
24 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Roffia, L., Morandi, F., Kiljander, J., D'Elia, A., Vergari, F., Viola, F., et al. (2016). A Semantic Publish-
Subscribe Architecture for the Internet of Things. IEEE INTERNET OF THINGS JOURNAL, 3(6), 1274-1296
[10.1109/JIOT.2016.2587380].

Published Version:

A Semantic Publish-Subscribe Architecture for the Internet of Things

Published:
DOI: http://doi.org/10.1109/JIOT.2016.2587380

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/578912 since: 2020-12-23

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/JIOT.2016.2587380
https://hdl.handle.net/11585/578912

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

L. Roffia et al., "A Semantic Publish-Subscribe Architecture for the Internet of
Things," in IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1274-1296, Dec. 2016,
doi: 10.1109/JIOT.2016.2587380.

The final published version is available online at:
https://doi.org/10.1109/JIOT.2016.2587380

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://doi.org/10.1109/JIOT.2016.2587380

For Review
 O

nly
A Semantic Publish-Subscribe Architecture for the Internet

of Things

Journal: IEEE Internet of Things Journal

Manuscript ID IoT-0998-2016.R1

Manuscript Type: Regular Article

Date Submitted by the Author: 07-Jun-2016

Complete List of Authors: ROFFIA, LUCA; University of Bologna, DISI
Morandi, Francesco; University of Bologna, ARCES
Kiljander, Jussi; VTT Technical Research Center of Finland,
D'Elia, Alfredo; University of Bologna, DISI
Vergari, Fabio; University of Bologna, ARCES
Viola, Fabio; University of Bologna, ARCES

Salmon Cinotti, Tullio; University of Bologna, DISI; University of Bologna,
ARCES
Bononi, Luciano; University of Bologna, DISI

Keywords:

Cyber-Physical Systems < Sub-Area 3: Services, Applications, and Other
Topics for IoT, Mobile and Ubiquitous Systems < Sub-Area 3: Services,
Applications, and Other Topics for IoT, Semantic Data and Service < Sub-
Area 3: Services, Applications, and Other Topics for IoT, Smart Cities <
Sub-Area 3: Services, Applications, and Other Topics for IoT, Smart
Environment < Sub-Area 3: Services, Applications, and Other Topics for
IoT, Service Middleware and Platform < Sub-Area 3: Services, Applications,
and Other Topics for IoT

For Review
 O

nly

1

Abstract— This paper presents a publish-subscribe
architecture designed to support information level
interoperability in smart space applications in the Internet of
Things (IoT). The architecture is built on top of a generic
SPARQL endpoint where publishers and subscribers use
standard SPARQL Updates and Queries. Notifications about
events (i.e., changes in the RDF knowledge base) are expressed in
terms of added and removed SPARQL binding results since the
previous notification, limiting the network overhead and
facilitating notification processing at subscriber side. A novel
event detection algorithm, tailored on the IoT specificities (i.e.,
heterogeneous events need to be detected and continuous updates
of few RDF triples dominate with respect to more complex
updates), is presented along with the envisioned application
design pattern and performance evaluation model. Eventually, a
reference implementation is evaluated against a benchmark
inspired by a smart city lighting case. The performance
evaluation results show the capability to process up to 68K
subscriptions/s triggered by simple single-lamp updates and up to
3,8K subscriptions/s triggered by more complex updates (i.e., 10
to 100 lamps).

Index Terms— Interoperability, Internet of Things,
Performance evaluation, Publish-Subscribe, Semantic Event
Processing, Smart Space Applications, SPARQL

I. INTRODUCTION

ANY research programs in information and
communications technologies (ICT) are motivated by

the need to close the growing gap between demand and offer
of services in our cities, often affected by challenging
urbanization processes. Urban facility management, out-of-
hospital preventive care, smart grid based energy efficiency,
urban mobility and cultural development are some of the main
domains calling for services that could change citizen’s life, as
well as, the attractiveness and development models of our
cities. Public administrations, industries, research
organizations and opinion makers share the vision that by
integrating computing, networking and interaction with
physical processes, ICT will enable such services, usually
referred as smart city services [1] [2] [3]. In general, smart city
services rely on event processing infrastructures that,
operating in a closed loop: i) react to changes in the physical
environment (i.e., event detection), ii) reason on the system
status (i.e., event processing) and iii) actuate changes in the
controlled environment. Dealing with heterogeneous
interconnected devices distributed into physical environments,
such event processing infrastructures can be framed within the
Internet of Things (IoT) domain [4] [5] [6]. IoT can be

considered as an abstraction of the physical world, where
people and devices mutually interact but also interact with
natural and artificial physical entities (i.e., things). These
entities, in order to be monitored and/or controlled by other
devices, must be uniquely identified, and may also be searched
through a set of relevant properties or a set of relations with
other entities.

The level of interoperability, dynamicity, flexibility,
expressivity and extendibility required in IoT could be
provided by Semantic Web [7] based interoperability
platforms like the Task Computing Environment (TCE) [8],
Context Broker Architecture for Pervasive Computing
(CoBrA) [9] [10], Semantic Space [11], Semantic middleware
for IoT [12], Smart objects awareness and adaptation Model
(SoaM) [13], Amigo [14], SPITFIRE [15], OpenIoT [16] and
Smart-M3 [17], to name a few. The main drawback of
Semantic Web technologies concerns the low level of
performance that makes it difficult to achieve responsiveness
and scalability required in many IoT applications. The main
reason for the poor performance is that Semantic Web
technologies have been designed to process data sets
consisting of big amounts of Resource Description Framework
(RDF) [18] triples (e.g., Open Linked Data project [19]) that
evolve constantly but at a much slower rate compared to the
rate of elementary events occurring in the physical
environment.

To address this limitation, we propose a novel Semantic
Publish-Subscribe (SPS) Architecture for the IoT built on
mainstream research results in Semantic Web technologies
and smart spaces [20]. This architecture is intended to become
the core component of edge computing nodes, supporting IoT
gateway and local processing functions, and thus implement
interoperability in IoT.

In our earlier work we have proposed a Semantic
Interoperability Architecture for Internet of Things [21], which
divides large-scale Semantic Web-based IoT systems into
distributed knowledge bases in order to achieve scalable
solution for semantic event processing. The SPS Architecture
complements this architecture by focusing on enabling real-
time semantic event processing within a single knowledge
base. Additionally, the SPS Architecture builds on top of the
authors experience on the development of an open
interoperability platform for smart space applications [22] [23]
[24] [25] [26] and it has been heavily influenced by the Smart-
M3 semantic interoperability platform [17] . The Smart-M3
platform has been adopted, evaluated and extended in past and

A Semantic Publish-Subscribe Architecture for

the Internet of Things
Luca Roffia, Francesco Morandi, Jussi Kiljander, Alfredo D’Elia, Member, IEEE,

Fabio Vergari, Fabio Viola, Member, IEEE, Luciano Bononi, and Tullio Salmon Cinotti, Member, IEEE

M

Page 1 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

2

current EU projects (e.g., SOFIA, CHIRON, IoE,
RECOCAPE, IMPReSS, ARROWHEAD) in partnership with
industrial players and the novel SPS Architecture presented in
this paper is a research result of this work. The SPS
Architecture improves the original Smart-M3 platform with a
modular system architecture and an efficient SPARQL
Subscription (SUB) Engine. The key differences of the SPS
Architecture compared to the Smart-M3 and other state-of-the-
art SPARQL subscription processing platforms are presented
in more detail in Section VII. The main characteristics of the
SPS Architecture are following:
• A semantic event is defined as a change in the RDF

knowledge base
• Clients are divided into three groups: producers,

consumers and aggregators
• Clients use SPARQL updates [27] and queries [28]

(without any extension) respectively to generate and
subscribe to semantic events

• A notification includes only the added and removed
SPARQL binding results since the previous notification
(i.e., the entire set of SPARQL binding results is returned
to the subscriber when the subscription is registered)

• Event negation (i.e., the not occurrence of an event within
a time interval) is supported

• The architecture is natively parallel
A central component in the SPS Architecture is the SUB

Engine that implements a novel event detection algorithm. The
SUB Engine has been designed for IoT systems where the
environment status continuously evolves with frequent fine-
grain asynchronous changes (i.e., events) and low latency
reactions to these events are required. The SUB Engine is the
core of the SPS Architecture and its architecture represents a
major research contribution of this paper. In addition, the
novel contribution of the paper includes an application design
pattern and a method to evaluate the performance of a SUB
Engine implementation. The proposed evaluation method
consists of a performance model, a set of performance
indicators and a benchmark. A prototype implementation of
the SUB Engine is the result of an engineering effort and it
was considered relevant to concretely evaluate the research
outcome.

The paper is structured as follows: in Section II the SPS
Architecture is introduced; in Section III the underpinning
SUB Engine architecture is presented along with the event
detection algorithm; Section IV suggests a performance
evaluation method of the SUB Engine; Section V provides the
details of the reference implementation evaluation and Section
VI summarizes the evaluation outcome; in Section VII
existing approaches to semantic event processing are
summarized and compared with our approach. Conclusions are
drawn in Section VIII. A glossary and the details about the
performance tests are provided in two appendixes.

II. ARCHITECTURE

A. Overview
The proposed architecture is inspired by the Smart-M3

concept [17] and it consists of a processing infrastructure, a
set of primitives and clients (Fig. 1). It is a reduced primitive
set architecture, as only two primitives are in principle enough
to implement an application: UPDATE and SUBSCRIBE.

Fig. 1. Semantic Publish-Subscribe Architecture

The UPDATE primitive is a SPARQL 1.1 Update. It
provides the mean for creating events by inserting, removing,
or modifying information inside the SPARQL endpoint RDF
store, optionally at a specific time in the future (i.e., namely
Delayed SPARQL Update). The Delayed SPARQL Update is a
new contribution with respect to the Smart-M3 original idea.
As it will be explained in Section II.C, the SUB Engine will
execute the primitive at the specified time and the client (i.e.,
usually an aggregator) has not to implement any time
management mechanism (e.g., starting timers). This allows to
simplify the design of the application business logic and to
grant the time synchronization of clients through the SUB
Engine.

The SUBSCRIBE primitive, represented with a SPARQL 1.1
SELECT Query form, provides the mean for a client to be
notified on specific events. When it is invoked, it returns the
SPARQL binding results. Then, if an UPDATE primitive
triggers a notification, to avoid re-transmitting the entire
results, the notification (denoted with R) contains only the
added and the removed SPARQL binding results since the
previous notification (i.e., this approach is similar to Istream
and Dstream operators used in the SQL based continuous
query language proposed by Arasu et al. [29]):

! = !! ∖ !!!!, !!!! ∖ !!

where Rt-1 and Rt are respectively the binding results before
and after the UPDATE primitive that triggered the
notification. The advantages of this approach can be
appreciated by considering a simple (but at the same time very
common) example: an IoT service (i.e., acting as a consumer)
plots on a GUI the trend of 1 Million pollution sensors. If a
sensor updates its measure, the service is notified with just that

SOFIA CONFIDENTIAL

Legacy Interface

Producer

SPARQL Update

Consumer

Notification Handler

Legacy Interface

Shared Ontology

UPDATE

Context
Memory

Aggregator

Notification Handler

Business

logic

(Delayed)
SPARQL Update

UPDATE SUBSCRIBE SUBSCRIBE

SUB Engine

N
ot

ifi
ca

tio
ns

SPARQL	endpoint	 PROCESSING

INFRASTRUCTURE

PRIMITIVES

CLIENTS

Physical world

Page 2 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

3

single measure and so it can easily add a new point to the plot.
Otherwise, the service would receive 1 Million values and it
should compare all of them with the current ones to
understand which value has changed. Furthermore, sending
one single result, instead of 1 Million results, dramatically
reduces the network overhead.

B. Application design pattern
In order to achieve modular, extensible and cost-effective

solutions (i.e., by enforcing a clean separation between the
physical world and its digital representation) the proposed
application design pattern follows:
• Clients are categorized in three sets: producers,

consumers and aggregators.
• Producers and consumers should be kept as simple as

possible.
• Aggregators implement the application business logic.
• Vocabulary and rules for the semantic coupling of clients

are defined by a shared OWL ontology [30].
Fig. 1 clarifies the roles of producers, consumers and

aggregators in the proposed application design pattern. All
three types of clients benefit from the expressivity of
SPARQL 1.1. Thus, the engine inherently supports the
generation, detection and notification of events of various
complexity and granularity levels.

Producers and consumers are the bridge between the
physical world and its digital representation (i.e., that is stored
into the SPARQL endpoint RDF store). The role of producers
is to collect and input physical world information into the
SPARQL endpoint RDF store through the SUB Engine.
Consumers, on the other hand, subscribe to events detected
and notified by the SUB Engine and provide feedback to the
physical world. Producers and consumers exchange
information with the physical world through a legacy
interface, which is strictly dependent on the physical sensors
and actuators technologies. They have no internal memory
(i.e., the local memory may only be used for local processing
strictly related to the interfaced device/service). The legacy
interface of a producer gathers data from the interfaced
sensors (or other input devices/services) and, after some
optional local processing, encapsulates these data into an
UPDATE primitive (i.e., here is where the raw data is
transformed into the semantic format). A consumer, on the
other hand, waits for notifications (see Notification handler)
from which it extracts the raw data and forwards it to the
legacy interface in order to control a specific actuator (or other
output devices/services).

The role of aggregators is to link the functionalities
provided by producers and consumers in order to achieve the
desired behaviors. To this end, they subscribe to events
created by producers and create new events that may trigger
actions of consumers or other aggregators. In general, the
application business logic implemented by an aggregator can
be combinatorial (i.e., no context memory is needed) or
sequential (i.e., the context evolution is stored into the
aggregator internal context memory). In both cases it is
possible to specify whether an UPDATE primitive has to be

executed immediately or at a specific time in the future (see
Delayed SPARQL Update).

The advantages of the proposed design guidelines are
twofold: first, since producers and consumers are
implemented independently from a specific use case, they can
be shared between different applications (i.e., by modifying
existing or implementing new aggregators the overall system
functionality can be modified or extended indefinitely). This,
of course, leads to cost savings also when new systems are
deployed. Second, since the processing performed by
consumers and producers is very simple, they may be
implemented in resource-restricted devices that are typical in
IoT.

C. Time management and event negation
The SUB Engine grants time management through the

following functional elements:
• A SPARQL function to retrieve the current time (i.e., the

Unix time extended to µs). As the time is retrieved on the
SUB Engine side, this allows the events generated by
clients and the notifications sent by the engine to be time
stamped with a unique clock (i.e., the function can be
used within a UPDATE or SUBSCRIBE primitive). If a
hard timing is required on data produced by a client, this
is left to the client itself and external synchronization
mechanisms have to be implemented.

