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LOCAL BOUNDEDNESS FOR MINIMIZERS OF SOME POLYCONVEX

INTEGRALS

GIOVANNI CUPINI - FRANCESCO LEONETTI - ELVIRA MASCOLO

Abstract. We give a regularity result for local minimizers u : Ω ⊂ R3 → R3 of a special class of
polyconvex functionals. Under some structure assumptions on the energy density, we prove that
local minimizers u are locally bounded. For each component uα of u, we first prove a Caccioppoli’s
inequality and then apply De Giorgi’s iteration method to get the boundedness of uα. Our result
can be applied to the polyconvex integral∫

Ω

(
3∑

α=1

|Duα|p + | adj2 Du|q + |detDu|r
)
dx

with suitable p, q, r > 1.

1. Introduction

We study the regularity of local minimizers for a special class of variational integrals

I(u,Ω) =

∫
Ω
f(Du)dx (1.1)

where u : Ω ⊂ Rn → Rm is a vector-valued map and Du is the m×n Jacobian matrix of its partial
derivatives

u ≡
(
u1, u2, . . . , um

)
, Du =

(
∂uα

∂xi

)α=1,2,...,m

i=1,2,...,n

.

A function u ∈W 1,1
loc (Ω,Rm) is a local minimizer of I if f(Du) ∈ L1

loc(Ω) and

I(u, suppϕ) ≤ I(u+ ϕ, suppϕ),

for all ϕ ∈W 1,1(Ω,Rm) with suppϕ b Ω.
Motivated by the applications to nonlinear elasticity, J. Ball in 1977 pointed out in [1] that

convexity of f with respect to Du is unrealistic in the vectorial case. Indeed, it conflicts, for
instance, with the natural requirement that the elastic energy is frame-indifferent. The convexity
must be replaced by different and more general assumptions, as the so called quasiconvexity and
polyconvexity, already introduced by Morrey in [36] in an abstract setting.

In particular, we are interested in the polyconvexity condition, which takes into account the
constitutive hypothesis that the energy is invariant under the transformation g 7→ g + ϕ, for every
null Lagrangian ϕ.

A function f : Rm×n → R, f = f(ξ), is said polyconvex if there exists a convex function

g : Rτ(m,n) → R such that

f (ξ) = g (T (ξ)) , (1.2)

2000 Mathematics Subject Classification. Primary: 49N60; Secondary: 35J50.
Key words and phrases. Regularity, bounded, minimizer, polyconvex, functional.
Acknowledgement: The authors have been supported by the Gruppo Nazionale per l’Analisi Matematica, la
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2 G. CUPINI - F. LEONETTI - E. MASCOLO

where

τ(m,n) :=

min(m,n)∑
i=1

(n
i

)(m
i

)
and T (ξ) is the vector defined as follows:

T (ξ) :=
(
ξ, adj2 ξ, . . . , adji ξ, . . . , adjmin{m,n} ξ

)
.

Here adji ξ denotes the adjugate matrix of order i. In particular, if m = n then adjn ξ = det ξ.
The polyconvexity assumption is commonly used as a structural assumption in mathematical

models of elasticity, since, if n = m = 3, ξ, adj2 ξ and det ξ govern the deformations of line, surface
and volume, respectively.

Our main purpose is to illustrate some ideas and methods which lead to local boundedness for
local minimizers of some polyconvex functionals.

In our paper n = m = 3 and we assume that there exist Fα : R3 → [0,+∞), Gα : R3 → [0,+∞),
with α ∈ {1, 2, 3}, and H : R→ [0,+∞) convex functions such that

f(ξ) :=

3∑
α=1

{Fα(ξα) +Gα((adj2 ξ)
α)}+H(det ξ), (1.3)

where

ξ =

 ξ1
1 ξ1

2 ξ1
3

ξ2
1 ξ2

2 ξ2
3

ξ3
1 ξ3

2 ξ3
3

 =

 ξ1

ξ2

ξ3

 , ξα ∈ R3 for α ∈ {1, 2, 3}.

and adj2 ξ ∈ R3×3 denotes the adjugate matrix of order 2 whose components are

(adj2 ξ)γi = (−1)γ+i det

(
ξαk ξαl
ξβk ξβl

)
γ, i ∈ {1, 2, 3},

where α, β ∈ {1, 2, 3} \ {γ}, α < β, and k, l ∈ {1, 2, 3} \ {i}, k < l. Moreover,

(adj2 ξ)
α = ((adj2 ξ)α1, (adj2 ξ)α2, (adj2 ξ)α3).

Integrands (1.3) occur as stored energy densities for certain models from nonlinear elasticity (see
Ball [1],[2], Ogden [39]) and, by the results by Ball [1],[2] and Muller [38], see also the monograph
by Dacorogna [8], the corresponding minimization problems have a solution.

To have regular local minimizers some growth conditions have to be considered. We assume that
Fα(ξα) grows like |ξα|p, Gα((adj2 ξ)

α) grows like |(adj2 ξ)
α|q and H(det ξ) grows like | det ξ|r.

