη| ≤ 2

t−s . With this choice of η, estimate (3.1) becomes∫
Bt

η2(1 + (|Du| − 1)+)γ−2((|Du| − 1)+)2|Du|p−2|D2u|2 dx

≤ C(γ + 1)2

∫
Bt

η2k2(x)(1 + (|Du| − 1)+)γ+p dx
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+
C

(t− s)2

∫
Bt\Bs

(1 + (|Du| − 1)+)γ+p dx

≤ C(γ + 1)2

(∫
Bt

kn(x) dx

) 2
n
(∫

Bt

(1 + (|Du| − 1)+)
(γ+p)n
n−2 dx

)n−2
n

+
C

(t− s)2

∫
Bt\Bs

(1 + (|Du| − 1)+)γ+p dx , (3.20)

where we used the assumption k ∈ Lnloc(Ω) and Hölder’s inequality with exponents n
2 , n

n−2 .
Following [14], we introduce the function

G(t) = 1 +

∫ t

0
(1 + s)

γ+p−4
2 s ds

and we note that

1

2(γ + p)
(1 + t)

γ+p
2 ≤ G(t) ≤ 2(1 + t)

γ+p
2 , G′(t) = t(1 + t)

γ+p−4
2 . (3.21)

Using the Sobolev imbedding Theorem for the function ηG((|Du| − 1)+), we get(∫
Ω

∣∣∣ηG((|Du| − 1)+)
∣∣∣ 2n
n−2

dx

)n−2
n

≤ c
∫

Ω

∣∣∣D(ηG((|Du| − 1)+))
∣∣∣2 dx

≤ c

∫
Ω
|Dη|2 (G((|Du| − 1)+))2 dx+ c

∫
Ω
η2
∣∣∣G′((|Du| − 1)+))

∣∣∣2|D((|Du| − 1)+)|2 dx.

Using the properties of G(t) at (3.21) in the previous inequality, we obtain

1

(γ + p)2

(∫
Ω
η

2n
n−2 (1 + (|Du| − 1)+)

(γ+p)n
n−2 dx

)n−2
n

≤ c

∫
Ω
|Dη|2 (1 + (|Du| − 1)+)γ+p dx

+ c

∫
Ω
η2 (1 + (|Du| − 1)+)γ+p−4 ((|Du| − 1)+)2|D((|Du| − 1)+)|2 dx

≤ c

(t− s)2

∫
BR

(1 + (|Du| − 1)+)γ+p dx

+ c

∫
Bt

η2 (1 + (|Du| − 1)+)γ−2 |(|Du| − 1)+|2|Du|p−2|D2u|2 dx . (3.22)

Combining estimates (3.20) and (3.22), we obtain

∫
Bs

(1 + (|Du| − 1)+)
(γ+p)n
n−2 dx

≤ c(γ + p)
4n
n−2

(∫
BR

k(x)n dx

) 2
n−2

∫
Bt

(1 + (|Du| − 1)+)
(γ+p)n
n−2 dx

+
c(γ + p)

2n
n−2

(t− s)
2n
n−2

(∫
BR

(1 + (|Du| − 1)+)γ+p dx

) n
n−2

. (3.23)
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By the absolute continuity of the integral we can choose a radius Rγ , which obviously depends also on
n,N, p, ν, L, L1, such that

c(γ + p)
4n
n−2

(∫
BRγ

k(x)n dx

) 2
n−2

≤ 1

2
(3.24)

so that, if R < Rγ , estimate (3.23) becomes∫
Bs

(1 + (|Du| − 1)+)
(γ+p)n
n−2 dx ≤ 1

2

∫
Bt

(1 + (|Du| − 1)+)
(γ+p)n
n−2 dx

+
c(γ + p)

2n
n−2

(t− s)
2n
n−2

(∫
BR

(1 + (|Du| − 1)+)γ+p dx

) n
n−2

.

Since the previous inequality is valid for every radii ρ < s < t < R < Rγ , we can use the iteration
Lemma 2.1, so obtaining (3.19).

Step 3. In this step we conclude the proof.