• The Delayed SPARQL UPDATE primitive that allows the
clients to schedule a SPARQL Update execution on the
SUB Engine side at a specified time.

The SUB Engine has also the capability to handle event
negation (i.e., the notification of events that did not occur
within a specified time interval). This is a relevant feature for
example in supervising systems [31] where the “not-
occurrence” of an expected event is itself the event to be
detected and notified. In the proposed design pattern, this
feature is provided by a Delayed SPARQL UPDATE: if a
client invokes a Delayed SPARQL UPDATE primitive at time
t, then at time t+Δt the SUB Engine will execute the UPDATE
primitive and it will generate results if and only if the expected
event has not occurred. For example, detecting if the transition
of a variable var to a desired value X did not occur within a
specified time interval Δt can be achieved using a Delayed
SPARQL UPDATE having in the WHERE clause two triple
patterns referring to the variable under control: one
representing the value itself (e.g., <var, hasValue, X>) and the
other one representing the timestamp of its last update (e.g.,
<var, hasTimeStamp, timestamp>).

D. Application design and event negation example
In order to clarify the concepts and the application design

pattern above discussed, a simple example follows: in a smart
lighting scenario where each lamp-post is equipped with a
presence sensor, every lamp must be turned on when the
associated sensor detects a presence, while it must be switched
off when no presence has been detected for Δt seconds (i.e.,
this is an event negation example). Fig. 2 shows the sequence

Page 3 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

4

diagram of this application implemented with the following
three clients:
1. Presence sensor (producer): it keeps up-to-date in the

SPARQL endpoint RDF store both the presence sensor
status (TRUE/FALSE) and its timestamp.

2. Lamp actuator (consumer): it is subscribed to changes in
the lamp status (ON/OFF).

3. Smart lighting (aggregator): it implements the application
business logic. It is subscribed to changes in the presence
sensor status and it updates the lamp status accordingly: if
a presence is detected (i.e., presence=TRUE), the status of
the lamp is updated with the value ON, otherwise (i.e.,
presence=FALSE) a delayed UPDATE primitive is issued
to turn OFF the lamp after Δt seconds.

Fig. 2. Sequence diagram of the smart lighting example

As shown in Fig. 2, when the presence sensor returns
FALSE for the first time, a first delayed UPDATE primitive is
issued by the Smart lighting client at time t1. The SUB Engine
executes this UPDATE primitive at time t1+Δt but the status
of the lamp is not updated at time t1+Δt because the presence
sensor status (therefore its timestamp) changed meanwhile. On
the other hand, when the SUB Engine executes the second
delayed UPDATE primitive at time t2+Δt, as neither the
presence sensor status nor its timestamp have been modified in
the interval [t2, t2+Δt], the lamp status is updated (OFF) and
consequently the Lamp actuator is notified. The actual syntax
of the UPDATE and SUBSCRIBE primitives for this example
are in [32]. This mechanism allows the clients to delegate the
time management to the SUB Engine, thus avoiding any
further action on the client side once a delayed UPDATE
primitive has been issued (i.e., no timers
activations/deactivations are needed on the client side).

III. SPARQL SUBSCRIPTION ENGINE

Two major research contributions of this work are presented
in this section: the SPARQL Subscription Engine (SUB
Engine) internal architecture and the implemented event
detection algorithm. More in detail, the SUB Engine
architecture, how the SUB Engine processes the UPDATE and
SUBSCRIBE primitives and the event detection algorithm

(along with an analysis of its time complexity) are all
presented in this section.

As Fig. 3 shows, the SUB Engine consists of the following
main components:
• A scheduler listening for requests incoming from two

FIFO queues: the UPDATE Request Queue (URQ) and
the SUBSCRIBE Request Queue (SRQ).

• One SPARQL Processing Unit (SPU) for each
SUBSCRIBE Request received.

Fig. 3. SPARQL Subscription Engine Architecture

A SPU implements the event detection algorithm (see
BOOSTER in Fig. 3) and notifies just the subscriber
originating the request. Each SPU holds its own Context
Triple Store (CTS). This is a subset of the entire SPARQL
endpoint RDF store and it is defined as the “union of all RDF
triples matching at least one of the triple patterns of the
SUBSCRIBE graph pattern”. In the proposed architecture, the
CTS is related to the SPARQL endpoint RDF store as the
cache memory is related to main memory in a traditional
computer, while each SPU corresponds to a processor with its
own cache in a traditional multiprocessor system. The role and
importance of the CTS can be better appreciated considering
the following common IoT scenario. With reference to the
example shown in Section II.D, let us consider a smart city
equipped with presence sensors, one for each lamp-post in the
city (e.g., 50K sensors). The SPARQL endpoint RDF store
contains at least 50K RDF triples, each of them representing
the status of a presence sensor. A smart space application is
interested in monitoring the presence of cars close to a specific
lamp-post (e.g., at the entrance of a tunnel). The application is
so subscribed to a specific presence sensor and consequently
the CTS will contain just one RDF triple. As it will be better
appreciated in the following sections, this will boost the SPU
performance, allowing a SPU to search for changes in a very
reduced set of RDF triples (e.g., one RDF triple).

A. SUBSCRIBE primitive processing
The scheduler allocates a new SPU, and therefore a CTS,

whenever a SUBSCRIBE request is extracted from the SRQ
(see I in Fig. 3). Each SPU includes a Look Up Triples Table
(LUTT). The purpose of the LUTT is to filter out, as early as

La
m

p	
ac
tu
at
or
	

Sm
ar

t
Li

gh
tin

g

Pr
es

en
ce

se

ns
or

SUB	
Engine	

SUBSCRIBE (presence)
SUBSCRIBE (lamp)

UPDATE (presence=“TRUE”)

UPDATE (lamp=“ON”)

UPDATE (presence=“FALSE”)

t1 DELAYED UPDATE (lamp=“OFF” @ t1+Δt)

UPDATE (presence=“TRUE”)

UPDATE (lamp=“ON”)

UPDATE (presence=“FALSE”)

t2 DELAYED UPDATE (lamp=“OFF” @ t2+Δt)

LA
M

P	

PR
ES

EN
C

E
SE

N
SO

R

UPDATE (lamp=“OFF”) SUCCEED

UPDATE (lamp=“OFF”) FAILED (t1 + Δt)

(t2 + Δt)

Notifications Primitives

Delayed UPDATE execution on
engine side

SOFIA CONFIDENTIAL
SPARQL endpoint

SPARQL Subscription (SUB) Engine

SPARQL Processing Unit (SPU)

Context
Triple
Store
(CTS)

SUBSCRIBE UPDATE

Look Up Triples Table
(LUTT)

Scheduler

Added/Removed Triples
Queue (ARTQ)

Notify

UPDATE
Requests
Queue

(URQ)

SUBSCRIBE
Requests
Queue

(SRQ)

BOOSTER

I

II

IV

1

2

3

4

5

6

III

Page 4 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

5

possible, those triples that are not relevant for the given
subscription. In order to build the LUTT, the SPU extracts all
the triple patterns from the SUBSCRIBE query pattern. Then
the variables contained in the extracted triple patterns are
substituted with wildcards and are inserted into the LUTT (see
II in Fig. 3). An example of a LUTT created from a simple
subscription is shown in Fig. 4.

Fig. 4. A SUBSCRIBE primitive example and the associated LUTT

Furthermore, the SPU splits the SPARQL query graph
pattern into basic graph patterns. Each basic graph pattern is
then associated to a new SELECT query (i.e., we define this as
a sub-query), which includes the references to its own basic
graph pattern variables only (Fig. 5).

Fig. 5. SUBSCRIBE queries are split into sub-queries based on basic graph
patterns. Each sub-query refers only to the variables included in its own basic
graph pattern

All the RDF triples matching the LUTT are retrieved from
the SPARQL endpoint and stored into the CTS (see III in Fig.
3). Then the SPARQL query is issued by the SPU on the CTS
and the SPARQL binding results are sent to the subscriber
(see IV in Fig. 3). In this way the subscriber is aware of the
initial context and it is therefore in the position to track the
evolution of such context through all subsequent notifications.

B. UPDATE primitive scheduling and processing
Fig. 6 is a stepwise view of the UPDATE handling

workflow, which is partitioned into two phases: scheduling
and processing. The workflow can be carried out in sequential
or in parallel mode.

The sequential mode is useful for extracting performance
indicators of each workflow step (see Section IV). It also
enables semantic event processing to be deployed on low cost
single core platforms (e.g., on a Raspberry Pi).

In parallel mode these two phases are pipelined.
Furthermore, all SPUs run concurrently and within each SPU
the processing phase steps are executed sequentially. Thus,
with n+1 cores, n active subscriptions could be processed in
parallel (i.e., one core for the scheduler and one core for each
active SPU). In principle, with this processing model,
scheduling may shadow processing, so that the proposed
engine could not induce any overhead on the SPARQL
endpoint updates processing.

Fig. 6. UPDATE primitive scheduling and processing: SUB Engine workflow

As shown by Fig. 6 and with reference to Fig. 3, the
scheduling phase goes through the following steps: a new
UPDATE request is fetched from the input FIFO queue URQ
(1), then the SPARQL endpoint RDF store is updated and the
added and removed triples (if any) are retrieved (2) and
filtered through the LUTT (3). Filtering is performed as a
simple string matching on the added and removed triples
against the LUTT content (i.e., wildcards mean “any string”).
If no match is found, the processing ends (MISS) otherwise all
added and removed triples matching the LUTT (HIT) are
inserted into the Added/Removed Triples Queue (ARTQ) and
the associated SPU is activated (4). Then the BOOSTER
component of the activated SPU implements the event
detection algorithm (5) taking as input the ARTQ triples.
Eventually, all detected events (if any) are notified to the
subscriber (6).

C. Event detection algorithm
The event detection algorithm implemented by the

BOOSTER has been designed to match the typical profile of

SOFIA CONFIDENTIAL

SELECT ?sensorT ?valueT ?sensorH ?valueH
WHERE {{
?sensorT ns:hasValue ?valueT .
?sensorT ns:hasMeasurand ns:Temperature
}
UNION
{
?sensorH ns:hasValue ?valueH .
?sensorH ns:hasMeasurand ns:Humidity
}}

SUBSCRIBE

* ns:hasValue *
* ns:hasMeasurand ns:Temperature
* ns:hasMeasurand ns:Humidity

LUTT

SOFIA CONFIDENTIAL

SELECT ?sensorT ?valueT ?sensorH ?valueH
WHERE {{
?sensorT ns:hasValue ?valueT .
?sensorT ns:hasMeasurand ns:Temperature
}
UNION
{
?sensorH ns:hasValue ?valueH .
?sensorH ns:hasMeasurand ns:Humidity
}}

SUBSCRIBE

SELECT ?sensorH ?valueH
WHERE {
?sensorH ns:hasValue ?valueH .
?sensorH ns:hasMeasurand ns:Humidity
}

SUB_QUERY 1

SUB_QUERY 2

SELECT ?sensorT ?valueT
WHERE {
?sensorT ns:hasValue ?valueT .
?sensorT ns:hasMeasurand ns:Temperature
}

SOFIA CONFIDENTIAL

Update SPARQL endpoint and retrieve added and removed triples

Find binding results taking as input the removed triples

Update CTS

Find binding results taking as input the added triples

Notify binding results

Insert matching triples into ARTQ and activate SPU

Extract an UPDATE request from the URQ

6

S
ch

ed
ul

in
g

P
ro

ce
ss

in
g 5.1

5.2

5.3

HIT

Exit
MISS

B
O

O
S

TE
R

5

LUTT
matching

1

2

3

4

Page 5 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

6

Internet of Things applications, which mostly react to physical
processes and share the following specificities:
• Selective updates of few triples dominate with respect to

more complex updates (typical examples of this kind are
continuous and asynchronous updates of sensor values).

• Large sets of heterogeneous events need to be detected.
• Average CTS size is significantly smaller compared to the

SPARQL endpoint RDF store size.
• Multi-domain scenarios (i.e., smart cities) become

increasingly relevant, implying that only a small
subscriptions fraction is likely to be involved by the same
update.

Thus, according to the most important and pervasive
principle of computer design “make the common case fast”
quantified by the Amdahl’s Law [33] [34], selective updates
need to be processed as fast as possible by selective
subscribes, while less frequent updates, such as run time
ontology extensions or massive RDF data uploads, are allowed
for a much longer processing time. Accordingly, the following
requirements were assumed for the event detection algorithm
and for the SUB Engine:
• At the occurrence of an update, every SPU has to check if

any of the updated triples hits the LUTT. Therefore, this
check should be as fast and effective as possible: fast
because it concerns all subscriptions and effective to
minimize both the number of subscriptions and triples that
are candidate to produce notifications.

• If an update hits the LUTT of a SPU, then the reflected
context change may trigger a notification. In this case,
only the added and removed SPARQL binding results
since the previous notification must be found and sent to
the subscriber.

• The engine performance should scale with the fraction of
subscriptions concerned with the updates. Highly parallel
architectures may help in meeting this requirement, as
subscriptions are logically independent. Therefore
subscriptions may be processed in any order, and,
particularly, they might run in parallel as long as they do
not compete for the same resource (e.g., CPU or memory
bus). As every SPU has its own CTS, each subscription
“hit” by an update (i.e., that needs to be processed) may
be mapped onto a separate processing unit or thread of a
distributed or multicore architecture. The price to be paid
is measured in terms of CTS size and number of
processing units required.

Once activated, for each triple extracted from the ARTQ, a
SPU makes a separate query on the CTS and the triple content
is used to bind as many variables as possible before
performing the query. By doing so, the query processing is
optimized in two ways: the number of variables is reduced
and, furthermore, if the query produces results these are for
sure bindings to be notified (i.e., these are removed bindings if
the triple is a removed one (or an added one matching a
FILTER NOT EXITS or MINUS pattern) or added bindings if
the triple is an added one (or a removed one matching a
FILTER NOT EXITS or MINUS pattern)). Therefore, there is

no need to compare the current bindings with the previous
ones to find out how the results have changed. Avoiding this
comparison is very relevant for the algorithm performance,
particularly if just few bindings out of many changed as a
consequence of an update (i.e., this is very common in IoT
like systems where selective updates of few triples, like
continuous and asynchronous updates of sensor values,
dominate with respect to more complex updates).