In this paper, under suitable assumptions on the exponents p, q, r (see condition (2.5)) we prove
that the local minimizers of I are locally bounded in Ω, see Theorem 2.1. We note that Fα, Gα, H
may depend on x too: Fα(x, ξα), Gα(x, (adj2 ξ)

α), H(x,det ξ); see Theorem 2.1.
As an application of Theorem 2.1, let us consider the functional (1.1) with

f(Du) :=
3∑

α=1

(
|Duα|14/5 + | adj2Du

α|2
)

+ |detDu|3/2.

By Theorem 2.1 every local minimizer u : Ω ⊂ R3 → R3 of I is locally bounded. Note that the

existence of a minimizer of I in ū+W
1, 14

5
0 (Ω), with ū ∈W 1, 14

5 (Ω), comes from Remark 8.32 in [8],
see Theorem 3.1 below.

Partial regularity results i.e. the regularity of solutions up to a set Ω0 and the study of the
properties of the singular set, see for example section 4.2 in [33] and section 1 in [34], are contained
in [17], [15], [14], [40], [12], [22], [7]. For the polyconvex case, only few everywhere regularity results
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are available; we mention those by Fusco and Hutchinson in [18], where the everywhere continuity
is proved in the case n = m = 2, Fuchs and Seregin [16], where Hölder continuity for extremals
is dealt with. Global pointwise bounds are in [24], [9], [28], [29], [26], [27]. Interesting results are
contained in [42], [3], [4], [5], [6]; see also [25].

The main novelty of our result is the technique used to obtain the regularity result. Indeed
we prove the local boundedness of vector valued minimizers u = (u1, u2, u3) by using De Giorgi’s
iteration method, used until now only in the scalar case. Indeed, we first show that each component
uα satisfies a Caccioppoli’s inequality (see Proposition 2.3); then we apply De Giorgi’s procedure,
separately, to each uα.

The special structure on f in (1.3) is in some sense necessary to treat this type of functionals
since in the vectorial framework minimizers can be unbounded, in view of some counterexamples,
see [10], [43], section 3 in [33] and the recent [35].

The integrals considered can be inserted in the class of functionals with p, q-growth. The
mathematical literature on the regularity under p, q-growth is very rich; energy functionals with
anisotropic, non-standard or general growth have been studied by many authors and in different
settings of applicability. Under p, q-growth it is now well known, as in our result, that a restriction
between p and q must be imposed due to the counterexamples in [20], [30], [31], [32], [23], [11], [13];
we refer to [33] for a detailed survey on the subject.

Our paper is organized as follows. In the next section we present the precise statement of our local
boundedness result (Theorem 2.1) and we describe our strategy for proving it; eventually we provide
the proof. In Section 3 we recall an existence result for a suitable class of polyconvex functionals
(Theorem 3.1); using this result and Theorem 2.1 we obtain the existence of locally bounded
minimizers for a class of functionals satisfying the assumptions of these two results (Theorem 3.2).
Section 4 contains the Appendix, devoted to two technical results used to prove Theorem 2.1.

2. Local boundedness

We consider Ω ⊆ R3 open set, a function f : Ω× R3×3 → [0,+∞), and the functional

I(u) :=

∫
Ω
f(x,Du(x)) dx

where u : Ω ⊆ R3 → R3,

Du :=

 Du1

Du2

Du3

 =


u1
x1

u1
x2

u1
x3

u2
x1

u2
x2

u2
x3

u3
x1

u3
x2

u3
x3

 .

We assume that there exist Carathéodory functions Fα : Ω×R3 → [0,+∞), Gα : Ω×R3 → [0,+∞),
α ∈ {1, 2, 3}, and H : Ω × R → [0,+∞), such that λ → Fα(x, λ), λ → Gα(x, λ), t → H(x, t) are
convex, with

f(x, ξ) :=

3∑
α=1

{Fα(x, ξα) +Gα(x, (adj2 ξ)
α)}+H(x, det ξ). (2.1)

Here

ξ =

 ξ1

ξ2

ξ3

 , ξα ∈ R3 for α ∈ {1, 2, 3}
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and adj2 ξ ∈ R3×3 denotes the adjugate matrix of order 2 whose components are

(adj2 ξ)γi = (−1)γ+i det

(
ξαk ξαl
ξβk ξβl

)
γ, i ∈ {1, 2, 3},

where α, β ∈ {1, 2, 3} \ {γ}, α < β, and k, l ∈ {1, 2, 3} \ {i}, k < l. Moreover,

(adj2 ξ)
α = ((adj2 ξ)α1, (adj2 ξ)α2, (adj2 ξ)α3).

We assume that there exist exponents 1 < p ≤ 3, 1 < q, 1 ≤ r, constants k1, k3 > 0, k2 ≥ 0 and
functions a, b, c : Ω→ [0,+∞) such that, for all α ∈ {1, 2, 3},

k1|λ|p − k2 ≤ Fα(x, λ) ≤ k3 (|λ|p + 1) + a(x) ∀λ ∈ R3 (2.2)

k1 |λ|q − k2 ≤ Gα(x, λ) ≤ k3 (|λ|q + 1) + b(x) ∀λ ∈ R3 (2.3)

0 ≤ H(t) ≤ k3 (|t|r + 1) + c(x) ∀t ∈ R (2.4)

where a, b, c ∈ Lσ(Ω), σ > 1.

Our main result is the following.