Fix q > p. Let i∗ be the unique integer such that log n
n−2

q
p − 1 ≤ i∗ < log n

n−2

q
p . If we define the

increasing sequence of exponents pj , j ∈ {0, 1, · · · , i∗ + 1} by setting

pj :=

(
n

n− 2

)j
p,

we obtain pi∗ < q ≤ pi∗+1.
For every j ∈ {0, 1, · · · , i∗} define γj := pj − p. By Step 2 there exist Rγj > 0 and C > 0 such that

for all 0 < ρ < R < Rγj (3.19) holds with γ replaced by γj . Note that since Rγj satisfies (3.24), then
we also have that

cpj
4n
n−2

(∫
Br

k(x)n dx

) 2
n−2

≤ 1

2
, (3.25)

for every 0 < r ≤ Rγj .
Define R∗ := min{Rj : j = 1, · · · , i∗} > 0. Fix 0 < ρ < R < R∗ and let us define the decreasing

sequence of radii ρj

ρj := ρ+
R− ρ

2j
, j ∈ {0, 1, · · · , i∗},

so that ρ0 = R > ρj > ρj+1 > ρ. By (3.25) , with σ = pj , and (3.19) we get(∫
Bρj+1

(1 + (|Du| − 1)+)pj+1 dx

) 1
pj+1

≤
Cpj

(ρj − ρj+1)
2
pj

(∫
Bρj

(1 + (|Du| − 1)+)pj dx

) 1
pj

,(3.26)

where we have chosen ρ = ρj+1, R = ρj and γ + p = pj . Iterating (3.26), we deduce(∫
Bρ

((1 + (|Du| − 1)+))pi∗+1 dx

) 1
pi∗+1

≤ C̃
(∫

BR

(1 + (|Du| − 1)+)p dx

) 1
p

where

C̃ =

i∗∏
j=0

Cpj

(ρj − ρj+1)
2
pj

=: C(n,N, p, q, L, L1, ν, ρ, R).

Observing that q ≤ pi∗+1 and by using the left inequality in (A2), the conclusion follows.
�



14 G. CUPINI - F. GIANNETTI - R. GIOVA - A. PASSARELLI DI NAPOLI

4. PROOF OF THEOREM 1.1

Before going on with the proof of the main Theorem, we state an approximation result for the energy
density f through a sequence of uniformly elliptic integrands having Lipschitz dependence on the x
variable.

We recall that, without loss of generality, we assumed that the radius R̃ appearing in the assumptions
(A1)-(A5) is equal to 1.

Proposition 4.1. Let f : Ω×RnN → [0,+∞) be a Carathéodory function convex andC2 with respect to
the last variable and satisfying assumptions (A1)-(A5). Fixed an open set Ω′ b Ω, there exists a sequence
of C2-functions fh : Ω′ × RnN → [0,+∞), fh convex in the last variable, such that fh converges to f
pointwise a.e. on Ω′ and everywhere in RN . Moreover, fh satisfies the following properties:

(A1) for every x ∈ Ω′ and ξ ∈ RnN \B2(0), fh(x, ξ) = f̃h(x, |ξ|),
(A2) there exist L̃, c̃1, c̃2 > 0, independent of h, such that for all (x, ξ) ∈ Ω′ × RnN

c̃1|ξ|p − c̃2 ≤ fh(x, ξ) ≤ L̃(1 + |ξ|)p,
(A3) there exists ν̃, depending on ν and p, but not on h, such that for every x ∈ Ω′, ξ ∈ RnN \B2(0)

and λ ∈ RnN
ν̃(1 + |ξ|)p−2|λ|2 ≤ 〈Dξξfh(x, ξ)λ, λ〉,

(A4) there exists L̃1 > 0, independent of h, such that for all (x, ξ) ∈ Ω′ × RnN \B2(0)

|Dξξfh(x, ξ)| ≤ L̃1(1 + |ξ|)p−2,

(A5) for every x ∈ Ω′ and ξ ∈ RnN \B2(0),

|Dξxfh(x, ξ)| ≤ 2p−1kh(x)(1 + |ξ|)p−1,

where kh ∈ C∞(Ω′) is a non-negative function, such that kh → k in Ln(Ω′),
(H1) there exists Λh > 0 such that for every x ∈ Ω′ and ξ ∈ B2(0)

|Dξxfh(x, ξ)| ≤ Λh(1 + |ξ|)p−1.

(H2) there exists µh > 0 such that for all (x, ξ) ∈ Ω′ × RnN and for all λ ∈ RnN

µh(1 + |ξ|)p−2|λ|2 ≤ 〈Dξξfh(x, ξ)λ, λ〉.

(H3) there exists σh > 0 such that for all (x, ξ) ∈ Ω′ × RnN

|Dξξfh(x, ξ)| ≤ σh(1 + |ξ|)p−2.

Proof. To prove (A1), (A2) and (H2) we argue as in the proof of Lemma 4.2 in [9], but replacing the
function fk and the exponent q with f and p, respectively. For the sake of completeness, we report the
complete proof.