More in detail, during the processing phase, a SPU goes
through the following steps (see Fig. 6):
1. It finds the binding results using the removed triples as

input (step 5.1).
2. It updates the CTS with the added and removed triples

(step 5.2).
3. It finds the binding results using the added triples as input

(step 5.3).
4. It notifies the subscriber on the binding results (if any)

(step 6).
The pseudo-code of the algorithm implemented by the

BOOSTER to find both the removed and added binding results
(steps 5.1 and 5.3) follows. For each procedure called by the
algorithm (see lines 3,4 and 5), a description is given along
with an analysis of its time complexity. Eventually, a
discussion on the overall algorithm time complexity is
presented in the next subsection.

Algorithm: Find binding results
Input: set of SPARQL queries on basic graph patterns

(queries) with cardinality NQUERIES
Input: set of RDF triples (triples) with cardinality NTRIPLES
Output: SPARQL binding results (results)

Definitions:
- triple: an RDF triple
- query: a SPARQL query on a basic graph pattern
- bindings: SPARQL binding results

0. results = Ø
1. For each query in queries do
2. For each triple in triples do
3. <query*, bindings*> = Match (query, triple)
4. bindings = Query (query*)
5. results = Merge (results, bindings, bindings*)
6. End For
7. End For
8. Return results

Procedure: Match (query, triple)

In order to bind as many variables as possible (see bindings*
at line 3), a string matching is performed on each triple pattern
of the query against the triple. For example, if the triple
pattern is <?class , rdf:type , rfds:Class> and the triple is
<ns:ClassURI , rdf:type, rdfs:Class> then the procedure binds
and replaces (within the query) the variable ?class with the
value ns:ClassURI. All the bindings and the corresponding
modified query are returned (see <query*, bindings*> at line

Page 6 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

7

3). The procedure time complexity is, in the worst case, equal
to the time complexity of a string comparison up to three times
(i.e., subject, predicate and object) for each triple pattern of
the query.

Procedure: Query (query)

The simplified SPARQL query obtained in the previous step
(see query* at line 3) is executed on the CTS. In the best case
(i.e., all the variables have been bound at line 3), the SPARQL
query is replaced by an ASK query. The algorithm assumes
that the time complexity of a query grows with the number of
variables (i.e., the same query is faster if some variables have
been bound), with the number of triple patterns and with the
number of bindings results (i.e., a higher time is also required
to receive the results over the communication channel). It is
not possible to give a priori estimation of the SPARQL query
time complexity as it depends on many factors, like the RDF
store size, the form of the query and the SPARQL endpoint
implementation.

Procedure: Merge (results, bindings, bindings*)

The bindings* found at line 3 and the bindings found at line
4 are merged together with the current binding results (see
results at line 5). These are removed bindings if the input
triples are removed ones (or added ones matching a FILTER
NOT EXITS or MINUS pattern) or added bindings if the input
triples are added ones (or removed ones matching a FILTER
NOT EXITS or MINUS pattern). The time complexity of this
procedure is the time to insert the two bindings set (see
bindings and bindings* at line 5) into the results bindings set.

D. Event detection algorithm time complexity
In a common IoT application, we can assume the following:

• NQUERIES = 1 (i.e., the SUBSCRIBE primitive has no
UNION construct)

• TMATCH + TMERGE << TQUERY
* (i.e., the former two refer to

string comparisons in memory and merging of in memory
data structure, while the latter is related to executing a
query on a RDF store)

The algorithm time complexity can be so estimated as:

!!"#~!!"#$%&' !!"#$% + !!"#$%∗ + !!"#$" ~ !!"#$%&'!!"#$%∗ (!")
The optimization introduced by the algorithm can be

appreciated with reference to the naïve Smart-M3 algorithm
(i.e., the former implementation described in [22]). In order to
detect changes in the RDF store and notify such changes to the
subscriber, the naïve algorithm queries the SPARQL endpoint,
retrieving all the bindings results (i.e., N), and it compares
these results with the current ones (i.e., N2 comparisons of
bindings are needed). Defining TQUERY as the time to perform
the query and TCMP as the time required by a single binding
comparison, the time complexity of such algorithm can be
expressed as:

!!"#$% = !!!!"# + !!"#$% (!!)

The speedup introduced by the proposed algorithm with
respect to the Smart-M3 naïve algorithm can be estimated
assuming the following:
• TQUERY = Q TQUERY* (i.e., where Q >> 1, as the same

SPARQL query, but with a lower number of variables, is
always faster than the original one).

• NTRIPLES << N (i.e., the update of a sensor data usually
corresponds to 1-2 triples, while the number of bindings
can be a very huge number equals to the number of
sensors within the system, 104 – 106 or more).

• The algorithm is executed twice to find both the added
and removed bindings results.

With reference to (A1), (A2) and the above hypotheses, the
speedup can be expressed as:

!"##$%" = !!"#$%
2 !!"#

= !!!!"# + !!!"#$%∗
2!!"#$%&'!!"#$%∗

= !!

2 !!"#$%&'

!!"#
!!"#$%∗

+ !
2 !!"#$%&'

 (!!)

The optimization introduced by the algorithm is proved with
respect to the SUB Engine reference implementation evaluated
in Section V. A first impression of the speedup can be
provided considering the following: an IoT application aims at
detecting changes in the status of any presence sensor among
105 sensors of the same type (i.e., this is optimistic as the
sensors could be many more). Each sensor reading
corresponds to the update of one RDF triple (i.e., NTRIPLES =
1). The bindings results returned by the query are in this case
equal to 105 (N = 105). Supposing a reasonable case where
TCMP ≈ 10-3 TQUERY (e.g., µs versus ms) and considering the
worst case of Q = 1, the speedup results 5 x 106.

IV. PERFORMANCE EVALUATION METHOD

Semantic event processing can be applied to scenarios,
which might greatly differ along several vectors including
knowledge base size, events complexity, number of active
subscribers and subscriptions granularity. In order to master
this diversity and exploit the innovation potential of semantic
event processing in the Internet of Things domain, simple
methods are needed to design the workload and achieve the
best workload/platform tradeoff.

Frameworks, benchmarks and methods for performance
evaluation of Semantic Web systems, in general, and Semantic
Publish-Subscribe systems, in particular, have been proposed
in the literature. Unfortunately, these methods are not suitable
for analyzing the performance of the SPS Architecture in
detail. In fact, the formers (e.g., [35] [36] [37] [38]) are mainly
designed to evaluate the performance of a SPARQL endpoint
on answering a predefined set of queries with reference to
several data sets and they do not include any SPARQL
Update. The latter are focused on analyzing the performance
of specific publish-subscribe systems (e.g., [39] and [40])
whose architecture and primitives differ from the one
presented in this paper. To this end, a method is envisioned to
compare and predict the performance of different

Page 7 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

8

implementations of the SPS Architecture, focusing on the
SUB Engine (i.e., the clients-engine communication is not
evaluated in this paper) and on its specific features (i.e., the
LUTT filtering effectiveness and the parallel processing
support). The method is based on a benchmark, a performance
model and a set of key performance indicators (KPIs).

A. Benchmark
In semantic event processing, notifications may be triggered

by the occurrence of events of various granularity levels
(being, in our solution, the expressivity of the SPARQL
language the limit to specify such granularity). Events
specification patterns may range from “a sensor matches a
specific value range” to a mix of patterns concerning sensors
spread anywhere (e.g., in a specific geographical area, in a
street or over an entire city), or characterized by particular
time and/or space relations over a specific set of data. The
benchmark should mimic the fine events granularity expected
in IoT applications typically characterized by frequent updates
of a single data-property value (i.e., a sensor value) and less
frequent concurrent updates of sets of properties. In particular,
a benchmark is defined with reference to a specific OWL
ontology and it is composed by a set of experiments, where
each experiment is characterized by:
• An Update Profile (U), defined as a set of n UPDATE

primitives Ui.
• A Subscription Profile (S), defined as a set of m

SUBSCRIBE primitives Sj.
• A Number of Updated Triples Profile ([Nu]), defined as

vector of n elements, where each element Nui is the
amount of triples updated by Ui. The average number of
triples updated by a single UPDATE primitive within an
experiment can be accordingly expressed as:

!"!"# =
1
! !"i

!

!!!
 (!)

• A LUTT matrix ([h]), defined as a Boolean matrix of n x
m elements where a generic element hi,j = 1 if at least one
of Nui triples pass LUTTj, otherwise hi,j = 0. The LUTT
matrix may be considered a sparse matrix and the amount
of “zeros” increases while the addressed scenario
becomes more and more multi-domain (e.g., as it is
expected in smart cities). An indication of the LUTT
filtering effectiveness in a particular scenario is given by
the LUTT Hit Rate defined as:

!"# % = 100
! x ! !i,j

!

!!!

!

!!!
 (!)

The lower the LHR, the larger is the LUTT contribution to
the engine performance level in the addressed scenario.

B. Performance model
The performance model subdivides the elapsed time

(TELAPSED) of an experiment in its most relevant components in
order to analyze the impact of each component on the overall
performance, understand if an implementation meets the

requirements of a specific application, identify possible
bottlenecks, remove the observations overhead from the KPIs
evaluation and predict the performance level achievable with a
parallel computing infrastructure. When the engine runs in
sequential execution mode, five not-overlapping timing
components may be recognized in the elapsed time of an
experiment:

!ELAPSED = !OVERHEAD + !UPDATE + !LUTT + !BOOSTER + !NOTIFY (!)
TUPDATE is the total latency time of the SPARQL endpoint

occurring when the Update Profile is applied.
Given the Update and Subscription Profiles, respectively

with cardinality n and m, TLUTT is the time paid to check n
times all the m LUTTs.

TBOOSTER is the time spent by all m BOOSTERs to search
their CTSs for the results to be notified to the subscribed
clients.

TNOTIFY is the time spent by all m SPUs to forward the results
to the communication interface.

TOVERHEAD is the time required to control the experiment and
to collect the timing information (i.e., we define. the net time
of an experiment as TTOTAL = TELAPSED - TOVERHEAD).

C. Key Performance Indicators (KPIs)
Five key performance indicators (KPIs) are proposed to

compare different implementations and predict if the
requirements of new scenarios can be met by a specific engine
implementation. KPIs values depend on the benchmark and
they can be estimated starting from the model parameters
deduced by the experimental results. Given the Update and
Subscribe Profiles, respectively with cardinality n and m, the
proposed KPIs are shown in Table 1.
Table 1 Key Performance Indicators (KPIs)

Average number of updates
processed per unit time

Average number of triples
processed per unit time

!"# = !
!TOTAL

!"# = !"!"# !"#

Average number of subscriptions
processed per unit time

Engine to SPARQL Endpoint
impact factor

!"# = ! !"# !"! = !!"!#$ − !!"#$%&
!!"#$%&

Event notification latency range

!"!"# = !"# !"!,!+!"!,!+!"!,!| ! = 1. .! , ! = 1. .! ∧ !"!,! ≠ 0
!"!"# = !"# !"!+!"!+!"!| ! = 1. .! ∧ !"! ≠ 0

Ups is an indicator of how many updates are processed per
unit time in average, while Sps states how many subscriptions
are processed per unit time and therefore it is directly related
to the Subscription Profile cardinality. But neither Ups nor
Sps considers events complexity. Therefore, as the time
complexity of the algorithm presented in Section III.C
depends on the number of triples processed, Tps is introduced
to provide an indication of the computational load in terms of
average number of triples processed per unit time.

The notification latency is also a relevant quality factor of a
publish-subscribe engine. Therefore NL is proposed as a

Page 8 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

9

measure of the time span between updates and notifications
(i.e., if events are detected). NL lower bound (NLmin) may be
reached when the engine works in parallel mode. In this case,
the notification latency of SUBSCRIBE Sj triggered by
UPDATE Ui cannot be less than the sum of the LUTT filtering
time (tli,j), the BOOSTER time (tbi,j) and the time required to
send the result to the communication interface (tei,j). On the
contrary, NL upper bound (NLmax) occurs when the last SPU
notifies its client in sequential mode.

Eventually, E2E is motivated by the consideration that the
engine sits on top of a SPARQL endpoint. This KPI tells
which performance penalty has to be paid in order to add the
semantic event detection and notification capability to a
SPARQL endpoint. The closer this KPI is to zero, the lower is
the overhead introduced by the SUB Engine on the underneath
SPARQL endpoint.

V. REFERENCE IMPLEMENTATION EVALUATION

The open source reference implementation [41] evaluated in
this paper extends the Smart-M3 implementation released in
2012 [22] by introducing the following main novelties: the
algorithm presented in Section III.C, the parallelization of
SPUs, the delayed SPARQL primitive and the Virtuoso [42]
support. The Context Triple Store (CTS) is based on RedLand
[43] [44] running in RAM, while the SPARQL endpoint can
be one of RedLand supported storages (e.g., hashes, Berkeley
DB, Virtuoso). The Smart-M3 protocol (i.e., Smart Space
Access Protocol (SSAP) [17]) has been extended to support
the two new primitives (i.e., UPDATE and SUBSCRIBE), and
otherwise was left unchanged to maintain backward-
compatibility. Other suitable protocols could be, for example,
the Knowledge Sharing Protocol (KSP) [45] and the
Constrained Application Protocol (COAP) [46]. Developers
can benefit from a set of open source APIs, available in
several programming languages (i.e., Python, C, C#, Java,
PHP, JavaScript) that make the proposed implementation
multi-language and multi-platform.

A. Reference ontology
The benchmark designed to evaluate the reference

implementation is inspired by a public lighting system of a
small city with large, medium, small and very small roads
(i.e., roads with up to 100, 50, 25 and 10 lamp-posts). Table 2
provides the details about the ontology and the SPARQL
endpoint RDF store size (i.e., number of RDF triples).

Table 2 Benchmark knowledge base
OWL Ontology T-Box content
Classes 27
Individuals 26
Object properties 16
Datatype properties 8
OWL Ontology A-Box content (lamp-posts instances)
Road types NLAMP/Road Roads Lamp-posts

(Sensors)
RDF
Triples

Very small 10 100 1K (2K) 35K
Small 25 100 2.5K (5K) 88K
Medium 50 100 5K (10K) 175K
Large 100 10 1K (2K) 35K

Total 310 9.5K (19K) 334K

Altogether the city has 9500 posts (i.e., represented by 334K
RDF triples), and each post is supposed to be equipped with a
lamp and two sensors (i.e., temperature and presence). Each
road and each lamp within a road are identified by a URI
respectively in the form: ROAD_URI_X and
LAMP_URI_X_Y, where X is a road identifier (i.e., in the
range from 1 to 310), while Y is a lamp identifier within a
road (i.e., Y varies from 1 to NLAMP, where NLAMP is the
amount of lamp-posts in road X). Each lamp is characterized
by a status (i.e., ON, OFF, BROKEN), a dimming value (i.e.,
0-100 %) and a type (i.e., LED, TRADITIONAL). Each post
is identified by its geographical position (i.e., latitude and
longitude), while each sensor is represented by a set of
properties: the type (i.e., TEMPERATURE, PRESENCE), the
unit of measurement (i.e., °C/°F, BOOLEAN), the value (e.g.,
“32”, “True”, “False”) and a timestamp (i.e., expressed as
Unix time extended to µs).

