
24 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Roffia, L., Morandi, F., Kiljander, J., D'Elia, A., Vergari, F., Viola, F., et al. (2016). A Semantic Publish-
Subscribe Architecture for the Internet of Things. IEEE INTERNET OF THINGS JOURNAL, 3(6), 1274-1296
[10.1109/JIOT.2016.2587380].

Published Version:

A Semantic Publish-Subscribe Architecture for the Internet of Things

Published:
DOI: http://doi.org/10.1109/JIOT.2016.2587380

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/578912 since: 2020-12-23

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/JIOT.2016.2587380
https://hdl.handle.net/11585/578912


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

L. Roffia et al., "A Semantic Publish-Subscribe Architecture for the Internet of 
Things," in IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1274-1296, Dec. 2016, 
doi: 10.1109/JIOT.2016.2587380. 

The final published version is available online at: 
https://doi.org/10.1109/JIOT.2016.2587380 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
https://doi.org/10.1109/JIOT.2016.2587380


For Review
 O

nly
A Semantic Publish-Subscribe Architecture for the Internet 

of Things 

Journal: IEEE Internet of Things Journal 

Manuscript ID IoT-0998-2016.R1 

Manuscript Type: Regular Article 

Date Submitted by the Author: 07-Jun-2016

Complete List of Authors: ROFFIA, LUCA; University of Bologna, DISI 
Morandi, Francesco; University of Bologna, ARCES 
Kiljander, Jussi; VTT Technical Research Center of Finland,  
D'Elia, Alfredo; University of Bologna, DISI 
Vergari, Fabio; University of Bologna, ARCES 
Viola, Fabio; University of Bologna, ARCES 

Salmon Cinotti, Tullio; University of Bologna, DISI; University of Bologna, 
ARCES 
Bononi, Luciano; University of Bologna, DISI 

Keywords: 

Cyber-Physical Systems < Sub-Area 3: Services, Applications, and Other 
Topics for IoT, Mobile and Ubiquitous Systems < Sub-Area 3: Services, 
Applications, and Other Topics for IoT, Semantic Data and Service < Sub-
Area 3: Services, Applications, and Other Topics for IoT, Smart Cities < 
Sub-Area 3: Services, Applications, and Other Topics for IoT, Smart 
Environment < Sub-Area 3: Services, Applications, and Other Topics for 
IoT, Service Middleware and Platform < Sub-Area 3: Services, Applications, 
and Other Topics for IoT 



For Review
 O

nly

1 

Abstract— This paper presents a publish-subscribe 
architecture designed to support information level 
interoperability in smart space applications in the Internet of 
Things (IoT). The architecture is built on top of a generic 
SPARQL endpoint where publishers and subscribers use 
standard SPARQL Updates and Queries. Notifications about 
events (i.e., changes in the RDF knowledge base) are expressed in 
terms of added and removed SPARQL binding results since the 
previous notification, limiting the network overhead and 
facilitating notification processing at subscriber side. A novel 
event detection algorithm, tailored on the IoT specificities (i.e., 
heterogeneous events need to be detected and continuous updates 
of few RDF triples dominate with respect to more complex 
updates), is presented along with the envisioned application 
design pattern and performance evaluation model. Eventually, a 
reference implementation is evaluated against a benchmark 
inspired by a smart city lighting case. The performance 
evaluation results show the capability to process up to 68K 
subscriptions/s triggered by simple single-lamp updates and up to 
3,8K subscriptions/s triggered by more complex updates (i.e., 10 
to 100 lamps). 

Index Terms— Interoperability, Internet of Things, 
Performance evaluation, Publish-Subscribe, Semantic Event 
Processing, Smart Space Applications, SPARQL 

I. INTRODUCTION

ANY research programs in information and 
communications technologies (ICT) are motivated by 

the need to close the growing gap between demand and offer 
of services in our cities, often affected by challenging 
urbanization processes. Urban facility management, out-of-
hospital preventive care, smart grid based energy efficiency, 
urban mobility and cultural development are some of the main 
domains calling for services that could change citizen’s life, as 
well as, the attractiveness and development models of our 
cities. Public administrations, industries, research 
organizations and opinion makers share the vision that by 
integrating computing, networking and interaction with 
physical processes, ICT will enable such services, usually 
referred as smart city services [1] [2] [3]. In general, smart city 
services rely on event processing infrastructures that, 
operating in a closed loop: i) react to changes in the physical 
environment (i.e., event detection), ii) reason on the system 
status (i.e., event processing) and iii) actuate changes in the 
controlled environment. Dealing with heterogeneous 
interconnected devices distributed into physical environments, 
such event processing infrastructures can be framed within the 
Internet of Things (IoT) domain [4] [5] [6]. IoT can be 

considered as an abstraction of the physical world, where 
people and devices mutually interact but also interact with 
natural and artificial physical entities (i.e., things). These 
entities, in order to be monitored and/or controlled by other 
devices, must be uniquely identified, and may also be searched 
through a set of relevant properties or a set of relations with 
other entities.  

The level of interoperability, dynamicity, flexibility, 
expressivity and extendibility required in IoT could be 
provided by Semantic Web [7] based interoperability 
platforms like the Task Computing Environment (TCE) [8], 
Context Broker Architecture for Pervasive Computing 
(CoBrA) [9] [10], Semantic Space [11], Semantic middleware 
for IoT [12], Smart objects awareness and adaptation Model 
(SoaM) [13], Amigo [14], SPITFIRE [15], OpenIoT [16] and 
Smart-M3 [17], to name a few. The main drawback of 
Semantic Web technologies concerns the low level of 
performance that makes it difficult to achieve responsiveness 
and scalability required in many IoT applications. The main 
reason for the poor performance is that Semantic Web 
technologies have been designed to process data sets 
consisting of big amounts of Resource Description Framework 
(RDF) [18] triples (e.g., Open Linked Data project [19]) that 
evolve constantly but at a much slower rate compared to the 
rate of elementary events occurring in the physical 
environment.  

To address this limitation, we propose a novel Semantic 
Publish-Subscribe (SPS) Architecture for the IoT built on 
mainstream research results in Semantic Web technologies 
and smart spaces [20]. This architecture is intended to become 
the core component of edge computing nodes, supporting IoT 
gateway and local processing functions, and thus implement 
interoperability in IoT.  

In our earlier work we have proposed a Semantic 
Interoperability Architecture for Internet of Things [21], which 
divides large-scale Semantic Web-based IoT systems into 
distributed knowledge bases in order to achieve scalable 
solution for semantic event processing. The SPS Architecture 
complements this architecture by focusing on enabling real-
time semantic event processing within a single knowledge 
base. Additionally, the SPS Architecture builds on top of the 
authors experience on the development of an open 
interoperability platform for smart space applications [22] [23] 
[24] [25] [26] and it has been heavily influenced by the Smart-
M3 semantic interoperability platform [17] . The Smart-M3
platform has been adopted, evaluated and extended in past and 
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current EU projects (e.g., SOFIA, CHIRON, IoE, 
RECOCAPE, IMPReSS, ARROWHEAD) in partnership with 
industrial players and the novel SPS Architecture presented in 
this paper is a research result of this work. The SPS 
Architecture improves the original Smart-M3 platform with a 
modular system architecture and an efficient SPARQL 
Subscription (SUB) Engine. The key differences of the SPS 
Architecture compared to the Smart-M3 and other state-of-the-
art SPARQL subscription processing platforms are presented 
in more detail in Section VII. The main characteristics of the 
SPS Architecture are following: 
• A semantic event is defined as a change in the RDF 

knowledge base 
• Clients are divided into three groups: producers, 

consumers and aggregators 
• Clients use SPARQL updates [27] and queries [28] 

(without any extension) respectively to generate and 
subscribe to semantic events 

• A notification includes only the added and removed 
SPARQL binding results since the previous notification 
(i.e., the entire set of SPARQL binding results is returned 
to the subscriber when the subscription is registered) 

• Event negation (i.e., the not occurrence of an event within 
a time interval) is supported  

• The architecture is natively parallel  
A central component in the SPS Architecture is the SUB 

Engine that implements a novel event detection algorithm. The 
SUB Engine has been designed for IoT systems where the 
environment status continuously evolves with frequent fine-
grain asynchronous changes (i.e., events) and low latency 
reactions to these events are required. The SUB Engine is the 
core of the SPS Architecture and its architecture represents a 
major research contribution of this paper.  In addition, the 
novel contribution of the paper includes an application design 
pattern and a method to evaluate the performance of a SUB 
Engine implementation. The proposed evaluation method 
consists of a performance model, a set of performance 
indicators and a benchmark. A prototype implementation of 
the SUB Engine is the result of an engineering effort and it 
was considered relevant to concretely evaluate the research 
outcome. 

The paper is structured as follows: in Section II the SPS 
Architecture is introduced; in Section III the underpinning 
SUB Engine architecture is presented along with the event 
detection algorithm; Section IV suggests a performance 
evaluation method of the SUB Engine; Section V provides the 
details of the reference implementation evaluation and Section 
VI summarizes the evaluation outcome; in Section VII 
existing approaches to semantic event processing are 
summarized and compared with our approach. Conclusions are 
drawn in Section VIII.  A glossary and the details about the 
performance tests are provided in two appendixes. 

II. ARCHITECTURE  

A. Overview 
The proposed architecture is inspired by the Smart-M3 

concept [17] and it consists of a processing infrastructure, a 
set of primitives and clients (Fig. 1). It is a reduced primitive 
set architecture, as only two primitives are in principle enough 
to implement an application: UPDATE and SUBSCRIBE. 

 
Fig. 1. Semantic Publish-Subscribe Architecture 

The UPDATE primitive is a SPARQL 1.1 Update. It 
provides the mean for creating events by inserting, removing, 
or modifying information inside the SPARQL endpoint RDF 
store, optionally at a specific time in the future (i.e., namely 
Delayed SPARQL Update). The Delayed SPARQL Update is a 
new contribution with respect to the Smart-M3 original idea. 
As it will be explained in Section II.C, the SUB Engine will 
execute the primitive at the specified time and the client (i.e., 
usually an aggregator) has not to implement any time 
management mechanism (e.g., starting timers). This allows to 
simplify the design of the application business logic and to 
grant the time synchronization of clients through the SUB 
Engine. 

The SUBSCRIBE primitive, represented with a SPARQL 1.1 
SELECT Query form, provides the mean for a client to be 
notified on specific events. When it is invoked, it returns the 
SPARQL binding results. Then, if an UPDATE primitive 
triggers a notification, to avoid re-transmitting the entire 
results, the notification (denoted with R) contains only the 
added and the removed SPARQL binding results since the 
previous notification (i.e., this approach is similar to Istream 
and Dstream operators used in the SQL based continuous 
query language proposed by Arasu et al. [29]): 

! = !! ∖ !!!!,  !!!! ∖ !!  

where Rt-1 and Rt are respectively the binding results before 
and after the UPDATE primitive that triggered the 
notification. The advantages of this approach can be 
appreciated by considering a simple (but at the same time very 
common) example: an IoT service (i.e., acting as a consumer) 
plots on a GUI the trend of 1 Million pollution sensors. If a 
sensor updates its measure, the service is notified with just that 
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single measure and so it can easily add a new point to the plot. 
Otherwise, the service would receive 1 Million values and it 
should compare all of them with the current ones to 
understand which value has changed. Furthermore, sending 
one single result, instead of 1 Million results, dramatically 
reduces the network overhead. 

B. Application design pattern 
In order to achieve modular, extensible and cost-effective 

solutions (i.e., by enforcing a clean separation between the 
physical world and its digital representation) the proposed 
application design pattern follows:  
• Clients are categorized in three sets: producers, 

consumers and aggregators.
• Producers and consumers should be kept as simple as 

possible. 
• Aggregators implement the application business logic.
• Vocabulary and rules for the semantic coupling of clients

are defined by a shared OWL ontology [30].
Fig. 1 clarifies the roles of producers, consumers and 

aggregators in the proposed application design pattern. All 
three types of clients benefit from the expressivity of 
SPARQL 1.1. Thus, the engine inherently supports the 
generation, detection and notification of events of various 
complexity and granularity levels. 