Theorem 2.1. Let f satisfy (2.1) and growth conditions (2.2), (2.3), (2.4), with 1 ≤ r < q < p ≤ 3.
Assume

p

p∗
< min

{
1− qp∗

p(p∗ − q)
, 1− rp∗

q(p∗ − r)
, 1− 1

σ

}
, (2.5)

where p∗ = 3p
3−p , if p < 3, and, if p = 3, then p∗ is any ν > 3.

Then all the local minimizers u ∈W 1,p
loc (Ω;R3) of I are locally bounded.

Remark 2.2. If σ =∞ then 1
σ must be read as 0. Moreover, we remark that if p = 3, then p∗ can

be chosen large enough so that (2.5) is implied by the assumptions 1 ≤ r < q < p and σ > 1.

For the sake of simplicity we prove the theorem in the case with no dependence on x, that is,
f(ξ), Fα(ξα), Gα((adj2 ξ)

α), H(t), with a(x) = b(x) = c(x) = 0 in the growth conditions. See also
Remark 2.6.

Sketch of the proof. We now provide a sketch of the proof of Theorem 2.1. For a local minimizer
u = (u1, u2, u3) we will prove that each component is locally bounded. In the following we consider
the first component u1. We can argue similarly for the other components u2, u3.

STEP 1. Caccioppoli inequality for u1. We use the minimality condition with a suitable test
function; such a test function and the particular structure (2.1) of the density f guarantee a
Caccioppoli inequality for u1 on every superlevel set {u1 > k}. More precisely, fixed x0 ∈ Ω and
a ball BR0(x0) b Ω (we will not write the center x0 if no confusion may arise) we have that there
exists c > 0 such that for all s, t > 0, s < t ≤ R0,∫

{u1>k}∩Bs
|Du1|p dx ≤ c

∫
{u1>k}∩Bt

(
u1 − k
t− s

)p∗
dx+ c|{u1 > k} ∩Bt|ϑ (2.6)

with a suitable ϑ > 0. The Caccioppoli inequality (2.6) permits to apply the classical methods to
get the regularity in the scalar case. Observe that on the right hand side of (2.6) we do not get
the same exponent p as in the left hand side, but the larger p∗; it still allows us to prove the local
boundedness of u1, see also [19] and [37].
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STEP 2. Decay of the “excess” on superlevel sets. For a suitable radius R < R0 and a suitable
level d, we define a sequence ρh of radii starting from R and decreasing to R

2 , another sequence kh
of levels starting from d

2 and increasing to d. We define the “excess” on the superlevel set as follows

Jh :=

∫
{u1>kh}∩Bρh

(
u1 − kh

)p∗
dx. (2.7)

Note that Jh is a decreasing sequence. Using Sobolev inequality and Caccioppoli estimate (2.6) we
are able to show that

Jh+1 ≤ cQhJ
ϑp∗/p
h (2.8)

for some constants c,Q > 1.
STEP 3. Iteration. In the right hand side of (2.8) there is competition between the increasing Qh

and the decreasing J
ϑp∗/p
h ; if ϑp∗/p > 1 and the initial value J0 is small, then

Jh ≤ Q
−h

ϑp∗/p−1J0, (2.9)

so that

lim
h→+∞

Jh = 0, (2.10)

which implies

u1 ≤ d a. e. in BR/2. (2.11)

Since assumption (2.5) guarantees ϑp∗/p > 1 we get (2.11). Lower bounds for u1 can be obtained
by showing that −u is a minimizer for a similar functional.

To accomplish this program, we will use two technical lemmas; their statements and proofs can
be found in the Appendix.

STEP 1. Caccioppoli inequality. The particular structure (2.1) of the density f guarantees a
Caccioppoli inequality for any component uα of u on every superlevel set {uα > k}. In the next
proposition we state this result in the case of the first component u1.

Proposition 2.3. Let f be as in (2.1), satisfying the growth conditions (2.2), (2.3), (2.4), with

q <
p∗p

p∗ + p
and r <

p∗q

p∗ + q
. (2.12)

Let u ∈W 1,p
loc (Ω;R3) be a local minimizer of I.

Let BR(x0) b Ω, |BR| < 1, R < 1, and, fixed k ∈ R, denote

A1
k,τ := {x ∈ Bτ (x0) : u1(x) > k} 0 < τ ≤ R.

Then there exists c > 0, independent of k, such that for every 0 < s < t ≤ R.∫
A1
k,s

|Du1|p dx ≤ c
∫
A1
k,t

(
u1 − k
t− s

)p∗
dx

+ c

1 +

(∫
BR

(|Du2|+ |Du3|)p dx
) qp∗

(p∗−q)p
+

(∫
BR

∣∣∣(adj2Du)1
∣∣∣q dx) rp∗

(p∗−r)q

 |A1
k,t|ϑ (2.13)

where ϑ := min{1− qp∗

p(p∗−q) , 1−
rp∗

q(p∗−r) , 1−
1
σ}.
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Proof. For the sake of simplicity we will give a proof assuming that the integrand function f is
independent on x, and, consequently, that a, b, c in (2.2), (2.3), (2.4) are equal to 0.