B. Experiments

The benchmark considers two types of UPDATE primitives
(see ULAMP(X,Y) and UROAD(X) in Table 3) and two types of
SUBSCRIBE primitives (see SLAMP(X,Y) and SROAD(X) in
Table 3), where X indicates the index of a road, while Y
indicates the index of a lamp post within a road.

Table 3 UPDATE and SUBSCRIBE primitives from the benchmark

UPDATE primitives

ULAMP(X,Y)
INSERT {LAMP_URI_X_Y ns:hasDimmingValue “100”}
DELETE {LAMP_URI_X_Y ns:hasDimmingValue ?dimming}
WHERE {LAMP_URI_X_Y ns:hasDimmingValue ?dimming}
UROAD(X)
INSERT {?lamp ns:hasDimmingValue “100”}
DELETE {?lamp ns:hasDimmingValue ?dimming}
WHERE {?lamp ns:hasDimmingValue ?dimming . ?post ns:hasLamp ?lamp .
?road ns:isConnectedTo ?post . FILTER(?road = ROAD_URI_X)}

SUBSCRIBE primitives

SLAMP(X,Y) (i.e., fine-grain)
SELECT ?dimming
WHERE {LAMP_URI_X_Y ns:hasDimmingValue ?dimming}
SROAD(X) (i.e., coarse-grain)
SELECT ?lamp ?dimming
WHERE { ?lamp ns:hasDimmingValue ?dimming . ?post ns:hasLamp ?lamp .
?road ns:isConnectedTo ?post . FILTER(?road = ROAD_URI_X)}

UROAD(X) is used to set to 100% the dimming value of all the
lamps of road X and ULAMP(X,Y) is used to set to 100% the
dimming of lamp Y within road X. SLAMP(X,Y) subscriptions
(i.e., fine-grain) are sensitive to the update of the dimming
value of lamp Y within road X, while SROAD(X) subscriptions
(i.e., coarse-grain) are sensitive to the update of the dimming
value of any lamp of road X. Table 4 compares the LUTT
content and the CTS size of the two subscriptions.
Table 4 LUTT content and CTS size for fine-grain and coarse-grain
subscriptions

LUTT Content CTS Size (Triples)

SLAMP(X,Y) (i.e., fine-grain) 1
LAMP_URI_X_Y ns:hasDimmingValue * 1

Page 9 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

10

SROAD(X) (i.e., coarse-grain) ≈ 19K
ROAD_URI_X ns:isConnectedTo * 10,25,50,1001
* ns:hasLamp * 95002
* ns:hasDimmingValue * 95002

Two experiments (named LAMP and ROAD) based on two
Update Profiles (named ULAMP and UROAD) with the same
knowledge base (see Table 2) and the same Subscription
Profile S are considered. S includes 1000 fine grain and 4
coarse grain subscriptions (i.e., m = 1004). The formal
specification of the Subscription Profile S follows:
 !
= !! ≡ !!"#$(X,Y)| j=10(X-1)+Y , X�{1..5} � Y�{1..10}
∪ !! ≡ !!"#$(X,Y)| j=100+25(X-101)+Y , X�{101..104} � Y�{1..25}

∪ !! ≡ !!"#$(X,Y)| j=200+50(X-201)+Y , X�{201..203} �Y�{1..50}

∪ !! ≡ !!"#$(X,Y)| j=300+100(X-301)+Y , X�{301..307} � Y�{1..100}

∪ !! ≡ !!"#$(X)|(j , X)�{(1001,6),(1002,105),(1003,204),(1004,308)}

Table 5 shows that, with the above-defined Subscription
Profile, a notification is triggered if the dimming value of any
of the 1185 lamps is updated.
Table 5 Subscription profile

Number of subscribers
Road type SLAMP (X,Y) SROAD (X) Monitored lamps
Very small 50 1 60
Small 100 1 125
Medium 150 1 200
Large 700 1 800
Total 1000 4 1185

Both the experiments consist of 310 updates (i.e., n = 310).
Therefore, even if the cardinality of both update profiles is the
same, in the ULAMP profile each producer updates one lamp per
road (i.e., at the end of the experiment 310 lamps are updated)
while in the UROAD profile each producer updates all the lamps
of an entire road (i.e., at the end of the experiment 9.5K lamps
are updated). The formal definition of the two Update Profiles
follows:

!!"#$ = !! � !!"#$(i) | i ∈{1..310}

!!"#$ = !! � !!"#$(i,1) | i ∈{1..310}
For both the Update Profiles, the number of triples per

update (i.e., [Nu] vector) is shown in Table 6.
Table 6 [Nu] vectors (number of triples per update of the two experiments)

1...100 101...200 201...300 301...310
ROAD 10 25 50 100

LAMP 1

Table 7 is a compact representation of two (310 x 1004)
LUTT matrices. Columns are labeled with the subscription
indexes and represent either a single subscription (for the
LAMP profile) or a set of NLAMP subscriptions (for the ROAD
profile). Rows are labeled with the update indexes. The last

1 the number of triples depends on number of lamp-posts in road X
2 each lamp-post has a lamp and each lamp has a dimming value

row represents collectively all rows not explicitly labeled
above. Same notation (last column) is used for the not
explicitly labeled columns. From vector [Nu] and matrix [h],
the values of NuAVG and LHR defined in Section IV.A by (1)
and (2) are:

• ROAD NuAVG =31 LHR = 0,72 %
• LAMP NuAVG =1 LHR = 0,40 %
Table 7 [h] block matrices (a compact representation of the LUTT matrixes of
the two experiments)

R
O

A
D

1…
10

11
…

20

21
…

30

31
…

40

41
…

50

51
…

75

76
...

10
0

10
1.

..1
25

12
6.

..1
50

15
1.

..2
00

20
1.

..2
50

25
1.

..3
00

30
1.

..4
00

40
1.

..5
00

50
1.

..6
00

60
1.

..7
00

70
1.

..8
00

80
1.

..9
00

90
1.

..1
00

0

 1

00
1…

10
04

LA
M

P

1 11

21

31

41

51

76

10
1

12
6

15
1

20
1

25
1

30
1

40
1

50
1

60
1

70
1

80
1

90
1

…

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
101 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
102 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
103 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
104 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
201 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
202 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
203 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
301 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
302 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
303 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
305 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
306 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
307 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
… 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

These parameters show that the ROAD profile produces a
higher computational load with respect to the LAMP profile.
Given the Update and Subscribe profiles, the following
amounts of notifications are sent to the subscribers during the
reported experiments:

• ROAD 1004 notifications (all Sj are triggered)
• LAMP 23 notifications (19 SLAMP subscriptions and

4 SROAD subscriptions are triggered)

C. Test bed and methods
Both the experiments run on a test bed consisting of:

• a machine hosting both the SUB Engine and the SPARQL
endpoint. This machine is an Intel(R) Core(tm) i7-
2630QM CPU @ 2.00GHz × 8 cores, 8 GB ram, Ubuntu
12.04; the SPARQL endpoint in all tests is Virtuoso

• a remote multithreading C# client application (i.e.,
simulator) running on a Windows XP Virtual Box
machine (4 GB Ram, 1 CPU, execution cap 100%). The
client machine is a MacBook Pro, Intel Core i7 2.2 GHz,
16 GB ram. The simulator is connected to the SUB
Engine through a 100 Mbps LAN.

First of all, the ontology (see Table 2) is loaded on the RDF
store. After that, the simulator starts all the 1004 subscribers
(i.e., each of them running on a separated thread). Once all the
subscribers are up and running, the simulator sequentially
issues all the UPDATE primitives to the SUB Engine that is
configured to run in sequential mode (i.e., one core is used for
both the scheduler and all the SPUs). In this way, at the end of

Page 10 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

11

each experiment, it is possible to extract the timing profile,
logged by the SUB Engine, related to a single UPDATE
request. Each experiment has been repeated several times and
average values of the timing components have been calculated
to evaluate the parameters of the performance model (see
Section IV.B).

VI. EVALUATION RESULTS SUMMARY

A. KPIs
Table 8 reports the KPIs and summarizes the impact of all

timing components on TTOTAL (see (3) in Section IV.A).
Interested readers can find a detailed evaluation analysis along
with a statistical analysis of the measured timing components
in Section X.

Table 8 Results summary for both experiments
LAMP
EXPERIMENT

ROAD
EXPERIMENT

Experiment parameters
Number of subscriptions m 1004
Number of updates n 310
Average triples/update NuAVG 1 31
LUTT Hit Rate LHR (%) 0,40 0,72
Notifications/experiment 23 1004

KPIs
Updates/s Ups 68 3,8
Subscriptions/s Sps 68K 3,8K
Triple/s Tps 68K 117,3K
Notification latency NLmin

NLmax
1,7 ms
9,3 ms

1,3 ms
541,3 ms

Engine impact on Endpoint E2E 1,0 1,8

Timing components (% on TTOTAL)
TUPDATE 49% 35%

TLUTT 7% 3%
TBOOSTER 44% 62%

TNOTIFY << 1% << 1%

From the results here reported some preliminary conclusions
could be drawn. Both the experiments (LAMP and ROAD)
share the same number of subscriptions and updates but they
present very different KPIs. We can so argue that the SUB
Engine performance are not just influenced by the total
number of subscriptions and/or updates itself but are mostly
related to the specific content of such primitives. Moreover,
the KPIs prove one of the fundamental hypothesis under
which the notification algorithm has been designed: selective
updates of few triples (i.e., the LAMP experiment) dominate
with respect to more complex updates (i.e., the ROAD
experiment). In fact, from Table 8, it is clear how the LAMP
experiment outperforms the ROAD experiment (i.e., the
maximum number of subscriptions that can be processed in
one seconds (Sps) decreases from 68K to 3,8K) granting a
lower notification latency (i.e., 9.3 ms compared to 541,3 ms)
and with a lower overhead on the underpinning SPARQL
endpoint (i.e., E2E moves from 1 to 1,8). Eventually, the
results demonstrate the effectiveness of the LUTT: the LUTT
matching requires no more than the 7% of the total experiment
time.

B. LUTT filtering
An evidence of the LUTT filtering impact on the overall

engine performance is provided by Table 9 where, for both the
experiments, the timings components and the resulting KPIs
are estimated without the LUTT support and are compared
with those reported in Table 8.
Table 9 LUTT impact on engine performance (estimate). For reasons of
simplicity and readability, all the values are approximated.

KPIs
LAMP EXPERIMENT Ups Sps Tps Nlmax E2E

LUTT On 68 68K 68K 0,09 s 1,0
LUTT Off 0,55 557 557 1,80 s 245
Ratio (On/Off) 122 5×10-3 4×10-3

ROAD EXPERIMENT Ups Sps Tps Nlmax E2E
LUTT On 3,8 3,8K 117,3K 0,54 s 1,8
LUTT Off 0,03 29,4 901 129 s 367
Ratio (On/Off) 130 4×10-3 5×10-3

Timing components (TUPDATE, TNOTIFY and TOVERHEAD are not shown as
they are not affected by the LUTT)

LAMP EXPERIMENT TBOOSTER TLUTT TTOTAL
LUTT On 2 s 0,3 s 4,6 s
LUTT Off 9 min - 9 min

ROAD EXPERIMENT TBOOSTER TLUTT TTOTAL
LUTT On 50,2 s 2,1 s 81,3 s
LUTT Off 176 min - 176,5 min

The KPIs values reported in Table 9 show that the estimated
LUTT impact on performance is quite similar in both the
experiments (i.e., an improvement of two orders of
magnitude). This estimate is not so surprising because, while
the experiments seem significantly different to a human
observer (310 versus 9500 context changes), they are similar
from the LUTT based filtering point of view. In fact, in both
experiments, 1000 out of 1004 LUTTs stop nearly all triples
from progressing to the BOOSTER processing stage,
drastically reducing the computational load in 99.6% of the
cases.

C. Parallel execution
Some remarks about the parallel execution of active SPUs

should also be added here. In sequential execution mode
(Ncores = 1), according to (3), TTOTAL is the sum of 4 separate
timing components:

!!"!#$ = !!"#$%& + !!"## + !!""#$%& + !!"#$%& (!)
In the proposed implementation, TUPDATE and TLUTT do not

overlap because all UPDATE primitives are serialized and
because - for each UPDATE primitive – the update of the
SPARQL endpoint and the LUTT filtering run sequentially.
On the other side, if Ncores > 1, for each UPDATE primitive Ui,
LUTT filtering and BOOSTER execution may be pipelined
thanks to the interposed decoupling FIFO queue (ARTQ in
Fig. 3). Moreover, all SPUs that find a core free may run in
parallel. Thus, if tbi is the BOOSTER execution time for Ui,
while tui+1 and tli+1 are respectively the update time of the

Page 11 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

12

SPARQL endpoint RDF store and the LUTT filtering
execution time referred to Ui+1, then tbi and (tui+1 + tli+1) may
overlap, drastically reducing TTOTAL, which so now becomes:

!!"!#$ = !!"#$%& + !!"## (!)
This is valid as long as ARTQ is not full and the scheduler

does not share its core with any SPUs. For example, if for
every Ui:

Ncores ≥ 1 + ℎi,j
!

!!!
 (!)

(i.e., one core for the scheduler and one for each SPU
involved in Ui).

Fig. 7 compares the parallel execution mode (i.e., Ncores = 8)
with the sequential execution mode (i.e., Ncores = 1) running an
experiment with the following Update and Subscription
profiles:

! = !!"#$(X) | X � {1,100,200,300}

! = !!"#$(X) | X �{300..310}

Fig. 7. Comparison between sequential and parallel execution modes (4
coarse-grain subscriptions react to 10 updates of 100 triples each). TELAPSED
after 10 updates is respectively 6,0 s and 3,8 s (not shown).