Producers and consumers are the bridge between the 
physical world and its digital representation (i.e., that is stored 
into the SPARQL endpoint RDF store). The role of producers 
is to collect and input physical world information into the 
SPARQL endpoint RDF store through the SUB Engine. 
Consumers, on the other hand, subscribe to events detected 
and notified by the SUB Engine and provide feedback to the 
physical world. Producers and consumers exchange 
information with the physical world through a legacy 
interface, which is strictly dependent on the physical sensors 
and actuators technologies. They have no internal memory 
(i.e., the local memory may only be used for local processing 
strictly related to the interfaced device/service). The legacy 
interface of a producer gathers data from the interfaced 
sensors (or other input devices/services) and, after some 
optional local processing, encapsulates these data into an 
UPDATE primitive (i.e., here is where the raw data is 
transformed into the semantic format). A consumer, on the 
other hand, waits for notifications (see Notification handler) 
from which it extracts the raw data and forwards it to the 
legacy interface in order to control a specific actuator (or other 
output devices/services). 

The role of aggregators is to link the functionalities 
provided by producers and consumers in order to achieve the 
desired behaviors. To this end, they subscribe to events 
created by producers and create new events that may trigger 
actions of consumers or other aggregators. In general, the 
application business logic implemented by an aggregator can 
be combinatorial (i.e., no context memory is needed) or 
sequential (i.e., the context evolution is stored into the 
aggregator internal context memory). In both cases it is 
possible to specify whether an UPDATE primitive has to be 

executed immediately or at a specific time in the future (see 
Delayed SPARQL Update). 

The advantages of the proposed design guidelines are 
twofold: first, since producers and consumers are 
implemented independently from a specific use case, they can 
be shared between different applications (i.e., by modifying 
existing or implementing new aggregators the overall system 
functionality can be modified or extended indefinitely). This, 
of course, leads to cost savings also when new systems are 
deployed. Second, since the processing performed by 
consumers and producers is very simple, they may be 
implemented in resource-restricted devices that are typical in 
IoT. 

C. Time management and event negation 
The SUB Engine grants time management through the

following functional elements: 
• A SPARQL function to retrieve the current time (i.e., the

Unix time extended to µs). As the time is retrieved on the
SUB Engine side, this allows the events generated by
clients and the notifications sent by the engine to be time
stamped with a unique clock (i.e., the function can be
used within a UPDATE or SUBSCRIBE primitive). If a
hard timing is required on data produced by a client, this 
is left to the client itself and external synchronization
mechanisms have to be implemented. 

• The Delayed SPARQL UPDATE primitive that allows the
clients to schedule a SPARQL Update execution on the 
SUB Engine side at a specified time.

The SUB Engine has also the capability to handle event 
negation (i.e., the notification of events that did not occur 
within a specified time interval). This is a relevant feature for 
example in supervising systems [31] where the “not-
occurrence” of an expected event is itself the event to be 
detected and notified. In the proposed design pattern, this 
feature is provided by a Delayed SPARQL UPDATE: if a 
client invokes a Delayed SPARQL UPDATE primitive at time 
t, then at time t+Δt the SUB Engine will execute the UPDATE 
primitive and it will generate results if and only if the expected 
event has not occurred. For example, detecting if the transition 
of a variable var to a desired value X did not occur within a 
specified time interval Δt can be achieved using a Delayed 
SPARQL UPDATE having in the WHERE clause two triple 
patterns referring to the variable under control: one 
representing the value itself (e.g., <var, hasValue, X>) and the 
other one representing the timestamp of its last update (e.g., 
<var, hasTimeStamp, timestamp>). 

D. Application design and event negation example
In order to clarify the concepts and the application design 

pattern above discussed, a simple example follows: in a smart 
lighting scenario where each lamp-post is equipped with a 
presence sensor, every lamp must be turned on when the 
associated sensor detects a presence, while it must be switched 
off when no presence has been detected for Δt seconds (i.e., 
this is an event negation example). Fig. 2 shows the sequence 
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diagram of this application implemented with the following 
three clients:  
1. Presence sensor (producer): it keeps up-to-date in the 

SPARQL endpoint RDF store both the presence sensor 
status (TRUE/FALSE) and its timestamp. 

2. Lamp actuator (consumer): it is subscribed to changes in 
the lamp status (ON/OFF). 

3. Smart lighting (aggregator): it implements the application 
business logic. It is subscribed to changes in the presence 
sensor status and it updates the lamp status accordingly: if 
a presence is detected (i.e., presence=TRUE), the status of 
the lamp is updated with the value ON, otherwise (i.e., 
presence=FALSE) a delayed UPDATE primitive is issued 
to turn OFF the lamp after Δt seconds. 

 
Fig. 2. Sequence diagram of the smart lighting example 

As shown in Fig. 2, when the presence sensor returns 
FALSE for the first time, a first delayed UPDATE primitive is 
issued by the Smart lighting client at time t1. The SUB Engine 
executes this UPDATE primitive at time t1+Δt but the status 
of the lamp is not updated at time t1+Δt because the presence 
sensor status (therefore its timestamp) changed meanwhile. On 
the other hand, when the SUB Engine executes the second 
delayed UPDATE primitive at time t2+Δt, as neither the 
presence sensor status nor its timestamp have been modified in 
the interval [t2, t2+Δt], the lamp status is updated (OFF) and 
consequently the Lamp actuator is notified. The actual syntax 
of the UPDATE and SUBSCRIBE primitives for this example 
are in [32]. This mechanism allows the clients to delegate the 
time management to the SUB Engine, thus avoiding any 
further action on the client side once a delayed UPDATE 
primitive has been issued (i.e., no timers 
activations/deactivations are needed on the client side). 

III. SPARQL SUBSCRIPTION ENGINE 

Two major research contributions of this work are presented 
in this section: the SPARQL Subscription Engine (SUB 
Engine) internal architecture and the implemented event 
detection algorithm. More in detail, the SUB Engine 
architecture, how the SUB Engine processes the UPDATE and 
SUBSCRIBE primitives and the event detection algorithm 

(along with an analysis of its time complexity) are all 
presented in this section.  

As Fig. 3 shows, the SUB Engine consists of the following 
main components:  
• A scheduler listening for requests incoming from two 

FIFO queues: the UPDATE Request Queue (URQ) and 
the SUBSCRIBE Request Queue (SRQ). 

• One SPARQL Processing Unit (SPU) for each 
SUBSCRIBE Request received.  

 
Fig. 3. SPARQL Subscription Engine Architecture 

A SPU implements the event detection algorithm (see 
BOOSTER in Fig. 3) and notifies just the subscriber 
originating the request. Each SPU holds its own Context 
Triple Store (CTS). This is a subset of the entire SPARQL 
endpoint RDF store and it is defined as the “union of all RDF 
triples matching at least one of the triple patterns of the 
SUBSCRIBE graph pattern”. In the proposed architecture, the 
CTS is related to the SPARQL endpoint RDF store as the 
cache memory is related to main memory in a traditional 
computer, while each SPU corresponds to a processor with its 
own cache in a traditional multiprocessor system. The role and 
importance of the CTS can be better appreciated considering 
the following common IoT scenario. With reference to the 
example shown in Section II.D, let us consider a smart city 
equipped with presence sensors, one for each lamp-post in the 
city (e.g., 50K sensors). The SPARQL endpoint RDF store 
contains at least 50K RDF triples, each of them representing 
the status of a presence sensor. A smart space application is 
interested in monitoring the presence of cars close to a specific 
lamp-post (e.g., at the entrance of a tunnel). The application is 
so subscribed to a specific presence sensor and consequently 
the CTS will contain just one RDF triple. As it will be better 
appreciated in the following sections, this will boost the SPU 
performance, allowing a SPU to search for changes in a very 
reduced set of RDF triples (e.g., one RDF triple). 

A. SUBSCRIBE primitive processing 
The scheduler allocates a new SPU, and therefore a CTS, 

whenever a SUBSCRIBE request is extracted from the SRQ 
(see I in Fig. 3). Each SPU includes a Look Up Triples Table 
(LUTT). The purpose of the LUTT is to filter out, as early as 
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possible, those triples that are not relevant for the given 
subscription. In order to build the LUTT, the SPU extracts all 
the triple patterns from the SUBSCRIBE query pattern. Then 
the variables contained in the extracted triple patterns are 
substituted with wildcards and are inserted into the LUTT (see 
II in Fig. 3). An example of a LUTT created from a simple 
subscription is shown in Fig. 4. 

 
Fig. 4. A SUBSCRIBE primitive example and the associated LUTT 

Furthermore, the SPU splits the SPARQL query graph 
pattern into basic graph patterns.  Each basic graph pattern is 
then associated to a new SELECT query (i.e., we define this as 
a sub-query), which includes the references to its own basic 
graph pattern variables only (Fig. 5).  

 
Fig. 5. SUBSCRIBE queries are split into sub-queries based on basic graph 
patterns. Each sub-query refers only to the variables included in its own basic 
graph pattern 

All the RDF triples matching the LUTT are retrieved from 
the SPARQL endpoint and stored into the CTS (see III in Fig. 
3). Then the SPARQL query is issued by the SPU on the CTS 
and the SPARQL binding results are sent to the subscriber 
(see IV in Fig. 3). In this way the subscriber is aware of the 
initial context and it is therefore in the position to track the 
evolution of such context through all subsequent notifications. 

B. UPDATE primitive scheduling and processing 
Fig. 6 is a stepwise view of the UPDATE handling 

workflow, which is partitioned into two phases: scheduling 
and processing. The workflow can be carried out in sequential 
or in parallel mode.  

The sequential mode is useful for extracting performance 
indicators of each workflow step (see Section IV). It also 
enables semantic event processing to be deployed on low cost 
single core platforms (e.g., on a Raspberry Pi).  

In parallel mode these two phases are pipelined. 
Furthermore, all SPUs run concurrently and within each SPU 
the processing phase steps are executed sequentially. Thus, 
with n+1 cores, n active subscriptions could be processed in 
parallel (i.e., one core for the scheduler and one core for each 
active SPU). In principle, with this processing model, 
scheduling may shadow processing, so that the proposed 
engine could not induce any overhead on the SPARQL 
endpoint updates processing.  

 
Fig. 6. UPDATE primitive scheduling and processing: SUB Engine workflow 

As shown by Fig. 6 and with reference to Fig. 3, the 
scheduling phase goes through the following steps: a new 
UPDATE request is fetched from the input FIFO queue URQ 
(1), then the SPARQL endpoint RDF store is updated and the 
added and removed triples (if any) are retrieved (2) and 
filtered through the LUTT (3). Filtering is performed as a 
simple string matching on the added and removed triples 
against the LUTT content (i.e., wildcards mean “any string”). 
If no match is found, the processing ends (MISS) otherwise all 
added and removed triples matching the LUTT (HIT) are 
inserted into the Added/Removed Triples Queue (ARTQ) and 
the associated SPU is activated (4). Then the BOOSTER 
component of the activated SPU implements the event 
detection algorithm (5) taking as input the ARTQ triples. 
Eventually, all detected events (if any) are notified to the 
subscriber (6).  