Let BR(x0) b Ω, |BR| < 1, R < 1. Let s, t be such that s < t ≤ R. Consider a cut-off function
η ∈ C∞0 (Bt) satisfying the following assumptions:

0 ≤ η ≤ 1, η ≡ 1 in Bs(x0), |Dη| ≤ 2

t− s
. (2.14)

Fixed k ∈ R, define w ∈W 1,p
loc (Ω;R3),

w1 := max(u1 − k, 0), w2 := 0, w3 := 0,

and, for µ ≥ p∗,
ϕ := −ηµw.

For a.e. x in Ω \ ({η > 0} ∩ {u1 > k}) we have ϕ = 0, thus

f(Du+Dϕ) = f(Du) a.e. in Ω \ ({η > 0} ∩ {u1 > k}). (2.15)

For a.e. x in {η > 0} ∩ {u1 > k} denote

A :=

 µη−1(k − u1)Dη
Du2

Du3

 . (2.16)

We notice that

Du+Dϕ =

 (1− ηµ)Du1 + µηµ−1(k − u1)Dη
Du2

Du3

 = (1− ηµ)Du+ ηµA.

Since

det(Du+Dϕ) = (1− ηµ) detDu+ ηµ detA

and

adj2(Du+Dϕ) = (1− ηµ) adj2Du+ ηµ adj2A

and using that f is polyconvex, we get

f(Du+Dϕ) ≤ (1− ηµ)f(Du) + ηµf(A) a.e. in {η > 0} ∩ {u1 > k}. (2.17)

By the minimality of u, f(Du) ∈ L1
loc(Ω). Lemma 4.2 in Appendix ensures that

ηµf(A) ∈ L1({u1 > k} ∩ {η > 0}).

Therefore (2.15) and (2.17) imply f(Du+Dϕ) ∈ L1
loc(Ω).

By the local minimality of u, (2.15) and (2.17) we have∫
A1
k,t∩{η>0}

f(Du) dx ≤
∫
A1
k,t∩{η>0}

{(1− ηµ)f(Du) + ηµf(A)} dx.

The inequality above implies∫
A1
k,t∩{η>0}

ηµf(Du) dx ≤
∫
A1
k,t∩{η>0}

ηµf(A) dx. (2.18)

Taking into account (2.16) and the particular structure of f , see (2.1), we obtain

F2(A2) = F2(Du2), F3(A3) = F3(Du3), G1((adj2A)1) = G1((adj2Du)1), (2.19)
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then, by (2.18),∫
A1
k,t∩{η>0}

ηµ

{
F1(Du1) +

3∑
α=2

Gα((adj2Du)α) +H(detDu)

}
dx

≤
∫
A1
k,t∩{η>0}

ηµ

{
F1(µη−1(k − u1)Dη) +

3∑
α=2

Gα((adj2A)α) +H(detA)

}
dx. (2.20)

By the growth assumption (2.2)

ηµF1(µη−1(k − u1)Dη) ≤ cηµ + cµpηµ−p
(
u1 − k
t− s

)p
a.e. in A1

k,t ∩ {η > 0}.

Therefore, recalling µ > p and the inequality zp ≤ zp∗ + 1 if z ≥ 0, we obtain∫
A1
k,t∩{η>0}

ηµF1(µη−1(k − u1)Dη) dx ≤ c
∫
A1
k,t

{
1 +

(
u1 − k
t− s

)p∗}
dx. (2.21)

Moreover, by (2.3) and Lemma 4.1-(c) in Appendix

ηµ
3∑

α=2

Gα((adj2A)α) ≤ ηµk3

3∑
α=2

(|(adj2A)α|q + 1)

≤ cηµ + cµqηµ−q
(
u1 − k
t− s

)q
(|Du2|+ |Du3|)q.

The first inequality in (2.12) implies q < p∗. Using the Young inequality with exponents p∗

q and
p∗

p∗−q we get that, a.e. in A1
k,t ∩ {η > 0},

cµqηµ−q
(
u1 − k
t− s

)q
(|Du2|+ |Du3|)q ≤ c

(
u1 − k
t− s

)p∗
+ c (|Du2|+ |Du3|)

qp∗
p∗−q .

We have so proved that∫
A1
k,t∩{η>0}

ηµ
3∑

α=2

Gα((adj2A)α) dx ≤ c
∫
A1
k,t

{
1 +

(
u1 − k
t− s

)p∗
+ (|Du2|+ |Du3|)

qp∗
p∗−q

}
dx.

(2.22)
By (2.4) and computing det(A) with respect to the first row (see Lemma 4.1-(b))

ηµH(detA) ≤ cηµ + cµrηµ−r
(
u1 − k
t− s

)r ∣∣∣(adj2Du)1
∣∣∣r .

Notice that, by (2.12), r < p∗. By the Young inequality with exponents p∗

r and p∗

p∗−r we get

cµrηµ−r
(
u1 − k
t− s

)r ∣∣∣(adj2Du)1
∣∣∣r ≤ c(u1 − k

t− s

)p∗
+
∣∣∣(adj2Du)1

∣∣∣ rp∗p∗−r
.