VII. RELATED WORK

The SPS Architecture presented in this paper can be framed
within the research topics known as Stream Reasoning [47],
Linked Stream Data Processing [48] and Content-Based
Publish-Subscribe [49]. To the best of our knowledge, the first
approaches for Semantic Web based publish-subscribe
systems are presented by Wang et al. [50] and Chirita et al.
[51]. Wang et al. propose an ontology based publish-subscribe
system in which events are expressed with RDF graphs. Their
contribution includes also a matching algorithm for event
detection and a subscription language based on SquisQL [52],
RDQL [53] and RQL [54] query languages. Chirita et al. in
turn propose a solution to incorporate publish-subscribe
capabilities in RDF-based peer-to-peer (P2P) network.
Similarly to Wang et al., they propose their own language for

subscriptions. Due to the immaturity of Semantic Web query
languages at the time, it is natural that all these approaches
propose their own subscription languages. A similar approach
is the one by Shi et al. [55]. However, since SPARQL was
already gaining popularity in 2007, their subscription language
is somewhat similar to SPARQL, although much more
restricted. Because these early Semantic Web publish-
subscribe approaches do not utilize SPARQL as subscription
language, their processing engines and matching algorithms
are completely different from the SUB Engine and its event
detection and notification algorithm. This is also true for the
solution presented in [56], which utilizes Semantic Web Rule
Language (SWRL) [57] to represent subscriptions.

To the best of our knowledge, a first attempt to use SPARQL
as the subscription language is presented in [58]. They present
a simple architecture for content based publish-subscribe
systems and evaluate the performance of their Jena [59] based
reference implementation with a baseball related case study.
However, they do not refer to any subscription related
optimizations to the Jena query engine and the performance of
the reference implementation is thus quite poor as shown by
the evaluation results. Another important difference compared
to our proposal is that they provide the whole result set
whenever the SPARQL query results change, whereas our
architecture sends the whole result set when the subscription is
registered and then notifies clients about how the results set
changes with new and obsolete bindings. Also the architecture
described in [58] differs from the IoT focused SPS
Architecture and its application design pattern in the following
ways: 1) it does not include aggregators and 2) it does not
specify the role of the agents in detail from the IoT system
perspective.

Another early SPARQL based RDF stream processing
proposal is Streaming SPARQL [60]. It differs from the
above-presented approach in that it does not use standard
SPARQL but extends it with windows. A window specifies the
triples for which the query is executed. It can be defined either
by the number of triples (last triples from the stream) or the
time (e.g., the last 15 minutes). The window specification
defines also how often the window is updated and
consequently the frequency of query evaluation. The
Streaming SPARQL engine is implemented within the
ODYSSEYS framework.

Windows are typical in traditional stream processing and
there are many other window-based RDF stream and event
processing solutions, which focuses on different aspects of
event processing and use different syntaxes for presenting
windows: Continuous SPARQL (C-SPARQL) [61],
SPARQLStream [62], Event Processing SPARQL (EP-
SPARQL) [63], Continuous Query Evaluation over Linked
Data Streams (CQELS) [64], and Sparkwave [65].

C-SPARQL is a language for expressing persistent SPARQL
queries over RDF streams. In addition to the extensions for
windows, it extends SPARQL 1.0 with support for time
management, and aggregations. The execution environment of
C-SPARQL builds upon a standard SPARQL reasoner (which
evaluates the static part of the query) and a Data Stream

SOFIA CONFIDENTIAL
0 200 400 600 800 1000 1200 1400

Parallel execution

SPU1

SPU2

SPU3

SPU4

Sequential execution

SPU1

SPU2

SPU3

SPU4

Time (ms)

tu1

tu1

tu2

tu2 tu3

tb1,1

tb1,2

tb1,3

tb1,4

tb2,1

tb2,2

tb2,3

tb2,4

tb1,1

tb1,2

tb1,3

tb1,4

tb2,1

tb2,2

tb2,3

tb2,4

tb3,1

tb3,2

tb3,3

tb3,4

UPDATE (Scheduler) BOOSTER (SPUs)

Page 12 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

13

Management System (which is responsible for the dynamic
part of the query).

Similarly to Streaming SPARQL and C-SPARQL,
SPARQLStream is a language that introduces extensions to
SPARQL to handle RDF streams. It differs from Streaming
SPARQL and C-SPARQL in three ways. First, the
SPARQLStream only considers time-based windows whereas
Streaming SPARQL and C-SPARQL support also windows
defined by a concrete number of triples. Second, the
SPARQLStream enables windows to be defined into the past in
contrast to Streaming SPARQL and C-SPARQL where the
windows always start from the present. The third difference is
that the SPARQLStream proposes window-to-stream operations
that are used to transform a stream of windows into a stream
of RDF triples with timestamps.

The EP-SPARQL is a SPARQL based language for Event
Processing and Stream Reasoning. It focuses on the detection
of RDF triples in a specific temporal order. To make this
possible EP-SPARQL proposes several binary operations that
can be used to combine RDF graph patterns in a temporal-
sensitive manner. Another notable difference to the other
window-based event processing approaches is that EP-
SPARQL does not enforce the use of windows. Instead it
provides an optional SPARQL function that can be used inside
the FILTER pattern to create time windows by setting time
intervals for which the query is active. Because of this, the EP-
SPARQL cannot be classified as a pure window-based
solution and it is thus closer to the SPARQL event processing
approach proposed in this paper. The system implementing the
event processing functionalities defined by EP-SPARQL is
called ETALIS [66]. It is implemented in Prolog and designed
to process event-driven-backward-chaining (EDBC) rules [67]
(i.e., EP-SPARQL expressions need to be translated into
EDBC rules written in Prolog before they can be evaluated by
ETALIS).

CQELS is a SPARQL based adaptive query engine for
Linked Data and Linked Data Streams. The main difference
with other window-based SPARQL event processing systems
is that CQELS uses its own native processing model in the
query engine – in contrast to other approaches that transform
SPARQL into logic rules, Rete networks, or data suitable for
standard stream processing engines. This makes it possible to
have a full control of the query execution plan and it is used in
practice to dynamically reorder operators based on changes in
the input data.

To our knowledge, Sparkwave is the most recent window-
based approach for continuous RDF data stream processing
with SPARQL. The event processing in Sparkwave is based
on the Rete algorithm [68] that provides a generalized solution
to perform pattern matching, where facts are matched against
rules. In this case the facts are presented with RDF triples and
rules with persistent SPARQL queries.

There are four notable aspects that differentiate the SPS
Architecture from the window-based SPARQL event
processing approaches presented above. First, the SPS
Architecture does not use windows to define the triples for
which the query is evaluated (i.e., we concentrate on real-time

evaluation of events within the whole system). Second, the
SPS Architecture uses SPARQL, without any extensions, both
to generate and subscribe to events. Third, instead of
processing individual RDF triples coming from specific RDF
streams, the SPS Architecture is based on an interaction model
where any agent can trigger events by modifying the context
of the system with SPARQL 1.1 Update language operations.
Fourth, the SPARQL publish-subscribe engine (SUB Engine)
detects how the results have changed from the initial query
results whereas the window-based approaches provide the
whole results set whenever it is modified in any way. Because
of these fundamental differences in the SPARQL event
processing approaches also the implementations of the event
processing algorithms are totally different.

In addition to the window-based approaches and the early
Semantic Web based publish-subscribe systems presented
above, more similar approaches to the SPS Architecture have
been presented in the literature. A common characteristic of
these approaches, including Groppe et al. [69], EventCloud
[70] [71], INSTANS [72] [73] [74], SENS [40] [75] [76] [77]
and Smart-M3 [17], is that SPARQL is used as the
subscription language.

Groppe et al. [69] propose algebra for handling RDF streams
with SPARQL and suggest optimizations for its
implementation. The SPARQL streaming engine
implementing the algebra improves a SPARQL endpoint by 1)
discarding irrelevant triples in the early state of processing, 2)
creating indices only for triples relevant for the query, and 3)
calculating partial results for the query as soon as possible.
The SPS Architecture and the SUB Engine proposed in this
paper differs from the approach prosed by Groppe et al. in
three ways. First, the algebra proposed by Groppe et al.
focuses only on streams, whereas we also provide a memory
for the system. Having a central memory in the event
processing engine makes the approach more suitable for IoT
systems as the clients may join and leave the system
dynamically at runtime. Second, the most notable difference in
the approaches is that the engine proposed by Groppe et al. is
designed to provide the whole result set (in similar way to
normal SPARQL query) whenever it is modified in any way.
Our approach in turn detects only how the result set change
(i.e., new and obsolete bindings) and it is thus more suitable
for situations where only small parts of the data set change
during a publish operation. Because of this difference the
actual algorithms and ways to detect the events are also
completely different. Third, Groppe et al. do not propose any
specific client design pattern whereas we propose a modular
IoT application and system design pattern based on producers,
consumers and aggregators.

In addition to the pioneer work of Chirita et al. [51], more
recent approach for P2P publish-subscribe communication
with Semantic Web technologies have been proposed by
Pellegrino et al. [70] [71]. Their subscription processing
system, called EventCloud, is based on P2P Content
Addressable Network (CAN). As a subscription language, the
EventCloud utilizes a subset of SPARQL. They also propose
two matching algorithms, called Chained Semantic Matching

Page 13 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

14

Algorithm (CSMA) and One-step Semantic Matching
Algorithm (OSMA). There are four main differences between
the EventCloud and the SPS Architecture proposed in this
paper. First, EventCloud implementation is based on P2P
networks whereas we implement our SPARQL subscription
engine on top of a traditional SPARQL endpoint. Second, the
subscription language used by the EventCloud supports only a
limited subset of SPARQL features whereas we support
SPARQL 1.1 as such. Third, the EventCloud provides the
whole results set whenever the results change, whereas the
SPS Architecture calculates how the results have changed.
Fourth, Pellegrino et al. do not focus on the client side
whereas we describe how IoT applications can be developed
in a modular way by utilizing the client design pattern
proposed in the paper.

INSTANS (Incremental eNgine for STANding Sparql) [72]
[73] [74] is another Rete-based approach for SPARQL event
processing. The INSTANS platform is implemented with
Scala programming language and consists of Control,
SPARQL parser, Rete network, RDF triple store and Garbage
collector modules. In spite of the similarities, there are also
many differences between the SPS Architecture and
INSTANS. The first difference is that we provide a highly
parallel architecture whereas in INSTANS the evaluation of
SPARQL subscriptions is sequential. The second difference is
that our solution introduces an optimized publish-subscribe
mechanism on top of a generic SPARQL endpoint, whereas
INSTANS bases its approach on the Rete algorithm. The third
difference is that in INSTANS a notification includes all the
query results when the results change, while in our solution
only the delta in the SPARQL binding results is notified to the
subscriber. The fourth difference is that INSTANS divides
clients into two groups (i.e., event producers and agents)
whereas we propose an application design pattern based on
three types of clients in order to achieve modular design of
IoT systems.

The Semantic Event Notification Service (SENS) proposed
by Murth and Kühn [40] [75] [76] [77] is an event processing
infrastructure that focuses on detecting when new knowledge
emerges rather than detecting changes in the system status.
Subscriptions are expressed with SPARQL basic graph
patterns and it is also possible to create rules (represented with
a subset of SPARQL CONSTRUCT) that create new
knowledge to the knowledge base when specific events occur;
this in turn can generate new knowledge events for the client.
Their approach supports RDFS and OWL level reasoning
making it possible to detect knowledge events that are not
explicitly specified in the RDF updates but inferred based on
the data. The earlier version, introduced in [40], is based on
Jena framework and provides a Rete based forward reasoning
engine. Later version, introduced in [75], utilizes OWLIM 2.9
[78] as the reasoning and query engine. The most important
differences between the approach proposed in this paper and
the SENS are the following. First, SENS approach takes
ontological reasoning as part of the event processing whereas
we focus solely on events expressed with SPARQL. Second,
SENS only detects when new knowledge is inserted (i.e.,

knowledge can be removed but the event detection algorithm
cannot detect that and the client will not be notified about it)
whereas our approach also notifies clients about obsolete
results. Third, SENS supports only a subset of SPARQL (i.e.,
basic graph patterns) whereas our approach provides a wider
support for SPARQL. Fourth, SENS is not tailored for IoT
systems and does not propose any specific system design
pattern whereas we propose a modular client design pattern for
IoT systems.

The Smart-M3 community has studied the feasibility of the
Smart-M3 solution for device interoperability in pervasive
computing and IoT, investigating application domains [79]
[80], analyzing methodological aspects [81] [82] and reporting
about the lesson learned [83] [84] [85]. The Semantic Publish-
Subscribe (SPS) Architecture presented in this paper has been
inspired by Smart-M3 [17] and its reference implementation
named Smart-M3 RedSIB 0.9.2 [41] has been used as baseline
for the SPS Architecture formalization. In particular, the novel
SPARQL Subscription Engine (SUB Engine) aims at
improving the performance of the previous Smart-M3
reference implementation in the following ways: it proposes a
novel SPARQL event detection algorithm that calculates how
each individual RDF triple modifies the results set obtained by
the initial SPARQL query and it utilizes a parallel architecture
where each subscription is executed by a separate processing
unit (i.e., CPU core). In addition to the SUB Engine, the main
contribution of the paper is the application design pattern,
where only SPARQL subscription and update operations are
used, including delay updates.

This paper is not the only one focusing on the Smart-M3
knowledge broker architecture. For instance, Suomalainen et
al. propose a secure broker, called RIBS [86]. Galov et al.
have developed the CuteSIB [87], focusing on extensibility,
dependability, and portability. Viola et al. propose pySIB [88],
targeted especially to resource constrained computing
platforms. As can be seen, these existing architectures address
different aspects (i.e., security, portability, extensibility and
dependability) compared to the SPS Architecture (i.e.,
performance).

In our earlier work [21], we focused on the performance and
scalability of Semantic Web enhanced IoT systems and
proposed an architecture that partitions the IoT system into
several parallel smart spaces. This work and the SPS
Architecture are complementary contributions to enable real-
time semantic information processing in large-scale IoT
systems. In fact, the SPS Architecture focuses on the
performance and scalability of a single smart space (i.e.,
knowledge broker) whereas the architecture presented in [21]
describes how to achieve scalability by supporting several
knowledge brokers with an infrastructure that enables clients
to discover them.