C. Event detection algorithm 
The event detection algorithm implemented by the 

BOOSTER has been designed to match the typical profile of 
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SELECT ?sensorT ?valueT ?sensorH ?valueH  
WHERE {{ 
?sensorT ns:hasValue ?valueT . 
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{  
?sensorH ns:hasValue ?valueH .  
?sensorH ns:hasMeasurand ns:Humidity 
}} 
  

SUBSCRIBE 

* ns:hasValue * 
* ns:hasMeasurand ns:Temperature 
* ns:hasMeasurand ns:Humidity 

LUTT 

SOFIA CONFIDENTIAL 

SELECT ?sensorT ?valueT ?sensorH ?valueH  
WHERE {{ 
?sensorT ns:hasValue ?valueT . 
?sensorT ns:hasMeasurand ns:Temperature 
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}} 
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?sensorT ns:hasValue ?valueT . 
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Internet of Things applications, which mostly react to physical 
processes and share the following specificities: 
• Selective updates of few triples dominate with respect to

more complex updates (typical examples of this kind are
continuous and asynchronous updates of sensor values). 

• Large sets of heterogeneous events need to be detected.
• Average CTS size is significantly smaller compared to the 

SPARQL endpoint RDF store size. 
• Multi-domain scenarios (i.e., smart cities) become 

increasingly relevant, implying that only a small 
subscriptions fraction is likely to be involved by the same
update. 

Thus, according to the most important and pervasive 
principle of computer design “make the common case fast” 
quantified by the Amdahl’s Law [33] [34], selective updates 
need to be processed as fast as possible by selective 
subscribes, while less frequent updates, such as run time 
ontology extensions or massive RDF data uploads, are allowed 
for a much longer processing time. Accordingly, the following 
requirements were assumed for the event detection algorithm 
and for the SUB Engine: 
• At the occurrence of an update, every SPU has to check if 

any of the updated triples hits the LUTT. Therefore, this 
check should be as fast and effective as possible: fast 
because it concerns all subscriptions and effective to
minimize both the number of subscriptions and triples that
are candidate to produce notifications. 

• If an update hits the LUTT of a SPU, then the reflected 
context change may trigger a notification. In this case, 
only the added and removed SPARQL binding results 
since the previous notification must be found and sent to
the subscriber. 

• The engine performance should scale with the fraction of 
subscriptions concerned with the updates. Highly parallel
architectures may help in meeting this requirement, as 
subscriptions are logically independent. Therefore
subscriptions may be processed in any order, and, 
particularly, they might run in parallel as long as they do
not compete for the same resource (e.g., CPU or memory
bus). As every SPU has its own CTS, each subscription 
“hit” by an update (i.e., that needs to be processed) may
be mapped onto a separate processing unit or thread of a 
distributed or multicore architecture. The price to be paid
is measured in terms of CTS size and number of 
processing units required. 

Once activated, for each triple extracted from the ARTQ, a 
SPU makes a separate query on the CTS and the triple content 
is used to bind as many variables as possible before 
performing the query. By doing so, the query processing is 
optimized in two ways: the number of variables is reduced 
and, furthermore, if the query produces results these are for 
sure bindings to be notified (i.e., these are removed bindings if 
the triple is a removed one (or an added one matching a 
FILTER NOT EXITS or MINUS pattern) or added bindings if 
the triple is an added one (or a removed one matching a 
FILTER NOT EXITS or MINUS pattern)). Therefore, there is 

no need to compare the current bindings with the previous 
ones to find out how the results have changed. Avoiding this 
comparison is very relevant for the algorithm performance, 
particularly if just few bindings out of many changed as a 
consequence of an update (i.e., this is very common in IoT 
like systems where selective updates of few triples, like 
continuous and asynchronous updates of sensor values, 
dominate with respect to more complex updates).  

More in detail, during the processing phase, a SPU goes 
through the following steps (see Fig. 6): 
1. It finds the binding results using the removed triples as

input (step 5.1). 
2. It updates the CTS with the added and removed triples

(step 5.2). 
3. It finds the binding results using the added triples as input

(step 5.3). 
4. It notifies the subscriber on the binding results (if any)

(step 6). 
The pseudo-code of the algorithm implemented by the 

BOOSTER to find both the removed and added binding results 
(steps 5.1 and 5.3) follows. For each procedure called by the 
algorithm (see lines 3,4 and 5), a description is given along 
with an analysis of its time complexity. Eventually, a 
discussion on the overall algorithm time complexity is 
presented in the next subsection. 

Algorithm: Find binding results 
Input: set of SPARQL queries on basic graph patterns 

(queries) with cardinality NQUERIES 
Input: set of RDF triples (triples) with cardinality NTRIPLES 
Output: SPARQL binding results (results) 

Definitions:  
- triple: an RDF triple
- query: a SPARQL query on a basic graph pattern
- bindings: SPARQL binding results

0. results = Ø
1. For each query in queries do
2. For each triple in triples do
3. <query*, bindings*> = Match (query, triple)
4. bindings = Query (query*)
5. results = Merge (results, bindings, bindings*)
6. End For
7. End For
8. Return results

Procedure: Match (query, triple) 

In order to bind as many variables as possible (see bindings* 
at line 3), a string matching is performed on each triple pattern 
of the query against the triple. For example, if the triple 
pattern is <?class , rdf:type , rfds:Class> and the triple is 
<ns:ClassURI , rdf:type, rdfs:Class> then the procedure binds 
and replaces (within the query) the variable ?class with the 
value ns:ClassURI. All the bindings and the corresponding 
modified query are returned (see <query*, bindings*> at line 
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3). The procedure time complexity is, in the worst case, equal 
to the time complexity of a string comparison up to three times 
(i.e., subject, predicate and object) for each triple pattern of 
the query.  

Procedure: Query (query) 

The simplified SPARQL query obtained in the previous step 
(see query* at line 3) is executed on the CTS. In the best case 
(i.e., all the variables have been bound at line 3), the SPARQL 
query is replaced by an ASK query. The algorithm assumes 
that the time complexity of a query grows with the number of 
variables (i.e., the same query is faster if some variables have 
been bound), with the number of triple patterns and with the 
number of bindings results (i.e., a higher time is also required 
to receive the results over the communication channel). It is 
not possible to give a priori estimation of the SPARQL query 
time complexity as it depends on many factors, like the RDF 
store size, the form of the query and the SPARQL endpoint 
implementation. 

Procedure: Merge (results, bindings, bindings*) 

The bindings* found at line 3 and the bindings found at line 
4 are merged together with the current binding results (see 
results at line 5). These are removed bindings if the input 
triples are removed ones (or added ones matching a FILTER 
NOT EXITS or MINUS pattern) or added bindings if the input 
triples are added ones (or removed ones matching a FILTER 
NOT EXITS or MINUS pattern). The time complexity of this 
procedure is the time to insert the two bindings set (see 
bindings and bindings* at line 5) into the results bindings set. 

D. Event detection algorithm time complexity 
In a common IoT application, we can assume the following:

• NQUERIES = 1 (i.e., the SUBSCRIBE primitive has no
UNION construct) 

• TMATCH + TMERGE << TQUERY
* (i.e., the former two refer to

string comparisons in memory and merging of in memory
data structure, while the latter is related to executing a 
query on a RDF store) 

The algorithm time complexity can be so estimated as: 

!!"#~!!"#$%&' !!"#$%  + !!"#$%∗ + !!"#$"  ~ !!"#$%&'!!"#$%∗  (!") 
The optimization introduced by the algorithm can be 

appreciated with reference to the naïve Smart-M3 algorithm 
(i.e., the former implementation described in [22]). In order to 
detect changes in the RDF store and notify such changes to the 
subscriber, the naïve algorithm queries the SPARQL endpoint, 
retrieving all the bindings results (i.e., N), and it compares 
these results with the current ones (i.e., N2 comparisons of 
bindings are needed). Defining TQUERY as the time to perform 
the query and TCMP as the time required by a single binding 
comparison, the time complexity of such algorithm can be 
expressed as:   

!!"#$% = !!!!"# + !!"#$%   (!!) 

The speedup introduced by the proposed algorithm with 
respect to the Smart-M3 naïve algorithm can be estimated 
assuming the following: 
• TQUERY = Q TQUERY* (i.e., where Q >> 1, as the same

SPARQL query, but with a lower number of variables, is
always faster than the original one). 

• NTRIPLES << N (i.e., the update of a sensor data usually
corresponds to 1-2 triples, while the number of bindings 
can be a very huge number equals to the number of
sensors within the system, 104 – 106 or more).

• The algorithm is executed twice to find both the added
and removed bindings results. 

With reference to (A1), (A2) and the above hypotheses, the 
speedup can be expressed as: 

!"##$%" = !!"#$%
2 !!"#

= !!!!"# + !!!"#$%∗
2!!"#$%&'!!"#$%∗

= !!

2 !!"#$%&'

!!"#
!!"#$%∗

+ !
2 !!"#$%&'

 (!!)  

The optimization introduced by the algorithm is proved with 
respect to the SUB Engine reference implementation evaluated 
in Section V. A first impression of the speedup can be 
provided considering the following: an IoT application aims at 
detecting changes in the status of any presence sensor among 
105 sensors of the same type (i.e., this is optimistic as the 
sensors could be many more). Each sensor reading 
corresponds to the update of one RDF triple (i.e., NTRIPLES = 
1). The bindings results returned by the query are in this case 
equal to 105 (N = 105).  Supposing a reasonable case where 
TCMP ≈ 10-3 TQUERY (e.g., µs versus ms) and considering the 
worst case of Q = 1, the speedup results 5 x 106.  

IV. PERFORMANCE EVALUATION METHOD

Semantic event processing can be applied to scenarios, 
which might greatly differ along several vectors including 
knowledge base size, events complexity, number of active 
subscribers and subscriptions granularity. In order to master 
this diversity and exploit the innovation potential of semantic 
event processing in the Internet of Things domain, simple 
methods are needed to design the workload and achieve the 
best workload/platform tradeoff. 

Frameworks, benchmarks and methods for performance 
evaluation of Semantic Web systems, in general, and Semantic 
Publish-Subscribe systems, in particular, have been proposed 
in the literature. Unfortunately, these methods are not suitable 
for analyzing the performance of the SPS Architecture in 
detail. In fact, the formers (e.g., [35] [36] [37] [38]) are mainly 
designed to evaluate the performance of a SPARQL endpoint 
on answering a predefined set of queries with reference to 
several data sets and they do not include any SPARQL 
Update. The latter are focused on analyzing the performance 
of specific publish-subscribe systems (e.g., [39] and [40]) 
whose architecture and primitives differ from the one 
presented in this paper. To this end, a method is envisioned to 
compare and predict the performance of different 
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implementations of the SPS Architecture, focusing on the 
SUB Engine (i.e., the clients-engine communication is not 
evaluated in this paper) and on its specific features (i.e., the 
LUTT filtering effectiveness and the parallel processing 
support). The method is based on a benchmark, a performance 
model and a set of key performance indicators (KPIs). 

A. Benchmark 
In semantic event processing, notifications may be triggered

by the occurrence of events of various granularity levels 
(being, in our solution, the expressivity of the SPARQL 
language the limit to specify such granularity).  Events 
specification patterns may range from “a sensor matches a 
specific value range” to a mix of patterns concerning sensors 
spread anywhere (e.g., in a specific geographical area, in a 
street or over an entire city), or characterized by particular 
time and/or space relations over a specific set of data. The 
benchmark should mimic the fine events granularity expected 
in IoT applications typically characterized by frequent updates 
of a single data-property value (i.e., a sensor value) and less 
frequent concurrent updates of sets of properties. In particular, 
a benchmark is defined with reference to a specific OWL 
ontology and it is composed by a set of experiments, where 
each experiment is characterized by: 
• An Update Profile (U), defined as a set of n UPDATE

primitives Ui.
• A Subscription Profile (S), defined as a set of m

SUBSCRIBE primitives Sj.
• A Number of Updated Triples Profile ([Nu]), defined as

vector of n elements, where each element Nui is the
amount of triples updated by Ui. The average number of
triples updated by a single UPDATE primitive within an
experiment can be accordingly expressed as: 

!"!"# =
1
! !"i  

!