Therefore∫
A1
k,t∩{η>0}

ηµH(detA) dx ≤ c
∫
A1
k,t

{
1 +

(
u1 − k
t− s

)p∗
+
∣∣∣(adj2Du)1

∣∣∣ rp∗p∗−r

}
dx. (2.23)
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Taking into account that the inequalities in (2.12) are equivalent to qp∗

p∗−q < p and rp∗

p∗−r < q, by

the Hölder inequality we obtain∫
A1
k,t

{
(|Du2|+ |Du3|)

qp∗
p∗−q +

∣∣∣(adj2Du)1
∣∣∣ rp∗p∗−r

}
dx

≤
(∫

BR

(|Du2|+ |Du3|)p dx
) qp∗

(p∗−q)p
|A1

k,t|
1− qp∗

p(p∗−q)

+

(∫
BR

∣∣∣(adj2Du)1
∣∣∣q dx) rp∗

(p∗−r)q
|A1

k,t|
1− rp∗

q(p∗−r) (2.24)

Since |A1
k,t| ≤ |BR| ≤ 1, by (2.20), (2.21), (2.22), (2.23) and (2.24) and we get∫

A1
k,s

{
F1(Du1) +

3∑
α=2

Gα((adj2Du)α) +H(detDu)

}
dx

≤ c
∫
A1
k,t

(
u1 − k
t− s

)p∗
dx

+ c

1 +

(∫
BR

(|Du2|+ |Du3|)p dx
) qp∗

(p∗−q)p
+

(∫
BR

∣∣∣(adj2Du)1
∣∣∣q dx) rp∗

(p∗−r)q

 |A1
k,t|ϑ, (2.25)

where

ϑ := min

{
1− qp∗

p(p∗ − q)
, 1− rp∗

q(p∗ − r)

}
.

Since G2, G3, H ≥ 0 and

F1(Du1) ≥ k1|Du1|p − k2,

then (2.25) implies (2.13).
�

STEP 2: Decay of the “excess” on superlevel sets.
In this step we consider a scalar Sobolev function v : Ω ⊂ Rn → R, n ≥ 2.

Let us assume that Ω is an open set in Rn and v is a scalar function v ∈W 1,p
loc (Ω;R), p ≥ 1. Fix

BR0(x0) b Ω, with R0 < 1 small enough so that

|BR0(x0)| < 1 and

∫
BR0

|v|p∗ dx < 1. (2.26)

Here p∗ = np
n−p , if p < n and p∗ is any ν > p if p = n.

For every R ∈ (0, R0] we define the decreasing sequences

ρh :=
R

2
+

R

2h+1
=
R

2

(
1 +

1

2h

)
, ρ̄h :=

ρh + ρh+1

2
=
R

2

(
1 +

3

4 · 2h

)
.

Fix a positive constant d ≥ 1 and define the increasing sequence of positive real numbers

kh := d

(
1− 1

2h+1

)
, h ∈ N.
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Moreover, define the sequence (Jv,h),

Jv,h :=

∫
Akh,ρh

(v − kh)p
∗
dx,

where Ak,ρ = {v > k} ∩Bρ. The following result holds.

Proposition 2.4. Let v ∈ W 1,p
loc (Ω;R), p ≥ 1. Fix BR0(x0) b Ω, with R0 < 1 small enough such

that (2.26) holds. If there exists 0 ≤ ϑ ≤ 1 and c0 > 0 such that for every 0 < s < t ≤ R0 and for
every k ∈ R ∫

Ak,s

|Dv|p dx ≤ c0

{∫
Ak,t

(
v − k
t− s

)p∗
dx+ |Ak,t|ϑ

}
, (2.27)

then, for every R ∈ (0, R0],

Jv,h+1 ≤ c(ϑ,R)

(
2
p∗p∗
p

)h
J
ϑ p

∗
p

v,h ,

with the positive constant c independent of h.

Proof. In the following we write Jh in place of Jv,h.
Notice that (Jh) is a decreasing sequence, since the following chain of inequalities holds:

Jh+1 ≤
∫
Akh+1,ρh

(v − kh+1)p
∗
dx ≤

∫
Akh+1,ρh

(v − kh)p
∗
dx ≤ Jh ∀h. (2.28)

Let now define a sequence (ζh) of cut-off functions in C∞c (Bρ̄h(x0)), such that 0 ≤ ζh ≤ 1, ζh ≡ 1

in Bρh+1
, |Dζh| ≤ 2h+4

R .

If we denote (v − kh+1)+ = max{v − kh+1, 0} we get

Jh+1 =

∫
Akh+1,ρh+1

(v − kh+1)p
∗
ζp

∗

h dx ≤
∫
Akh+1,ρ̄h

(v − kh+1)p
∗
ζp

∗

h dx

=

∫
BR

(ζh(v − kh+1)+)p
∗
dx. (2.29)

By the Sobolev embedding Theorem and the properties of ζh we get∫
BR

(ζh(v − kh+1)+)p
∗
dx

≤ c
(∫

BR

|D(ζh(v − kh+1)+)|p dx
) p∗

p

≤ c

{(∫
BR

|Dvζh|pχ{v>kh+1} dx

) 1
p

+

(∫
BR

|(v − kh+1)+Dζh|p dx
) 1
p

}p∗

≤ c


(∫

Akh+1,ρ̄h

|Dv|p dx

) 1
p

+

((
2h

R

)p ∫
Akh+1,ρh

(v − kh+1)p dx

) 1
p


p∗

. (2.30)

Using (2.27) with k = kh+1, t = ρh, s = ρ̄h we obtain∫
Akh+1,ρ̄h

|Dv|p dx ≤ c

{(
2h

R

)p∗ ∫
Akh+1,ρh

|v − kh+1|p
∗
dx+ |Akh+1,ρh |

ϑ

}
. (2.31)
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Collecting (2.29), (2.30), (2.31), we obtain

Jh+1 ≤ c

{(
2h

R

)p∗ ∫
Akh+1,ρh

(v − kh+1)p
∗
dx+ |Akh+1,ρh |

ϑ +

(
2h

R

)p ∫
Akh+1,ρh

(v − kh+1)p dx

} p∗
p

.