Denote Bn
1 ⊂ Rn and BnN

1 ⊂ RnN the unit balls centered in 0. Fixed a positive decreasing sequence
εh → 0, with h ≥ h0, where h0 is large enough to have x+εhy ∈ Ω for every x ∈ Ω′ and every y ∈ Bn

1 .
Without loss of generality we assume εh ≤ 1

2 .
Let σ : Bn

1 → [0,+∞) and ρ : BnN
1 → [0,+∞) be two radially symmetric mollifiers such that∫

Bn1
σ = 1 and

∫
BnN1

ρ = 1. Define Fh : Ω′ × RnN → [0,+∞),

Fh(x, ξ) :=

∫
Bn1

∫
BnN1

σ(y)ρ(η) f(x+ εhy, ξ + εhη) dη dy

and
fh(x, ξ) := Fh(x, ξ) + εh(1 + |ξ|)p. (4.1)
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For each h, fh ∈ C2, one can easily check that fh is convex in the last variable and, up to subsequences,
fh converges pointwise a.e. to f in Ω′ and everywhere in RN . Moreover, by (A1), fh(x, ·) is radial with
respect to ξ in RnN \BnN

2 .
The property (A2) is a trivial consequence of the assumption (A2).
To prove (A3) it is enough to prove that a similar inequality holds for Fh. By (A3)

〈DξξFh(x, ξ)λ, λ〉 ≥ ν
∫
Bn1

∫
BnN1

σ(y)ρ(η) (1 + |ξ + εhη|)p−2 dη dy|λ|2.

Since
(1 + |ξ + εhη|)p−2 ≥ cp(1 + |ξ|)p−2

where cp = min{ 1
2p−2 , (

3
2)p−2}, we can conclude using the properties of σ and ρ.

To prove property (A4) we observe that for all ξ, with |ξ| ≥ 2 we have

|Dξξfh(x, ξ)| ≤
∫
Bn1

∫
BnN1

σ(y)ρ(η) |Dξξf(x+ εhy, ξ + εhη)| dη dy +
1

2
|Dξξ((1 + |ξ|)p)|

and we conclude using (A4), the inequality

(1 + |ξ + εhη|)p−2 ≤ c′p(1 + |ξ|)p−2

and the properties of σ and ρ.
Let us prove (A5). By the assumption (A5), for all |ξ| > 2, we have

|Dξxfh(x, ξ)| = |DξxFh(x, ξ)| ≤
∫
Bn1

∫
BnN1

σ(y)ρ(η) |Dξxf(x+ εhy, ξ + εhη)| dη dy

≤
∫
Bn1

∫
BnN1

σ(y)ρ(η)k(x+ εhy)(1 + |ξ + εhη|)p−1 dη dy ≤ 2p−1kh(x)(1 + |ξ|)p−1,

where

kh(x) :=

∫
Bn1

σ(y)k(x+ εhy) dy

is a smooth function, satisfying kh → k in Ln(Ω′). Thus, (A5) follows.
To prove (H1), we observe that, for all x ∈ Ω′ and ξ ∈ BnN

2 , thanks to assumption (A2), it holds the
following

|Dξxfh(x, ξ)| = |DξxFh(x, ξ)|

= ε−nh ε−nNh

∣∣∣∣∣Dξx

∫
Bnεh

(x)

∫
BnNεh

(ξ)
σ

(
w − x
εh

)
ρ

(
z − ξ
εh

)
f(w, z) dw dz

∣∣∣∣∣
≤ C(L,Ω)ε−n−nN−2

h ‖Dξρ‖L∞(BnN1 )‖Dxσ‖L∞(Bn1 )

∫
BnNεh

(ξ)
(1 + |z|)(1 + |z|)p−1 dz

≤ C(L,Ω)(1 + |ξ|)p−1ε−n−nN−2
h ‖Dξρ‖L∞(BnN1 )‖Dxσ‖L∞(Bn1 )

∫
BnN3 (0)

(1 + |z|) dz.

Therefore, we get

|Dξxfh(x, ξ)| ≤ C(L,Ω)ε−n−nN−2
h 4nN+1‖Dσ‖∞‖Dρ‖∞(1 + |ξ|)p−1,

and (H1) follows.
As far as the property (H2) is concerned, notice that Fh are convex functions, because f is convex,

therefore
〈Dξξfh(x, ξ)λ, λ〉 ≥ εh〈Dξξ((1 + |ξ|2)

p
2 )λ, λ〉
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and we immediately conclude.
Since (A4) holds, the property (H3) follows observing that the second order derivatives with respect

to ξ of fh(x, ξ) are equi-continuous in Ω′ ×B2(0). �

We are now ready to prove our main result.