VIII. CONCLUSION

 Event detection and notification at several levels of
abstraction are capabilities required by information processing
systems since the very early stages of the computer history:

Page 14 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

15

for example, back in 1946, Burks, Goldstine and von
Neumann literally stated "… simultaneous operation of the
computer and the input/output organ requires additional
temporary storage and introduces a synchronization
problem..." [89], motivating the need for such simultaneous
operation with performance reasons. Performance, in fact, is
often the primary requirement for event management in small
size and application specific systems. But, when systems
complexity and flexibility grow, while the heterogeneity and
the distribution of their components become a dominant
factor, unambiguous event interpretation and explicit
specification of the context where the event has to be handled
become requirements as challenging as the system reaction
time. This is what happens, for example, when the Internet of
Things (IoT) come into play: in general, IoT services are
based on infrastructures that react to events recognized by
scoping large information bases dynamically updated by
ubiquitous and heterogeneous devices. The semantics of such
information bases could conveniently be specified with a
shared OWL ontology and their stores (i.e., SPARQL
endpoints) can be searched with an appropriate standard query
language like SPARQL. But SPARQL endpoints do not
provide a facility to detect and notify events because they are
mostly conceived to deal with huge amounts of RDF triples
that evolve constantly but at a much slower rate compared to
the rate of elementary events occurring in the physical
environment. To fill this gap a semantic publish-subscribe
architecture consisting of a SPARQL Subscription Engine
sitting on top of a SPARQL endpoint is proposed. The
architecture exposes two primitives, one to generate and one to
subscribe to events. The engine is optimized for efficient
detection and notification of events originated by frequent and
small context updates as expected in IoT ecosystems.
Specifically the engine entrusts its performance and scalability
levels to three factors: i) the capability to recognize and
remove from the semantic event processing pipeline out-of-
context semantic events; ii) a novel algorithm which
implements subscriptions with SPARQL queries and has the
ability to notify only added and removed binding results since
the previous notification; iii) the inherent subscription
processing parallelism. A performance evaluation method is
proposed and a reference implementation is evaluated. This
implementation extends the core of Smart-M3, which is a
semantic interoperability platform for smart spaces
successfully demonstrated in several European research
projects. Key performance indicators are provided and the
impact of the above mentioned performance and scalability
factors are analyzed with respect to a simple benchmark.

New benchmarks and case studies are now encouraged to
provide the fuel for further improvements and for a more
comprehensive validation of the proposed architecture.
Meanwhile its application in IoT scenarios is expected to
provide best practices in application design. The short-term
plan is to incorporate the proposed architecture in a Multi-
Network-Multi-Protocol IoT gateway, supporting protocols
like MQTT, DASH7 and 6LoWPAN on the "Things" side and
HTTP, COAP and NDN on the "Internet " side.

IX. APPENDIX A: TABLE OF TERMS

General terms
SPS Architecture (Semantic Publish-Subscribe Architecture): is the
architecture proposed in this paper and is composed by: a processing
infrastructure (SUB Engine + SPARQL endpoint), two primitives
(UPDATE and SUBSCRIBE) and a set of clients (Consumers,
Producers and Aggregators).
SUB Engine (SPARQL Subscription Engine): is the core component
of the processing infrastructure. Its internal architecture and the model
used to evaluate the performance of a generic implementation are part of
the main research contributions of the paper.
URQ (UPDATE Request Queue), SRQ (SUBSCRIBE Request
Queue): UPDATE and SUBSCRIBE requests are respectively stored
into two FIFO queues. For each SUBSCRIBE request the SUB Engine
instantiate a new SPU (SPARQL Processing Unit). The SUB Engine
issues UPDATE requests to the SPARQL endpoint and the
corresponding added and removed RDF triples are retrieved. These
triples are forwarded to every active SPU.
SPU (SPARQL Processing Unit): the SUB Engine instantiate a SPU
for each subscription. SPUs can execute in parallel on a multi-core
architecture. A SPU implements the event detection algorithm (see
BOOSTER).
CTS (Context Triple Store): each SPU maintains a local copy (i.e.,
like a cache) of the context represented by the set of triples that may
contribute triggering a notification.
LUTT (Look Up Triples Table): each SPU has its own LUTT that is
used to filter out triples that are out of the subscription scope
ARTQ (Added/Removed Triple Queue): is a FIFO queue that
contains the triples that passed the LUTT.
BOOSTER: implements the event detection algorithm. It takes as input
the triples extracted from the ARTQ and the CTS. The same triples
extracted from the ARTQ are also used to update the CTS.

Benchmark parameters
U (Update Profile): a set of cardinality n of all the UPDATE primitives
Ui of an experiment
S (Subscription Profile): a set of cardinality m of all the SUBSCRIBE
primitives Sj of an experiment
[Nu]: a vector of n elements, where each element Nui is the number of
triples updated by the UPDATE Ui
NuAVG : average number of triples updated by a single UPDATE
primitive within an experiment

!"!"# =
1
! !"i

!

!!!

[h] (LUTT matrix): a Boolean matrix of n x m elements [h], where a
generic element hi,j = 1 if at least one of Nui triples pass LUTTj check,
otherwise hi,j = 0.
LHR(%) (LUTT hit ratio): is an indication of the LUTT filtering
effectiveness in a particular scenario)

!"# % = 100
! x ! !i,j

!

!!!

!

!!!

Performance model (timing components)
TUPDATE is the total latency time of the SPARQL endpoint occurring
when the Update Profile is applied. tui is the time required by the
SPARQL endpoint to complete Ui
TLUTT is the time paid to check n times all the m LUTTs. tli is the time
to check all the m LUTTs when Ui occurs, while tli,j is the time required
to check all Nui triples against LUTTj.
TBOOSTER is the time spent by all m BOOSTERs to search their CTSs for
the results to be notified to the subscribed clients. tbi is the total time
required by all m BOOSTERs to detect all events triggered by Ui., while
tbi,j is the time interval spent by the BOOSTERj to search the CTS for
the events subscribed by Sj and triggered by Ui.
TNOTIFY is the time spent by all m SPUs to forward the results to the
communication interface. tei is the time required by all m SPUs to
forward all results triggered by Ui, while tei,j is the time required by
SPUj to forward the results produced by Ui.

Page 15 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

16

KPI (Key Performance Indicators)
!"# (Average number of updates processed per unit time)

!"# = !
TTOTAL

!"# (Average number of triples processed per unit time)

!"# = !"!"# !"#

!"# (Average number of subscriptions processed per unit time)

!"# = ! !"#

!"! (Engine to SPARQL Endpoint impact factor)

!"! = T!"!#$ − T!"#$%&
T!"#$%&

!"!"#,!"!"# (Event notification latency range)

!"!"# = !"# !"!,!+!"!,!+!"!,!| ! = 1. .! , ! = 1. .! ∧ !"!,! ≠ 0
!"!!" = !"# !"!+!"!+!"!| ! = 1. .! ∧ !"! ≠ 0

X. APPENDIX B: DETAILED EVALUATION ANALYSIS

All measures were taken server side and Unix timestamps in
µs were collected. In our test bed we do not have any PRET
processor (Precision Timed Machine [90]), therefore the
measurements are statistically affected by several factors
including memory access time variability, interrupts and OS
overhead. All the measures here reported are average values
calculated from the collected timing components. For each
measured timing component, the mean, the standard deviation
of the sample (i.e., σ), the minimum and maximum values are
reported.

A. Evaluation of SPARQL endpoint RDF store update

The time required to update the SPARQL endpoint RDF
store and retrieve the added and removed triples is
characterized by a vector of n elements [tu], where each
element tui is the time required by the SPARQL endpoint to
complete Ui. The measured [tu] vectors of the two
experiments are shown in Table 10. tui depends on the
SPARQL endpoint, on the structure of Ui, on Nui (number of
triples updated by Ui) and on the efficiency of the SUB Engine
to retrieve from the SPARQL endpoint the Nui. triples updated
by Ui. Often, the same update Uα is applied to different
portions of the SPARQL endpoint store, so that several Ui only
differ for some constant value in their WHERE clause (i.e., an
URI). For example if Uα is: “switch on all public lights of a
specific street in a specific city”, different instances of Uα
could be applied to different streets and different cities and so
each of these instances may end up with different values of
Nui. Fig. 8 shows the measured trend of tui versus Nui shared
by all the instances Ui for both of the Update profiles.

Table 10 [tu] vectors (time values are in ms)

LAMP EXPERIMENT

i

Mean σ Min Max
1…100 7,795 4,220 4,463 33,189

101...200 6,458 2,752 3,885 12,920
201...300 6,944 3,530 3,850 13,291
301...310 7,324 2,614 4,203 12,627

ROAD EXPERIMENT

Mean σ Min Max

i

1...100 52,825 21,569 34,239 147,540
101...200 76,279 18,619 62,169 164,443
201...300 131,069 6,913 121,653 175,980
301...310 250,834 8,316 240,710 272,640

Fig. 8. The time (in ms) to update the SPARQL endpoint linearly grows with
the amount of updated triples

B. Evaluation of LUTT filtering
The SUB Engine relies on the LUTT to filter out the triples

that are out of a subscription context. The effect of LUTT
filtering on the engine performance can be characterized by a
matrix of n x m elements [tl], tli,j being the time interval
required to check all the Nui triples updated by Ui against
LUTTj. A compact representation of the measured LUTT
matrices for both experiments is shown in Table 11 (i.e., both
are 310 x 1004 matrices). Fig. 9 plots the measured trends of
the LUTT time tli,j versus Nui: a fine-grain subscription
(SLAMP) is a subscription to a single lamp dimming value
change, while a coarse-grain subscription (SROAD) is a
subscription spanning all lamps of a road.

Table 11 [tl] LUTT matrices (µs)

LAMP EXPERIMENT
j

1...1000 1001...1004

i

Mean σ Min Max Mean σ Min Max
1...100 1 1 0 111 7 3 3 19

101...200 1 1 0 160 6 7 3 144
201...300 1 1 0 54 6 3 3 27

301…310 1 1 0 13 7 3 3 15

ROAD EXPERIMENT

j
1…1000 1001…1004

Mean σ Min Max Mean σ Min Max

i

1...100 3 1 2 35 40 15 22 141
101…200 5 1 4 115 68 16 46 183
201…300 10 2 9 131 133 14 101 214
301…310 22 7 19 303 255 24 213 317

SOFIA CONFIDENTIAL

tui = 2,362 Nui + 16,626

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

tu
i (

m
s)

Nui

Page 16 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

17

Fig. 9. Trend of LUTT time (in µs) versus Nui for a fine-grain (tli,LAMP) and for
a coarse-grain (tli,ROAD) subscription

C. Evaluation of event detection (BOOSTER processing)
All triples that hit LUTTj have to be processed by the

corresponding BOOSTERj (5 in Fig. 3 and Fig. 6). BOOSTER
processing is characterized by two n x m matrices: [Nb] where
each matrix element Nbi,j states how many triples out of Nui
have to be processed by BOOSTERj (i.e., in general only a
subset of the Nui triples will pass the LUTT filtering) and [tb]
where each element tbi,j is the time spent by the BOOSTERj to
search its CTS for the events subscribed by Sj and triggered by
Ui. Nbi,j is zero if the corresponding LUTT element hi,j is zero.
In all the other cases, Nbi,j depends on the Update and
Subscribe profiles.

Table 12 shows both the [Nb] and [Ne] matrices as, in the
proposed benchmark, they are the same (i.e., Nbi,j triples
produce exactly Nbi,j binding results), while the measured [tb]
matrices of the two experiments are shown in Table 13.

Fig. 10 shows the measured trend of tbi,ROAD versus Nbi,ROAD
for a coarse-grain subscription SROAD of the proposed
benchmark. As can be seen, the BOOSTER execution time
linearly grows with the number of processed triples Nbi,ROAD
and how fast is the BOOSTER in detecting an event,
compared to corresponding time to update the SPARQL
endpoint, can be perceived by comparing the first order
coefficients in Fig. 8 and Fig. 10. At the same time, the LUTT
effectiveness on filtering out of context triples can be
perceived comparing Fig. 9 with Fig. 10 (i.e., µs versus ms).
Table 12 [Nb] and [Ne] matrices

LAMP EXPERIMENT
 j
 1…1004
i 1...310 1

ROAD EXPERIMENT
 j
 1...1000 1001...1004

i

1...100 1 10
101...200 1 25
201...300 1 50
301...310 1 100

Table 13 [tb] matrices (time values are in ms)

LAMP EXPERIMENT
 j
 1...1000 1001...1004

i

 Mean σ Min Max Mean σ Min Max
1...100 1,816 1,030 1,073 3,799 1,580 0,556 1,023 4,446

101...200 1,202 0,115 1,053 1,351 1,619 0,557 1,035 3,549
201...300 2,268 0,261 1,938 2,573 1,528 0,630 1,013 4,671

301…310 1,902 0,623 1,077 2,574 1,749 0,736 1,059 3,197

ROAD EXPERIMENT
 j
 1…1000 1001…1004
 Mean σ Min Max Mean σ Min Max

i

1...100 1,206 0,087 1,121 1,569 13,398 2,189 12,137 26,517
101…200 1,216 0,135 1,120 1,853 32,859 2,837 30,518 55,475
201…300 1,199 0,086 1,126 1,729 66,496 5,105 61,218 104,513
301…310 1,297 0,246 1,110 2,812 127,244 7,617 121,634 162,527

Fig. 10. BOOSTER execution time (in ms) for a coarse-grain subscription

D. Evaluation of event notification latency
Events detected by a SPU need to be passed to the hosting

platform communication interface which is in charge of
forwarding the notification to the appropriate subscriber. This
step (see 6 in Fig. 3 and Fig. 6) is characterized by two n x m
matrices: [te], where each element tei,j is the time required by
the SPUj to forward the results produced by Ui to the
communication interface and [Ne], where each element Nei,j
states how many results are found by BOOSTERj and have to
be notified when Ui occurs. Nei,j is zero if the corresponding
hi,j is zero. In all the other cases, Nei,j depends on the Update
and Subscribe profiles. Table 12 shows both the [Nb] and [Ne]
matrices as, in the proposed benchmark, they are the same
(i.e., Nbi,j triples produce exactly Nbi,j binding results).

Moving on to [te], the time tei,j, required by the SPUj to send
to the communication interface the appropriate notification
due to Ui generally depends on the number of binding results
to be notified (i.e., Nei,j). tei,j is different from zero only for
those Ui where at least one triple hits LUTTj and produces at
least one result through the associated BOOSTERj. In the
ULAMP profile, each Ui updates a single dimming value (i.e.,
one triple), so that, in this case, tei,j will always be the same
(i.e., 155 µs). On the other hand, in the UROAD profile, each Ui

SOFIA CONFIDENTIAL

tli,LAMP = 0,2 Nui + 0,2

tli,ROAD = 2,5 Nui + 8,4

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

tl i
,j (

µs
)

Nui

Coarse-grain

Fine-grain

SOFIA CONFIDENTIAL

tbi,ROAD = 1,274 Nbi,ROAD + 1,013

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

tb
i,R

O
A

D
 (m

s)

Nbi,ROAD

Page 17 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

18

updates all the dimming values of the lamps belonging to a
specific road X. Therefore, in the UROAD profile, if a SROAD(X)
subscription is triggered, tei,j depends on the number of lamps
(i.e., NLAMP) belonging to road X (i.e., 10, 25, 50, 100), while
it has the same value as in the LAMP profile if a SLAMP(X,Y) is
triggered. Fig. 11 plots the measured trend of tei,ROAD (ms)
versus Nei,ROAD for a coarse-grain subscription SROAD of the
proposed benchmark. In this case, the impact of tei,j on TTOTAL
is small as it can be perceived by comparing Fig. 11 with Fig.
8.