!!!
 (!) 

• A LUTT matrix ([h]), defined as a Boolean matrix of n x 
m elements  where a generic element hi,j = 1 if at least one
of Nui triples pass LUTTj, otherwise hi,j = 0. The LUTT
matrix may be considered a sparse matrix and the amount
of “zeros” increases while the addressed scenario 
becomes more and more multi-domain (e.g., as it is 
expected in smart cities). An indication of the LUTT
filtering effectiveness in a particular scenario is given by 
the LUTT Hit Rate defined as:

!"# % = 100
! x ! !i,j

!

!!!

!

!!!
 (!) 

The lower the LHR, the larger is the LUTT contribution to 
the engine performance level in the addressed scenario. 

B. Performance model 
The performance model subdivides the elapsed time

(TELAPSED) of an experiment in its most relevant components in 
order to analyze the impact of each component on the overall 
performance, understand if an implementation meets the 

requirements of a specific application, identify possible 
bottlenecks, remove the observations overhead from the KPIs 
evaluation and predict the performance level achievable with a 
parallel computing infrastructure. When the engine runs in 
sequential execution mode, five not-overlapping timing 
components may be recognized in the elapsed time of an 
experiment: 

!ELAPSED = !OVERHEAD + !UPDATE + !LUTT + !BOOSTER + !NOTIFY     (!)
TUPDATE is the total latency time of the SPARQL endpoint 

occurring when the Update Profile is applied. 
Given the Update and Subscription Profiles, respectively 

with cardinality n and m, TLUTT is the time paid to check n 
times all the m LUTTs. 

TBOOSTER is the time spent by all m BOOSTERs to search 
their CTSs for the results to be notified to the subscribed 
clients. 

TNOTIFY is the time spent by all m SPUs to forward the results 
to the communication interface. 

TOVERHEAD is the time required to control the experiment and 
to collect the timing information (i.e., we define. the net time 
of an experiment as TTOTAL = TELAPSED - TOVERHEAD). 

C. Key Performance Indicators (KPIs) 
Five key performance indicators (KPIs) are proposed to 

compare different implementations and predict if the 
requirements of new scenarios can be met by a specific engine 
implementation. KPIs values depend on the benchmark and 
they can be estimated starting from the model parameters 
deduced by the experimental results. Given the Update and 
Subscribe Profiles, respectively with cardinality n and m, the 
proposed KPIs are shown in Table 1. 
Table 1 Key Performance Indicators (KPIs) 

Average number of updates 
processed per unit time 

Average number of triples 
processed per unit time 

!"# = !
!TOTAL

!"# = !"!"#  !"# 

Average number of subscriptions 
processed per unit time 

Engine to SPARQL Endpoint 
impact factor 

!"# = ! !"# !"! = !!"!#$ − !!"#$%&
!!"#$%&

Event notification latency range 

!"!"# = !"# !"!,!+!"!,!+!"!,!| ! = 1. .! , ! = 1. .! ∧ !"!,! ≠ 0
!"!"# = !"# !"!+!"!+!"!| ! = 1. .! ∧ !"! ≠ 0

Ups is an indicator of how many updates are processed per 
unit time in average, while Sps states how many subscriptions 
are processed per unit time and therefore it is directly related 
to the Subscription Profile cardinality. But neither Ups nor 
Sps considers events complexity. Therefore, as the time 
complexity of the algorithm presented in Section III.C 
depends on the number of triples processed, Tps is introduced 
to provide an indication of the computational load in terms of 
average number of triples processed per unit time. 

The notification latency is also a relevant quality factor of a 
publish-subscribe engine. Therefore NL is proposed as a 
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measure of the time span between updates and notifications 
(i.e., if events are detected).  NL lower bound (NLmin) may be 
reached when the engine works in parallel mode. In this case, 
the notification latency of SUBSCRIBE Sj triggered by 
UPDATE Ui cannot be less than the sum of the LUTT filtering 
time (tli,j), the BOOSTER time (tbi,j) and the time required to 
send the result to the communication interface (tei,j). On the 
contrary, NL upper bound (NLmax) occurs when the last SPU 
notifies its client in sequential mode.  

Eventually, E2E is motivated by the consideration that the 
engine sits on top of a SPARQL endpoint. This KPI tells 
which performance penalty has to be paid in order to add the 
semantic event detection and notification capability to a 
SPARQL endpoint. The closer this KPI is to zero, the lower is 
the overhead introduced by the SUB Engine on the underneath 
SPARQL endpoint. 

V. REFERENCE IMPLEMENTATION EVALUATION

The open source reference implementation [41] evaluated in 
this paper extends the Smart-M3 implementation released in 
2012 [22] by introducing the following main novelties: the 
algorithm presented in Section III.C, the parallelization of 
SPUs, the delayed SPARQL primitive and the Virtuoso [42] 
support. The Context Triple Store (CTS) is based on RedLand 
[43] [44] running in RAM, while the SPARQL endpoint can
be one of RedLand supported storages (e.g., hashes, Berkeley
DB, Virtuoso). The Smart-M3 protocol (i.e., Smart Space
Access Protocol (SSAP) [17]) has been extended to support
the two new primitives (i.e., UPDATE and SUBSCRIBE), and
otherwise was left unchanged to maintain backward-
compatibility. Other suitable protocols could be, for example, 
the Knowledge Sharing Protocol (KSP) [45] and the 
Constrained Application Protocol (COAP) [46]. Developers
can benefit from a set of open source APIs, available in
several programming languages (i.e., Python, C, C#, Java,
PHP, JavaScript) that make the proposed implementation
multi-language and multi-platform. 

A. Reference ontology 
The benchmark designed to evaluate the reference

implementation is inspired by a public lighting system of a 
small city with large, medium, small and very small roads 
(i.e., roads with up to 100, 50, 25 and 10 lamp-posts). Table 2 
provides the details about the ontology and the SPARQL 
endpoint RDF store size (i.e., number of RDF triples).  

Table 2 Benchmark knowledge base 
OWL Ontology T-Box content 
Classes 27 
Individuals 26 
Object properties 16 
Datatype properties 8 
OWL Ontology A-Box content (lamp-posts instances) 
Road types NLAMP/Road Roads Lamp-posts 

(Sensors) 
RDF 
Triples 

Very small 10 100 1K (2K) 35K 
Small 25 100 2.5K (5K) 88K 
Medium 50 100 5K (10K) 175K 
Large 100 10 1K (2K) 35K 

Total 310 9.5K (19K) 334K 

Altogether the city has 9500 posts (i.e., represented by 334K 
RDF triples), and each post is supposed to be equipped with a 
lamp and two sensors (i.e., temperature and presence). Each 
road and each lamp within a road are identified by a URI 
respectively in the form: ROAD_URI_X and 
LAMP_URI_X_Y, where X is a road identifier (i.e., in the 
range from 1 to 310), while Y is a lamp identifier within a 
road (i.e., Y varies from 1 to NLAMP, where NLAMP is the 
amount of lamp-posts in road X). Each lamp is characterized 
by a status (i.e., ON, OFF, BROKEN), a dimming value (i.e., 
0-100 %) and a type (i.e., LED, TRADITIONAL). Each post 
is identified by its geographical position (i.e., latitude and
longitude), while each sensor is represented by a set of
properties: the type (i.e., TEMPERATURE, PRESENCE), the
unit of measurement (i.e., °C/°F, BOOLEAN), the value (e.g.,
“32”, “True”, “False”) and a timestamp (i.e., expressed as
Unix time extended to µs). 

B. Experiments

The benchmark considers two types of UPDATE primitives 
(see ULAMP(X,Y) and UROAD(X) in Table 3) and two types of 
SUBSCRIBE primitives (see SLAMP(X,Y) and SROAD(X) in 
Table 3), where X indicates the index of a road, while Y 
indicates the index of a lamp post within a road. 

Table 3 UPDATE and SUBSCRIBE primitives from the benchmark 

UPDATE primitives 

ULAMP(X,Y) 
INSERT {LAMP_URI_X_Y ns:hasDimmingValue “100”} 
DELETE {LAMP_URI_X_Y ns:hasDimmingValue ?dimming} 
WHERE {LAMP_URI_X_Y ns:hasDimmingValue ?dimming} 
UROAD(X) 
INSERT {?lamp ns:hasDimmingValue “100”} 
DELETE {?lamp ns:hasDimmingValue ?dimming} 
WHERE {?lamp ns:hasDimmingValue ?dimming . ?post ns:hasLamp ?lamp .  
?road ns:isConnectedTo ?post . FILTER(?road = ROAD_URI_X)} 

SUBSCRIBE primitives 

SLAMP(X,Y) (i.e., fine-grain) 
SELECT ?dimming 
WHERE {LAMP_URI_X_Y ns:hasDimmingValue ?dimming} 
SROAD(X) (i.e., coarse-grain) 
SELECT ?lamp ?dimming 
WHERE { ?lamp ns:hasDimmingValue ?dimming . ?post ns:hasLamp ?lamp .  
?road ns:isConnectedTo ?post . FILTER(?road = ROAD_URI_X)} 

UROAD(X) is used to set to 100% the dimming value of all the 
lamps of road X and ULAMP(X,Y) is used to set to 100% the 
dimming of lamp Y within road X. SLAMP(X,Y) subscriptions 
(i.e., fine-grain) are sensitive to the update of the dimming 
value of lamp Y within road X, while SROAD(X) subscriptions 
(i.e., coarse-grain) are sensitive to the update of the dimming 
value of any lamp of road X. Table 4 compares the LUTT 
content and the CTS size of the two subscriptions. 
Table 4 LUTT content and CTS size for fine-grain and coarse-grain 
subscriptions 

LUTT Content CTS Size (Triples) 

SLAMP(X,Y) (i.e., fine-grain) 1 
LAMP_URI_X_Y ns:hasDimmingValue * 1 
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SROAD(X) (i.e., coarse-grain) ≈ 19K 
ROAD_URI_X ns:isConnectedTo * 10,25,50,1001 
* ns:hasLamp * 95002 
* ns:hasDimmingValue * 95002 

Two experiments (named LAMP and ROAD) based on two 
Update Profiles (named ULAMP and UROAD) with the same 
knowledge base (see Table 2) and the same Subscription 
Profile S are considered. S includes 1000 fine grain and 4 
coarse grain subscriptions (i.e., m = 1004). The formal 
specification of the Subscription Profile S follows: 
 !
= !! ≡ !!"#$(X,Y)| j=10(X-1)+Y , X�{1..5} � Y�{1..10}  
∪ !! ≡ !!"#$(X,Y)| j=100+25(X-101)+Y ,  X�{101..104} � Y�{1..25}

∪ !! ≡ !!"#$(X,Y)| j=200+50(X-201)+Y , X�{201..203} �Y�{1..50}

∪ !! ≡ !!"#$(X,Y)| j=300+100(X-301)+Y  ,  X�{301..307} � Y�{1..100}

∪ !! ≡ !!"#$(X)|(j , X)�{(1001,6),(1002,105),(1003,204),(1004,308)}  

Table 5 shows that, with the above-defined Subscription 
Profile, a notification is triggered if the dimming value of any 
of the 1185 lamps is updated.  
Table 5 Subscription profile 

Number of subscribers 
Road type SLAMP (X,Y) SROAD (X) Monitored lamps 
Very small 50 1 60 
Small 100 1 125 
Medium 150 1 200 
Large 700 1 800 
Total 1000 4 1185 

Both the experiments consist of 310 updates (i.e., n = 310). 
Therefore, even if the cardinality of both update profiles is the 
same, in the ULAMP profile each producer updates one lamp per 
road (i.e., at the end of the experiment 310 lamps are updated) 
while in the UROAD profile each producer updates all the lamps 
of an entire road (i.e., at the end of the experiment 9.5K lamps 
are updated). The formal definition of the two Update Profiles 
follows: 