(2.32)
Since zp ≤ zp∗ + 1 for every z ≥ 0, then(

2h

R

)p ∫
Akh+1,ρh

(v − kh+1)p dx ≤
(

2h

R

)p∗ ∫
Akh+1,ρh

(v − kh+1)p
∗
dx+ |Akh+1,ρh |,

so obtaining

Jh+1 ≤ c

{(
2h

R

)p∗ ∫
Akh+1,ρh

(v − kh+1)p
∗
dx+ |Akh+1,ρh |

ϑ + |Akh+1,ρh |

} p∗
p

. (2.33)

Since

|Akh+1,ρh |(kh+1 − kh)p
∗ ≤

∫
Akh+1,ρh

(v − kh)p
∗
dx ≤ Jh,

then

|Akh+1,ρh | ≤
Jh

(kh+1 − kh)p∗
=

(
2h+2

d

)p∗
Jh.

Taking also into account that∫
Akh+1,ρh

(v − kh+1)p
∗
dx ≤

∫
Akh+1,ρh

(v − kh)p
∗
dx ≤ Jh,

the inequality (2.33) gives

Jh+1 ≤ c

{(
2h

R

)p∗
Jh +

(
2h

d

)ϑp∗
Jϑh +

(
2h

d

)p∗
Jh

} p∗
p

. (2.34)

Since Jh ≤ 1 for every h and recalling that d ≥ 1 > R0 ≥ R, we get(
2h

R

)p∗
Jh +

(
2h

d

)ϑp∗
Jϑh +

(
2h

d

)p∗
Jh ≤

{
2

2hp
∗

Rp∗
+

2hϑp
∗

Rϑp∗

}
Jϑh ≤

(
2

Rp∗
+

1

Rϑp∗

)
2hp

∗
Jϑh .

By (2.34) it follows

Jh+1 ≤ c
{(

2

Rp∗
+

1

Rϑp∗

)
2hp

∗
Jϑh

} p∗
p

≤ c(ϑ,R)

(
2
p∗p∗
p

)h
J
ϑ p

∗
p

h .

�

STEP 3: Iteration and proof of Theorem 2.1.
We now resume the proof of Theorem 2.1. As in the proof of Proposition 2.3, we will consider

an integrand function f independent on x; consequently, a, b, c in (2.2), (2.3), (2.4) have to be
considered 0.

We need the following classical result, see e.g. [21].
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Lemma 2.5. Let γ > 0 and let (Jh) be a sequence of real positive numbers, such that

Jh+1 ≤ AλhJ1+γ
h ∀h ∈ N ∪ {0}, (2.35)

with A > 0 and λ > 1. If J0 ≤ A−
1
γ λ
− 1
γ2 , then Jh ≤ λ−

h
γ J0 and limh→∞ Jh = 0.

Fix BR0(x0) b Ω, with R0 < 1 small enough such that |BR0(x0)| < 1 and
∫
BR0
|u|p∗ dx ≤ 1. By

Proposition 2.3 we have that u1 satisfies, for every 0 < s < t ≤ R0 and every k ∈ R,∫
A1
k,s

|Du1|p dx ≤ c
∫
A1
k,t

(
u1 − k
t− s

)p∗
dx

+ c

1 +

(∫
BR0

(|Du2|+ |Du3|)p dx

) qp∗
(p∗−q)p

+

(∫
BR0

∣∣∣(adj2Du)1
∣∣∣q dx) rp∗

(p∗−r)q

 |A1
k,t|ϑ, (2.36)

where c > 0 is independent of s, t, k and ϑ := min{1− qp∗

p(p∗−q) , 1−
rp∗

q(p∗−r)}.
Therefore the scalar function u1 satisfies (2.27) of Proposition 2.4 with constant c0 depending on∫

BR0

(|Du2|+ |Du3|)p dx and

∫
BR0

∣∣∣(adj2Du)1
∣∣∣q dx.

Note that these integrals are finite by (2.2) and (2.3). Moreover, they are independent of u1; indeed

(adj2Du)1 is depending only on u2 and u3.
As above, let us define

kh := d

(
1− 1

2h+1

)
, h ∈ N

with d ≥ 1 (d will be fixed later) and, for every R ∈ (0, R0], define

ρh :=
R

2
+

R

2h+1
=
R

2

(
1 +

1

2h

)
, ρ̄h :=

ρh + ρh+1

2
=
R

2

(
1 +

3

4 · 2h

)
and

Ju1,h :=

∫
A1
kh,ρh

(u1 − kh)p
∗
dx.

Proposition 2.4, applied to u1, gives

Ju1,h+1 ≤ c(ϑ,R)

(
2
p∗p∗
p

)h
J
ϑ p

∗
p

u1,h
, (2.37)

with the positive constant c independent of h and, by (2.5), with the exponent ϑp
∗

p greater than 1.