Fig. 11. Time to forward the results of a coarse-grain subscription to the
communication interface

For both the Update Profiles, the measured tei,j values (for all
the subscriptions Sj that trigger a notification) are:
Table 14 [te] notification latency matrices (time values are in µs)

LAMP EXPERIMENT
j

1...1000 1001...1004

i

Mean σ Min Max Mean σ Min Max
1...100 136 99 72 327 228 0 228 228

101...200 83 8 72 91 84 0 84 84
201...300 203 9 193 215 232 0 232 232

301…310 164 71 75 270 79 0 79 79

ROAD EXPERIMENT
j

1…1000 1001…1004
 Mean σ Min Max Mean σ Min Max

i

1...100 74 10 66 116 74 10 66 116
101…200 73 10 66 112 73 10 66 112
201…300 70 5 65 93 70 5 65 93
301…310 76 21 65 272 76 21 65 272

E. Overhead time analysis
In the reported experimental setup, the overhead is assumed

to be:

!!"#$%#&' = !!"#$ + !!"#$ (!)
where TMEAS is the time to collect all timing information,

while TPROT is the time required to handle the interaction
between the simulator and the SUB Engine. TPROT is defined
as the sum of all time intervals between the end of processing
of an UPDATE primitive and the start of processing start of
the next one. During these time intervals, the SUB Engine is

inactive as it is waiting for the next UPDATE primitive from
the simulator. TPROT is not related to the SUB Engine
performance, but it depends on the network delay, on the
protocol implementation and on the client reaction speed.
Evaluating and optimizing TPROT is not in the scope of this
paper. The measured TOVERHEAD values for both experiments
are shown in Table 15.
Table 15 Impact of TOVERHEAD on TELAPSED in the two experiments

TMEAS
(s)

TPROT
(s)

TOVERHEAD
(s)

TELAPSED
(s)

Overhead
(%)

ROAD 1,08 3,30 4,38 86,87 5
LAMP 1,03 2,57 3,60 8,09 45

F. System scalability analysis

The scalability of the system with the number of
subscriptions (i.e., NSPUs) and the speed-up curves with the
increasing number of available cores (i.e., Ncores) can be
predicted using the performance evaluation method (see
Section IV). The benchmark here considered uses the
UPDATE and SUBSCRIBE primitives in 3 and the same
knowledge base in Table 2, but it is based on two different
experiments.

In the first experiment, all the publishers issue the
ULAMP(1,1) UPDATE, while all the subscribers are subscribed
with the SLAMP(1,1) SUBSCRIBE. This means that each
publisher updates one RDF triple (i.e., Nu = 1) and all the
updated triples pass the LUTT (i.e., LHR(%) = 100%).
Moreover, all the subscribers are notified (i.e., each UPDATE
changes the current value of the dimming) and a notification
includes two bindings (i.e., the new and the old dimming
value).

In the second experiment, all the publishers issue the
UROAD(300) UPDATE, while all the subscribers are subscribed
with the SROAD(300) SUBSCRIBE. This means that each
publisher updates 100 RDF triples (i.e., Nu = 100) and, as in
the first experiment, all the updated triples pass the LUTT.
Like in the first experiment, all the subscribers are notified,
but in this case each notification includes 200 bindings.

These two experiments evaluate the performance of the
engine in a very unfair scenario (i.e., LHR(%) = 100%) and so
the results provide a lower bound prediction of the
performance in a real world scenario. Both the experiments
consider an increasing number of subscribers (i.e., NSPUs) and
an increasing number of available cores (i.e., Ncores). Focusing
on a single UPDATE primitive, the timing components of the
two experiments are taken from the evaluation results (i.e., tu
from Table 10, tl from Table 11, tb from Table 13 and te from
Fig. 11) and shown in Table 15.
Table 15 Timing components of experiments designed to predict the
scalability and the effect of parallelization

Estimated time (ms)
Timing components First

experiment
Second

experiment
tu (SPARQL endpoint update time) 7,302 252,573
tl (LUTT filtering time) 0,001 0,255
tb (BOOSTER time) 1,789 127,243
te (Notification forwarding time) 0,155 10,321

SOFIA CONFIDENTIAL

tei,ROAD = 0,0007558 Ne2
i,ROAD + 0,027655 Nei,ROAD + 0,02278

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

te
i,R

O
A

D
 (m

s)

Nei,ROAD

Page 18 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

19

As the SUB Engine sequentially executes both the SPARQL
endpoint update and the LUTT filtering (see Scheduling in
Fig. 6), the maximum update frequency can be estimated as:

!"#$%&!"# !" = 1
!" + !!"#$!"

 (!)

On the other hand, the maximum throughput in terms of
notifications/s can be expressed as:

!"#$%&"'%!!"# !" = 1
!" + !"!!"#$% (!)

First experiment

Fig.12. In a typical IoT scenario, where each client update a single triple (e.g.,
a sensor reading), the SUB Engine, running on a 16 cores system, is able to
notify up to 8K subscribers in one second

Fig. 13. The maximum update rate granted by the system decreases with the
time needed to update the SPARQL endpoint (i.e., 7,3 ms) and with the time
spent by the SUB Engine to implement the LUTT filtering (i.e., 1 µs)

Second experiment

Fig. 14. In the worst case, where publishers update a large set of triples (i.e.,
100 triples), the SUB Engine running on a 16 cores system is still able to
notify (i.e., with a notification consisting of 200 bindings) more than 100
subscribers in one second

Fig. 15. The maximum affordable update rate of the SUB Engine is heavily
affected by the time required by the SPARQL endpoint to update the RDF
store (i.e., 252,7 ms to update 100 triples)

G. Final remarks
Some final observations about the engine performance can

be drawn based on the experimental results. In our testing
scenario and with the selected benchmark, the BOOSTER
behavior is quite linear with respect to the number of triples
involved in a specific event and detecting a desired event may
require between 1 to well over 100 ms (see Fig. 10). As shown
in Table 8, the latency of a notification spans from 2 to well
over 500 ms. But the SUB Engine performance does not
depend only on the BOOSTER algorithm. On the contrary,
there are two additional contributions to improve the
performance: LUTT based filtering and parallel execution of
active SPUs.

Thanks to the LUTT based filtering, out-of-context triples
are stopped from moving to the BOOSTER, and, as shown by
Fig. 9 this happens quickly (i.e., less than 21 µs for fine-grain
subscriptions and less than 255 µs for coarse-grain
subscriptions). Comparing the first order coefficients in Fig. 9

SOFIA CONFIDENTIAL

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TR
O

U
G

H
TP

U
T

(K
H

z)

Ncores

SOFIA CONFIDENTIAL

55

65

75

85

95

105

115

125

135

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

U
PD

AT
EM

A
X

(H
z)

NSPUs

SOFIA CONFIDENTIAL

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

TH
R

O
U

G
TH

PU
T

(H
z)

Ncores

SOFIA CONFIDENTIAL

0

0,5

1

1,5

2

2,5

3

3,5

4

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

U
PD

AT
EM

A
X

(H
z)

NSPUs

Page 19 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

20

and Fig. 10, it is easy to perceive up to which extent the
impact of LUTT filtering on TTOTAL may be neglected while
the number of active subscriptions grows. Table 7 visualizes
the impact of LUTT filtering on the overall performance:
every ‘0’ in the LUTT matrix states that an UPDATE
primitive does not need to be processed by a specific SPU as it
is out of its context. The LUTT impact is particularly valuable
when the LUTT Hit Rate (LHR) is low, as expected in Internet
of Things scenarios mostly dominated by fine grain updates.

Typically the SUB Engine will work in parallel execution
mode but the number of available cores will not necessarily
meet condition (6) (i.e., usually there will be less than one core
per active SPU), therefore TTOTAL will fall between (4) and
(5).

We may thus conclude that the maximum event load
affordable by a specific engine implementation is related to:
1. Its ability to instantly reject out-of-scope events (i.e.,

granted by the LUTT);
2. Its BOOSTER performance and the amount of memory

available for the CTSs;
3. The number of cores available to the engine (Ncores).

ACKNOWLEDGMENTS
The authors are grateful to the M3 community and to the partners of all EU projects

that inspired this paper: SOFIA, CHIRON, IoE, ARROWHEAD, RECOCAPE,
Flex4Grid and the joint EU-Brazil project IMPRESS. The work was supported by the
EU, the Italian Ministry of Education and Research (MIUR), the University of Bologna
and VTT Technical Research Centre of Finland.

REFERENCES

[1] S. Helal, "IT Footprinting - Groundwork for Future Smart Cities,"
Computer, vol. 44, no. 6, pp. 30-31, June 2011.

[2] Jiong Jin, Jayavardhana Gubbi, Slaven Marusic Marusic, and
Marimuthu Palaniswami, "An Information Framework for Creating a
Smart City Through Internet of Things ," IEEE Internet of Things
Journal, vol. 1, no. 2, pp. 112-121, April 2014.

[3] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Vangelista,
and Michele Zorzi, "Internet of Things for Smart Cities ," IEEE
Internet of Things Journal, vol. 1, no. 1, pp. 22-32, February 2014.

[4] A. Bassi et al., Enabling Things to Talk: Designing IoT solutions
with the IoT Architectural Reference Model.: Springer, 2013.

[5] John A. Stankovic, "Research Directions for the Internet of Things
," IEEE Internet of Things Journal, vol. 1, no. 1, pp. 3-9, February
2014.

[6] Mohammad Abdur Razzaque, Marija Milojevic-Jevric, Andrei
Palade, and Siobhán Clarke, "Middleware for Internet of Things: A
Survey," IEEE Internet of Things Journal, vol. 3, no. 1, February
2016.

[7] T. Berns-Lee, J. Hendler, and O. Lassila, "The semantic web,"
Scientific American, vol. 284, pp. 34-43, 2001.

[8] R. Masuoka, B. Parsia, and Y. Labrou, "Task Computing - the
Semantic Web Meets Pervasive Computing," in The Semantic Web -
ISWC. Lecture Notes in Computer Science.: Springer Berlin
Heidelberg, 2003, pp. 866-881.

[9] H. Chen, T. Finin, and A. Joshi, "Semantic Web in the Context
Broker Architecture," in Proceedings of the Second IEEE Annual
Conference on Pervasive Computing and Communications, 2004, pp.
277-286.

[10] H. Chen et al., "Intelligent agents meet the semantic Web in smart
spaces," Internet Computing, IEEE, vol. 8, no. 6, pp. 69-79, 2004.

[11] X. Wang, J.S. Dong, C.Y. Chin, S.R. Hettiarachchi, and D. Zhang,

"Semantic Space: an infrastructure for smart spaces," Pervasive
Computing, IEEE, vol. 3, no. 3, pp. 32-39, 2004.

[12] Z. Song, A.A. Cárdenas, and R. Masuoka, "Semantic Middleware
for the Internet of Things," Internet of Things (IOT), pp. 1-8, 2010.

[13] J.I. Vazquez, De Ipina D.L., and I. Sedano, "SoaM: A Web-powered
Architecture for Designing and Deploying Pervasive Semantic
Devices," International Journal of Web Information Systems, vol. 2,
no. 3, pp. 212-224, 2006.

[14] G. Thomson, S. Bianco, S.B. Mokhtar, N. Georgantas, and V.
Issarny, "Amigo Aware Services," in Constructing Ambient
Intelligence, Communications in Computer and Information Science.:
Springer Berlin Heidelberg, 2008, pp. 385-390.

[15] D. Pfisterer et al., "SPITFIRE: toward a semantic web of things,"
Communications Magazine, IEEE, vol. 49, no. 11, pp. 40-48, 2011.

[16] Anh Le Tu'n et al., "Global Sensor Modeling and Constrained
Application Methods Enabling Cloud-Based Open Space Smart
Services," in Ubiquitous Intelligence & Computing and 9th
International Conference on Autonomic & Trusted Computing
(UIC/ATC), Sept. 2012, pp. 196-203.

[17] J. Honkola, H. Laine, R. Brown, and O. Tyrkkiö, "Smart-M3
information sharing platform," in IEEE Symposium on Computers and
Communications (ISCC), Riccione, Italy, 2010, pp. 1041 – 1046.

[18] W3C Semantic Web. (2014, Febbruary) Resource Description
Framework (RDF),. [Online]. http://www.w3.org/RDF/

[19] Linked Data Project. Connect Distributed Data across the Web.
[Online]. http://linkeddata.org/

[20] E. Ovaska, T. Salmon Cinotti, and A. Toninelli, "The Design
Principles and Practices of Interoperable Smart Spaces," in Advanced
Design Approaches to Emerging Software Systems: Principles,
Methodologies and Tools. Hershey, PA, USA: IGI Global, 2012, pp.
18-47.

[21] J. Kiljander et al., "Semantic interoperability architecture for
pervasive computing and Internet of Things," IEEE Access, vol. 2, pp.
856-873, 2014.

[22] F. Morandi, L. Roffia, A. D’Elia, F. Vergari, and T. Salmon Cinotti,
"RedSib: a Smart-M3 Semantic Information Broker Implementation,"
in Proceedings of the 12th Conference of Open Innovations
Association FRUCT, Oulu, Finland, 2012, pp. 86-98.

[23] F. Vergari et al., "A Smart Space Application to Dynamically Relate
Medical and Environmental Information," in Design, Automation &
Test in Europe (DATE), Dresden, Germany, 2010, pp. 1542-1547.

[24] F. Vergari et al., "An integrated framework to achieve
interoperability in person-centric health management," International
Journal of Telemedicine and Applications, vol. 2011, p. 10, 2011.

[25] R. Gazzarata, F. Vergari, T. Salmon Cinotti, and M. Giacomini, "A
standardized SOA for clinical data interchange in a cardiac
telemonitoring environment," IEEE Journal of Biomedical and Health
Informatics, vol. 18, no. 6, pp. 1764-1774, November 2014.

[26] D. Manzaroli et al., "Smart-M3 and OSGi: the Interoperability
Platform," in IEEE symposium on Computers and Communications -
First International Workshop on Semantic Interoperability for Smart
Spaces (SISS 2010), Riccione - Italy, June 22, 2010, pp. 1053 - 1058.