!!"#$ = !! � !!"#$(i) |  i ∈{1..310}  

!!"#$ = !! � !!"#$(i,1) | i ∈{1..310}
For both the Update Profiles, the number of triples per 

update (i.e., [Nu] vector) is shown in Table 6.  
Table 6 [Nu] vectors (number of triples per update of the two experiments) 

1...100 101...200 201...300 301...310 
ROAD 10 25 50 100 

LAMP 1 

Table 7 is a compact representation of two (310 x 1004) 
LUTT matrices. Columns are labeled with the subscription 
indexes and represent either a single subscription (for the 
LAMP profile) or a set of NLAMP subscriptions (for the ROAD 
profile). Rows are labeled with the update indexes. The last 

1 the number of triples depends on number of lamp-posts in road X 
2 each lamp-post has a lamp and each lamp has a dimming value 

row represents collectively all rows not explicitly labeled 
above. Same notation (last column) is used for the not 
explicitly labeled columns. From vector [Nu] and matrix [h], 
the values of NuAVG and LHR defined in Section IV.A by (1) 
and (2) are: 

• ROAD NuAVG =31 LHR = 0,72 % 
• LAMP NuAVG =1 LHR = 0,40 % 
Table 7 [h] block matrices (a compact representation of the LUTT matrixes of 
the two experiments) 
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1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
101 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
102 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
103 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 
104 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 
201 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 
202 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 
203 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 
301 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 
302 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 
303 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 
304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 
305 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 
306 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 
307 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
… 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

These parameters show that the ROAD profile produces a 
higher computational load with respect to the LAMP profile. 
Given the Update and Subscribe profiles, the following 
amounts of notifications are sent to the subscribers during the 
reported experiments: 

• ROAD 1004 notifications (all Sj are triggered) 
• LAMP 23 notifications (19 SLAMP subscriptions and 

4 SROAD subscriptions are triggered) 

C. Test bed and methods 
Both the experiments run on a test bed consisting of:

• a machine hosting both the SUB Engine and the SPARQL
endpoint. This machine is an Intel(R) Core(tm) i7-
2630QM CPU @ 2.00GHz × 8 cores, 8 GB ram, Ubuntu
12.04; the SPARQL endpoint in all tests is Virtuoso 

• a remote multithreading C# client application (i.e.,
simulator) running on a Windows XP Virtual Box 
machine (4 GB Ram, 1 CPU, execution cap 100%). The
client machine is a MacBook Pro, Intel Core i7 2.2 GHz,
16 GB ram. The simulator is connected to the SUB
Engine through a 100 Mbps LAN. 

First of all, the ontology (see Table 2) is loaded on the RDF 
store. After that, the simulator starts all the 1004 subscribers 
(i.e., each of them running on a separated thread). Once all the 
subscribers are up and running, the simulator sequentially 
issues all the UPDATE primitives to the SUB Engine that is 
configured to run in sequential mode (i.e., one core is used for 
both the scheduler and all the SPUs). In this way, at the end of 
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each experiment, it is possible to extract the timing profile, 
logged by the SUB Engine, related to a single UPDATE 
request. Each experiment has been repeated several times and 
average values of the timing components have been calculated 
to evaluate the parameters of the performance model (see 
Section IV.B).  

VI. EVALUATION RESULTS SUMMARY 

A. KPIs 
Table 8 reports the KPIs and summarizes the impact of all

timing components on TTOTAL (see (3) in Section IV.A).  
Interested readers can find a detailed evaluation analysis along 
with a statistical analysis of the measured timing components 
in Section X. 

Table 8 Results summary for both experiments 
LAMP 
EXPERIMENT 

ROAD 
EXPERIMENT 

Experiment parameters 
Number of subscriptions m 1004 
Number of updates n 310 
Average triples/update NuAVG 1 31 
LUTT Hit Rate LHR (%) 0,40 0,72 
Notifications/experiment 23 1004 

KPIs 
Updates/s Ups 68 3,8 
Subscriptions/s Sps 68K 3,8K 
Triple/s Tps 68K 117,3K 
Notification latency NLmin

NLmax 
1,7 ms 
9,3 ms 

1,3 ms 
541,3 ms 

Engine impact on Endpoint E2E 1,0 1,8 

Timing components (% on TTOTAL) 
TUPDATE 49% 35% 

TLUTT 7% 3% 
TBOOSTER 44% 62% 

TNOTIFY << 1% << 1% 

From the results here reported some preliminary conclusions 
could be drawn. Both the experiments (LAMP and ROAD) 
share the same number of subscriptions and updates but they 
present very different KPIs. We can so argue that the SUB 
Engine performance are not just influenced by the total 
number of subscriptions and/or updates itself but are mostly 
related to the specific content of such primitives. Moreover, 
the KPIs prove one of the fundamental hypothesis under 
which the notification algorithm has been designed: selective 
updates of few triples (i.e., the LAMP experiment) dominate 
with respect to more complex updates (i.e., the ROAD 
experiment). In fact, from Table 8, it is clear how the LAMP 
experiment outperforms the ROAD experiment (i.e., the 
maximum number of subscriptions that can be processed in 
one seconds (Sps) decreases from 68K to 3,8K) granting a 
lower notification latency (i.e., 9.3 ms compared to 541,3 ms) 
and with a lower overhead on the underpinning SPARQL 
endpoint (i.e., E2E moves from 1 to 1,8). Eventually, the 
results demonstrate the effectiveness of the LUTT: the LUTT 
matching requires no more than the 7% of the total experiment 
time. 

B. LUTT filtering
An evidence of the LUTT filtering impact on the overall 

engine performance is provided by Table 9 where, for both the 
experiments, the timings components and the resulting KPIs 
are estimated without the LUTT support and are compared 
with those reported in Table 8.  
Table 9 LUTT impact on engine performance (estimate). For reasons of 
simplicity and readability, all the values are approximated.  

KPIs 
LAMP EXPERIMENT Ups Sps Tps Nlmax E2E 

LUTT On 68 68K 68K 0,09 s 1,0 
LUTT Off 0,55 557 557 1,80 s 245 
Ratio (On/Off) 122 5×10-3 4×10-3 

ROAD EXPERIMENT Ups Sps Tps Nlmax E2E 
LUTT On 3,8 3,8K 117,3K 0,54 s 1,8 
LUTT Off 0,03 29,4 901 129 s 367 
Ratio (On/Off) 130 4×10-3 5×10-3 

Timing components (TUPDATE,  TNOTIFY and TOVERHEAD are not shown as 
they are not affected by the LUTT) 

LAMP EXPERIMENT TBOOSTER TLUTT TTOTAL 
LUTT On 2 s 0,3 s 4,6 s 
LUTT Off 9 min - 9 min 

ROAD EXPERIMENT TBOOSTER TLUTT TTOTAL 
LUTT On 50,2 s 2,1 s 81,3 s 
LUTT Off 176 min - 176,5 min 

The KPIs values reported in Table 9 show that the estimated 
LUTT impact on performance is quite similar in both the 
experiments (i.e., an improvement of two orders of 
magnitude). This estimate is not so surprising because, while 
the experiments seem significantly different to a human 
observer (310 versus 9500 context changes), they are similar 
from the LUTT based filtering point of view. In fact, in both 
experiments, 1000 out of 1004 LUTTs stop nearly all triples 
from progressing to the BOOSTER processing stage, 
drastically reducing the computational load in 99.6% of the 
cases.   

C. Parallel execution
Some remarks about the parallel execution of active SPUs 

should also be added here. In sequential execution mode 
(Ncores = 1), according to (3), TTOTAL is the sum of 4 separate 
timing components: 

!!"!#$ = !!"#$%& + !!"## + !!""#$%& + !!"#$%&  (!) 
In the proposed implementation, TUPDATE and TLUTT do not 

overlap because all UPDATE primitives are serialized and 
because - for each UPDATE primitive – the update of the 
SPARQL endpoint and the LUTT filtering run sequentially. 
On the other side, if Ncores > 1, for each UPDATE primitive Ui, 
LUTT filtering and BOOSTER execution may be pipelined 
thanks to the interposed decoupling FIFO queue (ARTQ in 
Fig. 3). Moreover, all SPUs that find a core free may run in 
parallel. Thus, if tbi is the BOOSTER execution time for Ui, 
while tui+1 and tli+1 are respectively the update time of the 
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SPARQL endpoint RDF store and the LUTT filtering 
execution time referred to Ui+1, then tbi and (tui+1 + tli+1) may 
overlap, drastically reducing TTOTAL, which so now becomes:  

!!"!#$ = !!"#$%& + !!"##    (!) 
This is valid as long as ARTQ is not full and the scheduler 

does not share its core with any SPUs. For example, if for 
every Ui:  

Ncores ≥ 1 + ℎi,j
!

!!!
  (!) 

(i.e., one core for the scheduler and one for each SPU 
involved in Ui). 

Fig. 7 compares the parallel execution mode (i.e., Ncores = 8) 
with the sequential execution mode (i.e., Ncores = 1) running an 
experiment with the following Update and Subscription 
profiles: 

! =  !!"#$(X) | X � {1,100,200,300}

! = !!"#$(X) |  X �{300..310}  

Fig. 7. Comparison between sequential and parallel execution modes (4 
coarse-grain subscriptions react to 10 updates of 100 triples each). TELAPSED 
after 10 updates is respectively 6,0 s and 3,8 s (not shown). 

VII. RELATED WORK

The SPS Architecture presented in this paper can be framed 
within the research topics known as Stream Reasoning [47], 
Linked Stream Data Processing [48] and Content-Based 
Publish-Subscribe [49]. To the best of our knowledge, the first 
approaches for Semantic Web based publish-subscribe 
systems are presented by Wang et al. [50] and Chirita et al. 
[51]. Wang et al. propose an ontology based publish-subscribe 
system in which events are expressed with RDF graphs. Their 
contribution includes also a matching algorithm for event 
detection and a subscription language based on SquisQL [52], 
RDQL [53] and RQL [54] query languages. Chirita et al. in 
turn propose a solution to incorporate publish-subscribe 
capabilities in RDF-based peer-to-peer (P2P) network. 
Similarly to Wang et al., they propose their own language for 

subscriptions. Due to the immaturity of Semantic Web query 
languages at the time, it is natural that all these approaches 
propose their own subscription languages. A similar approach 
is the one by Shi et al. [55]. However, since SPARQL was 
already gaining popularity in 2007, their subscription language 
is somewhat similar to SPARQL, although much more 
restricted. Because these early Semantic Web publish-
subscribe approaches do not utilize SPARQL as subscription 
language, their processing engines and matching algorithms 
are completely different from the SUB Engine and its event 
detection and notification algorithm. This is also true for the 
solution presented in [56], which utilizes Semantic Web Rule 
Language (SWRL) [57] to represent subscriptions. 

To the best of our knowledge, a first attempt to use SPARQL 
as the subscription language is presented in [58]. They present 
a simple architecture for content based publish-subscribe 
systems and evaluate the performance of their Jena [59] based 
reference implementation with a baseball related case study. 
However, they do not refer to any subscription related 
optimizations to the Jena query engine and the performance of 
the reference implementation is thus quite poor as shown by 
the evaluation results. Another important difference compared 
to our proposal is that they provide the whole result set 
whenever the SPARQL query results change, whereas our 
architecture sends the whole result set when the subscription is 
registered and then notifies clients about how the results set 
changes with new and obsolete bindings. Also the architecture 
described in [58] differs from the IoT focused SPS 
Architecture and its application design pattern in the following 
ways: 1) it does not include aggregators and 2) it does not 
specify the role of the agents in detail from the IoT system 
perspective.   