Indeed, since

Ju1,0 =

∫
A1
d
2 ,R

(
u1 − d

2

)p∗
dx→d→+∞ 0,

we can choose d ≥ 1 large enough, so that

Ju1,0 < c(ϑ,R)
− 1

ϑ
p∗
p −1

(
2
p∗p∗
p

)− 1

(ϑ
p∗
p −1)2

.

Therefore, by Lemma 2.5, limh→∞ Ju1,h = 0. Thus, u1 ≤ d a.e. in BR0
2

. We have so proved that

u1 is locally bounded from above.
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To prove that u1 is locally bounded from below, we notice that −u is a local minimizer of∫
Ω f̃(Dv) dx where

f̃(ξ) :=

3∑
α=1

{Fα(−ξα) +Gα((adj2 ξ)
α)}+H(−det ξ),

If we denote
F̃α(λ) := Fα(−λ), H̃(t) = H(−t), λ ∈ R3, t ∈ R,

the functions F̃α, H̃α are convex and satisfy (2.2) and (2.4).

The function f̃ satisfies the assumptions of Theorem 2.1; so we obtain that there exists d′ such
that −u1 ≤ d′ a.e. in BR0

2

. We have so proved that u1 ∈ L∞(BR0
2

(x0)). Due to the arbitrariness

of x0 and R0, we get u1 ∈ L∞loc(Ω).
The symmetric structure of the energy density f allows to obtain an analogous statement to

Proposition 2.3 also for u2 and u3. Therefore, reasoning as for u1 (see also Remark 4.3), we obtain
that u2, u3 ∈ L∞loc(Ω), too.

Remark 2.6. We proved Theorem 2.1 by assuming that the integrand function is indipendent of
x. In the general case, f depending on x and satisfying the general growth conditions (2.2)-(2.4),
with a, b, c belonging to Lσ, σ > 1, the proof goes in a similar way, with the additional condition
1− 1

σ >
p
p∗ .

3. Existence and regularity

Consider an open, bounded set Ω ⊆ R3 and a Caratheodory function f : Ω × R3×3 → [0,+∞),
f(x, ξ) := g(x, T (ξ)) with

T (ξ) := (ξ, adj2 ξ,det ξ) ∈ R3×3 × R3×3 × R
where z 7→ g(x, z) is convex.

Let ū ∈W 1,p(Ω;R3) be a function such that
∫

Ω f(x,Dū(x)) dx < +∞. Consider the minimization
problem

min

{
I(u) :=

∫
Ω
f(x,Du(x)) dx : u ∈ ū+W 1,p

0 (Ω;R3)

}
. (P)

We suppose that there exist constants c1 > 0, c2 ≥ 0 and real exponents p, q, r̃ > 1 such that

c1

(
|ξ|p + | adj2 ξ|q + |det ξ|r̃

)
− c2 ≤ f(x, ξ). (3.1)

The following existence result holds (see Remark 8.32 (iii) in [8]).

Theorem 3.1. Consider the variational problem (P). If f satisfies (3.1) with exponents

2 ≤ p < +∞, p

p− 1
≤ q < +∞, 1 < r̃ < +∞,

then (P) has a solution.

As a consequence of Theorem 3.1 and Theorem 2.1 we have the following.

Theorem 3.2. Consider the variational problem (P), where Ω is an open bounded set in R3 and
f satisfies (2.1), the growth conditions (2.2), (2.3), (2.4) and

k4| det ξ|r̃ − k5 ≤ H(det ξ) (3.2)

with p ∈
(

3+
√

45
4 , 3

)
, p
p−1 ≤ q <

p∗(p∗−p)p
(p∗)2+(p∗−p)p , 1 < r̃ ≤ r < p∗(p∗−p)q

(p∗)2+(p∗−p)q , k4 > 0, k5 ≥ 0 and σ > 3
p .

Then there exists a minimizer u of (P), with u ∈ L∞loc(Ω,R3).
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Proof. It is suffices to notice that p
p∗ < 1 − qp∗

p(p∗−q) is equivalent to q < p∗(p∗−p)p
(p∗)2+(p∗−p)p and that

p ∈
(

3+
√

45
4 , 3

)
implies that p

p−1 <
p∗(p∗−p)p

(p∗)2+(p∗−p)p . The thesis immediately follows by Theorem 3.1

and, taking into account that a minimizer is also a local minimizer, by Theorem 2.1. �

4. Appendix

Given a vector v = (v1, · · · , vn) ∈ Rn we write |v| :=
√∑n

i=1 v
2
i . Analogously, given a matrix

A = (aij), i, j ∈ {1, · · · , n}, Ai is its i-th row and |A| :=
√∑n

i,j=1 a
2
ij .

Lemma 4.1. Consider the matrices A,B ∈ R3×3

A =

 A1

B2

B3

 , B =

 B1

B2

B3

 .

Then the following estimates hold:

(a) |A| ≤ |A1|+ |B2|+ |B3|,
(b) |detA| ≤ |A1|| (adj2B)1 |,
(c) |(adj2A)2j | ≤ |A1||B3| and |(adj2A)3j | ≤ |A1||B2|, for all j ∈ {1, 2, 3}.