[27] W3C Recommendation. (2013, March) SPARQL 1.1 Update.
[Online]. http://www.w3.org/TR/sparql11-update/

[28] W3C Recommendation. (2013, March) SPARQL 1.1 Query
Language. [Online]. http://www.w3.org/TR/sparql11-query/

[29] Arvind Arasu, Shivnath Babu, and Jennifer Widom, "The CQL
Continuous Query Language: Semantic Foundations and Query
Execution," The VLDB Journal, vol. 15, no. 2, pp. 121-142, June
2006.

[30] T. Gruber, "Ontology," in Encyclopedia of Database Systems, Ling
Liu and M. Tamer Özsu, Ed.: Springer-Verlag, 2008.

[31] S. Pantsar-Syväniemi et al., "Case Study: Context-aware
Supervision of a Smart Maintenance Process," in Second International
Workshop on Semantic Interoperability for Smart Spaces (SISS 2011),

Page 20 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

21

Munich; Germany, 2011, pp. 309-314.
[32] F. Morandi, F. Vergari, A. D'Elia, L. Roffia, and T. Salmon Cinotti,

"SMART-M3 v.0.9: A semantic event processing engine supporting
information level interoperability in ambient intelligence," ARCES-
AlmaDL-Alma Mater Studiorum Università di Bologna, Bologna,
Italy, Tutorial ISBN: 978-88-98010-12-7 DOI:
10.6092/unibo/amsacta/3877 Online: http://amsacta.unibo.it/3877/,
2013.

[33] J.L. Hennessy and D.A. Patterson, Computer Architecture a
Quantitative Approach. San Mateo, USA: Morgan Kaufmann
Publishers, Inc., 1990.

[34] G.M. Amdahl, "Validity of the single processor approach to
achieving large scale computing capabilities," in AFIPS1967 Spring
Joint Computer Conference, Atlantic City (N.J.), 1967, pp. 483-485.

[35] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin, "LUBM: A
Benchmark for OWL Knowledge Base Systems," Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 3, no. 2-3,
pp. 158--182, October 2005.

[36] Yuanbo Guo, A. Qasem, Zhengxiang Pan, and J. Heflin, ""A
Requirements Driven Framework for Benchmarking Semantic Web
Knowledge Base Systems," IEEE Transactions on Knowledge and
Data Engineering, vol. 19, no. 2, pp. 297-309, Feb 2007.

[37] Raúl García-Castro et al., Eds., Web Semantics: Science, Services
and Agents on the World Wide Web, Special Issue on Evaluation of
Semantic Technologies.: Elsevier, August 2013, vol. 21.

[38] Christian Bizer and Andreas Schultz, "The Berlin SPARQL
Benchmark," International Journal on Semantic Web & Information
Systems, vol. 5, no. 2, pp. 1-24, 2009.

[39] Martin Murth, Dietmar Winkler, Stefan Biffl, Eva Kühn, and
Thomas Moser, "Performance Testing of Semantic Publish/Subscribe
Systems," in On the Move to Meaningful Internet Systems: OTM 2010
Workshops, Robert Meersman, Tharam Dillon, and Pilar Herrero,
Eds.: Springer Berlin Heidelberg, 2010, vol. 6428, pp. 45-46.

[40] M. Murth and E. Kühn, "A Semantic Event Notification Service for
Knowledge- Driven Coordination," in 1st International Workshop on
Emergent Semantics and cooperaTion in opEn systEMs, Rome, Italy,
2008.

[41] Smart-M3. [Online]. https://sourceforge.net/projects/smart-
m3/files/Smart-M3-RedSIB_0.9.2/

[42] E. Orri and I. Mikhailov, "RDF Support in the Virtuoso DBMS,"
Networked Knowledge-Networked Media, pp. 7-24, 2009.

[43] D. Beckett. (2014) Redland RDF Libraries. [Online].
http://librdf.org/

[44] D. Beckett, "The design and implementation of the Redland RDF
application framework," Computer Networks, vol. 39, no. 5, pp. 577-
588, August 2002,
http://www.sciencedirect.com/science/article/pii/S1389128602002219.

[45] J. Kiljander, F. Morandi, and J.P. Soininen, "Knowledge Sharing
Protocol for Smart Spaces," (IJACSA) International Journal of
Advanced Computer Science and Applications, vol. 3, no. 9, 2012.

[46] Z. Schelby, K. Hartke, and C. Bormann. Constrained Application
Protocol (CoAP). CoRE Working Group Internet-Draft. [Online].
http://datatracker.ietf.org/doc/draft-ietf-core-coap/

[47] E. Della Valle, S. Ceri, F. van Harmelen, and D. Fensel, "It's a
Streaming World! Reasoning upon Rapidly Changing Information,"
Intelligent Systems, vol. 24, no. 6, pp. 83 - 89, Nov-Dec 2009.

[48] Danh Le-Phuoc, Josiane Xavier Parreira, and Manfred Hauswirth,
"Linked Stream Data Processing," in Reasoning Web. Semantic
Technologies for Advanced Query Answering.: Springer Berlin
Heidelberg, 2012, vol. 7487, pp. 245-289.

[49] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-
Marie Kermarrec, "The Many Faces of Publish/Subscribe," ACM
Computing Survyes, vol. 35, no. 2, pp. 114-131, June 2003.

[50] Jinling Wang, Beihong Jin, and Jing Li, "An ontology-based
publish/subscribe system," in Proceedings of the 5th

ACM/IFIP/USENIX International Conference on Middleware,
Toronto, Canada, 2004, pp. 232-253.

[51] P.A. Chirita, S. Idreos, M. Koubarakis, and W. Nejdl,
"Publish/Subscribe for RDF-based P2P Networks," in The Semantic
Web: Research and Applications.: Springer Berlin Heidelberg, 2004,
pp. 182-197.

[52] L., Seaborne, A., Reggiori, A. Miller, "Three implementations of
SquishQL, a simple RDF query language," in Proceedings of the First
International Semantic Web Conference on the Semantic Web, 2002,
pp. 423-435, http://dl.acm.org/citation.cfm?id=646996.711274.

[53] P., Broekstra, J., Eberhart, A., Volz, R. Haase, "A comparison of
RDF query languages," in The Semantic Web – ISWC 2004, Lecture
Notes in Computer Science, 2004, pp. 502-517.

[54] G. Karvounarakis et al., "Querying the Semantic Web with RQL,"
Computer Networks, vol. 42, no. 5, pp. 617-640, August 2003.

[55] DongCai Shi, Jianwei Yin, Yiyuan Li, Jianfeng Qian, and Jinxiang
Dong, "An RDF-Based Publish/Subscribe System," in Semantics,
Knowledge and Grid, Third International Conference on, 2007.

[56] K.E. Kjaer and K.M. Hansen, "Modeling and Implementing
Ontology-Based Publish/Subscribe Using Semantic Web
Technologies," in Engineering of Complex Computer Systems
(ICECCS), 2010 15th IEEE International Conference on, 2010, pp.
63-71.

[57] I. Horrocks et al. (2004, May) SWRL: A semantic web rule
language combining OWL and RuleML. [Online].
http://www.w3.org/Submission/SWRL/

[58] J. Skovronski and C. Kenneth, "Ontology-Based Publish Subscribe
Framework," in 8th International Conference on Information
Integration and Web-based Applications & Services (iiWAS2006),
Jakarta, 2006.

[59] Apache Jena. [Online]. https://jena.apache.org/
[60] A. Bolles, M. Grawunder, and J. Jacobi, "Streaming SPARQL

extending SPARQL to process data streams," in Proceedings of the
5th European semantic web conference on The semantic web:
research and applications, Tenerife, Canary Islands, Spain, 2008, pp.
448-462.

[61] D. F. Barbieri, D. Braga, S. Ceri, and M. Grossniklaus, "An
execution environment for C-SPARQL queries," in Proceedings of the
13th International Conference on Extending Database Technology,
Lausanne, Switzerland, 2010, pp. 441-452.

[62] J. Calbimonte, O. Corcho, and A. Gray, "Enabling Ontology-based
Access to Streaming Data Sources," in ISWC’10, 2010, pp. 96-111.

[63] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic, "EP-SPARQL:
a unified language for event processing and stream reasoning," in
Proceedings of the 20th international conference on World wide web,
Hyderabad, India, 2011, pp. 635 - 644.

[64] D. Le-Phuoc, M. Dao-Tran, J. Xavier Parreira, and M. Hauswirth,
"A Native and Adaptive Approach for Unified Processing of Linked
Streams and Linked Data," in ISWC2011, 2011, pp. 370-388.

[65] S. Komazec, D. Cerri, and D. Fensel, "Sparkwave: Conituous
Schema-Enhanced Pattern Matching over RDF Data Streams," in
DEBS’12, 2012, pp. 58-58.

[66] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic, "Stream
Reasoning and Complex Event Processing in ETALIS," Semantic Web
Journal, Special Issue: Semantic Web Tools and Systems, 2012.

[67] D. Aninic et al., "A rule-based language for complex event
processing and reasoning," in RR’2010, 2010, pp. 42-57.

[68] C.L. Forgy, "Rete: A fast algorithm for the many pattern/many
object match problem," Artificial Intelligence, no. 19, pp. 17-37, 1982.

[69] S. Groppe, J. Groppe, D. Kukulenz, and V. Linnemann, "A
SPARQL Engine for Streaming RDF Data," in Third International
IEEE Conference on Signal-Image Technologies and Internet-Based
System, Shanghai, 2007, pp. 167-174.

[70] Laurent Pellegrino, Francoise Baude, and Iyad Alshabani, "Towards
a Scalable Cloud-based RDF Storage Offering a Pub/Sub Query

Page 21 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

22

Service," in CLOUD COMPUTING 2012 : The Third International
Conference on Cloud Computing, GRIDs, and Virtualization, 2012.

[71] Laurent Pellegrino, Fabrice Huet, Francoise Baude, and Amjad
Alshabani, "A Distributed Publish/Subscribe System for RDF Data,"
in Data Management in Cloud, Grid and P2P Systems. Prague , Czech
Republic: Springer Berlin Heidelberg, 2013, pp. 39-50.

[72] H. Abdullah, M. Rinne, S. Törmä, and E. Nuutila, "Efficient
matching of SPARQL subscriptions using rete," in Proceedings of the
27th Annual ACM Symposium on Applied Computing, 2012, pp. 372-
377.

[73] M. Rinne, E. Nuutila, and S. Törmä, "INSTANS: High-Performance
Event Processing with Standard RDF and SPARQL," in ISWC2012
posters and Demonstrations Track, Boston, US, 2012.

[74] Haris Abdullah, Seppo Törmä, Esko Nuutila Mikko Rinne,
"Processing Heterogeneous RDF Events with Standing SPARQL
Update Rules," in Confederated International Conferences: CoopIS,
DOA-SVI, and ODBASE 2012, Rome, Italy, September 10-14, 2012.
Proceedings, Part II, 2012.

[75] M. Murth and e. Kuhn, "Knowledge-based Coordination with a
Reliable Semantic Subscription Mechanism," in Proceedings of the
2009 ACM Symposium on Applied Computing, Honolulu, Hawaii,
2009, pp. 1374-1380.

[76] M. Murth and E. Kühn, "A Heuristics Framework for Semantic
Subscription Processing," in 6th European Semantic Web Conference,
ESWC 2009 Heraklion, Crete, Greece, May 31–June 4, 2009
Proceedings, 2009, pp. 6-110.

[77] M. Murth and E. Kühn, "Knowledge-Based Interaction Patterns for
Semantic Spaces," in International Conference on Complex,
Intelligent and Software Intensive Systems (CISIS), 2010, pp. 1036-
1043.

[78] OWLIM Primer. [Online].
http://graphdb.ontotext.com/display/OWLIMv40/OWLIM+Primer

[79] S. Bartolini et al., "Reconfigurable natural interaction in smart
environments: approach and prototype implementation," Personal and
Ubiquitous Computing, vol. 16, no. 7, pp. 943-956, 2012.

[80] B. Vlist, G. Niezen, S. Rapp, J. Hu, and L. Feijs, "Configuring and
controlling ubiquitous computing infrastructure with semantic
connections: A tangible and an AR approach," Personal Ubiquitous
Computing, vol. 17, no. 4, pp. 783–799, 2013.

[81] D.G. Korzun, S.I. Balandin, and A.V. Gurtov, "Deployment of
Smart Spaces in Internet of Things: Overview of the Design
Challenges," in NEW2AN 2013 and ruSMART 2013. LNCS 8121,
2013, pp. 48–59.

[82] J. Takalo-Mattila, J. Kiljander, M. Eteläperä, and J. Soininen,
"Ubiquitous computing by utilizing semantic interoperability with
item-level object identification," in Mobile networks and management,
lecture notes of the institute for computer sciences, social informatics
and telecommunications engineering.: Springer Berlin Heidelberg,
2011, pp. 198-209.

[83] D.G. Korzun, A.M. Kashevnik, S.I. Balandin, and A.V. Smirnov,
"The Smart-M3 Platform: Experience of Smart Space Application
Development for Internet of Things," in NEW2AN/ruSMART 2015.
LNCS 9247, 2015, pp. 56–67.

[84] M. Etelapera, J. Kiljander, and K. Keinanen, "Feasibility evaluation
of M3 smart space broker implementations," in 11th International
Symposium on Applications and the Internet (SAINT), 2011, pp. 292-
296.

[85] J. Kiljander, A. Ylisaukko-oja, J. Takalo-Mattila, M. Eteläperä, and
J. Soininen, "Enabling semantic technology empowered smart spaces,"
Journal of Computer Networks and Communications, 2012.

[86] Suomalainen J., Hyttinen P., and Tarvainen P., "Secure information
sharing between heterogeneous embedded devices," in 4th ACM
European Conference on Software Architecture (ECSA), Copenhagen,
Denmark, 2010, pp. 205–212.

[87] I. Galov, A. Lomov, and D. Korzun, "Design of semantic

information broker for localized computing environments in the
Internet of Things," in 17th Conference of Open Innovations
Association FRUCT, 2015, pp. 36–43.

[88] Viola F., D’Elia A., Roffia L., and Cinotti T., "A Modular
Lightweight Implementation of the Smart-M3 Semantic Information
Broker," in 18th Conference of Open Innovations Association FRUCT,
2016.

[89] A. Burks, H. Goldstine, and J. von Neumann, "Preliminary
Discussion of the Logical Design of an Electronic Computing
Instrument," Institute for Advanced Study, Princeton, USA, 1946.

[90] S.A. Edwards and E.A. Lee, "The Case for the Precision Timed
(PRET) Machine," in in Proceedings of the 44th Design Automation
Conference (DAC), San Diego, California, 2007.

Page 22 of 22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