Proof of Theorem 1.1. Let u be a local minimizer of the functional F in (1.1). Fixed Ω′ b Ω, let fh be
the sequence of functions given by Proposition 4.1.
Fix a ball Br(x0) in Ω′, such that r < Rγ where Rγ is the radius determined in Theorem 3.1. By virtue
of (A2), we have the existence of a weak solution vh ∈W 1,p(Br(x0),RN ) of the problem

min

{
Fh(w;Br(x0)) :=

∫
Br(x0)

fh(x,Dw) dx : w ∈ u+W 1,p
0 (Br(x0),RN )

}
.

From the first inequality in (A2) and the minimality of vh, there exists c > 0, independent of h, such that∫
Br(x0)

|Dvh|p dx ≤ c
∫
Br(x0)

(1 + fh(x,Dvh)) dx ≤ c
∫
Br(x0)

(1 + fh(x,Du)) dx.

By the right inequality in (A2) and the dominated convergence theorem, we have

lim sup
h→+∞

∫
Br(x0)

|Dvh|p dx ≤ c lim
h

∫
Br(x0)

(1 + fh(x,Du)) dx ≤ c
∫
Br(x0)

(1 + f(x,Du)) dx.

Therefore, up to a subsequence, vh weakly converges in W 1,p to a function v ∈ u+W 1,p
0 (Br(x0)). We

now claim that v is a minimizer of F(·;Br(x0)). By the convexity of the functions fh(x, ·) and (A2),
the sequence {Fh(·;Br(x0))}h Γ-converges to F(·;Br(x0)) with respect to the weak W 1,p-topology
induced on u+W 1,p

0 (Br(x0)) (see Theorem 5.14 in [12]). Therefore, Corollary 7.20 in [12] implies that
v is a minimizer of F(·;Br(x0)).

Fix ρ < r. We claim that v ∈W 1,q(Bρ(x0),RN ) for all q > p and that there exists C > 0 such that∫
Bρ(x0)

|Dv|q dx ≤ C

[∫
Br(x0)

(1 + f(x,Du)) dx

] q
p

. (4.2)

Indeed, for all h, fh satisfies the assumptions of Lemma 2.3, with Ω replaced by Br(x0), therefore
vh ∈W 1,∞

loc (Br(x0)) ∩W 2,2
loc (Br(x0)) and (1 + |Dvh|2)

p−2
2 |D2vh|2 ∈ L1

loc(Br(x0)). We are legitimate
to apply the apriori estimate of Theorem 3.1 to fh and vh, thus obtaining that vh ∈W 1,q(Bρ(x0)) for all
q > p and that the following estimate∫

Bρ(x0)
|Dvh|q dx ≤ C

[∫
Br(x0)

(1 + fh(x,Dvh)) dx

] q
p

holds for a positive constant C. Note that, thanks to the definition of fh in (4.1) and since the constants
L̃, ν̃, L̃1 in (A2)-(A5) are independent of h, and since kh converges to k in Ln(Ω′), then the constant C
is independent of h.
It follows that, up to subsequences, vh weakly converges to v inW 1,q(Bρ(x0),RN ) for every fixed q > p
and passing to the limit as h→ +∞ in the previous estimate we obtain∫

Bρ(x0)
|Dv|q, dx ≤ lim inf

h

∫
Br(x0)

|Dvh|q dx ≤ C

[∫
Br(x0)

(1 + f(x,Du)) dx

] q
p

. (4.3)

Therefore (4.2) holds true.
We now compare the Lq-norm of Du and Dv.
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From Lemma 2.2 there exists R0 = R0(p, ν, L) such that (2.1) holds. Thus,∫
Bρ(x0)

|Du|q dx ≤
∫
Bρ(x0)∩{x : |Du+Dv|≤2R0}

|Du|q dx+

∫
Bρ(x0)∩{x :Du=Dv}

|Du|q dx

≤ 2q−1

∫
Bρ(x0)∩{x : |Du+Dv|≤2R0}

(|Du+Dv|q + |Dv|q) dx+

∫
Bρ(x0)

|Dv|q dx,

which implies that there exists C > 0, depending on n, p, q, ν, L, L1, such that∫
Bρ(x0)

|Du|q dx ≤ C
∫
Bρ(x0)

(1 + |Dv|q) dx.

This inequality, together with (4.3) implies the thesis. The α-Hölder continuity of u, for any exponent
α < 1, comes from the classical Sobolev-Morrey embedding theorem. �
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