Proof. The first estimate is trivial, because

|A| =
√
|A1|2 + |B2|2 + |B3|2 ≤ |A1|+ |B2|+ |B3|.

To prove the second one, notice that

|detA| ≤
3∑
j=1

|A1j ||(adj2A)1j |.

Since the second and third rows of A and B coincide,

(adj2A)1j = (adj2B)1j j ∈ {1, 2, 3};

and, moreover, ∣∣∣(adj2B)1
∣∣∣ = |((adj2B)11, (adj2B)12, (adj2B)13)|

we have
3∑
j=1

|A1j ||(adj2A)1j | =
3∑
j=1

|A1j ||(adj2B)1j | ≤ |A1|| (adj2B)1 |

and we conclude.
To prove (c) notice that, fixed j ∈ {1, 2, 3},

|(adj2A)2j | ≤ |A1i||B3k|+ |A1k||B3i| i, k ∈ {1, 2, 3} \ {j}, i 6= k;

so the first inequality in (c) follows. Analogously the second inequality follows. �

Lemma 4.2. Let Ω be an open subset of R3. Consider a Caratheodory function f : Ω × R3×3 →
[0,+∞). Assume that there exists c1, c3 > 0 and c2 ≥ 0 such that for every ξ ∈ R9

c1 (|ξ|p + | adj2 ξ|q)− c2 ≤ f(x, ξ) ≤ c3 (|ξ|p + | adj2 ξ|q + | det ξ|r + 1 + ω(x)) . (4.1)

with 1 ≤ p, 1 ≤ q, 1 ≤ r, ω(x) ≥ 0.
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Let u ∈W 1,p
loc (Ω;R3) be such that x→ f(x,Du(x)) ∈ L1

loc(Ω). Fix η ∈ C1
c (Ω), η ≥ 0, and k ∈ R,

and denote, for almost every x ∈ {u1 > k} ∩ {η > 0},

A :=

 µη−1(k − u1)Dη
Du2

Du3

 .

For the sake of simplicity, we write f(A) instead of f(x,A) and f(Du) instead of f(x,Du(x)). If
(2.12) holds and ω ∈ L1

loc(Ω), then

ηtf(A) ∈ L1({u1 > k} ∩ {η > 0}) ∀t ≥ p∗.

Proof. Denote û := (u2, u3) and

Dû :=

(
Du2

Du3

)
.

By the growth condition (4.1) and Lemma 4.1 we have, a.e. in {u1 > k} ∩ {η > 0},

f(A) ≤ c
{(
µη−1(u1 − k)|Dη|

)p
+ |Dû|p +

∣∣(adj2Du)1
∣∣q + 1 + ω

}
+ c

{
µη−1(u1 − k)|Dη||Dû|

}q
+ c

{
µη−1(u1 − k)|Dη|

∣∣(adj2Du)1
∣∣}r . (4.2)

Since (2.12) holds, q < p and r < q; thus there exist α > 1 and β > 1 such that

qα < p∗, qα′ = p, and rβ < p∗, rβ′ = q.

Therefore, by Young inequality, there exists c > 0 such that, a.e. in {u1 > k} ∩ {η > 0},{
µη−1(u1 − k)|Dη||Dû|

}q
+
{
µη−1(u1 − k)|Dη|

∣∣(adj2Du)1
∣∣}r

≤ c
(
µη−1(u1 − k)|Dη|

)qα
+ c

(
µη−1(u1 − k)|Dη|

)rβ
+ c

(
|Dû|p +

∣∣(adj2Du)1
∣∣q) (4.3)

Denote q̃ := max{p, qα, rβ}. We have(
µη−1(u1 − k)|Dη|

)p
+
(
µη−1(u1 − k)|Dη|

)qα
+
(
µη−1(u1 − k)|Dη|

)rβ ≤ µq̃η−q̃(u1 − k)q̃|Dη|q̃ + 3.
(4.4)

Therefore, by (4.2), (4.3) and (4.4), a.e. in {u1 > k} ∩ {η > 0} we have

ηtf(A) ≤ c
{
µq̃ηt−q̃(u1 − k)q̃|Dη|q̃ + ηt|Dû|p + ηt

∣∣(adj2Du)1
∣∣q + ηt + ηtω

}
By (4.1) and f(Du) ∈ L1

loc(Ω) we obtain

ηt|Dû|p + ηt
∣∣(adj2Du)1

∣∣q ≤ ηt (|Du|p + | adj2Du|q) ≤
ηt

c1
(f(Du) + c2) ∈ L1(Ω).

Since u ∈ Lp
∗

loc(Ω;R3) and t − q̃ > t − p∗ ≥ 0, then ηt−q̃(u1 − k)q̃|Dη|q̃ ∈ L1({u1 > k} ∩ {η > 0}).
We have so proved that ηtf(A) ∈ L1({u1 > k} ∩ {η > 0}) for all t ≥ p∗. �

Remark 4.3. Analogous inequalities to those in Lemma 4.1 hold true if

A =

 B1

A2

B3.

 , or A =

 B1

B2

A3

 .

Therefore, a statement similar to Lemma 4.2 can be given for u2 and u3, with

A :=

 Du1

µη−1(k − u2)Dη
Du3

 and A :=

 Du1

Du2

µη−1(k − u3)Dη

 ,

respectively.
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