Another early SPARQL based RDF stream processing 
proposal is Streaming SPARQL [60]. It differs from the 
above-presented approach in that it does not use standard 
SPARQL but extends it with windows. A window specifies the 
triples for which the query is executed. It can be defined either 
by the number of triples (last triples from the stream) or the 
time (e.g., the last 15 minutes). The window specification 
defines also how often the window is updated and 
consequently the frequency of query evaluation. The 
Streaming SPARQL engine is implemented within the 
ODYSSEYS framework.  

Windows are typical in traditional stream processing and 
there are many other window-based RDF stream and event 
processing solutions, which focuses on different aspects of 
event processing and use different syntaxes for presenting 
windows: Continuous SPARQL (C-SPARQL) [61], 
SPARQLStream [62], Event Processing SPARQL (EP-
SPARQL) [63], Continuous Query Evaluation over Linked 
Data Streams (CQELS) [64], and Sparkwave [65].  

C-SPARQL is a language for expressing persistent SPARQL
queries over RDF streams. In addition to the extensions for 
windows, it extends SPARQL 1.0 with support for time 
management, and aggregations. The execution environment of 
C-SPARQL builds upon a standard SPARQL reasoner (which
evaluates the static part of the query) and a Data Stream
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Management System (which is responsible for the dynamic 
part of the query).  

Similarly to Streaming SPARQL and C-SPARQL, 
SPARQLStream is a language that introduces extensions to 
SPARQL to handle RDF streams. It differs from Streaming 
SPARQL and C-SPARQL in three ways. First, the 
SPARQLStream only considers time-based windows whereas 
Streaming SPARQL and C-SPARQL support also windows 
defined by a concrete number of triples. Second, the 
SPARQLStream enables windows to be defined into the past in 
contrast to Streaming SPARQL and C-SPARQL where the 
windows always start from the present. The third difference is 
that the SPARQLStream proposes window-to-stream operations 
that are used to transform a stream of windows into a stream 
of RDF triples with timestamps.  

The EP-SPARQL is a SPARQL based language for Event 
Processing and Stream Reasoning. It focuses on the detection 
of RDF triples in a specific temporal order. To make this 
possible EP-SPARQL proposes several binary operations that 
can be used to combine RDF graph patterns in a temporal-
sensitive manner. Another notable difference to the other 
window-based event processing approaches is that EP-
SPARQL does not enforce the use of windows. Instead it 
provides an optional SPARQL function that can be used inside 
the FILTER pattern to create time windows by setting time 
intervals for which the query is active. Because of this, the EP-
SPARQL cannot be classified as a pure window-based 
solution and it is thus closer to the SPARQL event processing 
approach proposed in this paper. The system implementing the 
event processing functionalities defined by EP-SPARQL is 
called ETALIS [66]. It is implemented in Prolog and designed 
to process event-driven-backward-chaining (EDBC) rules [67] 
(i.e., EP-SPARQL expressions need to be translated into 
EDBC rules written in Prolog before they can be evaluated by 
ETALIS).  

CQELS is a SPARQL based adaptive query engine for 
Linked Data and Linked Data Streams. The main difference 
with other window-based SPARQL event processing systems 
is that CQELS uses its own native processing model in the 
query engine – in contrast to other approaches that transform 
SPARQL into logic rules, Rete networks, or data suitable for 
standard stream processing engines. This makes it possible to 
have a full control of the query execution plan and it is used in 
practice to dynamically reorder operators based on changes in 
the input data. 

To our knowledge, Sparkwave is the most recent window-
based approach for continuous RDF data stream processing 
with SPARQL. The event processing in Sparkwave is based 
on the Rete algorithm [68] that provides a generalized solution 
to perform pattern matching, where facts are matched against 
rules. In this case the facts are presented with RDF triples and 
rules with persistent SPARQL queries. 

There are four notable aspects that differentiate the SPS 
Architecture from the window-based SPARQL event 
processing approaches presented above. First, the SPS 
Architecture does not use windows to define the triples for 
which the query is evaluated (i.e., we concentrate on real-time 

evaluation of events within the whole system). Second, the 
SPS Architecture uses SPARQL, without any extensions, both 
to generate and subscribe to events. Third, instead of 
processing individual RDF triples coming from specific RDF 
streams, the SPS Architecture is based on an interaction model 
where any agent can trigger events by modifying the context 
of the system with SPARQL 1.1 Update language operations. 
Fourth, the SPARQL publish-subscribe engine (SUB Engine) 
detects how the results have changed from the initial query 
results whereas the window-based approaches provide the 
whole results set whenever it is modified in any way. Because 
of these fundamental differences in the SPARQL event 
processing approaches also the implementations of the event 
processing algorithms are totally different. 

In addition to the window-based approaches and the early 
Semantic Web based publish-subscribe systems presented 
above, more similar approaches to the SPS Architecture have 
been presented in the literature. A common characteristic of 
these approaches, including Groppe et al. [69], EventCloud 
[70] [71], INSTANS [72] [73] [74], SENS [40] [75] [76] [77]
and Smart-M3 [17], is that SPARQL is used as the
subscription language. 

Groppe et al. [69] propose algebra for handling RDF streams 
with SPARQL and suggest optimizations for its 
implementation. The SPARQL streaming engine 
implementing the algebra improves a SPARQL endpoint by 1) 
discarding irrelevant triples in the early state of processing, 2) 
creating indices only for triples relevant for the query, and 3) 
calculating partial results for the query as soon as possible. 
The SPS Architecture and the SUB Engine proposed in this 
paper differs from the approach prosed by Groppe et al. in 
three ways. First, the algebra proposed by Groppe et al. 
focuses only on streams, whereas we also provide a memory 
for the system. Having a central memory in the event 
processing engine makes the approach more suitable for IoT 
systems as the clients may join and leave the system 
dynamically at runtime. Second, the most notable difference in 
the approaches is that the engine proposed by Groppe et al. is 
designed to provide the whole result set (in similar way to 
normal SPARQL query) whenever it is modified in any way. 
Our approach in turn detects only how the result set change 
(i.e., new and obsolete bindings) and it is thus more suitable 
for situations where only small parts of the data set change 
during a publish operation. Because of this difference the 
actual algorithms and ways to detect the events are also 
completely different. Third, Groppe et al. do not propose any 
specific client design pattern whereas we propose a modular 
IoT application and system design pattern based on producers, 
consumers and aggregators. 

In addition to the pioneer work of Chirita et al. [51], more 
recent approach for P2P publish-subscribe communication 
with Semantic Web technologies have been proposed by 
Pellegrino et al. [70] [71]. Their subscription processing 
system, called EventCloud, is based on P2P Content 
Addressable Network (CAN). As a subscription language, the 
EventCloud utilizes a subset of SPARQL. They also propose 
two matching algorithms, called Chained Semantic Matching 
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Algorithm (CSMA) and One-step Semantic Matching 
Algorithm (OSMA). There are four main differences between 
the EventCloud and the SPS Architecture proposed in this 
paper. First, EventCloud implementation is based on P2P 
networks whereas we implement our SPARQL subscription 
engine on top of a traditional SPARQL endpoint. Second, the 
subscription language used by the EventCloud supports only a 
limited subset of SPARQL features whereas we support 
SPARQL 1.1 as such. Third, the EventCloud provides the 
whole results set whenever the results change, whereas the 
SPS Architecture calculates how the results have changed. 
Fourth, Pellegrino et al. do not focus on the client side 
whereas we describe how IoT applications can be developed 
in a modular way by utilizing the client design pattern 
proposed in the paper. 

INSTANS (Incremental eNgine for STANding Sparql) [72] 
[73] [74] is another Rete-based approach for SPARQL event
processing. The INSTANS platform is implemented with 
Scala programming language and consists of Control, 
SPARQL parser, Rete network, RDF triple store and Garbage
collector modules.  In spite of the similarities, there are also 
many differences between the SPS Architecture and
INSTANS. The first difference is that we provide a highly
parallel architecture whereas in INSTANS the evaluation of
SPARQL subscriptions is sequential. The second difference is 
that our solution introduces an optimized publish-subscribe 
mechanism on top of a generic SPARQL endpoint, whereas
INSTANS bases its approach on the Rete algorithm. The third
difference is that in INSTANS a notification includes all the 
query results when the results change, while in our solution
only the delta in the SPARQL binding results is notified to the 
subscriber. The fourth difference is that INSTANS divides
clients into two groups (i.e., event producers and agents) 
whereas we propose an application design pattern based on
three types of clients in order to achieve modular design of
IoT systems. 

The Semantic Event Notification Service (SENS) proposed 
by Murth and Kühn [40] [75] [76] [77] is an event processing 
infrastructure that focuses on detecting when new knowledge 
emerges rather than detecting changes in the system status. 
Subscriptions are expressed with SPARQL basic graph 
patterns and it is also possible to create rules (represented with 
a subset of SPARQL CONSTRUCT) that create new 
knowledge to the knowledge base when specific events occur; 
this in turn can generate new knowledge events for the client. 
Their approach supports RDFS and OWL level reasoning 
making it possible to detect knowledge events that are not 
explicitly specified in the RDF updates but inferred based on 
the data. The earlier version, introduced in [40], is based on 
Jena framework and provides a Rete based forward reasoning 
engine. Later version, introduced in [75], utilizes OWLIM 2.9 
[78] as the reasoning and query engine. The most important 
differences between the approach proposed in this paper and 
the SENS are the following. First, SENS approach takes
ontological reasoning as part of the event processing whereas 
we focus solely on events expressed with SPARQL. Second, 
SENS only detects when new knowledge is inserted (i.e., 

knowledge can be removed but the event detection algorithm 
cannot detect that and the client will not be notified about it) 
whereas our approach also notifies clients about obsolete 
results. Third, SENS supports only a subset of SPARQL (i.e., 
basic graph patterns) whereas our approach provides a wider 
support for SPARQL. Fourth, SENS is not tailored for IoT 
systems and does not propose any specific system design 
pattern whereas we propose a modular client design pattern for 
IoT systems.  

The Smart-M3 community has studied the feasibility of the 
Smart-M3 solution for device interoperability in pervasive 
computing and IoT, investigating application domains [79] 
[80], analyzing methodological aspects [81] [82] and reporting 
about the lesson learned [83] [84] [85]. The Semantic Publish-
Subscribe (SPS) Architecture presented in this paper has been 
inspired by Smart-M3 [17] and its reference implementation 
named Smart-M3 RedSIB 0.9.2 [41] has been used as baseline 
for the SPS Architecture formalization. In particular, the novel 
SPARQL Subscription Engine (SUB Engine) aims at 
improving the performance of the previous Smart-M3 
reference implementation in the following ways: it proposes a 
novel SPARQL event detection algorithm that calculates how 
each individual RDF triple modifies the results set obtained by 
the initial SPARQL query and it utilizes a parallel architecture 
where each subscription is executed by a separate processing 
unit (i.e., CPU core). In addition to the SUB Engine, the main 
contribution of the paper is the application design pattern, 
where only SPARQL subscription and update operations are 
used, including delay updates.  

This paper is not the only one focusing on the Smart-M3 
knowledge broker architecture. For instance, Suomalainen et 
al. propose a secure broker, called RIBS [86]. Galov et al. 
have developed the CuteSIB [87], focusing on extensibility, 
dependability, and portability. Viola et al. propose pySIB [88], 
targeted especially to resource constrained computing 
platforms. As can be seen, these existing architectures address 
different aspects (i.e., security, portability, extensibility and 
dependability) compared to the SPS Architecture (i.e., 
performance).  

In our earlier work [21], we focused on the performance and 
scalability of Semantic Web enhanced IoT systems and 
proposed an architecture that partitions the IoT system into 
several parallel smart spaces. This work and the SPS 
Architecture are complementary contributions to enable real-
time semantic information processing in large-scale IoT 
systems. In fact, the SPS Architecture focuses on the 
performance and scalability of a single smart space (i.e., 
knowledge broker) whereas the architecture presented in [21] 
describes how to achieve scalability by supporting several 
knowledge brokers with an infrastructure that enables clients 
to discover them. 

VIII. CONCLUSION

 Event detection and notification at several levels of 
abstraction are capabilities required by information processing 
systems since the very early stages of the computer history: 
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for example, back in 1946, Burks, Goldstine and von 
Neumann literally stated "… simultaneous operation of the 
computer and the input/output organ requires additional 
temporary storage and introduces a synchronization 
problem..." [89], motivating the need for such simultaneous 
operation with performance reasons. Performance, in fact, is 
often the primary requirement for event management in small 
size and application specific systems. But, when systems 
complexity and flexibility grow, while the heterogeneity and 
the distribution of their components become a dominant 
factor, unambiguous event interpretation and explicit 
specification of the context where the event has to be handled 
become requirements as challenging as the system reaction 
time. This is what happens, for example, when the Internet of 
Things (IoT) come into play: in general, IoT services are 
based on infrastructures that react to events recognized by 
scoping large information bases dynamically updated by 
ubiquitous and heterogeneous devices. The semantics of such 
information bases could conveniently be specified with a 
shared OWL ontology and their stores (i.e., SPARQL 
endpoints) can be searched with an appropriate standard query 
language like SPARQL. But SPARQL endpoints do not 
provide a facility to detect and notify events because they are 
mostly conceived to deal with huge amounts of RDF triples 
that evolve constantly but at a much slower rate compared to 
the rate of elementary events occurring in the physical 
environment. To fill this gap a semantic publish-subscribe 
architecture consisting of a SPARQL Subscription Engine 
sitting on top of a SPARQL endpoint is proposed. The 
architecture exposes two primitives, one to generate and one to 
subscribe to events. The engine is optimized for efficient 
detection and notification of events originated by frequent and 
small context updates as expected in IoT ecosystems. 
Specifically the engine entrusts its performance and scalability 
levels to three factors: i) the capability to recognize and 
remove from the semantic event processing pipeline out-of-
context semantic events; ii) a novel algorithm which 
implements subscriptions with SPARQL queries and has the 
ability to notify only added and removed binding results since 
the previous notification; iii) the inherent subscription 
processing parallelism. A performance evaluation method is 
proposed and a reference implementation is evaluated. This 
implementation extends the core of Smart-M3, which is a 
semantic interoperability platform for smart spaces 
successfully demonstrated in several European research 
projects. Key performance indicators are provided and the 
impact of the above mentioned performance and scalability 
factors are analyzed with respect to a simple benchmark. 

New benchmarks and case studies are now encouraged to 
provide the fuel for further improvements and for a more 
comprehensive validation of the proposed architecture. 
Meanwhile its application in IoT scenarios is expected to 
provide best practices in application design. The short-term 
plan is to incorporate the proposed architecture in a Multi-
Network-Multi-Protocol IoT gateway, supporting protocols 
like MQTT, DASH7 and 6LoWPAN on the "Things" side and 
HTTP, COAP and NDN on the "Internet " side. 

IX. APPENDIX A: TABLE OF TERMS

General terms 
SPS Architecture (Semantic Publish-Subscribe Architecture): is the 
architecture proposed in this paper and is composed by: a processing 
infrastructure (SUB Engine + SPARQL endpoint), two primitives 
(UPDATE and SUBSCRIBE) and a set of clients (Consumers, 
Producers and Aggregators). 
SUB Engine (SPARQL Subscription Engine): is the core component 
of the processing infrastructure. Its internal architecture and the model 
used to evaluate the performance of a generic implementation are part of 
the main research contributions of the paper. 
URQ (UPDATE Request Queue), SRQ (SUBSCRIBE Request 
Queue): UPDATE and SUBSCRIBE requests are respectively stored 
into two FIFO queues. For each SUBSCRIBE request the SUB Engine 
instantiate a new SPU (SPARQL Processing Unit). The SUB Engine 
issues UPDATE requests to the SPARQL endpoint and the 
corresponding added and removed RDF triples are retrieved. These 
triples are forwarded to every active SPU. 
SPU (SPARQL Processing Unit): the SUB Engine instantiate a SPU 
for each subscription. SPUs can execute in parallel on a multi-core 
architecture. A SPU implements the event detection algorithm (see 
BOOSTER). 
CTS (Context Triple Store): each SPU maintains a local copy (i.e., 
like a cache) of the context represented by the set of triples that may 
contribute triggering a notification. 
LUTT (Look Up Triples Table): each SPU has its own LUTT that is 
used to filter out triples that are out of the subscription scope 
ARTQ (Added/Removed Triple Queue): is a FIFO queue that 
contains the triples that passed the LUTT. 
BOOSTER: implements the event detection algorithm. It takes as input 
the triples extracted from the ARTQ and the CTS. The same triples 
extracted from the ARTQ are also used to update the CTS. 

Benchmark parameters 
U (Update Profile): a set of cardinality n of all the UPDATE primitives 
Ui of an experiment 
S (Subscription Profile): a set of cardinality m of all the SUBSCRIBE 
primitives Sj of an experiment 
[Nu]: a vector of n elements, where each element Nui is the number of 
triples updated by the UPDATE Ui 
NuAVG : average number of triples updated by a single UPDATE 
primitive within an experiment 

!"!"# =
1
! !"i  

!

!!!

[h] (LUTT matrix): a Boolean matrix of n x m elements [h], where a
generic element hi,j = 1 if at least one of Nui triples pass LUTTj check,
otherwise hi,j = 0.
LHR(%) (LUTT hit ratio): is an indication of the LUTT filtering 
effectiveness in a particular scenario) 

!"# % = 100
! x ! !i,j

!

!!!

!

!!!

Performance model (timing components) 
TUPDATE is the total latency time of the SPARQL endpoint occurring 
when the Update Profile is applied. tui is the time required by the 
SPARQL endpoint to complete Ui 
TLUTT is the time paid to check n times all the m LUTTs. tli is the time 
to check all the m LUTTs when Ui occurs, while tli,j is the time required 
to check all Nui triples against LUTTj. 
TBOOSTER is the time spent by all m BOOSTERs to search their CTSs for 
the results to be notified to the subscribed clients. tbi is the total time 
required by all m BOOSTERs to detect all events triggered by Ui., while 
tbi,j is the time interval spent by the BOOSTERj to search the CTS for 
the events subscribed by Sj and triggered by Ui.  
TNOTIFY is the time spent by all m SPUs to forward the results to the 
communication interface. tei is the time required by all m SPUs to 
forward all results triggered by Ui, while tei,j is the time required by 
SPUj to forward the results produced by Ui. 
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KPI (Key Performance Indicators) 
!"# (Average number of updates processed per unit time) 

!"# = !
TTOTAL

!"# (Average number of triples processed per unit time) 

!"# = !"!"#  !"# 

!"# (Average number of subscriptions processed per unit time) 

!"# = ! !"# 

!"! (Engine to SPARQL Endpoint impact factor) 

!"! = T!"!#$ − T!"#$%&
T!"#$%&

!"!"#,!"!"# (Event notification latency range) 

!"!"# = !"# !"!,!+!"!,!+!"!,!| ! = 1. .! , ! = 1. .! ∧ !"!,! ≠ 0
!"!!" = !"# !"!+!"!+!"!| ! = 1. .! ∧ !"! ≠ 0

X. APPENDIX B: DETAILED EVALUATION ANALYSIS

All measures were taken server side and Unix timestamps in 
µs were collected. In our test bed we do not have any PRET 
processor (Precision Timed Machine [90]), therefore the 
measurements are statistically affected by several factors 
including memory access time variability, interrupts and OS 
overhead. All the measures here reported are average values 
calculated from the collected timing components. For each 
measured timing component, the mean, the standard deviation 
of the sample (i.e., σ), the minimum and maximum values are 
reported. 

A. Evaluation of SPARQL endpoint RDF store update

The time required to update the SPARQL endpoint RDF
store and retrieve the added and removed triples is 
characterized by a vector of n elements [tu], where each 
element tui is the time required by the SPARQL endpoint to 
complete Ui. The measured [tu] vectors of the two 
experiments are shown in Table 10. tui depends on the 
SPARQL endpoint, on the structure of Ui, on Nui (number of 
triples updated by Ui) and on the efficiency of the SUB Engine 
to retrieve from the SPARQL endpoint the Nui. triples updated 
by Ui. Often, the same update Uα is applied to different 
portions of the SPARQL endpoint store, so that several Ui only 
differ for some constant value in their WHERE clause (i.e., an 
URI). For example if Uα is: “switch on all public lights of a 
specific street in a specific city”, different instances of Uα 
could be applied to different streets and different cities and so 
each of these instances may end up with different values of 
Nui. Fig. 8 shows the measured trend of tui versus Nui shared 
by all the instances Ui for both of the Update profiles. 

Table 10 [tu] vectors (time values are in ms) 

LAMP EXPERIMENT 

i 

Mean σ Min Max 
1…100 7,795 4,220 4,463 33,189 

101...200 6,458 2,752 3,885 12,920 
201...300 6,944 3,530 3,850 13,291 
301...310 7,324 2,614 4,203 12,627 

ROAD EXPERIMENT 

Mean σ Min Max 

i 

1...100 52,825 21,569 34,239 147,540 
101...200 76,279 18,619 62,169 164,443 
201...300 131,069 6,913 121,653 175,980 
301...310 250,834 8,316 240,710 272,640 

Fig. 8. The time (in ms) to update the SPARQL endpoint linearly grows with 
the amount of updated triples 

B. Evaluation of LUTT filtering 
The SUB Engine relies on the LUTT to filter out the triples

that are out of a subscription context. The effect of LUTT 
filtering on the engine performance can be characterized by a 
matrix of n x m elements [tl], tli,j being the time interval 
required to check all the Nui triples updated by Ui against 
LUTTj.  A compact representation of the measured LUTT 
matrices for both experiments is shown in Table 11 (i.e., both 
are 310 x 1004 matrices). Fig. 9 plots the measured trends of 
the LUTT time tli,j versus Nui: a fine-grain subscription 
(SLAMP) is a subscription to a single lamp dimming value 
change, while a coarse-grain subscription (SROAD) is a 
subscription spanning  all lamps of a road. 

Table 11 [tl] LUTT matrices (µs) 

LAMP EXPERIMENT 
j 

1...1000 1001...1004 

i 

Mean σ Min Max Mean σ Min Max 
1...100 1 1 0 111 7 3 3 19 

101...200 1 1 0 160 6 7 3 144 
201...300 1 1 0 54 6 3 3 27 

301…310 1 1 0 13 7 3 3 15 

ROAD EXPERIMENT 

j 
1…1000 1001…1004 

Mean σ Min Max Mean σ Min Max 

i 

1...100 3 1 2 35 40 15 22 141 
101…200 5 1 4 115 68 16 46 183 
201…300 10 2 9 131 133 14 101 214 
301…310 22 7 19 303 255 24 213 317 
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Fig. 9. Trend of LUTT time (in µs) versus Nui for a fine-grain (tli,LAMP) and for 
a coarse-grain (tli,ROAD) subscription 

C. Evaluation of event detection (BOOSTER processing) 
All triples that hit LUTTj have to be processed by the 

corresponding BOOSTERj (5 in Fig. 3 and Fig. 6). BOOSTER 
processing is characterized by two n x m matrices: [Nb] where 
each matrix element Nbi,j states how many triples out of Nui 
have to be processed by BOOSTERj (i.e., in general only a 
subset of the Nui triples will pass the LUTT filtering) and [tb] 
where each element tbi,j is the time spent by the BOOSTERj to 
search its CTS for the events subscribed by Sj and triggered by 
Ui. Nbi,j is zero if the corresponding LUTT element hi,j is zero. 
In all the other cases, Nbi,j depends on the Update and 
Subscribe profiles. 

Table 12 shows both the [Nb] and [Ne] matrices as, in the 
proposed benchmark, they are the same (i.e., Nbi,j triples 
produce exactly Nbi,j binding results), while the measured [tb] 
matrices of the two experiments are shown in Table 13. 

Fig. 10 shows the measured trend of tbi,ROAD versus Nbi,ROAD  
for a coarse-grain subscription SROAD of the proposed 
benchmark.  As can be seen, the BOOSTER execution time 
linearly grows with the number of processed triples Nbi,ROAD  
and how fast is the BOOSTER in detecting an event, 
compared to corresponding time to update the SPARQL 
endpoint, can be perceived by comparing the first order 
coefficients in Fig. 8 and Fig. 10. At the same time, the LUTT 
effectiveness on filtering out of context triples can be 
perceived comparing Fig. 9 with Fig. 10 (i.e., µs versus ms). 
Table 12 [Nb] and [Ne] matrices 

LAMP EXPERIMENT 
  j 
  1…1004 
i 1...310 1 

ROAD EXPERIMENT 
  j 
  1...1000 1001...1004 

i 

1...100 1 10 
101...200 1 25 
201...300 1 50 
301...310 1 100 

Table 13 [tb] matrices (time values are in ms) 

LAMP EXPERIMENT 
  j 
  1...1000 1001...1004 

i 

 Mean σ Min Max Mean σ Min Max 
1...100 1,816 1,030 1,073 3,799 1,580 0,556 1,023 4,446 

101...200 1,202 0,115 1,053 1,351 1,619 0,557 1,035 3,549 
201...300 2,268 0,261 1,938 2,573 1,528 0,630 1,013 4,671 

301…310 1,902 0,623 1,077 2,574 1,749 0,736 1,059 3,197 

ROAD EXPERIMENT 
  j 
  1…1000 1001…1004 
  Mean σ Min Max Mean σ Min Max 

i 

1...100 1,206 0,087 1,121 1,569 13,398 2,189 12,137 26,517 
101…200 1,216 0,135 1,120 1,853 32,859 2,837 30,518 55,475 
201…300 1,199 0,086 1,126 1,729 66,496 5,105 61,218 104,513 
301…310 1,297 0,246 1,110 2,812 127,244 7,617 121,634 162,527 
 

 
Fig. 10. BOOSTER execution time (in ms) for a coarse-grain subscription 

D. Evaluation of event notification latency  
Events detected by a SPU need to be passed to the hosting 

platform communication interface which is in charge of 
forwarding the notification to the appropriate subscriber. This 
step (see 6 in Fig. 3 and Fig. 6) is characterized by two n x m 
matrices: [te], where each element tei,j is the time required by 
the SPUj to forward the results produced by Ui to the 
communication interface and [Ne], where each element Nei,j 
states how many results are found by BOOSTERj and have to 
be notified when Ui occurs. Nei,j is zero if the corresponding 
hi,j is zero. In all the other cases, Nei,j depends on the Update 
and Subscribe profiles. Table 12 shows both the [Nb] and [Ne] 
matrices as, in the proposed benchmark, they are the same 
(i.e., Nbi,j triples produce exactly Nbi,j binding results).  

Moving on to [te], the time tei,j, required by the SPUj to send 
to the communication interface the appropriate notification 
due to Ui generally depends on the number of binding results 
to be notified (i.e., Nei,j). tei,j is different from zero only for 
those Ui where at least one triple hits LUTTj and produces at 
least one result through the associated BOOSTERj. In the 
ULAMP profile, each Ui updates a single dimming value (i.e., 
one triple), so that, in this case, tei,j will always be the same 
(i.e., 155 µs). On the other hand, in the UROAD profile, each Ui 
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updates all the dimming values of the lamps belonging to a 
specific road X. Therefore, in the UROAD profile, if a SROAD(X) 
subscription is triggered, tei,j depends on the number of lamps 
(i.e., NLAMP) belonging to road X (i.e., 10, 25, 50, 100), while 
it has the same value as in the LAMP profile if a SLAMP(X,Y) is 
triggered. Fig. 11 plots the measured trend of tei,ROAD (ms) 
versus Nei,ROAD  for a coarse-grain subscription SROAD of the 
proposed benchmark. In this case, the impact of tei,j on TTOTAL 
is small as it can be perceived by comparing Fig. 11 with Fig. 
8. 

Fig. 11. Time to forward the results of a coarse-grain subscription to the 
communication interface 

For both the Update Profiles, the measured tei,j values (for all 
the subscriptions Sj that trigger a notification) are: 
Table 14 [te] notification latency matrices (time values are in µs) 

LAMP EXPERIMENT 
j 

1...1000 1001...1004 

i 

Mean σ Min Max Mean σ Min Max 
1...100 136 99 72 327 228 0 228 228 

101...200 83 8 72 91 84 0 84 84 
201...300 203 9 193 215 232 0 232 232 

301…310 164 71 75 270 79 0 79 79 

ROAD EXPERIMENT 
j 

1…1000 1001…1004 
 Mean σ Min Max Mean σ Min Max 

i 

1...100 74 10 66 116 74 10 66 116 
101…200 73 10 66 112 73 10 66 112 
201…300 70 5 65 93 70 5 65 93 
301…310 76 21 65 272 76 21 65 272 

E. Overhead time analysis 
In the reported experimental setup, the overhead is assumed

to be:  

!!"#$%#&' = !!"#$ + !!"#$   (!) 
where TMEAS is the time to collect all timing information, 

while TPROT is the time required to handle the interaction 
between the simulator and the SUB Engine. TPROT is defined 
as the sum of all time intervals between the end of processing 
of an UPDATE primitive and the start of processing start of 
the next one. During these time intervals, the SUB Engine is 

inactive as it is waiting for the next UPDATE primitive from 
the simulator. TPROT is not related to the SUB Engine 
performance, but it depends on the network delay, on the 
protocol implementation and on the client reaction speed. 
Evaluating and optimizing TPROT is not in the scope of this 
paper. The measured TOVERHEAD values for both experiments 
are shown in Table 15. 
Table 15 Impact of TOVERHEAD on TELAPSED in the two experiments 

TMEAS 
(s) 

TPROT 
(s) 

TOVERHEAD 
(s) 

TELAPSED 
(s) 

Overhead 
(%) 

ROAD 1,08 3,30 4,38 86,87 5 
LAMP 1,03 2,57 3,60 8,09 45 

F. System scalability analysis 

The scalability of the system with the number of
subscriptions (i.e., NSPUs) and the speed-up curves with the 
increasing number of available cores (i.e., Ncores) can be 
predicted using the performance evaluation method (see 
Section IV). The benchmark here considered uses the 
UPDATE and SUBSCRIBE primitives in 3 and the same 
knowledge base in Table 2, but it is based on two different 
experiments.  

In the first experiment, all the publishers issue the 
ULAMP(1,1) UPDATE, while all the subscribers are subscribed 
with the SLAMP(1,1) SUBSCRIBE. This means that each 
publisher updates one RDF triple (i.e., Nu = 1) and all the 
updated triples pass the LUTT (i.e., LHR(%) = 100%). 
Moreover, all the subscribers are notified (i.e., each UPDATE 
changes the current value of the dimming) and a notification 
includes two bindings (i.e., the new and the old dimming 
value).  

In the second experiment, all the publishers issue the 
UROAD(300) UPDATE, while all the subscribers are subscribed 
with the SROAD(300) SUBSCRIBE. This means that each 
publisher updates 100 RDF triples (i.e., Nu = 100) and, as in 
the first experiment, all the updated triples pass the LUTT. 
Like in the first experiment, all the subscribers are notified, 
but in this case each notification includes 200 bindings.  

These two experiments evaluate the performance of the 
engine in a very unfair scenario (i.e., LHR(%) = 100%) and so 
the results provide a lower bound prediction of the 
performance in a real world scenario. Both the experiments 
consider an increasing number of subscribers (i.e., NSPUs) and 
an increasing number of available cores (i.e., Ncores). Focusing 
on a single UPDATE primitive, the timing components of the 
two experiments are taken from the evaluation results (i.e., tu 
from Table 10, tl from Table 11, tb from Table 13 and te from 
Fig. 11) and shown in Table 15. 
Table 15 Timing components of experiments designed to predict the 
scalability and the effect of parallelization 

Estimated time (ms) 
Timing components First 

experiment 
Second 

experiment 
tu (SPARQL endpoint update time) 7,302 252,573 
tl (LUTT filtering time) 0,001 0,255 
tb (BOOSTER time) 1,789 127,243 
te (Notification forwarding time) 0,155 10,321 
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As the SUB Engine sequentially executes both the SPARQL 
endpoint update and the LUTT filtering (see Scheduling in 
Fig. 6), the maximum update frequency can be estimated as: 

!"#$%&!"# !" = 1
!" + !!"#$!"

 (!) 

On the other hand, the maximum throughput in terms of 
notifications/s can be expressed as: 

!"#$%&"'%!!"# !" =  1
!" + !"!!"#$%       (!)

First experiment 

Fig.12. In a typical IoT scenario, where each client update a single triple (e.g., 
a sensor reading), the SUB Engine, running on a 16 cores system, is able to 
notify up to 8K subscribers in one second 

Fig. 13. The maximum update rate granted by the system decreases with the 
time needed to update the SPARQL endpoint (i.e., 7,3 ms) and with the time 
spent by the SUB Engine to implement the LUTT filtering (i.e., 1 µs) 

Second experiment 

Fig. 14. In the worst case, where publishers update a large set of triples (i.e., 
100 triples), the SUB Engine running on a 16 cores system is still able to 
notify (i.e., with a notification consisting of 200 bindings) more than 100 
subscribers in one second 

Fig. 15. The maximum affordable update rate of the SUB Engine is heavily 
affected by the time required by the SPARQL endpoint to update the RDF 
store (i.e., 252,7 ms to update 100 triples) 

G. Final remarks 
Some final observations about the engine performance can

be drawn based on the experimental results. In our testing 
scenario and with the selected benchmark, the BOOSTER 
behavior is quite linear with respect to the number of triples 
involved in a specific event and detecting a desired event may 
require between 1 to well over 100 ms (see Fig. 10). As shown 
in Table 8, the latency of a notification spans from 2 to well 
over 500 ms. But the SUB Engine performance does not 
depend only on the BOOSTER algorithm. On the contrary, 
there are two additional contributions to improve the 
performance: LUTT based filtering and parallel execution of 
active SPUs.  

Thanks to the LUTT based filtering, out-of-context triples 
are stopped from moving to the BOOSTER, and, as shown by 
Fig. 9 this happens quickly (i.e., less than 21 µs for fine-grain 
subscriptions and less than 255 µs for coarse-grain 
subscriptions). Comparing the first order coefficients in Fig. 9 
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and Fig. 10, it is easy to perceive up to which extent the 
impact of LUTT filtering on TTOTAL may be neglected while 
the number of active subscriptions grows. Table 7 visualizes 
the impact of LUTT filtering on the overall performance: 
every ‘0’ in the LUTT matrix states that an UPDATE 
primitive does not need to be processed by a specific SPU as it 
is out of its context. The LUTT impact is particularly valuable 
when the LUTT Hit Rate (LHR) is low, as expected in Internet 
of Things scenarios mostly dominated by fine grain updates.  

Typically the SUB Engine will work in parallel execution 
mode but the number of available cores will not necessarily 
meet condition (6) (i.e., usually there will be less than one core 
per active SPU), therefore TTOTAL will fall between (4) and 
(5).  

We may thus conclude that the maximum event load 
affordable by a specific engine implementation is related to: 
1. Its ability to instantly reject out-of-scope events (i.e.,

granted by the LUTT); 
2. Its BOOSTER performance and the amount of memory

available for the CTSs; 
3. The number of cores available to the engine (Ncores).
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